sdma_v3_0.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  53. {
  54. SDMA0_REGISTER_OFFSET,
  55. SDMA1_REGISTER_OFFSET
  56. };
  57. static const u32 golden_settings_tonga_a11[] =
  58. {
  59. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  60. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  61. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  62. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  63. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  64. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  65. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  66. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  69. };
  70. static const u32 tonga_mgcg_cgcg_init[] =
  71. {
  72. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  73. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  74. };
  75. static const u32 golden_settings_fiji_a10[] =
  76. {
  77. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  78. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  79. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  80. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  81. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. };
  86. static const u32 fiji_mgcg_cgcg_init[] =
  87. {
  88. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  89. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  90. };
  91. static const u32 cz_golden_settings_a11[] =
  92. {
  93. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  94. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  95. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  96. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  97. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  98. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  99. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  102. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  103. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  104. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  105. };
  106. static const u32 cz_mgcg_cgcg_init[] =
  107. {
  108. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  109. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  110. };
  111. static const u32 stoney_golden_settings_a11[] =
  112. {
  113. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  114. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  115. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  117. };
  118. static const u32 stoney_mgcg_cgcg_init[] =
  119. {
  120. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  121. };
  122. /*
  123. * sDMA - System DMA
  124. * Starting with CIK, the GPU has new asynchronous
  125. * DMA engines. These engines are used for compute
  126. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  127. * and each one supports 1 ring buffer used for gfx
  128. * and 2 queues used for compute.
  129. *
  130. * The programming model is very similar to the CP
  131. * (ring buffer, IBs, etc.), but sDMA has it's own
  132. * packet format that is different from the PM4 format
  133. * used by the CP. sDMA supports copying data, writing
  134. * embedded data, solid fills, and a number of other
  135. * things. It also has support for tiling/detiling of
  136. * buffers.
  137. */
  138. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  139. {
  140. switch (adev->asic_type) {
  141. case CHIP_FIJI:
  142. amdgpu_program_register_sequence(adev,
  143. fiji_mgcg_cgcg_init,
  144. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  145. amdgpu_program_register_sequence(adev,
  146. golden_settings_fiji_a10,
  147. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  148. break;
  149. case CHIP_TONGA:
  150. amdgpu_program_register_sequence(adev,
  151. tonga_mgcg_cgcg_init,
  152. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  153. amdgpu_program_register_sequence(adev,
  154. golden_settings_tonga_a11,
  155. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  156. break;
  157. case CHIP_CARRIZO:
  158. amdgpu_program_register_sequence(adev,
  159. cz_mgcg_cgcg_init,
  160. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  161. amdgpu_program_register_sequence(adev,
  162. cz_golden_settings_a11,
  163. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  164. break;
  165. case CHIP_STONEY:
  166. amdgpu_program_register_sequence(adev,
  167. stoney_mgcg_cgcg_init,
  168. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  169. amdgpu_program_register_sequence(adev,
  170. stoney_golden_settings_a11,
  171. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  172. break;
  173. default:
  174. break;
  175. }
  176. }
  177. /**
  178. * sdma_v3_0_init_microcode - load ucode images from disk
  179. *
  180. * @adev: amdgpu_device pointer
  181. *
  182. * Use the firmware interface to load the ucode images into
  183. * the driver (not loaded into hw).
  184. * Returns 0 on success, error on failure.
  185. */
  186. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  187. {
  188. const char *chip_name;
  189. char fw_name[30];
  190. int err = 0, i;
  191. struct amdgpu_firmware_info *info = NULL;
  192. const struct common_firmware_header *header = NULL;
  193. const struct sdma_firmware_header_v1_0 *hdr;
  194. DRM_DEBUG("\n");
  195. switch (adev->asic_type) {
  196. case CHIP_TONGA:
  197. chip_name = "tonga";
  198. break;
  199. case CHIP_FIJI:
  200. chip_name = "fiji";
  201. break;
  202. case CHIP_CARRIZO:
  203. chip_name = "carrizo";
  204. break;
  205. case CHIP_STONEY:
  206. chip_name = "stoney";
  207. break;
  208. default: BUG();
  209. }
  210. for (i = 0; i < adev->sdma.num_instances; i++) {
  211. if (i == 0)
  212. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  213. else
  214. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  215. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  216. if (err)
  217. goto out;
  218. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  219. if (err)
  220. goto out;
  221. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  222. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  223. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  224. if (adev->sdma.instance[i].feature_version >= 20)
  225. adev->sdma.instance[i].burst_nop = true;
  226. if (adev->firmware.smu_load) {
  227. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  228. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  229. info->fw = adev->sdma.instance[i].fw;
  230. header = (const struct common_firmware_header *)info->fw->data;
  231. adev->firmware.fw_size +=
  232. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  233. }
  234. }
  235. out:
  236. if (err) {
  237. printk(KERN_ERR
  238. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  239. fw_name);
  240. for (i = 0; i < adev->sdma.num_instances; i++) {
  241. release_firmware(adev->sdma.instance[i].fw);
  242. adev->sdma.instance[i].fw = NULL;
  243. }
  244. }
  245. return err;
  246. }
  247. /**
  248. * sdma_v3_0_ring_get_rptr - get the current read pointer
  249. *
  250. * @ring: amdgpu ring pointer
  251. *
  252. * Get the current rptr from the hardware (VI+).
  253. */
  254. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  255. {
  256. u32 rptr;
  257. /* XXX check if swapping is necessary on BE */
  258. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  259. return rptr;
  260. }
  261. /**
  262. * sdma_v3_0_ring_get_wptr - get the current write pointer
  263. *
  264. * @ring: amdgpu ring pointer
  265. *
  266. * Get the current wptr from the hardware (VI+).
  267. */
  268. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  269. {
  270. struct amdgpu_device *adev = ring->adev;
  271. u32 wptr;
  272. if (ring->use_doorbell) {
  273. /* XXX check if swapping is necessary on BE */
  274. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  275. } else {
  276. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  277. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  278. }
  279. return wptr;
  280. }
  281. /**
  282. * sdma_v3_0_ring_set_wptr - commit the write pointer
  283. *
  284. * @ring: amdgpu ring pointer
  285. *
  286. * Write the wptr back to the hardware (VI+).
  287. */
  288. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  289. {
  290. struct amdgpu_device *adev = ring->adev;
  291. if (ring->use_doorbell) {
  292. /* XXX check if swapping is necessary on BE */
  293. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  294. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  295. } else {
  296. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  297. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  298. }
  299. }
  300. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  301. {
  302. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  303. int i;
  304. for (i = 0; i < count; i++)
  305. if (sdma && sdma->burst_nop && (i == 0))
  306. amdgpu_ring_write(ring, ring->nop |
  307. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  308. else
  309. amdgpu_ring_write(ring, ring->nop);
  310. }
  311. /**
  312. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  313. *
  314. * @ring: amdgpu ring pointer
  315. * @ib: IB object to schedule
  316. *
  317. * Schedule an IB in the DMA ring (VI).
  318. */
  319. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  320. struct amdgpu_ib *ib)
  321. {
  322. u32 vmid = ib->vm_id & 0xf;
  323. u32 next_rptr = ring->wptr + 5;
  324. while ((next_rptr & 7) != 2)
  325. next_rptr++;
  326. next_rptr += 6;
  327. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  328. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  329. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  330. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  331. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  332. amdgpu_ring_write(ring, next_rptr);
  333. /* IB packet must end on a 8 DW boundary */
  334. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  335. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  336. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  337. /* base must be 32 byte aligned */
  338. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  339. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  340. amdgpu_ring_write(ring, ib->length_dw);
  341. amdgpu_ring_write(ring, 0);
  342. amdgpu_ring_write(ring, 0);
  343. }
  344. /**
  345. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  346. *
  347. * @ring: amdgpu ring pointer
  348. *
  349. * Emit an hdp flush packet on the requested DMA ring.
  350. */
  351. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  352. {
  353. u32 ref_and_mask = 0;
  354. if (ring == &ring->adev->sdma.instance[0].ring)
  355. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  356. else
  357. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  358. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  359. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  360. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  361. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  362. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  363. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  364. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  365. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  366. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  367. }
  368. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  369. {
  370. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  371. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  372. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  373. amdgpu_ring_write(ring, 1);
  374. }
  375. /**
  376. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  377. *
  378. * @ring: amdgpu ring pointer
  379. * @fence: amdgpu fence object
  380. *
  381. * Add a DMA fence packet to the ring to write
  382. * the fence seq number and DMA trap packet to generate
  383. * an interrupt if needed (VI).
  384. */
  385. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  386. unsigned flags)
  387. {
  388. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  389. /* write the fence */
  390. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  391. amdgpu_ring_write(ring, lower_32_bits(addr));
  392. amdgpu_ring_write(ring, upper_32_bits(addr));
  393. amdgpu_ring_write(ring, lower_32_bits(seq));
  394. /* optionally write high bits as well */
  395. if (write64bit) {
  396. addr += 4;
  397. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  398. amdgpu_ring_write(ring, lower_32_bits(addr));
  399. amdgpu_ring_write(ring, upper_32_bits(addr));
  400. amdgpu_ring_write(ring, upper_32_bits(seq));
  401. }
  402. /* generate an interrupt */
  403. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  404. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  405. }
  406. unsigned init_cond_exec(struct amdgpu_ring *ring)
  407. {
  408. unsigned ret;
  409. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
  410. amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
  411. amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
  412. amdgpu_ring_write(ring, 1);
  413. ret = ring->wptr;/* this is the offset we need patch later */
  414. amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
  415. return ret;
  416. }
  417. void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
  418. {
  419. unsigned cur;
  420. BUG_ON(ring->ring[offset] != 0x55aa55aa);
  421. cur = ring->wptr - 1;
  422. if (likely(cur > offset))
  423. ring->ring[offset] = cur - offset;
  424. else
  425. ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
  426. }
  427. /**
  428. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  429. *
  430. * @adev: amdgpu_device pointer
  431. *
  432. * Stop the gfx async dma ring buffers (VI).
  433. */
  434. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  435. {
  436. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  437. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  438. u32 rb_cntl, ib_cntl;
  439. int i;
  440. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  441. (adev->mman.buffer_funcs_ring == sdma1))
  442. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  443. for (i = 0; i < adev->sdma.num_instances; i++) {
  444. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  445. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  446. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  447. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  448. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  449. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  450. }
  451. sdma0->ready = false;
  452. sdma1->ready = false;
  453. }
  454. /**
  455. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  456. *
  457. * @adev: amdgpu_device pointer
  458. *
  459. * Stop the compute async dma queues (VI).
  460. */
  461. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  462. {
  463. /* XXX todo */
  464. }
  465. /**
  466. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  467. *
  468. * @adev: amdgpu_device pointer
  469. * @enable: enable/disable the DMA MEs context switch.
  470. *
  471. * Halt or unhalt the async dma engines context switch (VI).
  472. */
  473. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  474. {
  475. u32 f32_cntl;
  476. int i;
  477. for (i = 0; i < adev->sdma.num_instances; i++) {
  478. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  479. if (enable)
  480. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  481. AUTO_CTXSW_ENABLE, 1);
  482. else
  483. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  484. AUTO_CTXSW_ENABLE, 0);
  485. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  486. }
  487. }
  488. /**
  489. * sdma_v3_0_enable - stop the async dma engines
  490. *
  491. * @adev: amdgpu_device pointer
  492. * @enable: enable/disable the DMA MEs.
  493. *
  494. * Halt or unhalt the async dma engines (VI).
  495. */
  496. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  497. {
  498. u32 f32_cntl;
  499. int i;
  500. if (enable == false) {
  501. sdma_v3_0_gfx_stop(adev);
  502. sdma_v3_0_rlc_stop(adev);
  503. }
  504. for (i = 0; i < adev->sdma.num_instances; i++) {
  505. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  506. if (enable)
  507. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  508. else
  509. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  510. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  511. }
  512. }
  513. /**
  514. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  515. *
  516. * @adev: amdgpu_device pointer
  517. *
  518. * Set up the gfx DMA ring buffers and enable them (VI).
  519. * Returns 0 for success, error for failure.
  520. */
  521. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  522. {
  523. struct amdgpu_ring *ring;
  524. u32 rb_cntl, ib_cntl;
  525. u32 rb_bufsz;
  526. u32 wb_offset;
  527. u32 doorbell;
  528. int i, j, r;
  529. for (i = 0; i < adev->sdma.num_instances; i++) {
  530. ring = &adev->sdma.instance[i].ring;
  531. wb_offset = (ring->rptr_offs * 4);
  532. mutex_lock(&adev->srbm_mutex);
  533. for (j = 0; j < 16; j++) {
  534. vi_srbm_select(adev, 0, 0, 0, j);
  535. /* SDMA GFX */
  536. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  537. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  538. }
  539. vi_srbm_select(adev, 0, 0, 0, 0);
  540. mutex_unlock(&adev->srbm_mutex);
  541. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  542. adev->gfx.config.gb_addr_config & 0x70);
  543. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  544. /* Set ring buffer size in dwords */
  545. rb_bufsz = order_base_2(ring->ring_size / 4);
  546. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  547. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  548. #ifdef __BIG_ENDIAN
  549. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  550. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  551. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  552. #endif
  553. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  554. /* Initialize the ring buffer's read and write pointers */
  555. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  556. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  557. /* set the wb address whether it's enabled or not */
  558. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  559. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  560. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  561. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  562. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  563. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  564. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  565. ring->wptr = 0;
  566. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  567. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  568. if (ring->use_doorbell) {
  569. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  570. OFFSET, ring->doorbell_index);
  571. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  572. } else {
  573. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  574. }
  575. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  576. /* enable DMA RB */
  577. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  578. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  579. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  580. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  581. #ifdef __BIG_ENDIAN
  582. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  583. #endif
  584. /* enable DMA IBs */
  585. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  586. ring->ready = true;
  587. r = amdgpu_ring_test_ring(ring);
  588. if (r) {
  589. ring->ready = false;
  590. return r;
  591. }
  592. if (adev->mman.buffer_funcs_ring == ring)
  593. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  594. }
  595. return 0;
  596. }
  597. /**
  598. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  599. *
  600. * @adev: amdgpu_device pointer
  601. *
  602. * Set up the compute DMA queues and enable them (VI).
  603. * Returns 0 for success, error for failure.
  604. */
  605. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  606. {
  607. /* XXX todo */
  608. return 0;
  609. }
  610. /**
  611. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  612. *
  613. * @adev: amdgpu_device pointer
  614. *
  615. * Loads the sDMA0/1 ucode.
  616. * Returns 0 for success, -EINVAL if the ucode is not available.
  617. */
  618. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  619. {
  620. const struct sdma_firmware_header_v1_0 *hdr;
  621. const __le32 *fw_data;
  622. u32 fw_size;
  623. int i, j;
  624. /* halt the MEs */
  625. sdma_v3_0_enable(adev, false);
  626. for (i = 0; i < adev->sdma.num_instances; i++) {
  627. if (!adev->sdma.instance[i].fw)
  628. return -EINVAL;
  629. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  630. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  631. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  632. fw_data = (const __le32 *)
  633. (adev->sdma.instance[i].fw->data +
  634. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  635. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  636. for (j = 0; j < fw_size; j++)
  637. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  638. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  639. }
  640. return 0;
  641. }
  642. /**
  643. * sdma_v3_0_start - setup and start the async dma engines
  644. *
  645. * @adev: amdgpu_device pointer
  646. *
  647. * Set up the DMA engines and enable them (VI).
  648. * Returns 0 for success, error for failure.
  649. */
  650. static int sdma_v3_0_start(struct amdgpu_device *adev)
  651. {
  652. int r, i;
  653. if (!adev->pp_enabled) {
  654. if (!adev->firmware.smu_load) {
  655. r = sdma_v3_0_load_microcode(adev);
  656. if (r)
  657. return r;
  658. } else {
  659. for (i = 0; i < adev->sdma.num_instances; i++) {
  660. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  661. (i == 0) ?
  662. AMDGPU_UCODE_ID_SDMA0 :
  663. AMDGPU_UCODE_ID_SDMA1);
  664. if (r)
  665. return -EINVAL;
  666. }
  667. }
  668. }
  669. /* unhalt the MEs */
  670. sdma_v3_0_enable(adev, true);
  671. /* enable sdma ring preemption */
  672. sdma_v3_0_ctx_switch_enable(adev, true);
  673. /* start the gfx rings and rlc compute queues */
  674. r = sdma_v3_0_gfx_resume(adev);
  675. if (r)
  676. return r;
  677. r = sdma_v3_0_rlc_resume(adev);
  678. if (r)
  679. return r;
  680. return 0;
  681. }
  682. /**
  683. * sdma_v3_0_ring_test_ring - simple async dma engine test
  684. *
  685. * @ring: amdgpu_ring structure holding ring information
  686. *
  687. * Test the DMA engine by writing using it to write an
  688. * value to memory. (VI).
  689. * Returns 0 for success, error for failure.
  690. */
  691. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  692. {
  693. struct amdgpu_device *adev = ring->adev;
  694. unsigned i;
  695. unsigned index;
  696. int r;
  697. u32 tmp;
  698. u64 gpu_addr;
  699. r = amdgpu_wb_get(adev, &index);
  700. if (r) {
  701. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  702. return r;
  703. }
  704. gpu_addr = adev->wb.gpu_addr + (index * 4);
  705. tmp = 0xCAFEDEAD;
  706. adev->wb.wb[index] = cpu_to_le32(tmp);
  707. r = amdgpu_ring_alloc(ring, 5);
  708. if (r) {
  709. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  710. amdgpu_wb_free(adev, index);
  711. return r;
  712. }
  713. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  714. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  715. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  716. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  717. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  718. amdgpu_ring_write(ring, 0xDEADBEEF);
  719. amdgpu_ring_commit(ring);
  720. for (i = 0; i < adev->usec_timeout; i++) {
  721. tmp = le32_to_cpu(adev->wb.wb[index]);
  722. if (tmp == 0xDEADBEEF)
  723. break;
  724. DRM_UDELAY(1);
  725. }
  726. if (i < adev->usec_timeout) {
  727. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  728. } else {
  729. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  730. ring->idx, tmp);
  731. r = -EINVAL;
  732. }
  733. amdgpu_wb_free(adev, index);
  734. return r;
  735. }
  736. /**
  737. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  738. *
  739. * @ring: amdgpu_ring structure holding ring information
  740. *
  741. * Test a simple IB in the DMA ring (VI).
  742. * Returns 0 on success, error on failure.
  743. */
  744. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  745. {
  746. struct amdgpu_device *adev = ring->adev;
  747. struct amdgpu_ib ib;
  748. struct fence *f = NULL;
  749. unsigned i;
  750. unsigned index;
  751. int r;
  752. u32 tmp = 0;
  753. u64 gpu_addr;
  754. r = amdgpu_wb_get(adev, &index);
  755. if (r) {
  756. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  757. return r;
  758. }
  759. gpu_addr = adev->wb.gpu_addr + (index * 4);
  760. tmp = 0xCAFEDEAD;
  761. adev->wb.wb[index] = cpu_to_le32(tmp);
  762. memset(&ib, 0, sizeof(ib));
  763. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  764. if (r) {
  765. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  766. goto err0;
  767. }
  768. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  769. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  770. ib.ptr[1] = lower_32_bits(gpu_addr);
  771. ib.ptr[2] = upper_32_bits(gpu_addr);
  772. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  773. ib.ptr[4] = 0xDEADBEEF;
  774. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  775. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  776. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  777. ib.length_dw = 8;
  778. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  779. if (r)
  780. goto err1;
  781. r = fence_wait(f, false);
  782. if (r) {
  783. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  784. goto err1;
  785. }
  786. for (i = 0; i < adev->usec_timeout; i++) {
  787. tmp = le32_to_cpu(adev->wb.wb[index]);
  788. if (tmp == 0xDEADBEEF)
  789. break;
  790. DRM_UDELAY(1);
  791. }
  792. if (i < adev->usec_timeout) {
  793. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  794. ring->idx, i);
  795. goto err1;
  796. } else {
  797. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  798. r = -EINVAL;
  799. }
  800. err1:
  801. fence_put(f);
  802. amdgpu_ib_free(adev, &ib, NULL);
  803. fence_put(f);
  804. err0:
  805. amdgpu_wb_free(adev, index);
  806. return r;
  807. }
  808. /**
  809. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  810. *
  811. * @ib: indirect buffer to fill with commands
  812. * @pe: addr of the page entry
  813. * @src: src addr to copy from
  814. * @count: number of page entries to update
  815. *
  816. * Update PTEs by copying them from the GART using sDMA (CIK).
  817. */
  818. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  819. uint64_t pe, uint64_t src,
  820. unsigned count)
  821. {
  822. while (count) {
  823. unsigned bytes = count * 8;
  824. if (bytes > 0x1FFFF8)
  825. bytes = 0x1FFFF8;
  826. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  827. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  828. ib->ptr[ib->length_dw++] = bytes;
  829. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  830. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  831. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  832. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  833. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  834. pe += bytes;
  835. src += bytes;
  836. count -= bytes / 8;
  837. }
  838. }
  839. /**
  840. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  841. *
  842. * @ib: indirect buffer to fill with commands
  843. * @pe: addr of the page entry
  844. * @addr: dst addr to write into pe
  845. * @count: number of page entries to update
  846. * @incr: increase next addr by incr bytes
  847. * @flags: access flags
  848. *
  849. * Update PTEs by writing them manually using sDMA (CIK).
  850. */
  851. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  852. const dma_addr_t *pages_addr, uint64_t pe,
  853. uint64_t addr, unsigned count,
  854. uint32_t incr, uint32_t flags)
  855. {
  856. uint64_t value;
  857. unsigned ndw;
  858. while (count) {
  859. ndw = count * 2;
  860. if (ndw > 0xFFFFE)
  861. ndw = 0xFFFFE;
  862. /* for non-physically contiguous pages (system) */
  863. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  864. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  865. ib->ptr[ib->length_dw++] = pe;
  866. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  867. ib->ptr[ib->length_dw++] = ndw;
  868. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  869. value = amdgpu_vm_map_gart(pages_addr, addr);
  870. addr += incr;
  871. value |= flags;
  872. ib->ptr[ib->length_dw++] = value;
  873. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  874. }
  875. }
  876. }
  877. /**
  878. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  879. *
  880. * @ib: indirect buffer to fill with commands
  881. * @pe: addr of the page entry
  882. * @addr: dst addr to write into pe
  883. * @count: number of page entries to update
  884. * @incr: increase next addr by incr bytes
  885. * @flags: access flags
  886. *
  887. * Update the page tables using sDMA (CIK).
  888. */
  889. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  890. uint64_t pe,
  891. uint64_t addr, unsigned count,
  892. uint32_t incr, uint32_t flags)
  893. {
  894. uint64_t value;
  895. unsigned ndw;
  896. while (count) {
  897. ndw = count;
  898. if (ndw > 0x7FFFF)
  899. ndw = 0x7FFFF;
  900. if (flags & AMDGPU_PTE_VALID)
  901. value = addr;
  902. else
  903. value = 0;
  904. /* for physically contiguous pages (vram) */
  905. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  906. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  907. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  908. ib->ptr[ib->length_dw++] = flags; /* mask */
  909. ib->ptr[ib->length_dw++] = 0;
  910. ib->ptr[ib->length_dw++] = value; /* value */
  911. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  912. ib->ptr[ib->length_dw++] = incr; /* increment size */
  913. ib->ptr[ib->length_dw++] = 0;
  914. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  915. pe += ndw * 8;
  916. addr += ndw * incr;
  917. count -= ndw;
  918. }
  919. }
  920. /**
  921. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  922. *
  923. * @ib: indirect buffer to fill with padding
  924. *
  925. */
  926. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  927. {
  928. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  929. u32 pad_count;
  930. int i;
  931. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  932. for (i = 0; i < pad_count; i++)
  933. if (sdma && sdma->burst_nop && (i == 0))
  934. ib->ptr[ib->length_dw++] =
  935. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  936. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  937. else
  938. ib->ptr[ib->length_dw++] =
  939. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  940. }
  941. /**
  942. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  943. *
  944. * @ring: amdgpu_ring pointer
  945. *
  946. * Make sure all previous operations are completed (CIK).
  947. */
  948. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  949. {
  950. uint32_t seq = ring->fence_drv.sync_seq;
  951. uint64_t addr = ring->fence_drv.gpu_addr;
  952. /* wait for idle */
  953. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  954. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  955. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  956. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  957. amdgpu_ring_write(ring, addr & 0xfffffffc);
  958. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  959. amdgpu_ring_write(ring, seq); /* reference */
  960. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  961. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  962. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  963. }
  964. /**
  965. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  966. *
  967. * @ring: amdgpu_ring pointer
  968. * @vm: amdgpu_vm pointer
  969. *
  970. * Update the page table base and flush the VM TLB
  971. * using sDMA (VI).
  972. */
  973. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  974. unsigned vm_id, uint64_t pd_addr)
  975. {
  976. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  977. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  978. if (vm_id < 8) {
  979. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  980. } else {
  981. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  982. }
  983. amdgpu_ring_write(ring, pd_addr >> 12);
  984. /* flush TLB */
  985. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  986. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  987. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  988. amdgpu_ring_write(ring, 1 << vm_id);
  989. /* wait for flush */
  990. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  991. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  992. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  993. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  994. amdgpu_ring_write(ring, 0);
  995. amdgpu_ring_write(ring, 0); /* reference */
  996. amdgpu_ring_write(ring, 0); /* mask */
  997. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  998. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  999. }
  1000. static int sdma_v3_0_early_init(void *handle)
  1001. {
  1002. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1003. switch (adev->asic_type) {
  1004. case CHIP_STONEY:
  1005. adev->sdma.num_instances = 1;
  1006. break;
  1007. default:
  1008. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1009. break;
  1010. }
  1011. sdma_v3_0_set_ring_funcs(adev);
  1012. sdma_v3_0_set_buffer_funcs(adev);
  1013. sdma_v3_0_set_vm_pte_funcs(adev);
  1014. sdma_v3_0_set_irq_funcs(adev);
  1015. return 0;
  1016. }
  1017. static int sdma_v3_0_sw_init(void *handle)
  1018. {
  1019. struct amdgpu_ring *ring;
  1020. int r, i;
  1021. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1022. /* SDMA trap event */
  1023. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1024. if (r)
  1025. return r;
  1026. /* SDMA Privileged inst */
  1027. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1028. if (r)
  1029. return r;
  1030. /* SDMA Privileged inst */
  1031. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1032. if (r)
  1033. return r;
  1034. r = sdma_v3_0_init_microcode(adev);
  1035. if (r) {
  1036. DRM_ERROR("Failed to load sdma firmware!\n");
  1037. return r;
  1038. }
  1039. for (i = 0; i < adev->sdma.num_instances; i++) {
  1040. ring = &adev->sdma.instance[i].ring;
  1041. ring->ring_obj = NULL;
  1042. ring->use_doorbell = true;
  1043. ring->doorbell_index = (i == 0) ?
  1044. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1045. sprintf(ring->name, "sdma%d", i);
  1046. r = amdgpu_ring_init(adev, ring, 1024,
  1047. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1048. &adev->sdma.trap_irq,
  1049. (i == 0) ?
  1050. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1051. AMDGPU_RING_TYPE_SDMA);
  1052. if (r)
  1053. return r;
  1054. }
  1055. return r;
  1056. }
  1057. static int sdma_v3_0_sw_fini(void *handle)
  1058. {
  1059. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1060. int i;
  1061. for (i = 0; i < adev->sdma.num_instances; i++)
  1062. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1063. return 0;
  1064. }
  1065. static int sdma_v3_0_hw_init(void *handle)
  1066. {
  1067. int r;
  1068. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1069. sdma_v3_0_init_golden_registers(adev);
  1070. r = sdma_v3_0_start(adev);
  1071. if (r)
  1072. return r;
  1073. return r;
  1074. }
  1075. static int sdma_v3_0_hw_fini(void *handle)
  1076. {
  1077. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1078. sdma_v3_0_ctx_switch_enable(adev, false);
  1079. sdma_v3_0_enable(adev, false);
  1080. return 0;
  1081. }
  1082. static int sdma_v3_0_suspend(void *handle)
  1083. {
  1084. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1085. return sdma_v3_0_hw_fini(adev);
  1086. }
  1087. static int sdma_v3_0_resume(void *handle)
  1088. {
  1089. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1090. return sdma_v3_0_hw_init(adev);
  1091. }
  1092. static bool sdma_v3_0_is_idle(void *handle)
  1093. {
  1094. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1095. u32 tmp = RREG32(mmSRBM_STATUS2);
  1096. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1097. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1098. return false;
  1099. return true;
  1100. }
  1101. static int sdma_v3_0_wait_for_idle(void *handle)
  1102. {
  1103. unsigned i;
  1104. u32 tmp;
  1105. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1106. for (i = 0; i < adev->usec_timeout; i++) {
  1107. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1108. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1109. if (!tmp)
  1110. return 0;
  1111. udelay(1);
  1112. }
  1113. return -ETIMEDOUT;
  1114. }
  1115. static void sdma_v3_0_print_status(void *handle)
  1116. {
  1117. int i, j;
  1118. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1119. dev_info(adev->dev, "VI SDMA registers\n");
  1120. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  1121. RREG32(mmSRBM_STATUS2));
  1122. for (i = 0; i < adev->sdma.num_instances; i++) {
  1123. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  1124. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  1125. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  1126. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  1127. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  1128. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  1129. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  1130. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  1131. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  1132. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  1133. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  1134. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  1135. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  1136. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  1137. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  1138. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  1139. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  1140. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  1141. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  1142. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  1143. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  1144. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  1145. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  1146. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  1147. dev_info(adev->dev, " SDMA%d_GFX_DOORBELL=0x%08X\n",
  1148. i, RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]));
  1149. dev_info(adev->dev, " SDMA%d_TILING_CONFIG=0x%08X\n",
  1150. i, RREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i]));
  1151. mutex_lock(&adev->srbm_mutex);
  1152. for (j = 0; j < 16; j++) {
  1153. vi_srbm_select(adev, 0, 0, 0, j);
  1154. dev_info(adev->dev, " VM %d:\n", j);
  1155. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  1156. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  1157. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  1158. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  1159. }
  1160. vi_srbm_select(adev, 0, 0, 0, 0);
  1161. mutex_unlock(&adev->srbm_mutex);
  1162. }
  1163. }
  1164. static int sdma_v3_0_soft_reset(void *handle)
  1165. {
  1166. u32 srbm_soft_reset = 0;
  1167. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1168. u32 tmp = RREG32(mmSRBM_STATUS2);
  1169. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1170. /* sdma0 */
  1171. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1172. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1173. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1174. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1175. }
  1176. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1177. /* sdma1 */
  1178. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1179. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1180. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1181. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1182. }
  1183. if (srbm_soft_reset) {
  1184. sdma_v3_0_print_status((void *)adev);
  1185. tmp = RREG32(mmSRBM_SOFT_RESET);
  1186. tmp |= srbm_soft_reset;
  1187. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1188. WREG32(mmSRBM_SOFT_RESET, tmp);
  1189. tmp = RREG32(mmSRBM_SOFT_RESET);
  1190. udelay(50);
  1191. tmp &= ~srbm_soft_reset;
  1192. WREG32(mmSRBM_SOFT_RESET, tmp);
  1193. tmp = RREG32(mmSRBM_SOFT_RESET);
  1194. /* Wait a little for things to settle down */
  1195. udelay(50);
  1196. sdma_v3_0_print_status((void *)adev);
  1197. }
  1198. return 0;
  1199. }
  1200. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1201. struct amdgpu_irq_src *source,
  1202. unsigned type,
  1203. enum amdgpu_interrupt_state state)
  1204. {
  1205. u32 sdma_cntl;
  1206. switch (type) {
  1207. case AMDGPU_SDMA_IRQ_TRAP0:
  1208. switch (state) {
  1209. case AMDGPU_IRQ_STATE_DISABLE:
  1210. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1211. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1212. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1213. break;
  1214. case AMDGPU_IRQ_STATE_ENABLE:
  1215. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1216. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1217. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1218. break;
  1219. default:
  1220. break;
  1221. }
  1222. break;
  1223. case AMDGPU_SDMA_IRQ_TRAP1:
  1224. switch (state) {
  1225. case AMDGPU_IRQ_STATE_DISABLE:
  1226. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1227. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1228. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1229. break;
  1230. case AMDGPU_IRQ_STATE_ENABLE:
  1231. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1232. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1233. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1234. break;
  1235. default:
  1236. break;
  1237. }
  1238. break;
  1239. default:
  1240. break;
  1241. }
  1242. return 0;
  1243. }
  1244. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1245. struct amdgpu_irq_src *source,
  1246. struct amdgpu_iv_entry *entry)
  1247. {
  1248. u8 instance_id, queue_id;
  1249. instance_id = (entry->ring_id & 0x3) >> 0;
  1250. queue_id = (entry->ring_id & 0xc) >> 2;
  1251. DRM_DEBUG("IH: SDMA trap\n");
  1252. switch (instance_id) {
  1253. case 0:
  1254. switch (queue_id) {
  1255. case 0:
  1256. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1257. break;
  1258. case 1:
  1259. /* XXX compute */
  1260. break;
  1261. case 2:
  1262. /* XXX compute */
  1263. break;
  1264. }
  1265. break;
  1266. case 1:
  1267. switch (queue_id) {
  1268. case 0:
  1269. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1270. break;
  1271. case 1:
  1272. /* XXX compute */
  1273. break;
  1274. case 2:
  1275. /* XXX compute */
  1276. break;
  1277. }
  1278. break;
  1279. }
  1280. return 0;
  1281. }
  1282. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1283. struct amdgpu_irq_src *source,
  1284. struct amdgpu_iv_entry *entry)
  1285. {
  1286. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1287. schedule_work(&adev->reset_work);
  1288. return 0;
  1289. }
  1290. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1291. struct amdgpu_device *adev,
  1292. bool enable)
  1293. {
  1294. uint32_t temp, data;
  1295. int i;
  1296. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1297. for (i = 0; i < adev->sdma.num_instances; i++) {
  1298. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1299. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1300. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1301. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1302. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1303. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1304. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1305. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1306. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1307. if (data != temp)
  1308. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1309. }
  1310. } else {
  1311. for (i = 0; i < adev->sdma.num_instances; i++) {
  1312. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1313. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1314. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1315. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1316. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1317. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1318. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1319. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1320. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1321. if (data != temp)
  1322. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1323. }
  1324. }
  1325. }
  1326. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1327. struct amdgpu_device *adev,
  1328. bool enable)
  1329. {
  1330. uint32_t temp, data;
  1331. int i;
  1332. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1333. for (i = 0; i < adev->sdma.num_instances; i++) {
  1334. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1335. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1336. if (temp != data)
  1337. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1338. }
  1339. } else {
  1340. for (i = 0; i < adev->sdma.num_instances; i++) {
  1341. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1342. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1343. if (temp != data)
  1344. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1345. }
  1346. }
  1347. }
  1348. static int sdma_v3_0_set_clockgating_state(void *handle,
  1349. enum amd_clockgating_state state)
  1350. {
  1351. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1352. switch (adev->asic_type) {
  1353. case CHIP_FIJI:
  1354. case CHIP_CARRIZO:
  1355. case CHIP_STONEY:
  1356. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1357. state == AMD_CG_STATE_GATE ? true : false);
  1358. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1359. state == AMD_CG_STATE_GATE ? true : false);
  1360. break;
  1361. default:
  1362. break;
  1363. }
  1364. return 0;
  1365. }
  1366. static int sdma_v3_0_set_powergating_state(void *handle,
  1367. enum amd_powergating_state state)
  1368. {
  1369. return 0;
  1370. }
  1371. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1372. .early_init = sdma_v3_0_early_init,
  1373. .late_init = NULL,
  1374. .sw_init = sdma_v3_0_sw_init,
  1375. .sw_fini = sdma_v3_0_sw_fini,
  1376. .hw_init = sdma_v3_0_hw_init,
  1377. .hw_fini = sdma_v3_0_hw_fini,
  1378. .suspend = sdma_v3_0_suspend,
  1379. .resume = sdma_v3_0_resume,
  1380. .is_idle = sdma_v3_0_is_idle,
  1381. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1382. .soft_reset = sdma_v3_0_soft_reset,
  1383. .print_status = sdma_v3_0_print_status,
  1384. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1385. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1386. };
  1387. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1388. .get_rptr = sdma_v3_0_ring_get_rptr,
  1389. .get_wptr = sdma_v3_0_ring_get_wptr,
  1390. .set_wptr = sdma_v3_0_ring_set_wptr,
  1391. .parse_cs = NULL,
  1392. .emit_ib = sdma_v3_0_ring_emit_ib,
  1393. .emit_fence = sdma_v3_0_ring_emit_fence,
  1394. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1395. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1396. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1397. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1398. .test_ring = sdma_v3_0_ring_test_ring,
  1399. .test_ib = sdma_v3_0_ring_test_ib,
  1400. .insert_nop = sdma_v3_0_ring_insert_nop,
  1401. .pad_ib = sdma_v3_0_ring_pad_ib,
  1402. };
  1403. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1404. {
  1405. int i;
  1406. for (i = 0; i < adev->sdma.num_instances; i++)
  1407. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1408. }
  1409. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1410. .set = sdma_v3_0_set_trap_irq_state,
  1411. .process = sdma_v3_0_process_trap_irq,
  1412. };
  1413. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1414. .process = sdma_v3_0_process_illegal_inst_irq,
  1415. };
  1416. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1417. {
  1418. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1419. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1420. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1421. }
  1422. /**
  1423. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1424. *
  1425. * @ring: amdgpu_ring structure holding ring information
  1426. * @src_offset: src GPU address
  1427. * @dst_offset: dst GPU address
  1428. * @byte_count: number of bytes to xfer
  1429. *
  1430. * Copy GPU buffers using the DMA engine (VI).
  1431. * Used by the amdgpu ttm implementation to move pages if
  1432. * registered as the asic copy callback.
  1433. */
  1434. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1435. uint64_t src_offset,
  1436. uint64_t dst_offset,
  1437. uint32_t byte_count)
  1438. {
  1439. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1440. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1441. ib->ptr[ib->length_dw++] = byte_count;
  1442. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1443. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1444. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1445. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1446. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1447. }
  1448. /**
  1449. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1450. *
  1451. * @ring: amdgpu_ring structure holding ring information
  1452. * @src_data: value to write to buffer
  1453. * @dst_offset: dst GPU address
  1454. * @byte_count: number of bytes to xfer
  1455. *
  1456. * Fill GPU buffers using the DMA engine (VI).
  1457. */
  1458. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1459. uint32_t src_data,
  1460. uint64_t dst_offset,
  1461. uint32_t byte_count)
  1462. {
  1463. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1464. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1465. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1466. ib->ptr[ib->length_dw++] = src_data;
  1467. ib->ptr[ib->length_dw++] = byte_count;
  1468. }
  1469. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1470. .copy_max_bytes = 0x1fffff,
  1471. .copy_num_dw = 7,
  1472. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1473. .fill_max_bytes = 0x1fffff,
  1474. .fill_num_dw = 5,
  1475. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1476. };
  1477. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1478. {
  1479. if (adev->mman.buffer_funcs == NULL) {
  1480. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1481. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1482. }
  1483. }
  1484. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1485. .copy_pte = sdma_v3_0_vm_copy_pte,
  1486. .write_pte = sdma_v3_0_vm_write_pte,
  1487. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1488. };
  1489. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1490. {
  1491. unsigned i;
  1492. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1493. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1494. for (i = 0; i < adev->sdma.num_instances; i++)
  1495. adev->vm_manager.vm_pte_rings[i] =
  1496. &adev->sdma.instance[i].ring;
  1497. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1498. }
  1499. }