disk-io.c 113 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * end_io_wq structs are used to do processing in task context when an IO is
  72. * complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. int metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. /*
  86. * async submit bios are used to offload expensive checksumming
  87. * onto the worker threads. They checksum file and metadata bios
  88. * just before they are sent down the IO stack.
  89. */
  90. struct async_submit_bio {
  91. struct inode *inode;
  92. struct bio *bio;
  93. struct list_head list;
  94. extent_submit_bio_hook_t *submit_bio_start;
  95. extent_submit_bio_hook_t *submit_bio_done;
  96. int rw;
  97. int mirror_num;
  98. unsigned long bio_flags;
  99. /*
  100. * bio_offset is optional, can be used if the pages in the bio
  101. * can't tell us where in the file the bio should go
  102. */
  103. u64 bio_offset;
  104. struct btrfs_work work;
  105. int error;
  106. };
  107. /*
  108. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  109. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  110. * the level the eb occupies in the tree.
  111. *
  112. * Different roots are used for different purposes and may nest inside each
  113. * other and they require separate keysets. As lockdep keys should be
  114. * static, assign keysets according to the purpose of the root as indicated
  115. * by btrfs_root->objectid. This ensures that all special purpose roots
  116. * have separate keysets.
  117. *
  118. * Lock-nesting across peer nodes is always done with the immediate parent
  119. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  120. * subclass to avoid triggering lockdep warning in such cases.
  121. *
  122. * The key is set by the readpage_end_io_hook after the buffer has passed
  123. * csum validation but before the pages are unlocked. It is also set by
  124. * btrfs_init_new_buffer on freshly allocated blocks.
  125. *
  126. * We also add a check to make sure the highest level of the tree is the
  127. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  128. * needs update as well.
  129. */
  130. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  131. # if BTRFS_MAX_LEVEL != 8
  132. # error
  133. # endif
  134. static struct btrfs_lockdep_keyset {
  135. u64 id; /* root objectid */
  136. const char *name_stem; /* lock name stem */
  137. char names[BTRFS_MAX_LEVEL + 1][20];
  138. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  139. } btrfs_lockdep_keysets[] = {
  140. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  141. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  142. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  143. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  144. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  145. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  146. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  147. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  148. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  149. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  150. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  151. { .id = 0, .name_stem = "tree" },
  152. };
  153. void __init btrfs_init_lockdep(void)
  154. {
  155. int i, j;
  156. /* initialize lockdep class names */
  157. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  158. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  159. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  160. snprintf(ks->names[j], sizeof(ks->names[j]),
  161. "btrfs-%s-%02d", ks->name_stem, j);
  162. }
  163. }
  164. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  165. int level)
  166. {
  167. struct btrfs_lockdep_keyset *ks;
  168. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  169. /* find the matching keyset, id 0 is the default entry */
  170. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  171. if (ks->id == objectid)
  172. break;
  173. lockdep_set_class_and_name(&eb->lock,
  174. &ks->keys[level], ks->names[level]);
  175. }
  176. #endif
  177. /*
  178. * extents on the btree inode are pretty simple, there's one extent
  179. * that covers the entire device
  180. */
  181. static struct extent_map *btree_get_extent(struct inode *inode,
  182. struct page *page, size_t pg_offset, u64 start, u64 len,
  183. int create)
  184. {
  185. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  186. struct extent_map *em;
  187. int ret;
  188. read_lock(&em_tree->lock);
  189. em = lookup_extent_mapping(em_tree, start, len);
  190. if (em) {
  191. em->bdev =
  192. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  193. read_unlock(&em_tree->lock);
  194. goto out;
  195. }
  196. read_unlock(&em_tree->lock);
  197. em = alloc_extent_map();
  198. if (!em) {
  199. em = ERR_PTR(-ENOMEM);
  200. goto out;
  201. }
  202. em->start = 0;
  203. em->len = (u64)-1;
  204. em->block_len = (u64)-1;
  205. em->block_start = 0;
  206. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  207. write_lock(&em_tree->lock);
  208. ret = add_extent_mapping(em_tree, em, 0);
  209. if (ret == -EEXIST) {
  210. free_extent_map(em);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (!em)
  213. em = ERR_PTR(-EIO);
  214. } else if (ret) {
  215. free_extent_map(em);
  216. em = ERR_PTR(ret);
  217. }
  218. write_unlock(&em_tree->lock);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  223. {
  224. return btrfs_crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO
  275. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id, buf->start,
  278. val, found, btrfs_header_level(buf));
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 1;
  282. }
  283. } else {
  284. write_extent_buffer(buf, result, 0, csum_size);
  285. }
  286. if (result != (char *)&inline_result)
  287. kfree(result);
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid,
  298. int atomic)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. bool need_lock = (current->journal_info ==
  303. (void *)BTRFS_SEND_TRANS_STUB);
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. if (need_lock) {
  309. btrfs_tree_read_lock(eb);
  310. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  311. }
  312. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  313. 0, &cached_state);
  314. if (extent_buffer_uptodate(eb) &&
  315. btrfs_header_generation(eb) == parent_transid) {
  316. ret = 0;
  317. goto out;
  318. }
  319. printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  320. eb->fs_info->sb->s_id, eb->start,
  321. parent_transid, btrfs_header_generation(eb));
  322. ret = 1;
  323. /*
  324. * Things reading via commit roots that don't have normal protection,
  325. * like send, can have a really old block in cache that may point at a
  326. * block that has been free'd and re-allocated. So don't clear uptodate
  327. * if we find an eb that is under IO (dirty/writeback) because we could
  328. * end up reading in the stale data and then writing it back out and
  329. * making everybody very sad.
  330. */
  331. if (!extent_buffer_under_io(eb))
  332. clear_extent_buffer_uptodate(eb);
  333. out:
  334. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state, GFP_NOFS);
  336. if (need_lock)
  337. btrfs_tree_read_unlock_blocking(eb);
  338. return ret;
  339. }
  340. /*
  341. * Return 0 if the superblock checksum type matches the checksum value of that
  342. * algorithm. Pass the raw disk superblock data.
  343. */
  344. static int btrfs_check_super_csum(char *raw_disk_sb)
  345. {
  346. struct btrfs_super_block *disk_sb =
  347. (struct btrfs_super_block *)raw_disk_sb;
  348. u16 csum_type = btrfs_super_csum_type(disk_sb);
  349. int ret = 0;
  350. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  351. u32 crc = ~(u32)0;
  352. const int csum_size = sizeof(crc);
  353. char result[csum_size];
  354. /*
  355. * The super_block structure does not span the whole
  356. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  357. * is filled with zeros and is included in the checkum.
  358. */
  359. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  360. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  361. btrfs_csum_final(crc, result);
  362. if (memcmp(raw_disk_sb, result, csum_size))
  363. ret = 1;
  364. if (ret && btrfs_super_generation(disk_sb) < 10) {
  365. printk(KERN_WARNING
  366. "BTRFS: super block crcs don't match, older mkfs detected\n");
  367. ret = 0;
  368. }
  369. }
  370. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  371. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  372. csum_type);
  373. ret = 1;
  374. }
  375. return ret;
  376. }
  377. /*
  378. * helper to read a given tree block, doing retries as required when
  379. * the checksums don't match and we have alternate mirrors to try.
  380. */
  381. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  382. struct extent_buffer *eb,
  383. u64 start, u64 parent_transid)
  384. {
  385. struct extent_io_tree *io_tree;
  386. int failed = 0;
  387. int ret;
  388. int num_copies = 0;
  389. int mirror_num = 0;
  390. int failed_mirror = 0;
  391. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  392. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  393. while (1) {
  394. ret = read_extent_buffer_pages(io_tree, eb, start,
  395. WAIT_COMPLETE,
  396. btree_get_extent, mirror_num);
  397. if (!ret) {
  398. if (!verify_parent_transid(io_tree, eb,
  399. parent_transid, 0))
  400. break;
  401. else
  402. ret = -EIO;
  403. }
  404. /*
  405. * This buffer's crc is fine, but its contents are corrupted, so
  406. * there is no reason to read the other copies, they won't be
  407. * any less wrong.
  408. */
  409. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  410. break;
  411. num_copies = btrfs_num_copies(root->fs_info,
  412. eb->start, eb->len);
  413. if (num_copies == 1)
  414. break;
  415. if (!failed_mirror) {
  416. failed = 1;
  417. failed_mirror = eb->read_mirror;
  418. }
  419. mirror_num++;
  420. if (mirror_num == failed_mirror)
  421. mirror_num++;
  422. if (mirror_num > num_copies)
  423. break;
  424. }
  425. if (failed && !ret && failed_mirror)
  426. repair_eb_io_failure(root, eb, failed_mirror);
  427. return ret;
  428. }
  429. /*
  430. * checksum a dirty tree block before IO. This has extra checks to make sure
  431. * we only fill in the checksum field in the first page of a multi-page block
  432. */
  433. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  434. {
  435. u64 start = page_offset(page);
  436. u64 found_start;
  437. struct extent_buffer *eb;
  438. eb = (struct extent_buffer *)page->private;
  439. if (page != eb->pages[0])
  440. return 0;
  441. found_start = btrfs_header_bytenr(eb);
  442. if (WARN_ON(found_start != start || !PageUptodate(page)))
  443. return 0;
  444. csum_tree_block(root, eb, 0);
  445. return 0;
  446. }
  447. static int check_tree_block_fsid(struct btrfs_root *root,
  448. struct extent_buffer *eb)
  449. {
  450. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  451. u8 fsid[BTRFS_UUID_SIZE];
  452. int ret = 1;
  453. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  454. while (fs_devices) {
  455. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  456. ret = 0;
  457. break;
  458. }
  459. fs_devices = fs_devices->seed;
  460. }
  461. return ret;
  462. }
  463. #define CORRUPT(reason, eb, root, slot) \
  464. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  465. "root=%llu, slot=%d", reason, \
  466. btrfs_header_bytenr(eb), root->objectid, slot)
  467. static noinline int check_leaf(struct btrfs_root *root,
  468. struct extent_buffer *leaf)
  469. {
  470. struct btrfs_key key;
  471. struct btrfs_key leaf_key;
  472. u32 nritems = btrfs_header_nritems(leaf);
  473. int slot;
  474. if (nritems == 0)
  475. return 0;
  476. /* Check the 0 item */
  477. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  478. BTRFS_LEAF_DATA_SIZE(root)) {
  479. CORRUPT("invalid item offset size pair", leaf, root, 0);
  480. return -EIO;
  481. }
  482. /*
  483. * Check to make sure each items keys are in the correct order and their
  484. * offsets make sense. We only have to loop through nritems-1 because
  485. * we check the current slot against the next slot, which verifies the
  486. * next slot's offset+size makes sense and that the current's slot
  487. * offset is correct.
  488. */
  489. for (slot = 0; slot < nritems - 1; slot++) {
  490. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  491. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  492. /* Make sure the keys are in the right order */
  493. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  494. CORRUPT("bad key order", leaf, root, slot);
  495. return -EIO;
  496. }
  497. /*
  498. * Make sure the offset and ends are right, remember that the
  499. * item data starts at the end of the leaf and grows towards the
  500. * front.
  501. */
  502. if (btrfs_item_offset_nr(leaf, slot) !=
  503. btrfs_item_end_nr(leaf, slot + 1)) {
  504. CORRUPT("slot offset bad", leaf, root, slot);
  505. return -EIO;
  506. }
  507. /*
  508. * Check to make sure that we don't point outside of the leaf,
  509. * just incase all the items are consistent to eachother, but
  510. * all point outside of the leaf.
  511. */
  512. if (btrfs_item_end_nr(leaf, slot) >
  513. BTRFS_LEAF_DATA_SIZE(root)) {
  514. CORRUPT("slot end outside of leaf", leaf, root, slot);
  515. return -EIO;
  516. }
  517. }
  518. return 0;
  519. }
  520. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  521. u64 phy_offset, struct page *page,
  522. u64 start, u64 end, int mirror)
  523. {
  524. u64 found_start;
  525. int found_level;
  526. struct extent_buffer *eb;
  527. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  528. int ret = 0;
  529. int reads_done;
  530. if (!page->private)
  531. goto out;
  532. eb = (struct extent_buffer *)page->private;
  533. /* the pending IO might have been the only thing that kept this buffer
  534. * in memory. Make sure we have a ref for all this other checks
  535. */
  536. extent_buffer_get(eb);
  537. reads_done = atomic_dec_and_test(&eb->io_pages);
  538. if (!reads_done)
  539. goto err;
  540. eb->read_mirror = mirror;
  541. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  542. ret = -EIO;
  543. goto err;
  544. }
  545. found_start = btrfs_header_bytenr(eb);
  546. if (found_start != eb->start) {
  547. printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
  548. "%llu %llu\n",
  549. eb->fs_info->sb->s_id, found_start, eb->start);
  550. ret = -EIO;
  551. goto err;
  552. }
  553. if (check_tree_block_fsid(root, eb)) {
  554. printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
  555. eb->fs_info->sb->s_id, eb->start);
  556. ret = -EIO;
  557. goto err;
  558. }
  559. found_level = btrfs_header_level(eb);
  560. if (found_level >= BTRFS_MAX_LEVEL) {
  561. btrfs_info(root->fs_info, "bad tree block level %d",
  562. (int)btrfs_header_level(eb));
  563. ret = -EIO;
  564. goto err;
  565. }
  566. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  567. eb, found_level);
  568. ret = csum_tree_block(root, eb, 1);
  569. if (ret) {
  570. ret = -EIO;
  571. goto err;
  572. }
  573. /*
  574. * If this is a leaf block and it is corrupt, set the corrupt bit so
  575. * that we don't try and read the other copies of this block, just
  576. * return -EIO.
  577. */
  578. if (found_level == 0 && check_leaf(root, eb)) {
  579. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  580. ret = -EIO;
  581. }
  582. if (!ret)
  583. set_extent_buffer_uptodate(eb);
  584. err:
  585. if (reads_done &&
  586. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  587. btree_readahead_hook(root, eb, eb->start, ret);
  588. if (ret) {
  589. /*
  590. * our io error hook is going to dec the io pages
  591. * again, we have to make sure it has something
  592. * to decrement
  593. */
  594. atomic_inc(&eb->io_pages);
  595. clear_extent_buffer_uptodate(eb);
  596. }
  597. free_extent_buffer(eb);
  598. out:
  599. return ret;
  600. }
  601. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  602. {
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  605. eb = (struct extent_buffer *)page->private;
  606. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  607. eb->read_mirror = failed_mirror;
  608. atomic_dec(&eb->io_pages);
  609. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  610. btree_readahead_hook(root, eb, eb->start, -EIO);
  611. return -EIO; /* we fixed nothing */
  612. }
  613. static void end_workqueue_bio(struct bio *bio, int err)
  614. {
  615. struct end_io_wq *end_io_wq = bio->bi_private;
  616. struct btrfs_fs_info *fs_info;
  617. struct btrfs_workqueue *wq;
  618. btrfs_work_func_t func;
  619. fs_info = end_io_wq->info;
  620. end_io_wq->error = err;
  621. if (bio->bi_rw & REQ_WRITE) {
  622. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  623. wq = fs_info->endio_meta_write_workers;
  624. func = btrfs_endio_meta_write_helper;
  625. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  626. wq = fs_info->endio_freespace_worker;
  627. func = btrfs_freespace_write_helper;
  628. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  629. wq = fs_info->endio_raid56_workers;
  630. func = btrfs_endio_raid56_helper;
  631. } else {
  632. wq = fs_info->endio_write_workers;
  633. func = btrfs_endio_write_helper;
  634. }
  635. } else {
  636. if (unlikely(end_io_wq->metadata ==
  637. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  638. wq = fs_info->endio_repair_workers;
  639. func = btrfs_endio_repair_helper;
  640. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  641. wq = fs_info->endio_raid56_workers;
  642. func = btrfs_endio_raid56_helper;
  643. } else if (end_io_wq->metadata) {
  644. wq = fs_info->endio_meta_workers;
  645. func = btrfs_endio_meta_helper;
  646. } else {
  647. wq = fs_info->endio_workers;
  648. func = btrfs_endio_helper;
  649. }
  650. }
  651. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  652. btrfs_queue_work(wq, &end_io_wq->work);
  653. }
  654. /*
  655. * For the metadata arg you want
  656. *
  657. * 0 - if data
  658. * 1 - if normal metadta
  659. * 2 - if writing to the free space cache area
  660. * 3 - raid parity work
  661. */
  662. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  663. int metadata)
  664. {
  665. struct end_io_wq *end_io_wq;
  666. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  667. if (!end_io_wq)
  668. return -ENOMEM;
  669. end_io_wq->private = bio->bi_private;
  670. end_io_wq->end_io = bio->bi_end_io;
  671. end_io_wq->info = info;
  672. end_io_wq->error = 0;
  673. end_io_wq->bio = bio;
  674. end_io_wq->metadata = metadata;
  675. bio->bi_private = end_io_wq;
  676. bio->bi_end_io = end_workqueue_bio;
  677. return 0;
  678. }
  679. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  680. {
  681. unsigned long limit = min_t(unsigned long,
  682. info->thread_pool_size,
  683. info->fs_devices->open_devices);
  684. return 256 * limit;
  685. }
  686. static void run_one_async_start(struct btrfs_work *work)
  687. {
  688. struct async_submit_bio *async;
  689. int ret;
  690. async = container_of(work, struct async_submit_bio, work);
  691. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  692. async->mirror_num, async->bio_flags,
  693. async->bio_offset);
  694. if (ret)
  695. async->error = ret;
  696. }
  697. static void run_one_async_done(struct btrfs_work *work)
  698. {
  699. struct btrfs_fs_info *fs_info;
  700. struct async_submit_bio *async;
  701. int limit;
  702. async = container_of(work, struct async_submit_bio, work);
  703. fs_info = BTRFS_I(async->inode)->root->fs_info;
  704. limit = btrfs_async_submit_limit(fs_info);
  705. limit = limit * 2 / 3;
  706. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  707. waitqueue_active(&fs_info->async_submit_wait))
  708. wake_up(&fs_info->async_submit_wait);
  709. /* If an error occured we just want to clean up the bio and move on */
  710. if (async->error) {
  711. bio_endio(async->bio, async->error);
  712. return;
  713. }
  714. async->submit_bio_done(async->inode, async->rw, async->bio,
  715. async->mirror_num, async->bio_flags,
  716. async->bio_offset);
  717. }
  718. static void run_one_async_free(struct btrfs_work *work)
  719. {
  720. struct async_submit_bio *async;
  721. async = container_of(work, struct async_submit_bio, work);
  722. kfree(async);
  723. }
  724. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  725. int rw, struct bio *bio, int mirror_num,
  726. unsigned long bio_flags,
  727. u64 bio_offset,
  728. extent_submit_bio_hook_t *submit_bio_start,
  729. extent_submit_bio_hook_t *submit_bio_done)
  730. {
  731. struct async_submit_bio *async;
  732. async = kmalloc(sizeof(*async), GFP_NOFS);
  733. if (!async)
  734. return -ENOMEM;
  735. async->inode = inode;
  736. async->rw = rw;
  737. async->bio = bio;
  738. async->mirror_num = mirror_num;
  739. async->submit_bio_start = submit_bio_start;
  740. async->submit_bio_done = submit_bio_done;
  741. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  742. run_one_async_done, run_one_async_free);
  743. async->bio_flags = bio_flags;
  744. async->bio_offset = bio_offset;
  745. async->error = 0;
  746. atomic_inc(&fs_info->nr_async_submits);
  747. if (rw & REQ_SYNC)
  748. btrfs_set_work_high_priority(&async->work);
  749. btrfs_queue_work(fs_info->workers, &async->work);
  750. while (atomic_read(&fs_info->async_submit_draining) &&
  751. atomic_read(&fs_info->nr_async_submits)) {
  752. wait_event(fs_info->async_submit_wait,
  753. (atomic_read(&fs_info->nr_async_submits) == 0));
  754. }
  755. return 0;
  756. }
  757. static int btree_csum_one_bio(struct bio *bio)
  758. {
  759. struct bio_vec *bvec;
  760. struct btrfs_root *root;
  761. int i, ret = 0;
  762. bio_for_each_segment_all(bvec, bio, i) {
  763. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  764. ret = csum_dirty_buffer(root, bvec->bv_page);
  765. if (ret)
  766. break;
  767. }
  768. return ret;
  769. }
  770. static int __btree_submit_bio_start(struct inode *inode, int rw,
  771. struct bio *bio, int mirror_num,
  772. unsigned long bio_flags,
  773. u64 bio_offset)
  774. {
  775. /*
  776. * when we're called for a write, we're already in the async
  777. * submission context. Just jump into btrfs_map_bio
  778. */
  779. return btree_csum_one_bio(bio);
  780. }
  781. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  782. int mirror_num, unsigned long bio_flags,
  783. u64 bio_offset)
  784. {
  785. int ret;
  786. /*
  787. * when we're called for a write, we're already in the async
  788. * submission context. Just jump into btrfs_map_bio
  789. */
  790. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  791. if (ret)
  792. bio_endio(bio, ret);
  793. return ret;
  794. }
  795. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  796. {
  797. if (bio_flags & EXTENT_BIO_TREE_LOG)
  798. return 0;
  799. #ifdef CONFIG_X86
  800. if (cpu_has_xmm4_2)
  801. return 0;
  802. #endif
  803. return 1;
  804. }
  805. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  806. int mirror_num, unsigned long bio_flags,
  807. u64 bio_offset)
  808. {
  809. int async = check_async_write(inode, bio_flags);
  810. int ret;
  811. if (!(rw & REQ_WRITE)) {
  812. /*
  813. * called for a read, do the setup so that checksum validation
  814. * can happen in the async kernel threads
  815. */
  816. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  817. bio, 1);
  818. if (ret)
  819. goto out_w_error;
  820. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  821. mirror_num, 0);
  822. } else if (!async) {
  823. ret = btree_csum_one_bio(bio);
  824. if (ret)
  825. goto out_w_error;
  826. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  827. mirror_num, 0);
  828. } else {
  829. /*
  830. * kthread helpers are used to submit writes so that
  831. * checksumming can happen in parallel across all CPUs
  832. */
  833. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  834. inode, rw, bio, mirror_num, 0,
  835. bio_offset,
  836. __btree_submit_bio_start,
  837. __btree_submit_bio_done);
  838. }
  839. if (ret) {
  840. out_w_error:
  841. bio_endio(bio, ret);
  842. }
  843. return ret;
  844. }
  845. #ifdef CONFIG_MIGRATION
  846. static int btree_migratepage(struct address_space *mapping,
  847. struct page *newpage, struct page *page,
  848. enum migrate_mode mode)
  849. {
  850. /*
  851. * we can't safely write a btree page from here,
  852. * we haven't done the locking hook
  853. */
  854. if (PageDirty(page))
  855. return -EAGAIN;
  856. /*
  857. * Buffers may be managed in a filesystem specific way.
  858. * We must have no buffers or drop them.
  859. */
  860. if (page_has_private(page) &&
  861. !try_to_release_page(page, GFP_KERNEL))
  862. return -EAGAIN;
  863. return migrate_page(mapping, newpage, page, mode);
  864. }
  865. #endif
  866. static int btree_writepages(struct address_space *mapping,
  867. struct writeback_control *wbc)
  868. {
  869. struct btrfs_fs_info *fs_info;
  870. int ret;
  871. if (wbc->sync_mode == WB_SYNC_NONE) {
  872. if (wbc->for_kupdate)
  873. return 0;
  874. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  875. /* this is a bit racy, but that's ok */
  876. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  877. BTRFS_DIRTY_METADATA_THRESH);
  878. if (ret < 0)
  879. return 0;
  880. }
  881. return btree_write_cache_pages(mapping, wbc);
  882. }
  883. static int btree_readpage(struct file *file, struct page *page)
  884. {
  885. struct extent_io_tree *tree;
  886. tree = &BTRFS_I(page->mapping->host)->io_tree;
  887. return extent_read_full_page(tree, page, btree_get_extent, 0);
  888. }
  889. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  890. {
  891. if (PageWriteback(page) || PageDirty(page))
  892. return 0;
  893. return try_release_extent_buffer(page);
  894. }
  895. static void btree_invalidatepage(struct page *page, unsigned int offset,
  896. unsigned int length)
  897. {
  898. struct extent_io_tree *tree;
  899. tree = &BTRFS_I(page->mapping->host)->io_tree;
  900. extent_invalidatepage(tree, page, offset);
  901. btree_releasepage(page, GFP_NOFS);
  902. if (PagePrivate(page)) {
  903. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  904. "page private not zero on page %llu",
  905. (unsigned long long)page_offset(page));
  906. ClearPagePrivate(page);
  907. set_page_private(page, 0);
  908. page_cache_release(page);
  909. }
  910. }
  911. static int btree_set_page_dirty(struct page *page)
  912. {
  913. #ifdef DEBUG
  914. struct extent_buffer *eb;
  915. BUG_ON(!PagePrivate(page));
  916. eb = (struct extent_buffer *)page->private;
  917. BUG_ON(!eb);
  918. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  919. BUG_ON(!atomic_read(&eb->refs));
  920. btrfs_assert_tree_locked(eb);
  921. #endif
  922. return __set_page_dirty_nobuffers(page);
  923. }
  924. static const struct address_space_operations btree_aops = {
  925. .readpage = btree_readpage,
  926. .writepages = btree_writepages,
  927. .releasepage = btree_releasepage,
  928. .invalidatepage = btree_invalidatepage,
  929. #ifdef CONFIG_MIGRATION
  930. .migratepage = btree_migratepage,
  931. #endif
  932. .set_page_dirty = btree_set_page_dirty,
  933. };
  934. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  935. u64 parent_transid)
  936. {
  937. struct extent_buffer *buf = NULL;
  938. struct inode *btree_inode = root->fs_info->btree_inode;
  939. int ret = 0;
  940. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  941. if (!buf)
  942. return 0;
  943. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  944. buf, 0, WAIT_NONE, btree_get_extent, 0);
  945. free_extent_buffer(buf);
  946. return ret;
  947. }
  948. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  949. int mirror_num, struct extent_buffer **eb)
  950. {
  951. struct extent_buffer *buf = NULL;
  952. struct inode *btree_inode = root->fs_info->btree_inode;
  953. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  954. int ret;
  955. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  956. if (!buf)
  957. return 0;
  958. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  959. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  960. btree_get_extent, mirror_num);
  961. if (ret) {
  962. free_extent_buffer(buf);
  963. return ret;
  964. }
  965. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  966. free_extent_buffer(buf);
  967. return -EIO;
  968. } else if (extent_buffer_uptodate(buf)) {
  969. *eb = buf;
  970. } else {
  971. free_extent_buffer(buf);
  972. }
  973. return 0;
  974. }
  975. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  976. u64 bytenr, u32 blocksize)
  977. {
  978. return find_extent_buffer(root->fs_info, bytenr);
  979. }
  980. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  981. u64 bytenr, u32 blocksize)
  982. {
  983. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  984. if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
  985. return alloc_test_extent_buffer(root->fs_info, bytenr,
  986. blocksize);
  987. #endif
  988. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  989. }
  990. int btrfs_write_tree_block(struct extent_buffer *buf)
  991. {
  992. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  993. buf->start + buf->len - 1);
  994. }
  995. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  996. {
  997. return filemap_fdatawait_range(buf->pages[0]->mapping,
  998. buf->start, buf->start + buf->len - 1);
  999. }
  1000. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1001. u32 blocksize, u64 parent_transid)
  1002. {
  1003. struct extent_buffer *buf = NULL;
  1004. int ret;
  1005. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1006. if (!buf)
  1007. return NULL;
  1008. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1009. if (ret) {
  1010. free_extent_buffer(buf);
  1011. return NULL;
  1012. }
  1013. return buf;
  1014. }
  1015. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1016. struct extent_buffer *buf)
  1017. {
  1018. struct btrfs_fs_info *fs_info = root->fs_info;
  1019. if (btrfs_header_generation(buf) ==
  1020. fs_info->running_transaction->transid) {
  1021. btrfs_assert_tree_locked(buf);
  1022. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1023. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1024. -buf->len,
  1025. fs_info->dirty_metadata_batch);
  1026. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1027. btrfs_set_lock_blocking(buf);
  1028. clear_extent_buffer_dirty(buf);
  1029. }
  1030. }
  1031. }
  1032. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1033. {
  1034. struct btrfs_subvolume_writers *writers;
  1035. int ret;
  1036. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1037. if (!writers)
  1038. return ERR_PTR(-ENOMEM);
  1039. ret = percpu_counter_init(&writers->counter, 0);
  1040. if (ret < 0) {
  1041. kfree(writers);
  1042. return ERR_PTR(ret);
  1043. }
  1044. init_waitqueue_head(&writers->wait);
  1045. return writers;
  1046. }
  1047. static void
  1048. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1049. {
  1050. percpu_counter_destroy(&writers->counter);
  1051. kfree(writers);
  1052. }
  1053. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1054. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1055. u64 objectid)
  1056. {
  1057. root->node = NULL;
  1058. root->commit_root = NULL;
  1059. root->sectorsize = sectorsize;
  1060. root->nodesize = nodesize;
  1061. root->stripesize = stripesize;
  1062. root->state = 0;
  1063. root->orphan_cleanup_state = 0;
  1064. root->objectid = objectid;
  1065. root->last_trans = 0;
  1066. root->highest_objectid = 0;
  1067. root->nr_delalloc_inodes = 0;
  1068. root->nr_ordered_extents = 0;
  1069. root->name = NULL;
  1070. root->inode_tree = RB_ROOT;
  1071. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1072. root->block_rsv = NULL;
  1073. root->orphan_block_rsv = NULL;
  1074. INIT_LIST_HEAD(&root->dirty_list);
  1075. INIT_LIST_HEAD(&root->root_list);
  1076. INIT_LIST_HEAD(&root->delalloc_inodes);
  1077. INIT_LIST_HEAD(&root->delalloc_root);
  1078. INIT_LIST_HEAD(&root->ordered_extents);
  1079. INIT_LIST_HEAD(&root->ordered_root);
  1080. INIT_LIST_HEAD(&root->logged_list[0]);
  1081. INIT_LIST_HEAD(&root->logged_list[1]);
  1082. spin_lock_init(&root->orphan_lock);
  1083. spin_lock_init(&root->inode_lock);
  1084. spin_lock_init(&root->delalloc_lock);
  1085. spin_lock_init(&root->ordered_extent_lock);
  1086. spin_lock_init(&root->accounting_lock);
  1087. spin_lock_init(&root->log_extents_lock[0]);
  1088. spin_lock_init(&root->log_extents_lock[1]);
  1089. mutex_init(&root->objectid_mutex);
  1090. mutex_init(&root->log_mutex);
  1091. mutex_init(&root->ordered_extent_mutex);
  1092. mutex_init(&root->delalloc_mutex);
  1093. init_waitqueue_head(&root->log_writer_wait);
  1094. init_waitqueue_head(&root->log_commit_wait[0]);
  1095. init_waitqueue_head(&root->log_commit_wait[1]);
  1096. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1097. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1098. atomic_set(&root->log_commit[0], 0);
  1099. atomic_set(&root->log_commit[1], 0);
  1100. atomic_set(&root->log_writers, 0);
  1101. atomic_set(&root->log_batch, 0);
  1102. atomic_set(&root->orphan_inodes, 0);
  1103. atomic_set(&root->refs, 1);
  1104. atomic_set(&root->will_be_snapshoted, 0);
  1105. root->log_transid = 0;
  1106. root->log_transid_committed = -1;
  1107. root->last_log_commit = 0;
  1108. if (fs_info)
  1109. extent_io_tree_init(&root->dirty_log_pages,
  1110. fs_info->btree_inode->i_mapping);
  1111. memset(&root->root_key, 0, sizeof(root->root_key));
  1112. memset(&root->root_item, 0, sizeof(root->root_item));
  1113. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1114. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1115. if (fs_info)
  1116. root->defrag_trans_start = fs_info->generation;
  1117. else
  1118. root->defrag_trans_start = 0;
  1119. init_completion(&root->kobj_unregister);
  1120. root->root_key.objectid = objectid;
  1121. root->anon_dev = 0;
  1122. spin_lock_init(&root->root_item_lock);
  1123. }
  1124. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1125. {
  1126. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1127. if (root)
  1128. root->fs_info = fs_info;
  1129. return root;
  1130. }
  1131. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1132. /* Should only be used by the testing infrastructure */
  1133. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1134. {
  1135. struct btrfs_root *root;
  1136. root = btrfs_alloc_root(NULL);
  1137. if (!root)
  1138. return ERR_PTR(-ENOMEM);
  1139. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1140. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1141. root->alloc_bytenr = 0;
  1142. return root;
  1143. }
  1144. #endif
  1145. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1146. struct btrfs_fs_info *fs_info,
  1147. u64 objectid)
  1148. {
  1149. struct extent_buffer *leaf;
  1150. struct btrfs_root *tree_root = fs_info->tree_root;
  1151. struct btrfs_root *root;
  1152. struct btrfs_key key;
  1153. int ret = 0;
  1154. uuid_le uuid;
  1155. root = btrfs_alloc_root(fs_info);
  1156. if (!root)
  1157. return ERR_PTR(-ENOMEM);
  1158. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1159. tree_root->stripesize, root, fs_info, objectid);
  1160. root->root_key.objectid = objectid;
  1161. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1162. root->root_key.offset = 0;
  1163. leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
  1164. 0, objectid, NULL, 0, 0, 0);
  1165. if (IS_ERR(leaf)) {
  1166. ret = PTR_ERR(leaf);
  1167. leaf = NULL;
  1168. goto fail;
  1169. }
  1170. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1171. btrfs_set_header_bytenr(leaf, leaf->start);
  1172. btrfs_set_header_generation(leaf, trans->transid);
  1173. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1174. btrfs_set_header_owner(leaf, objectid);
  1175. root->node = leaf;
  1176. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1177. BTRFS_FSID_SIZE);
  1178. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1179. btrfs_header_chunk_tree_uuid(leaf),
  1180. BTRFS_UUID_SIZE);
  1181. btrfs_mark_buffer_dirty(leaf);
  1182. root->commit_root = btrfs_root_node(root);
  1183. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1184. root->root_item.flags = 0;
  1185. root->root_item.byte_limit = 0;
  1186. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1187. btrfs_set_root_generation(&root->root_item, trans->transid);
  1188. btrfs_set_root_level(&root->root_item, 0);
  1189. btrfs_set_root_refs(&root->root_item, 1);
  1190. btrfs_set_root_used(&root->root_item, leaf->len);
  1191. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1192. btrfs_set_root_dirid(&root->root_item, 0);
  1193. uuid_le_gen(&uuid);
  1194. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1195. root->root_item.drop_level = 0;
  1196. key.objectid = objectid;
  1197. key.type = BTRFS_ROOT_ITEM_KEY;
  1198. key.offset = 0;
  1199. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1200. if (ret)
  1201. goto fail;
  1202. btrfs_tree_unlock(leaf);
  1203. return root;
  1204. fail:
  1205. if (leaf) {
  1206. btrfs_tree_unlock(leaf);
  1207. free_extent_buffer(root->commit_root);
  1208. free_extent_buffer(leaf);
  1209. }
  1210. kfree(root);
  1211. return ERR_PTR(ret);
  1212. }
  1213. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1214. struct btrfs_fs_info *fs_info)
  1215. {
  1216. struct btrfs_root *root;
  1217. struct btrfs_root *tree_root = fs_info->tree_root;
  1218. struct extent_buffer *leaf;
  1219. root = btrfs_alloc_root(fs_info);
  1220. if (!root)
  1221. return ERR_PTR(-ENOMEM);
  1222. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1223. tree_root->stripesize, root, fs_info,
  1224. BTRFS_TREE_LOG_OBJECTID);
  1225. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1226. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1227. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1228. /*
  1229. * DON'T set REF_COWS for log trees
  1230. *
  1231. * log trees do not get reference counted because they go away
  1232. * before a real commit is actually done. They do store pointers
  1233. * to file data extents, and those reference counts still get
  1234. * updated (along with back refs to the log tree).
  1235. */
  1236. leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1237. BTRFS_TREE_LOG_OBJECTID, NULL,
  1238. 0, 0, 0);
  1239. if (IS_ERR(leaf)) {
  1240. kfree(root);
  1241. return ERR_CAST(leaf);
  1242. }
  1243. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1244. btrfs_set_header_bytenr(leaf, leaf->start);
  1245. btrfs_set_header_generation(leaf, trans->transid);
  1246. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1247. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1248. root->node = leaf;
  1249. write_extent_buffer(root->node, root->fs_info->fsid,
  1250. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1251. btrfs_mark_buffer_dirty(root->node);
  1252. btrfs_tree_unlock(root->node);
  1253. return root;
  1254. }
  1255. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1256. struct btrfs_fs_info *fs_info)
  1257. {
  1258. struct btrfs_root *log_root;
  1259. log_root = alloc_log_tree(trans, fs_info);
  1260. if (IS_ERR(log_root))
  1261. return PTR_ERR(log_root);
  1262. WARN_ON(fs_info->log_root_tree);
  1263. fs_info->log_root_tree = log_root;
  1264. return 0;
  1265. }
  1266. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1267. struct btrfs_root *root)
  1268. {
  1269. struct btrfs_root *log_root;
  1270. struct btrfs_inode_item *inode_item;
  1271. log_root = alloc_log_tree(trans, root->fs_info);
  1272. if (IS_ERR(log_root))
  1273. return PTR_ERR(log_root);
  1274. log_root->last_trans = trans->transid;
  1275. log_root->root_key.offset = root->root_key.objectid;
  1276. inode_item = &log_root->root_item.inode;
  1277. btrfs_set_stack_inode_generation(inode_item, 1);
  1278. btrfs_set_stack_inode_size(inode_item, 3);
  1279. btrfs_set_stack_inode_nlink(inode_item, 1);
  1280. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1281. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1282. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1283. WARN_ON(root->log_root);
  1284. root->log_root = log_root;
  1285. root->log_transid = 0;
  1286. root->log_transid_committed = -1;
  1287. root->last_log_commit = 0;
  1288. return 0;
  1289. }
  1290. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1291. struct btrfs_key *key)
  1292. {
  1293. struct btrfs_root *root;
  1294. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1295. struct btrfs_path *path;
  1296. u64 generation;
  1297. u32 blocksize;
  1298. int ret;
  1299. path = btrfs_alloc_path();
  1300. if (!path)
  1301. return ERR_PTR(-ENOMEM);
  1302. root = btrfs_alloc_root(fs_info);
  1303. if (!root) {
  1304. ret = -ENOMEM;
  1305. goto alloc_fail;
  1306. }
  1307. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1308. tree_root->stripesize, root, fs_info, key->objectid);
  1309. ret = btrfs_find_root(tree_root, key, path,
  1310. &root->root_item, &root->root_key);
  1311. if (ret) {
  1312. if (ret > 0)
  1313. ret = -ENOENT;
  1314. goto find_fail;
  1315. }
  1316. generation = btrfs_root_generation(&root->root_item);
  1317. blocksize = root->nodesize;
  1318. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1319. blocksize, generation);
  1320. if (!root->node) {
  1321. ret = -ENOMEM;
  1322. goto find_fail;
  1323. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1324. ret = -EIO;
  1325. goto read_fail;
  1326. }
  1327. root->commit_root = btrfs_root_node(root);
  1328. out:
  1329. btrfs_free_path(path);
  1330. return root;
  1331. read_fail:
  1332. free_extent_buffer(root->node);
  1333. find_fail:
  1334. kfree(root);
  1335. alloc_fail:
  1336. root = ERR_PTR(ret);
  1337. goto out;
  1338. }
  1339. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1340. struct btrfs_key *location)
  1341. {
  1342. struct btrfs_root *root;
  1343. root = btrfs_read_tree_root(tree_root, location);
  1344. if (IS_ERR(root))
  1345. return root;
  1346. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1347. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1348. btrfs_check_and_init_root_item(&root->root_item);
  1349. }
  1350. return root;
  1351. }
  1352. int btrfs_init_fs_root(struct btrfs_root *root)
  1353. {
  1354. int ret;
  1355. struct btrfs_subvolume_writers *writers;
  1356. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1357. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1358. GFP_NOFS);
  1359. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1360. ret = -ENOMEM;
  1361. goto fail;
  1362. }
  1363. writers = btrfs_alloc_subvolume_writers();
  1364. if (IS_ERR(writers)) {
  1365. ret = PTR_ERR(writers);
  1366. goto fail;
  1367. }
  1368. root->subv_writers = writers;
  1369. btrfs_init_free_ino_ctl(root);
  1370. spin_lock_init(&root->ino_cache_lock);
  1371. init_waitqueue_head(&root->ino_cache_wait);
  1372. ret = get_anon_bdev(&root->anon_dev);
  1373. if (ret)
  1374. goto free_writers;
  1375. return 0;
  1376. free_writers:
  1377. btrfs_free_subvolume_writers(root->subv_writers);
  1378. fail:
  1379. kfree(root->free_ino_ctl);
  1380. kfree(root->free_ino_pinned);
  1381. return ret;
  1382. }
  1383. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1384. u64 root_id)
  1385. {
  1386. struct btrfs_root *root;
  1387. spin_lock(&fs_info->fs_roots_radix_lock);
  1388. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1389. (unsigned long)root_id);
  1390. spin_unlock(&fs_info->fs_roots_radix_lock);
  1391. return root;
  1392. }
  1393. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1394. struct btrfs_root *root)
  1395. {
  1396. int ret;
  1397. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1398. if (ret)
  1399. return ret;
  1400. spin_lock(&fs_info->fs_roots_radix_lock);
  1401. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1402. (unsigned long)root->root_key.objectid,
  1403. root);
  1404. if (ret == 0)
  1405. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1406. spin_unlock(&fs_info->fs_roots_radix_lock);
  1407. radix_tree_preload_end();
  1408. return ret;
  1409. }
  1410. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1411. struct btrfs_key *location,
  1412. bool check_ref)
  1413. {
  1414. struct btrfs_root *root;
  1415. int ret;
  1416. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1417. return fs_info->tree_root;
  1418. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1419. return fs_info->extent_root;
  1420. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1421. return fs_info->chunk_root;
  1422. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1423. return fs_info->dev_root;
  1424. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1425. return fs_info->csum_root;
  1426. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1427. return fs_info->quota_root ? fs_info->quota_root :
  1428. ERR_PTR(-ENOENT);
  1429. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1430. return fs_info->uuid_root ? fs_info->uuid_root :
  1431. ERR_PTR(-ENOENT);
  1432. again:
  1433. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1434. if (root) {
  1435. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1436. return ERR_PTR(-ENOENT);
  1437. return root;
  1438. }
  1439. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1440. if (IS_ERR(root))
  1441. return root;
  1442. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1443. ret = -ENOENT;
  1444. goto fail;
  1445. }
  1446. ret = btrfs_init_fs_root(root);
  1447. if (ret)
  1448. goto fail;
  1449. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1450. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1451. if (ret < 0)
  1452. goto fail;
  1453. if (ret == 0)
  1454. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1455. ret = btrfs_insert_fs_root(fs_info, root);
  1456. if (ret) {
  1457. if (ret == -EEXIST) {
  1458. free_fs_root(root);
  1459. goto again;
  1460. }
  1461. goto fail;
  1462. }
  1463. return root;
  1464. fail:
  1465. free_fs_root(root);
  1466. return ERR_PTR(ret);
  1467. }
  1468. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1469. {
  1470. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1471. int ret = 0;
  1472. struct btrfs_device *device;
  1473. struct backing_dev_info *bdi;
  1474. rcu_read_lock();
  1475. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1476. if (!device->bdev)
  1477. continue;
  1478. bdi = blk_get_backing_dev_info(device->bdev);
  1479. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1480. ret = 1;
  1481. break;
  1482. }
  1483. }
  1484. rcu_read_unlock();
  1485. return ret;
  1486. }
  1487. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1488. {
  1489. int err;
  1490. bdi->capabilities = BDI_CAP_MAP_COPY;
  1491. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1492. if (err)
  1493. return err;
  1494. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1495. bdi->congested_fn = btrfs_congested_fn;
  1496. bdi->congested_data = info;
  1497. return 0;
  1498. }
  1499. /*
  1500. * called by the kthread helper functions to finally call the bio end_io
  1501. * functions. This is where read checksum verification actually happens
  1502. */
  1503. static void end_workqueue_fn(struct btrfs_work *work)
  1504. {
  1505. struct bio *bio;
  1506. struct end_io_wq *end_io_wq;
  1507. int error;
  1508. end_io_wq = container_of(work, struct end_io_wq, work);
  1509. bio = end_io_wq->bio;
  1510. error = end_io_wq->error;
  1511. bio->bi_private = end_io_wq->private;
  1512. bio->bi_end_io = end_io_wq->end_io;
  1513. kfree(end_io_wq);
  1514. bio_endio_nodec(bio, error);
  1515. }
  1516. static int cleaner_kthread(void *arg)
  1517. {
  1518. struct btrfs_root *root = arg;
  1519. int again;
  1520. do {
  1521. again = 0;
  1522. /* Make the cleaner go to sleep early. */
  1523. if (btrfs_need_cleaner_sleep(root))
  1524. goto sleep;
  1525. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1526. goto sleep;
  1527. /*
  1528. * Avoid the problem that we change the status of the fs
  1529. * during the above check and trylock.
  1530. */
  1531. if (btrfs_need_cleaner_sleep(root)) {
  1532. mutex_unlock(&root->fs_info->cleaner_mutex);
  1533. goto sleep;
  1534. }
  1535. btrfs_run_delayed_iputs(root);
  1536. btrfs_delete_unused_bgs(root->fs_info);
  1537. again = btrfs_clean_one_deleted_snapshot(root);
  1538. mutex_unlock(&root->fs_info->cleaner_mutex);
  1539. /*
  1540. * The defragger has dealt with the R/O remount and umount,
  1541. * needn't do anything special here.
  1542. */
  1543. btrfs_run_defrag_inodes(root->fs_info);
  1544. sleep:
  1545. if (!try_to_freeze() && !again) {
  1546. set_current_state(TASK_INTERRUPTIBLE);
  1547. if (!kthread_should_stop())
  1548. schedule();
  1549. __set_current_state(TASK_RUNNING);
  1550. }
  1551. } while (!kthread_should_stop());
  1552. return 0;
  1553. }
  1554. static int transaction_kthread(void *arg)
  1555. {
  1556. struct btrfs_root *root = arg;
  1557. struct btrfs_trans_handle *trans;
  1558. struct btrfs_transaction *cur;
  1559. u64 transid;
  1560. unsigned long now;
  1561. unsigned long delay;
  1562. bool cannot_commit;
  1563. do {
  1564. cannot_commit = false;
  1565. delay = HZ * root->fs_info->commit_interval;
  1566. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1567. spin_lock(&root->fs_info->trans_lock);
  1568. cur = root->fs_info->running_transaction;
  1569. if (!cur) {
  1570. spin_unlock(&root->fs_info->trans_lock);
  1571. goto sleep;
  1572. }
  1573. now = get_seconds();
  1574. if (cur->state < TRANS_STATE_BLOCKED &&
  1575. (now < cur->start_time ||
  1576. now - cur->start_time < root->fs_info->commit_interval)) {
  1577. spin_unlock(&root->fs_info->trans_lock);
  1578. delay = HZ * 5;
  1579. goto sleep;
  1580. }
  1581. transid = cur->transid;
  1582. spin_unlock(&root->fs_info->trans_lock);
  1583. /* If the file system is aborted, this will always fail. */
  1584. trans = btrfs_attach_transaction(root);
  1585. if (IS_ERR(trans)) {
  1586. if (PTR_ERR(trans) != -ENOENT)
  1587. cannot_commit = true;
  1588. goto sleep;
  1589. }
  1590. if (transid == trans->transid) {
  1591. btrfs_commit_transaction(trans, root);
  1592. } else {
  1593. btrfs_end_transaction(trans, root);
  1594. }
  1595. sleep:
  1596. wake_up_process(root->fs_info->cleaner_kthread);
  1597. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1598. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1599. &root->fs_info->fs_state)))
  1600. btrfs_cleanup_transaction(root);
  1601. if (!try_to_freeze()) {
  1602. set_current_state(TASK_INTERRUPTIBLE);
  1603. if (!kthread_should_stop() &&
  1604. (!btrfs_transaction_blocked(root->fs_info) ||
  1605. cannot_commit))
  1606. schedule_timeout(delay);
  1607. __set_current_state(TASK_RUNNING);
  1608. }
  1609. } while (!kthread_should_stop());
  1610. return 0;
  1611. }
  1612. /*
  1613. * this will find the highest generation in the array of
  1614. * root backups. The index of the highest array is returned,
  1615. * or -1 if we can't find anything.
  1616. *
  1617. * We check to make sure the array is valid by comparing the
  1618. * generation of the latest root in the array with the generation
  1619. * in the super block. If they don't match we pitch it.
  1620. */
  1621. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1622. {
  1623. u64 cur;
  1624. int newest_index = -1;
  1625. struct btrfs_root_backup *root_backup;
  1626. int i;
  1627. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1628. root_backup = info->super_copy->super_roots + i;
  1629. cur = btrfs_backup_tree_root_gen(root_backup);
  1630. if (cur == newest_gen)
  1631. newest_index = i;
  1632. }
  1633. /* check to see if we actually wrapped around */
  1634. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1635. root_backup = info->super_copy->super_roots;
  1636. cur = btrfs_backup_tree_root_gen(root_backup);
  1637. if (cur == newest_gen)
  1638. newest_index = 0;
  1639. }
  1640. return newest_index;
  1641. }
  1642. /*
  1643. * find the oldest backup so we know where to store new entries
  1644. * in the backup array. This will set the backup_root_index
  1645. * field in the fs_info struct
  1646. */
  1647. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1648. u64 newest_gen)
  1649. {
  1650. int newest_index = -1;
  1651. newest_index = find_newest_super_backup(info, newest_gen);
  1652. /* if there was garbage in there, just move along */
  1653. if (newest_index == -1) {
  1654. info->backup_root_index = 0;
  1655. } else {
  1656. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1657. }
  1658. }
  1659. /*
  1660. * copy all the root pointers into the super backup array.
  1661. * this will bump the backup pointer by one when it is
  1662. * done
  1663. */
  1664. static void backup_super_roots(struct btrfs_fs_info *info)
  1665. {
  1666. int next_backup;
  1667. struct btrfs_root_backup *root_backup;
  1668. int last_backup;
  1669. next_backup = info->backup_root_index;
  1670. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1671. BTRFS_NUM_BACKUP_ROOTS;
  1672. /*
  1673. * just overwrite the last backup if we're at the same generation
  1674. * this happens only at umount
  1675. */
  1676. root_backup = info->super_for_commit->super_roots + last_backup;
  1677. if (btrfs_backup_tree_root_gen(root_backup) ==
  1678. btrfs_header_generation(info->tree_root->node))
  1679. next_backup = last_backup;
  1680. root_backup = info->super_for_commit->super_roots + next_backup;
  1681. /*
  1682. * make sure all of our padding and empty slots get zero filled
  1683. * regardless of which ones we use today
  1684. */
  1685. memset(root_backup, 0, sizeof(*root_backup));
  1686. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1687. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1688. btrfs_set_backup_tree_root_gen(root_backup,
  1689. btrfs_header_generation(info->tree_root->node));
  1690. btrfs_set_backup_tree_root_level(root_backup,
  1691. btrfs_header_level(info->tree_root->node));
  1692. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1693. btrfs_set_backup_chunk_root_gen(root_backup,
  1694. btrfs_header_generation(info->chunk_root->node));
  1695. btrfs_set_backup_chunk_root_level(root_backup,
  1696. btrfs_header_level(info->chunk_root->node));
  1697. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1698. btrfs_set_backup_extent_root_gen(root_backup,
  1699. btrfs_header_generation(info->extent_root->node));
  1700. btrfs_set_backup_extent_root_level(root_backup,
  1701. btrfs_header_level(info->extent_root->node));
  1702. /*
  1703. * we might commit during log recovery, which happens before we set
  1704. * the fs_root. Make sure it is valid before we fill it in.
  1705. */
  1706. if (info->fs_root && info->fs_root->node) {
  1707. btrfs_set_backup_fs_root(root_backup,
  1708. info->fs_root->node->start);
  1709. btrfs_set_backup_fs_root_gen(root_backup,
  1710. btrfs_header_generation(info->fs_root->node));
  1711. btrfs_set_backup_fs_root_level(root_backup,
  1712. btrfs_header_level(info->fs_root->node));
  1713. }
  1714. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1715. btrfs_set_backup_dev_root_gen(root_backup,
  1716. btrfs_header_generation(info->dev_root->node));
  1717. btrfs_set_backup_dev_root_level(root_backup,
  1718. btrfs_header_level(info->dev_root->node));
  1719. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1720. btrfs_set_backup_csum_root_gen(root_backup,
  1721. btrfs_header_generation(info->csum_root->node));
  1722. btrfs_set_backup_csum_root_level(root_backup,
  1723. btrfs_header_level(info->csum_root->node));
  1724. btrfs_set_backup_total_bytes(root_backup,
  1725. btrfs_super_total_bytes(info->super_copy));
  1726. btrfs_set_backup_bytes_used(root_backup,
  1727. btrfs_super_bytes_used(info->super_copy));
  1728. btrfs_set_backup_num_devices(root_backup,
  1729. btrfs_super_num_devices(info->super_copy));
  1730. /*
  1731. * if we don't copy this out to the super_copy, it won't get remembered
  1732. * for the next commit
  1733. */
  1734. memcpy(&info->super_copy->super_roots,
  1735. &info->super_for_commit->super_roots,
  1736. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1737. }
  1738. /*
  1739. * this copies info out of the root backup array and back into
  1740. * the in-memory super block. It is meant to help iterate through
  1741. * the array, so you send it the number of backups you've already
  1742. * tried and the last backup index you used.
  1743. *
  1744. * this returns -1 when it has tried all the backups
  1745. */
  1746. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1747. struct btrfs_super_block *super,
  1748. int *num_backups_tried, int *backup_index)
  1749. {
  1750. struct btrfs_root_backup *root_backup;
  1751. int newest = *backup_index;
  1752. if (*num_backups_tried == 0) {
  1753. u64 gen = btrfs_super_generation(super);
  1754. newest = find_newest_super_backup(info, gen);
  1755. if (newest == -1)
  1756. return -1;
  1757. *backup_index = newest;
  1758. *num_backups_tried = 1;
  1759. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1760. /* we've tried all the backups, all done */
  1761. return -1;
  1762. } else {
  1763. /* jump to the next oldest backup */
  1764. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1765. BTRFS_NUM_BACKUP_ROOTS;
  1766. *backup_index = newest;
  1767. *num_backups_tried += 1;
  1768. }
  1769. root_backup = super->super_roots + newest;
  1770. btrfs_set_super_generation(super,
  1771. btrfs_backup_tree_root_gen(root_backup));
  1772. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1773. btrfs_set_super_root_level(super,
  1774. btrfs_backup_tree_root_level(root_backup));
  1775. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1776. /*
  1777. * fixme: the total bytes and num_devices need to match or we should
  1778. * need a fsck
  1779. */
  1780. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1781. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1782. return 0;
  1783. }
  1784. /* helper to cleanup workers */
  1785. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1786. {
  1787. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1788. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1789. btrfs_destroy_workqueue(fs_info->workers);
  1790. btrfs_destroy_workqueue(fs_info->endio_workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1792. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1793. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1794. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1795. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1796. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1797. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1798. btrfs_destroy_workqueue(fs_info->submit_workers);
  1799. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1800. btrfs_destroy_workqueue(fs_info->caching_workers);
  1801. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1802. btrfs_destroy_workqueue(fs_info->flush_workers);
  1803. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1804. btrfs_destroy_workqueue(fs_info->extent_workers);
  1805. }
  1806. static void free_root_extent_buffers(struct btrfs_root *root)
  1807. {
  1808. if (root) {
  1809. free_extent_buffer(root->node);
  1810. free_extent_buffer(root->commit_root);
  1811. root->node = NULL;
  1812. root->commit_root = NULL;
  1813. }
  1814. }
  1815. /* helper to cleanup tree roots */
  1816. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1817. {
  1818. free_root_extent_buffers(info->tree_root);
  1819. free_root_extent_buffers(info->dev_root);
  1820. free_root_extent_buffers(info->extent_root);
  1821. free_root_extent_buffers(info->csum_root);
  1822. free_root_extent_buffers(info->quota_root);
  1823. free_root_extent_buffers(info->uuid_root);
  1824. if (chunk_root)
  1825. free_root_extent_buffers(info->chunk_root);
  1826. }
  1827. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1828. {
  1829. int ret;
  1830. struct btrfs_root *gang[8];
  1831. int i;
  1832. while (!list_empty(&fs_info->dead_roots)) {
  1833. gang[0] = list_entry(fs_info->dead_roots.next,
  1834. struct btrfs_root, root_list);
  1835. list_del(&gang[0]->root_list);
  1836. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1837. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1838. } else {
  1839. free_extent_buffer(gang[0]->node);
  1840. free_extent_buffer(gang[0]->commit_root);
  1841. btrfs_put_fs_root(gang[0]);
  1842. }
  1843. }
  1844. while (1) {
  1845. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1846. (void **)gang, 0,
  1847. ARRAY_SIZE(gang));
  1848. if (!ret)
  1849. break;
  1850. for (i = 0; i < ret; i++)
  1851. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1852. }
  1853. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1854. btrfs_free_log_root_tree(NULL, fs_info);
  1855. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1856. fs_info->pinned_extents);
  1857. }
  1858. }
  1859. int open_ctree(struct super_block *sb,
  1860. struct btrfs_fs_devices *fs_devices,
  1861. char *options)
  1862. {
  1863. u32 sectorsize;
  1864. u32 nodesize;
  1865. u32 blocksize;
  1866. u32 stripesize;
  1867. u64 generation;
  1868. u64 features;
  1869. struct btrfs_key location;
  1870. struct buffer_head *bh;
  1871. struct btrfs_super_block *disk_super;
  1872. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1873. struct btrfs_root *tree_root;
  1874. struct btrfs_root *extent_root;
  1875. struct btrfs_root *csum_root;
  1876. struct btrfs_root *chunk_root;
  1877. struct btrfs_root *dev_root;
  1878. struct btrfs_root *quota_root;
  1879. struct btrfs_root *uuid_root;
  1880. struct btrfs_root *log_tree_root;
  1881. int ret;
  1882. int err = -EINVAL;
  1883. int num_backups_tried = 0;
  1884. int backup_index = 0;
  1885. int max_active;
  1886. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1887. bool create_uuid_tree;
  1888. bool check_uuid_tree;
  1889. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1890. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1891. if (!tree_root || !chunk_root) {
  1892. err = -ENOMEM;
  1893. goto fail;
  1894. }
  1895. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1896. if (ret) {
  1897. err = ret;
  1898. goto fail;
  1899. }
  1900. ret = setup_bdi(fs_info, &fs_info->bdi);
  1901. if (ret) {
  1902. err = ret;
  1903. goto fail_srcu;
  1904. }
  1905. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1906. if (ret) {
  1907. err = ret;
  1908. goto fail_bdi;
  1909. }
  1910. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1911. (1 + ilog2(nr_cpu_ids));
  1912. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1913. if (ret) {
  1914. err = ret;
  1915. goto fail_dirty_metadata_bytes;
  1916. }
  1917. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1918. if (ret) {
  1919. err = ret;
  1920. goto fail_delalloc_bytes;
  1921. }
  1922. fs_info->btree_inode = new_inode(sb);
  1923. if (!fs_info->btree_inode) {
  1924. err = -ENOMEM;
  1925. goto fail_bio_counter;
  1926. }
  1927. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1928. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1929. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1930. INIT_LIST_HEAD(&fs_info->trans_list);
  1931. INIT_LIST_HEAD(&fs_info->dead_roots);
  1932. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1933. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1934. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1935. spin_lock_init(&fs_info->delalloc_root_lock);
  1936. spin_lock_init(&fs_info->trans_lock);
  1937. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1938. spin_lock_init(&fs_info->delayed_iput_lock);
  1939. spin_lock_init(&fs_info->defrag_inodes_lock);
  1940. spin_lock_init(&fs_info->free_chunk_lock);
  1941. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1942. spin_lock_init(&fs_info->super_lock);
  1943. spin_lock_init(&fs_info->qgroup_op_lock);
  1944. spin_lock_init(&fs_info->buffer_lock);
  1945. spin_lock_init(&fs_info->unused_bgs_lock);
  1946. rwlock_init(&fs_info->tree_mod_log_lock);
  1947. mutex_init(&fs_info->reloc_mutex);
  1948. mutex_init(&fs_info->delalloc_root_mutex);
  1949. seqlock_init(&fs_info->profiles_lock);
  1950. init_completion(&fs_info->kobj_unregister);
  1951. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1952. INIT_LIST_HEAD(&fs_info->space_info);
  1953. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1954. INIT_LIST_HEAD(&fs_info->unused_bgs);
  1955. btrfs_mapping_init(&fs_info->mapping_tree);
  1956. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1957. BTRFS_BLOCK_RSV_GLOBAL);
  1958. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1959. BTRFS_BLOCK_RSV_DELALLOC);
  1960. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1961. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1962. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1963. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1964. BTRFS_BLOCK_RSV_DELOPS);
  1965. atomic_set(&fs_info->nr_async_submits, 0);
  1966. atomic_set(&fs_info->async_delalloc_pages, 0);
  1967. atomic_set(&fs_info->async_submit_draining, 0);
  1968. atomic_set(&fs_info->nr_async_bios, 0);
  1969. atomic_set(&fs_info->defrag_running, 0);
  1970. atomic_set(&fs_info->qgroup_op_seq, 0);
  1971. atomic64_set(&fs_info->tree_mod_seq, 0);
  1972. fs_info->sb = sb;
  1973. fs_info->max_inline = 8192 * 1024;
  1974. fs_info->metadata_ratio = 0;
  1975. fs_info->defrag_inodes = RB_ROOT;
  1976. fs_info->free_chunk_space = 0;
  1977. fs_info->tree_mod_log = RB_ROOT;
  1978. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1979. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1980. /* readahead state */
  1981. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1982. spin_lock_init(&fs_info->reada_lock);
  1983. fs_info->thread_pool_size = min_t(unsigned long,
  1984. num_online_cpus() + 2, 8);
  1985. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1986. spin_lock_init(&fs_info->ordered_root_lock);
  1987. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1988. GFP_NOFS);
  1989. if (!fs_info->delayed_root) {
  1990. err = -ENOMEM;
  1991. goto fail_iput;
  1992. }
  1993. btrfs_init_delayed_root(fs_info->delayed_root);
  1994. mutex_init(&fs_info->scrub_lock);
  1995. atomic_set(&fs_info->scrubs_running, 0);
  1996. atomic_set(&fs_info->scrub_pause_req, 0);
  1997. atomic_set(&fs_info->scrubs_paused, 0);
  1998. atomic_set(&fs_info->scrub_cancel_req, 0);
  1999. init_waitqueue_head(&fs_info->replace_wait);
  2000. init_waitqueue_head(&fs_info->scrub_pause_wait);
  2001. fs_info->scrub_workers_refcnt = 0;
  2002. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2003. fs_info->check_integrity_print_mask = 0;
  2004. #endif
  2005. spin_lock_init(&fs_info->balance_lock);
  2006. mutex_init(&fs_info->balance_mutex);
  2007. atomic_set(&fs_info->balance_running, 0);
  2008. atomic_set(&fs_info->balance_pause_req, 0);
  2009. atomic_set(&fs_info->balance_cancel_req, 0);
  2010. fs_info->balance_ctl = NULL;
  2011. init_waitqueue_head(&fs_info->balance_wait_q);
  2012. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2013. sb->s_blocksize = 4096;
  2014. sb->s_blocksize_bits = blksize_bits(4096);
  2015. sb->s_bdi = &fs_info->bdi;
  2016. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2017. set_nlink(fs_info->btree_inode, 1);
  2018. /*
  2019. * we set the i_size on the btree inode to the max possible int.
  2020. * the real end of the address space is determined by all of
  2021. * the devices in the system
  2022. */
  2023. fs_info->btree_inode->i_size = OFFSET_MAX;
  2024. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2025. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  2026. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2027. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2028. fs_info->btree_inode->i_mapping);
  2029. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2030. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2031. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2032. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2033. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2034. sizeof(struct btrfs_key));
  2035. set_bit(BTRFS_INODE_DUMMY,
  2036. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2037. btrfs_insert_inode_hash(fs_info->btree_inode);
  2038. spin_lock_init(&fs_info->block_group_cache_lock);
  2039. fs_info->block_group_cache_tree = RB_ROOT;
  2040. fs_info->first_logical_byte = (u64)-1;
  2041. extent_io_tree_init(&fs_info->freed_extents[0],
  2042. fs_info->btree_inode->i_mapping);
  2043. extent_io_tree_init(&fs_info->freed_extents[1],
  2044. fs_info->btree_inode->i_mapping);
  2045. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2046. fs_info->do_barriers = 1;
  2047. mutex_init(&fs_info->ordered_operations_mutex);
  2048. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2049. mutex_init(&fs_info->tree_log_mutex);
  2050. mutex_init(&fs_info->chunk_mutex);
  2051. mutex_init(&fs_info->transaction_kthread_mutex);
  2052. mutex_init(&fs_info->cleaner_mutex);
  2053. mutex_init(&fs_info->volume_mutex);
  2054. init_rwsem(&fs_info->commit_root_sem);
  2055. init_rwsem(&fs_info->cleanup_work_sem);
  2056. init_rwsem(&fs_info->subvol_sem);
  2057. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2058. fs_info->dev_replace.lock_owner = 0;
  2059. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2060. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2061. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2062. mutex_init(&fs_info->dev_replace.lock);
  2063. spin_lock_init(&fs_info->qgroup_lock);
  2064. mutex_init(&fs_info->qgroup_ioctl_lock);
  2065. fs_info->qgroup_tree = RB_ROOT;
  2066. fs_info->qgroup_op_tree = RB_ROOT;
  2067. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2068. fs_info->qgroup_seq = 1;
  2069. fs_info->quota_enabled = 0;
  2070. fs_info->pending_quota_state = 0;
  2071. fs_info->qgroup_ulist = NULL;
  2072. mutex_init(&fs_info->qgroup_rescan_lock);
  2073. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2074. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2075. init_waitqueue_head(&fs_info->transaction_throttle);
  2076. init_waitqueue_head(&fs_info->transaction_wait);
  2077. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2078. init_waitqueue_head(&fs_info->async_submit_wait);
  2079. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2080. if (ret) {
  2081. err = ret;
  2082. goto fail_alloc;
  2083. }
  2084. __setup_root(4096, 4096, 4096, tree_root,
  2085. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2086. invalidate_bdev(fs_devices->latest_bdev);
  2087. /*
  2088. * Read super block and check the signature bytes only
  2089. */
  2090. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2091. if (!bh) {
  2092. err = -EINVAL;
  2093. goto fail_alloc;
  2094. }
  2095. /*
  2096. * We want to check superblock checksum, the type is stored inside.
  2097. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2098. */
  2099. if (btrfs_check_super_csum(bh->b_data)) {
  2100. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2101. err = -EINVAL;
  2102. goto fail_alloc;
  2103. }
  2104. /*
  2105. * super_copy is zeroed at allocation time and we never touch the
  2106. * following bytes up to INFO_SIZE, the checksum is calculated from
  2107. * the whole block of INFO_SIZE
  2108. */
  2109. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2110. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2111. sizeof(*fs_info->super_for_commit));
  2112. brelse(bh);
  2113. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2114. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2115. if (ret) {
  2116. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2117. err = -EINVAL;
  2118. goto fail_alloc;
  2119. }
  2120. disk_super = fs_info->super_copy;
  2121. if (!btrfs_super_root(disk_super))
  2122. goto fail_alloc;
  2123. /* check FS state, whether FS is broken. */
  2124. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2125. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2126. /*
  2127. * run through our array of backup supers and setup
  2128. * our ring pointer to the oldest one
  2129. */
  2130. generation = btrfs_super_generation(disk_super);
  2131. find_oldest_super_backup(fs_info, generation);
  2132. /*
  2133. * In the long term, we'll store the compression type in the super
  2134. * block, and it'll be used for per file compression control.
  2135. */
  2136. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2137. ret = btrfs_parse_options(tree_root, options);
  2138. if (ret) {
  2139. err = ret;
  2140. goto fail_alloc;
  2141. }
  2142. features = btrfs_super_incompat_flags(disk_super) &
  2143. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2144. if (features) {
  2145. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2146. "unsupported optional features (%Lx).\n",
  2147. features);
  2148. err = -EINVAL;
  2149. goto fail_alloc;
  2150. }
  2151. /*
  2152. * Leafsize and nodesize were always equal, this is only a sanity check.
  2153. */
  2154. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2155. btrfs_super_nodesize(disk_super)) {
  2156. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2157. "blocksizes don't match. node %d leaf %d\n",
  2158. btrfs_super_nodesize(disk_super),
  2159. le32_to_cpu(disk_super->__unused_leafsize));
  2160. err = -EINVAL;
  2161. goto fail_alloc;
  2162. }
  2163. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2164. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2165. "blocksize (%d) was too large\n",
  2166. btrfs_super_nodesize(disk_super));
  2167. err = -EINVAL;
  2168. goto fail_alloc;
  2169. }
  2170. features = btrfs_super_incompat_flags(disk_super);
  2171. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2172. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2173. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2174. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2175. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2176. /*
  2177. * flag our filesystem as having big metadata blocks if
  2178. * they are bigger than the page size
  2179. */
  2180. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2181. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2182. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2183. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2184. }
  2185. nodesize = btrfs_super_nodesize(disk_super);
  2186. sectorsize = btrfs_super_sectorsize(disk_super);
  2187. stripesize = btrfs_super_stripesize(disk_super);
  2188. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2189. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2190. /*
  2191. * mixed block groups end up with duplicate but slightly offset
  2192. * extent buffers for the same range. It leads to corruptions
  2193. */
  2194. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2195. (sectorsize != nodesize)) {
  2196. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2197. "are not allowed for mixed block groups on %s\n",
  2198. sb->s_id);
  2199. goto fail_alloc;
  2200. }
  2201. /*
  2202. * Needn't use the lock because there is no other task which will
  2203. * update the flag.
  2204. */
  2205. btrfs_set_super_incompat_flags(disk_super, features);
  2206. features = btrfs_super_compat_ro_flags(disk_super) &
  2207. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2208. if (!(sb->s_flags & MS_RDONLY) && features) {
  2209. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2210. "unsupported option features (%Lx).\n",
  2211. features);
  2212. err = -EINVAL;
  2213. goto fail_alloc;
  2214. }
  2215. max_active = fs_info->thread_pool_size;
  2216. fs_info->workers =
  2217. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2218. max_active, 16);
  2219. fs_info->delalloc_workers =
  2220. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2221. fs_info->flush_workers =
  2222. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2223. fs_info->caching_workers =
  2224. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2225. /*
  2226. * a higher idle thresh on the submit workers makes it much more
  2227. * likely that bios will be send down in a sane order to the
  2228. * devices
  2229. */
  2230. fs_info->submit_workers =
  2231. btrfs_alloc_workqueue("submit", flags,
  2232. min_t(u64, fs_devices->num_devices,
  2233. max_active), 64);
  2234. fs_info->fixup_workers =
  2235. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2236. /*
  2237. * endios are largely parallel and should have a very
  2238. * low idle thresh
  2239. */
  2240. fs_info->endio_workers =
  2241. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2242. fs_info->endio_meta_workers =
  2243. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2244. fs_info->endio_meta_write_workers =
  2245. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2246. fs_info->endio_raid56_workers =
  2247. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2248. fs_info->endio_repair_workers =
  2249. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2250. fs_info->rmw_workers =
  2251. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2252. fs_info->endio_write_workers =
  2253. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2254. fs_info->endio_freespace_worker =
  2255. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2256. fs_info->delayed_workers =
  2257. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2258. fs_info->readahead_workers =
  2259. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2260. fs_info->qgroup_rescan_workers =
  2261. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2262. fs_info->extent_workers =
  2263. btrfs_alloc_workqueue("extent-refs", flags,
  2264. min_t(u64, fs_devices->num_devices,
  2265. max_active), 8);
  2266. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2267. fs_info->submit_workers && fs_info->flush_workers &&
  2268. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2269. fs_info->endio_meta_write_workers &&
  2270. fs_info->endio_repair_workers &&
  2271. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2272. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2273. fs_info->caching_workers && fs_info->readahead_workers &&
  2274. fs_info->fixup_workers && fs_info->delayed_workers &&
  2275. fs_info->extent_workers &&
  2276. fs_info->qgroup_rescan_workers)) {
  2277. err = -ENOMEM;
  2278. goto fail_sb_buffer;
  2279. }
  2280. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2281. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2282. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2283. tree_root->nodesize = nodesize;
  2284. tree_root->sectorsize = sectorsize;
  2285. tree_root->stripesize = stripesize;
  2286. sb->s_blocksize = sectorsize;
  2287. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2288. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2289. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2290. goto fail_sb_buffer;
  2291. }
  2292. if (sectorsize != PAGE_SIZE) {
  2293. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2294. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2295. goto fail_sb_buffer;
  2296. }
  2297. mutex_lock(&fs_info->chunk_mutex);
  2298. ret = btrfs_read_sys_array(tree_root);
  2299. mutex_unlock(&fs_info->chunk_mutex);
  2300. if (ret) {
  2301. printk(KERN_WARNING "BTRFS: failed to read the system "
  2302. "array on %s\n", sb->s_id);
  2303. goto fail_sb_buffer;
  2304. }
  2305. blocksize = tree_root->nodesize;
  2306. generation = btrfs_super_chunk_root_generation(disk_super);
  2307. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2308. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2309. chunk_root->node = read_tree_block(chunk_root,
  2310. btrfs_super_chunk_root(disk_super),
  2311. blocksize, generation);
  2312. if (!chunk_root->node ||
  2313. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2314. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2315. sb->s_id);
  2316. goto fail_tree_roots;
  2317. }
  2318. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2319. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2320. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2321. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2322. ret = btrfs_read_chunk_tree(chunk_root);
  2323. if (ret) {
  2324. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2325. sb->s_id);
  2326. goto fail_tree_roots;
  2327. }
  2328. /*
  2329. * keep the device that is marked to be the target device for the
  2330. * dev_replace procedure
  2331. */
  2332. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2333. if (!fs_devices->latest_bdev) {
  2334. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2335. sb->s_id);
  2336. goto fail_tree_roots;
  2337. }
  2338. retry_root_backup:
  2339. blocksize = tree_root->nodesize;
  2340. generation = btrfs_super_generation(disk_super);
  2341. tree_root->node = read_tree_block(tree_root,
  2342. btrfs_super_root(disk_super),
  2343. blocksize, generation);
  2344. if (!tree_root->node ||
  2345. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2346. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2347. sb->s_id);
  2348. goto recovery_tree_root;
  2349. }
  2350. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2351. tree_root->commit_root = btrfs_root_node(tree_root);
  2352. btrfs_set_root_refs(&tree_root->root_item, 1);
  2353. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2354. location.type = BTRFS_ROOT_ITEM_KEY;
  2355. location.offset = 0;
  2356. extent_root = btrfs_read_tree_root(tree_root, &location);
  2357. if (IS_ERR(extent_root)) {
  2358. ret = PTR_ERR(extent_root);
  2359. goto recovery_tree_root;
  2360. }
  2361. set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
  2362. fs_info->extent_root = extent_root;
  2363. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2364. dev_root = btrfs_read_tree_root(tree_root, &location);
  2365. if (IS_ERR(dev_root)) {
  2366. ret = PTR_ERR(dev_root);
  2367. goto recovery_tree_root;
  2368. }
  2369. set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
  2370. fs_info->dev_root = dev_root;
  2371. btrfs_init_devices_late(fs_info);
  2372. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2373. csum_root = btrfs_read_tree_root(tree_root, &location);
  2374. if (IS_ERR(csum_root)) {
  2375. ret = PTR_ERR(csum_root);
  2376. goto recovery_tree_root;
  2377. }
  2378. set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
  2379. fs_info->csum_root = csum_root;
  2380. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2381. quota_root = btrfs_read_tree_root(tree_root, &location);
  2382. if (!IS_ERR(quota_root)) {
  2383. set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
  2384. fs_info->quota_enabled = 1;
  2385. fs_info->pending_quota_state = 1;
  2386. fs_info->quota_root = quota_root;
  2387. }
  2388. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2389. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2390. if (IS_ERR(uuid_root)) {
  2391. ret = PTR_ERR(uuid_root);
  2392. if (ret != -ENOENT)
  2393. goto recovery_tree_root;
  2394. create_uuid_tree = true;
  2395. check_uuid_tree = false;
  2396. } else {
  2397. set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
  2398. fs_info->uuid_root = uuid_root;
  2399. create_uuid_tree = false;
  2400. check_uuid_tree =
  2401. generation != btrfs_super_uuid_tree_generation(disk_super);
  2402. }
  2403. fs_info->generation = generation;
  2404. fs_info->last_trans_committed = generation;
  2405. ret = btrfs_recover_balance(fs_info);
  2406. if (ret) {
  2407. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2408. goto fail_block_groups;
  2409. }
  2410. ret = btrfs_init_dev_stats(fs_info);
  2411. if (ret) {
  2412. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2413. ret);
  2414. goto fail_block_groups;
  2415. }
  2416. ret = btrfs_init_dev_replace(fs_info);
  2417. if (ret) {
  2418. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2419. goto fail_block_groups;
  2420. }
  2421. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2422. ret = btrfs_sysfs_add_one(fs_info);
  2423. if (ret) {
  2424. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2425. goto fail_block_groups;
  2426. }
  2427. ret = btrfs_init_space_info(fs_info);
  2428. if (ret) {
  2429. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2430. goto fail_sysfs;
  2431. }
  2432. ret = btrfs_read_block_groups(extent_root);
  2433. if (ret) {
  2434. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2435. goto fail_sysfs;
  2436. }
  2437. fs_info->num_tolerated_disk_barrier_failures =
  2438. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2439. if (fs_info->fs_devices->missing_devices >
  2440. fs_info->num_tolerated_disk_barrier_failures &&
  2441. !(sb->s_flags & MS_RDONLY)) {
  2442. printk(KERN_WARNING "BTRFS: "
  2443. "too many missing devices, writeable mount is not allowed\n");
  2444. goto fail_sysfs;
  2445. }
  2446. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2447. "btrfs-cleaner");
  2448. if (IS_ERR(fs_info->cleaner_kthread))
  2449. goto fail_sysfs;
  2450. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2451. tree_root,
  2452. "btrfs-transaction");
  2453. if (IS_ERR(fs_info->transaction_kthread))
  2454. goto fail_cleaner;
  2455. if (!btrfs_test_opt(tree_root, SSD) &&
  2456. !btrfs_test_opt(tree_root, NOSSD) &&
  2457. !fs_info->fs_devices->rotating) {
  2458. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2459. "mode\n");
  2460. btrfs_set_opt(fs_info->mount_opt, SSD);
  2461. }
  2462. /* Set the real inode map cache flag */
  2463. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2464. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2465. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2466. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2467. ret = btrfsic_mount(tree_root, fs_devices,
  2468. btrfs_test_opt(tree_root,
  2469. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2470. 1 : 0,
  2471. fs_info->check_integrity_print_mask);
  2472. if (ret)
  2473. printk(KERN_WARNING "BTRFS: failed to initialize"
  2474. " integrity check module %s\n", sb->s_id);
  2475. }
  2476. #endif
  2477. ret = btrfs_read_qgroup_config(fs_info);
  2478. if (ret)
  2479. goto fail_trans_kthread;
  2480. /* do not make disk changes in broken FS */
  2481. if (btrfs_super_log_root(disk_super) != 0) {
  2482. u64 bytenr = btrfs_super_log_root(disk_super);
  2483. if (fs_devices->rw_devices == 0) {
  2484. printk(KERN_WARNING "BTRFS: log replay required "
  2485. "on RO media\n");
  2486. err = -EIO;
  2487. goto fail_qgroup;
  2488. }
  2489. blocksize = tree_root->nodesize;
  2490. log_tree_root = btrfs_alloc_root(fs_info);
  2491. if (!log_tree_root) {
  2492. err = -ENOMEM;
  2493. goto fail_qgroup;
  2494. }
  2495. __setup_root(nodesize, sectorsize, stripesize,
  2496. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2497. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2498. blocksize,
  2499. generation + 1);
  2500. if (!log_tree_root->node ||
  2501. !extent_buffer_uptodate(log_tree_root->node)) {
  2502. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2503. free_extent_buffer(log_tree_root->node);
  2504. kfree(log_tree_root);
  2505. goto fail_qgroup;
  2506. }
  2507. /* returns with log_tree_root freed on success */
  2508. ret = btrfs_recover_log_trees(log_tree_root);
  2509. if (ret) {
  2510. btrfs_error(tree_root->fs_info, ret,
  2511. "Failed to recover log tree");
  2512. free_extent_buffer(log_tree_root->node);
  2513. kfree(log_tree_root);
  2514. goto fail_qgroup;
  2515. }
  2516. if (sb->s_flags & MS_RDONLY) {
  2517. ret = btrfs_commit_super(tree_root);
  2518. if (ret)
  2519. goto fail_qgroup;
  2520. }
  2521. }
  2522. ret = btrfs_find_orphan_roots(tree_root);
  2523. if (ret)
  2524. goto fail_qgroup;
  2525. if (!(sb->s_flags & MS_RDONLY)) {
  2526. ret = btrfs_cleanup_fs_roots(fs_info);
  2527. if (ret)
  2528. goto fail_qgroup;
  2529. mutex_lock(&fs_info->cleaner_mutex);
  2530. ret = btrfs_recover_relocation(tree_root);
  2531. mutex_unlock(&fs_info->cleaner_mutex);
  2532. if (ret < 0) {
  2533. printk(KERN_WARNING
  2534. "BTRFS: failed to recover relocation\n");
  2535. err = -EINVAL;
  2536. goto fail_qgroup;
  2537. }
  2538. }
  2539. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2540. location.type = BTRFS_ROOT_ITEM_KEY;
  2541. location.offset = 0;
  2542. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2543. if (IS_ERR(fs_info->fs_root)) {
  2544. err = PTR_ERR(fs_info->fs_root);
  2545. goto fail_qgroup;
  2546. }
  2547. if (sb->s_flags & MS_RDONLY)
  2548. return 0;
  2549. down_read(&fs_info->cleanup_work_sem);
  2550. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2551. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2552. up_read(&fs_info->cleanup_work_sem);
  2553. close_ctree(tree_root);
  2554. return ret;
  2555. }
  2556. up_read(&fs_info->cleanup_work_sem);
  2557. ret = btrfs_resume_balance_async(fs_info);
  2558. if (ret) {
  2559. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2560. close_ctree(tree_root);
  2561. return ret;
  2562. }
  2563. ret = btrfs_resume_dev_replace_async(fs_info);
  2564. if (ret) {
  2565. pr_warn("BTRFS: failed to resume dev_replace\n");
  2566. close_ctree(tree_root);
  2567. return ret;
  2568. }
  2569. btrfs_qgroup_rescan_resume(fs_info);
  2570. if (create_uuid_tree) {
  2571. pr_info("BTRFS: creating UUID tree\n");
  2572. ret = btrfs_create_uuid_tree(fs_info);
  2573. if (ret) {
  2574. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2575. ret);
  2576. close_ctree(tree_root);
  2577. return ret;
  2578. }
  2579. } else if (check_uuid_tree ||
  2580. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2581. pr_info("BTRFS: checking UUID tree\n");
  2582. ret = btrfs_check_uuid_tree(fs_info);
  2583. if (ret) {
  2584. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2585. ret);
  2586. close_ctree(tree_root);
  2587. return ret;
  2588. }
  2589. } else {
  2590. fs_info->update_uuid_tree_gen = 1;
  2591. }
  2592. fs_info->open = 1;
  2593. return 0;
  2594. fail_qgroup:
  2595. btrfs_free_qgroup_config(fs_info);
  2596. fail_trans_kthread:
  2597. kthread_stop(fs_info->transaction_kthread);
  2598. btrfs_cleanup_transaction(fs_info->tree_root);
  2599. btrfs_free_fs_roots(fs_info);
  2600. fail_cleaner:
  2601. kthread_stop(fs_info->cleaner_kthread);
  2602. /*
  2603. * make sure we're done with the btree inode before we stop our
  2604. * kthreads
  2605. */
  2606. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2607. fail_sysfs:
  2608. btrfs_sysfs_remove_one(fs_info);
  2609. fail_block_groups:
  2610. btrfs_put_block_group_cache(fs_info);
  2611. btrfs_free_block_groups(fs_info);
  2612. fail_tree_roots:
  2613. free_root_pointers(fs_info, 1);
  2614. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2615. fail_sb_buffer:
  2616. btrfs_stop_all_workers(fs_info);
  2617. fail_alloc:
  2618. fail_iput:
  2619. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2620. iput(fs_info->btree_inode);
  2621. fail_bio_counter:
  2622. percpu_counter_destroy(&fs_info->bio_counter);
  2623. fail_delalloc_bytes:
  2624. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2625. fail_dirty_metadata_bytes:
  2626. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2627. fail_bdi:
  2628. bdi_destroy(&fs_info->bdi);
  2629. fail_srcu:
  2630. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2631. fail:
  2632. btrfs_free_stripe_hash_table(fs_info);
  2633. btrfs_close_devices(fs_info->fs_devices);
  2634. return err;
  2635. recovery_tree_root:
  2636. if (!btrfs_test_opt(tree_root, RECOVERY))
  2637. goto fail_tree_roots;
  2638. free_root_pointers(fs_info, 0);
  2639. /* don't use the log in recovery mode, it won't be valid */
  2640. btrfs_set_super_log_root(disk_super, 0);
  2641. /* we can't trust the free space cache either */
  2642. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2643. ret = next_root_backup(fs_info, fs_info->super_copy,
  2644. &num_backups_tried, &backup_index);
  2645. if (ret == -1)
  2646. goto fail_block_groups;
  2647. goto retry_root_backup;
  2648. }
  2649. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2650. {
  2651. if (uptodate) {
  2652. set_buffer_uptodate(bh);
  2653. } else {
  2654. struct btrfs_device *device = (struct btrfs_device *)
  2655. bh->b_private;
  2656. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2657. "I/O error on %s\n",
  2658. rcu_str_deref(device->name));
  2659. /* note, we dont' set_buffer_write_io_error because we have
  2660. * our own ways of dealing with the IO errors
  2661. */
  2662. clear_buffer_uptodate(bh);
  2663. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2664. }
  2665. unlock_buffer(bh);
  2666. put_bh(bh);
  2667. }
  2668. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2669. {
  2670. struct buffer_head *bh;
  2671. struct buffer_head *latest = NULL;
  2672. struct btrfs_super_block *super;
  2673. int i;
  2674. u64 transid = 0;
  2675. u64 bytenr;
  2676. /* we would like to check all the supers, but that would make
  2677. * a btrfs mount succeed after a mkfs from a different FS.
  2678. * So, we need to add a special mount option to scan for
  2679. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2680. */
  2681. for (i = 0; i < 1; i++) {
  2682. bytenr = btrfs_sb_offset(i);
  2683. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2684. i_size_read(bdev->bd_inode))
  2685. break;
  2686. bh = __bread(bdev, bytenr / 4096,
  2687. BTRFS_SUPER_INFO_SIZE);
  2688. if (!bh)
  2689. continue;
  2690. super = (struct btrfs_super_block *)bh->b_data;
  2691. if (btrfs_super_bytenr(super) != bytenr ||
  2692. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2693. brelse(bh);
  2694. continue;
  2695. }
  2696. if (!latest || btrfs_super_generation(super) > transid) {
  2697. brelse(latest);
  2698. latest = bh;
  2699. transid = btrfs_super_generation(super);
  2700. } else {
  2701. brelse(bh);
  2702. }
  2703. }
  2704. return latest;
  2705. }
  2706. /*
  2707. * this should be called twice, once with wait == 0 and
  2708. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2709. * we write are pinned.
  2710. *
  2711. * They are released when wait == 1 is done.
  2712. * max_mirrors must be the same for both runs, and it indicates how
  2713. * many supers on this one device should be written.
  2714. *
  2715. * max_mirrors == 0 means to write them all.
  2716. */
  2717. static int write_dev_supers(struct btrfs_device *device,
  2718. struct btrfs_super_block *sb,
  2719. int do_barriers, int wait, int max_mirrors)
  2720. {
  2721. struct buffer_head *bh;
  2722. int i;
  2723. int ret;
  2724. int errors = 0;
  2725. u32 crc;
  2726. u64 bytenr;
  2727. if (max_mirrors == 0)
  2728. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2729. for (i = 0; i < max_mirrors; i++) {
  2730. bytenr = btrfs_sb_offset(i);
  2731. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2732. device->commit_total_bytes)
  2733. break;
  2734. if (wait) {
  2735. bh = __find_get_block(device->bdev, bytenr / 4096,
  2736. BTRFS_SUPER_INFO_SIZE);
  2737. if (!bh) {
  2738. errors++;
  2739. continue;
  2740. }
  2741. wait_on_buffer(bh);
  2742. if (!buffer_uptodate(bh))
  2743. errors++;
  2744. /* drop our reference */
  2745. brelse(bh);
  2746. /* drop the reference from the wait == 0 run */
  2747. brelse(bh);
  2748. continue;
  2749. } else {
  2750. btrfs_set_super_bytenr(sb, bytenr);
  2751. crc = ~(u32)0;
  2752. crc = btrfs_csum_data((char *)sb +
  2753. BTRFS_CSUM_SIZE, crc,
  2754. BTRFS_SUPER_INFO_SIZE -
  2755. BTRFS_CSUM_SIZE);
  2756. btrfs_csum_final(crc, sb->csum);
  2757. /*
  2758. * one reference for us, and we leave it for the
  2759. * caller
  2760. */
  2761. bh = __getblk(device->bdev, bytenr / 4096,
  2762. BTRFS_SUPER_INFO_SIZE);
  2763. if (!bh) {
  2764. printk(KERN_ERR "BTRFS: couldn't get super "
  2765. "buffer head for bytenr %Lu\n", bytenr);
  2766. errors++;
  2767. continue;
  2768. }
  2769. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2770. /* one reference for submit_bh */
  2771. get_bh(bh);
  2772. set_buffer_uptodate(bh);
  2773. lock_buffer(bh);
  2774. bh->b_end_io = btrfs_end_buffer_write_sync;
  2775. bh->b_private = device;
  2776. }
  2777. /*
  2778. * we fua the first super. The others we allow
  2779. * to go down lazy.
  2780. */
  2781. if (i == 0)
  2782. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2783. else
  2784. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2785. if (ret)
  2786. errors++;
  2787. }
  2788. return errors < i ? 0 : -1;
  2789. }
  2790. /*
  2791. * endio for the write_dev_flush, this will wake anyone waiting
  2792. * for the barrier when it is done
  2793. */
  2794. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2795. {
  2796. if (err) {
  2797. if (err == -EOPNOTSUPP)
  2798. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2799. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2800. }
  2801. if (bio->bi_private)
  2802. complete(bio->bi_private);
  2803. bio_put(bio);
  2804. }
  2805. /*
  2806. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2807. * sent down. With wait == 1, it waits for the previous flush.
  2808. *
  2809. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2810. * capable
  2811. */
  2812. static int write_dev_flush(struct btrfs_device *device, int wait)
  2813. {
  2814. struct bio *bio;
  2815. int ret = 0;
  2816. if (device->nobarriers)
  2817. return 0;
  2818. if (wait) {
  2819. bio = device->flush_bio;
  2820. if (!bio)
  2821. return 0;
  2822. wait_for_completion(&device->flush_wait);
  2823. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2824. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2825. rcu_str_deref(device->name));
  2826. device->nobarriers = 1;
  2827. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2828. ret = -EIO;
  2829. btrfs_dev_stat_inc_and_print(device,
  2830. BTRFS_DEV_STAT_FLUSH_ERRS);
  2831. }
  2832. /* drop the reference from the wait == 0 run */
  2833. bio_put(bio);
  2834. device->flush_bio = NULL;
  2835. return ret;
  2836. }
  2837. /*
  2838. * one reference for us, and we leave it for the
  2839. * caller
  2840. */
  2841. device->flush_bio = NULL;
  2842. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2843. if (!bio)
  2844. return -ENOMEM;
  2845. bio->bi_end_io = btrfs_end_empty_barrier;
  2846. bio->bi_bdev = device->bdev;
  2847. init_completion(&device->flush_wait);
  2848. bio->bi_private = &device->flush_wait;
  2849. device->flush_bio = bio;
  2850. bio_get(bio);
  2851. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2852. return 0;
  2853. }
  2854. /*
  2855. * send an empty flush down to each device in parallel,
  2856. * then wait for them
  2857. */
  2858. static int barrier_all_devices(struct btrfs_fs_info *info)
  2859. {
  2860. struct list_head *head;
  2861. struct btrfs_device *dev;
  2862. int errors_send = 0;
  2863. int errors_wait = 0;
  2864. int ret;
  2865. /* send down all the barriers */
  2866. head = &info->fs_devices->devices;
  2867. list_for_each_entry_rcu(dev, head, dev_list) {
  2868. if (dev->missing)
  2869. continue;
  2870. if (!dev->bdev) {
  2871. errors_send++;
  2872. continue;
  2873. }
  2874. if (!dev->in_fs_metadata || !dev->writeable)
  2875. continue;
  2876. ret = write_dev_flush(dev, 0);
  2877. if (ret)
  2878. errors_send++;
  2879. }
  2880. /* wait for all the barriers */
  2881. list_for_each_entry_rcu(dev, head, dev_list) {
  2882. if (dev->missing)
  2883. continue;
  2884. if (!dev->bdev) {
  2885. errors_wait++;
  2886. continue;
  2887. }
  2888. if (!dev->in_fs_metadata || !dev->writeable)
  2889. continue;
  2890. ret = write_dev_flush(dev, 1);
  2891. if (ret)
  2892. errors_wait++;
  2893. }
  2894. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2895. errors_wait > info->num_tolerated_disk_barrier_failures)
  2896. return -EIO;
  2897. return 0;
  2898. }
  2899. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2900. struct btrfs_fs_info *fs_info)
  2901. {
  2902. struct btrfs_ioctl_space_info space;
  2903. struct btrfs_space_info *sinfo;
  2904. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2905. BTRFS_BLOCK_GROUP_SYSTEM,
  2906. BTRFS_BLOCK_GROUP_METADATA,
  2907. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2908. int num_types = 4;
  2909. int i;
  2910. int c;
  2911. int num_tolerated_disk_barrier_failures =
  2912. (int)fs_info->fs_devices->num_devices;
  2913. for (i = 0; i < num_types; i++) {
  2914. struct btrfs_space_info *tmp;
  2915. sinfo = NULL;
  2916. rcu_read_lock();
  2917. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2918. if (tmp->flags == types[i]) {
  2919. sinfo = tmp;
  2920. break;
  2921. }
  2922. }
  2923. rcu_read_unlock();
  2924. if (!sinfo)
  2925. continue;
  2926. down_read(&sinfo->groups_sem);
  2927. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2928. if (!list_empty(&sinfo->block_groups[c])) {
  2929. u64 flags;
  2930. btrfs_get_block_group_info(
  2931. &sinfo->block_groups[c], &space);
  2932. if (space.total_bytes == 0 ||
  2933. space.used_bytes == 0)
  2934. continue;
  2935. flags = space.flags;
  2936. /*
  2937. * return
  2938. * 0: if dup, single or RAID0 is configured for
  2939. * any of metadata, system or data, else
  2940. * 1: if RAID5 is configured, or if RAID1 or
  2941. * RAID10 is configured and only two mirrors
  2942. * are used, else
  2943. * 2: if RAID6 is configured, else
  2944. * num_mirrors - 1: if RAID1 or RAID10 is
  2945. * configured and more than
  2946. * 2 mirrors are used.
  2947. */
  2948. if (num_tolerated_disk_barrier_failures > 0 &&
  2949. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2950. BTRFS_BLOCK_GROUP_RAID0)) ||
  2951. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2952. == 0)))
  2953. num_tolerated_disk_barrier_failures = 0;
  2954. else if (num_tolerated_disk_barrier_failures > 1) {
  2955. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2956. BTRFS_BLOCK_GROUP_RAID5 |
  2957. BTRFS_BLOCK_GROUP_RAID10)) {
  2958. num_tolerated_disk_barrier_failures = 1;
  2959. } else if (flags &
  2960. BTRFS_BLOCK_GROUP_RAID6) {
  2961. num_tolerated_disk_barrier_failures = 2;
  2962. }
  2963. }
  2964. }
  2965. }
  2966. up_read(&sinfo->groups_sem);
  2967. }
  2968. return num_tolerated_disk_barrier_failures;
  2969. }
  2970. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2971. {
  2972. struct list_head *head;
  2973. struct btrfs_device *dev;
  2974. struct btrfs_super_block *sb;
  2975. struct btrfs_dev_item *dev_item;
  2976. int ret;
  2977. int do_barriers;
  2978. int max_errors;
  2979. int total_errors = 0;
  2980. u64 flags;
  2981. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2982. backup_super_roots(root->fs_info);
  2983. sb = root->fs_info->super_for_commit;
  2984. dev_item = &sb->dev_item;
  2985. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2986. head = &root->fs_info->fs_devices->devices;
  2987. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2988. if (do_barriers) {
  2989. ret = barrier_all_devices(root->fs_info);
  2990. if (ret) {
  2991. mutex_unlock(
  2992. &root->fs_info->fs_devices->device_list_mutex);
  2993. btrfs_error(root->fs_info, ret,
  2994. "errors while submitting device barriers.");
  2995. return ret;
  2996. }
  2997. }
  2998. list_for_each_entry_rcu(dev, head, dev_list) {
  2999. if (!dev->bdev) {
  3000. total_errors++;
  3001. continue;
  3002. }
  3003. if (!dev->in_fs_metadata || !dev->writeable)
  3004. continue;
  3005. btrfs_set_stack_device_generation(dev_item, 0);
  3006. btrfs_set_stack_device_type(dev_item, dev->type);
  3007. btrfs_set_stack_device_id(dev_item, dev->devid);
  3008. btrfs_set_stack_device_total_bytes(dev_item,
  3009. dev->commit_total_bytes);
  3010. btrfs_set_stack_device_bytes_used(dev_item,
  3011. dev->commit_bytes_used);
  3012. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3013. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3014. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3015. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3016. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3017. flags = btrfs_super_flags(sb);
  3018. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3019. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3020. if (ret)
  3021. total_errors++;
  3022. }
  3023. if (total_errors > max_errors) {
  3024. btrfs_err(root->fs_info, "%d errors while writing supers",
  3025. total_errors);
  3026. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3027. /* FUA is masked off if unsupported and can't be the reason */
  3028. btrfs_error(root->fs_info, -EIO,
  3029. "%d errors while writing supers", total_errors);
  3030. return -EIO;
  3031. }
  3032. total_errors = 0;
  3033. list_for_each_entry_rcu(dev, head, dev_list) {
  3034. if (!dev->bdev)
  3035. continue;
  3036. if (!dev->in_fs_metadata || !dev->writeable)
  3037. continue;
  3038. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3039. if (ret)
  3040. total_errors++;
  3041. }
  3042. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3043. if (total_errors > max_errors) {
  3044. btrfs_error(root->fs_info, -EIO,
  3045. "%d errors while writing supers", total_errors);
  3046. return -EIO;
  3047. }
  3048. return 0;
  3049. }
  3050. int write_ctree_super(struct btrfs_trans_handle *trans,
  3051. struct btrfs_root *root, int max_mirrors)
  3052. {
  3053. return write_all_supers(root, max_mirrors);
  3054. }
  3055. /* Drop a fs root from the radix tree and free it. */
  3056. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3057. struct btrfs_root *root)
  3058. {
  3059. spin_lock(&fs_info->fs_roots_radix_lock);
  3060. radix_tree_delete(&fs_info->fs_roots_radix,
  3061. (unsigned long)root->root_key.objectid);
  3062. spin_unlock(&fs_info->fs_roots_radix_lock);
  3063. if (btrfs_root_refs(&root->root_item) == 0)
  3064. synchronize_srcu(&fs_info->subvol_srcu);
  3065. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3066. btrfs_free_log(NULL, root);
  3067. if (root->free_ino_pinned)
  3068. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3069. if (root->free_ino_ctl)
  3070. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3071. free_fs_root(root);
  3072. }
  3073. static void free_fs_root(struct btrfs_root *root)
  3074. {
  3075. iput(root->ino_cache_inode);
  3076. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3077. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3078. root->orphan_block_rsv = NULL;
  3079. if (root->anon_dev)
  3080. free_anon_bdev(root->anon_dev);
  3081. if (root->subv_writers)
  3082. btrfs_free_subvolume_writers(root->subv_writers);
  3083. free_extent_buffer(root->node);
  3084. free_extent_buffer(root->commit_root);
  3085. kfree(root->free_ino_ctl);
  3086. kfree(root->free_ino_pinned);
  3087. kfree(root->name);
  3088. btrfs_put_fs_root(root);
  3089. }
  3090. void btrfs_free_fs_root(struct btrfs_root *root)
  3091. {
  3092. free_fs_root(root);
  3093. }
  3094. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3095. {
  3096. u64 root_objectid = 0;
  3097. struct btrfs_root *gang[8];
  3098. int i = 0;
  3099. int err = 0;
  3100. unsigned int ret = 0;
  3101. int index;
  3102. while (1) {
  3103. index = srcu_read_lock(&fs_info->subvol_srcu);
  3104. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3105. (void **)gang, root_objectid,
  3106. ARRAY_SIZE(gang));
  3107. if (!ret) {
  3108. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3109. break;
  3110. }
  3111. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3112. for (i = 0; i < ret; i++) {
  3113. /* Avoid to grab roots in dead_roots */
  3114. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3115. gang[i] = NULL;
  3116. continue;
  3117. }
  3118. /* grab all the search result for later use */
  3119. gang[i] = btrfs_grab_fs_root(gang[i]);
  3120. }
  3121. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3122. for (i = 0; i < ret; i++) {
  3123. if (!gang[i])
  3124. continue;
  3125. root_objectid = gang[i]->root_key.objectid;
  3126. err = btrfs_orphan_cleanup(gang[i]);
  3127. if (err)
  3128. break;
  3129. btrfs_put_fs_root(gang[i]);
  3130. }
  3131. root_objectid++;
  3132. }
  3133. /* release the uncleaned roots due to error */
  3134. for (; i < ret; i++) {
  3135. if (gang[i])
  3136. btrfs_put_fs_root(gang[i]);
  3137. }
  3138. return err;
  3139. }
  3140. int btrfs_commit_super(struct btrfs_root *root)
  3141. {
  3142. struct btrfs_trans_handle *trans;
  3143. mutex_lock(&root->fs_info->cleaner_mutex);
  3144. btrfs_run_delayed_iputs(root);
  3145. mutex_unlock(&root->fs_info->cleaner_mutex);
  3146. wake_up_process(root->fs_info->cleaner_kthread);
  3147. /* wait until ongoing cleanup work done */
  3148. down_write(&root->fs_info->cleanup_work_sem);
  3149. up_write(&root->fs_info->cleanup_work_sem);
  3150. trans = btrfs_join_transaction(root);
  3151. if (IS_ERR(trans))
  3152. return PTR_ERR(trans);
  3153. return btrfs_commit_transaction(trans, root);
  3154. }
  3155. void close_ctree(struct btrfs_root *root)
  3156. {
  3157. struct btrfs_fs_info *fs_info = root->fs_info;
  3158. int ret;
  3159. fs_info->closing = 1;
  3160. smp_mb();
  3161. /* wait for the uuid_scan task to finish */
  3162. down(&fs_info->uuid_tree_rescan_sem);
  3163. /* avoid complains from lockdep et al., set sem back to initial state */
  3164. up(&fs_info->uuid_tree_rescan_sem);
  3165. /* pause restriper - we want to resume on mount */
  3166. btrfs_pause_balance(fs_info);
  3167. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3168. btrfs_scrub_cancel(fs_info);
  3169. /* wait for any defraggers to finish */
  3170. wait_event(fs_info->transaction_wait,
  3171. (atomic_read(&fs_info->defrag_running) == 0));
  3172. /* clear out the rbtree of defraggable inodes */
  3173. btrfs_cleanup_defrag_inodes(fs_info);
  3174. cancel_work_sync(&fs_info->async_reclaim_work);
  3175. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3176. ret = btrfs_commit_super(root);
  3177. if (ret)
  3178. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3179. }
  3180. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3181. btrfs_error_commit_super(root);
  3182. kthread_stop(fs_info->transaction_kthread);
  3183. kthread_stop(fs_info->cleaner_kthread);
  3184. fs_info->closing = 2;
  3185. smp_mb();
  3186. btrfs_free_qgroup_config(root->fs_info);
  3187. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3188. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3189. percpu_counter_sum(&fs_info->delalloc_bytes));
  3190. }
  3191. btrfs_sysfs_remove_one(fs_info);
  3192. btrfs_free_fs_roots(fs_info);
  3193. btrfs_put_block_group_cache(fs_info);
  3194. btrfs_free_block_groups(fs_info);
  3195. /*
  3196. * we must make sure there is not any read request to
  3197. * submit after we stopping all workers.
  3198. */
  3199. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3200. btrfs_stop_all_workers(fs_info);
  3201. fs_info->open = 0;
  3202. free_root_pointers(fs_info, 1);
  3203. iput(fs_info->btree_inode);
  3204. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3205. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3206. btrfsic_unmount(root, fs_info->fs_devices);
  3207. #endif
  3208. btrfs_close_devices(fs_info->fs_devices);
  3209. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3210. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3211. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3212. percpu_counter_destroy(&fs_info->bio_counter);
  3213. bdi_destroy(&fs_info->bdi);
  3214. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3215. btrfs_free_stripe_hash_table(fs_info);
  3216. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3217. root->orphan_block_rsv = NULL;
  3218. }
  3219. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3220. int atomic)
  3221. {
  3222. int ret;
  3223. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3224. ret = extent_buffer_uptodate(buf);
  3225. if (!ret)
  3226. return ret;
  3227. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3228. parent_transid, atomic);
  3229. if (ret == -EAGAIN)
  3230. return ret;
  3231. return !ret;
  3232. }
  3233. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3234. {
  3235. return set_extent_buffer_uptodate(buf);
  3236. }
  3237. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3238. {
  3239. struct btrfs_root *root;
  3240. u64 transid = btrfs_header_generation(buf);
  3241. int was_dirty;
  3242. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3243. /*
  3244. * This is a fast path so only do this check if we have sanity tests
  3245. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3246. * outside of the sanity tests.
  3247. */
  3248. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3249. return;
  3250. #endif
  3251. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3252. btrfs_assert_tree_locked(buf);
  3253. if (transid != root->fs_info->generation)
  3254. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3255. "found %llu running %llu\n",
  3256. buf->start, transid, root->fs_info->generation);
  3257. was_dirty = set_extent_buffer_dirty(buf);
  3258. if (!was_dirty)
  3259. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3260. buf->len,
  3261. root->fs_info->dirty_metadata_batch);
  3262. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3263. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3264. btrfs_print_leaf(root, buf);
  3265. ASSERT(0);
  3266. }
  3267. #endif
  3268. }
  3269. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3270. int flush_delayed)
  3271. {
  3272. /*
  3273. * looks as though older kernels can get into trouble with
  3274. * this code, they end up stuck in balance_dirty_pages forever
  3275. */
  3276. int ret;
  3277. if (current->flags & PF_MEMALLOC)
  3278. return;
  3279. if (flush_delayed)
  3280. btrfs_balance_delayed_items(root);
  3281. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3282. BTRFS_DIRTY_METADATA_THRESH);
  3283. if (ret > 0) {
  3284. balance_dirty_pages_ratelimited(
  3285. root->fs_info->btree_inode->i_mapping);
  3286. }
  3287. return;
  3288. }
  3289. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3290. {
  3291. __btrfs_btree_balance_dirty(root, 1);
  3292. }
  3293. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3294. {
  3295. __btrfs_btree_balance_dirty(root, 0);
  3296. }
  3297. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3298. {
  3299. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3300. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3301. }
  3302. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3303. int read_only)
  3304. {
  3305. /*
  3306. * Placeholder for checks
  3307. */
  3308. return 0;
  3309. }
  3310. static void btrfs_error_commit_super(struct btrfs_root *root)
  3311. {
  3312. mutex_lock(&root->fs_info->cleaner_mutex);
  3313. btrfs_run_delayed_iputs(root);
  3314. mutex_unlock(&root->fs_info->cleaner_mutex);
  3315. down_write(&root->fs_info->cleanup_work_sem);
  3316. up_write(&root->fs_info->cleanup_work_sem);
  3317. /* cleanup FS via transaction */
  3318. btrfs_cleanup_transaction(root);
  3319. }
  3320. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3321. {
  3322. struct btrfs_ordered_extent *ordered;
  3323. spin_lock(&root->ordered_extent_lock);
  3324. /*
  3325. * This will just short circuit the ordered completion stuff which will
  3326. * make sure the ordered extent gets properly cleaned up.
  3327. */
  3328. list_for_each_entry(ordered, &root->ordered_extents,
  3329. root_extent_list)
  3330. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3331. spin_unlock(&root->ordered_extent_lock);
  3332. }
  3333. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3334. {
  3335. struct btrfs_root *root;
  3336. struct list_head splice;
  3337. INIT_LIST_HEAD(&splice);
  3338. spin_lock(&fs_info->ordered_root_lock);
  3339. list_splice_init(&fs_info->ordered_roots, &splice);
  3340. while (!list_empty(&splice)) {
  3341. root = list_first_entry(&splice, struct btrfs_root,
  3342. ordered_root);
  3343. list_move_tail(&root->ordered_root,
  3344. &fs_info->ordered_roots);
  3345. spin_unlock(&fs_info->ordered_root_lock);
  3346. btrfs_destroy_ordered_extents(root);
  3347. cond_resched();
  3348. spin_lock(&fs_info->ordered_root_lock);
  3349. }
  3350. spin_unlock(&fs_info->ordered_root_lock);
  3351. }
  3352. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3353. struct btrfs_root *root)
  3354. {
  3355. struct rb_node *node;
  3356. struct btrfs_delayed_ref_root *delayed_refs;
  3357. struct btrfs_delayed_ref_node *ref;
  3358. int ret = 0;
  3359. delayed_refs = &trans->delayed_refs;
  3360. spin_lock(&delayed_refs->lock);
  3361. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3362. spin_unlock(&delayed_refs->lock);
  3363. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3364. return ret;
  3365. }
  3366. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3367. struct btrfs_delayed_ref_head *head;
  3368. bool pin_bytes = false;
  3369. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3370. href_node);
  3371. if (!mutex_trylock(&head->mutex)) {
  3372. atomic_inc(&head->node.refs);
  3373. spin_unlock(&delayed_refs->lock);
  3374. mutex_lock(&head->mutex);
  3375. mutex_unlock(&head->mutex);
  3376. btrfs_put_delayed_ref(&head->node);
  3377. spin_lock(&delayed_refs->lock);
  3378. continue;
  3379. }
  3380. spin_lock(&head->lock);
  3381. while ((node = rb_first(&head->ref_root)) != NULL) {
  3382. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3383. rb_node);
  3384. ref->in_tree = 0;
  3385. rb_erase(&ref->rb_node, &head->ref_root);
  3386. atomic_dec(&delayed_refs->num_entries);
  3387. btrfs_put_delayed_ref(ref);
  3388. }
  3389. if (head->must_insert_reserved)
  3390. pin_bytes = true;
  3391. btrfs_free_delayed_extent_op(head->extent_op);
  3392. delayed_refs->num_heads--;
  3393. if (head->processing == 0)
  3394. delayed_refs->num_heads_ready--;
  3395. atomic_dec(&delayed_refs->num_entries);
  3396. head->node.in_tree = 0;
  3397. rb_erase(&head->href_node, &delayed_refs->href_root);
  3398. spin_unlock(&head->lock);
  3399. spin_unlock(&delayed_refs->lock);
  3400. mutex_unlock(&head->mutex);
  3401. if (pin_bytes)
  3402. btrfs_pin_extent(root, head->node.bytenr,
  3403. head->node.num_bytes, 1);
  3404. btrfs_put_delayed_ref(&head->node);
  3405. cond_resched();
  3406. spin_lock(&delayed_refs->lock);
  3407. }
  3408. spin_unlock(&delayed_refs->lock);
  3409. return ret;
  3410. }
  3411. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3412. {
  3413. struct btrfs_inode *btrfs_inode;
  3414. struct list_head splice;
  3415. INIT_LIST_HEAD(&splice);
  3416. spin_lock(&root->delalloc_lock);
  3417. list_splice_init(&root->delalloc_inodes, &splice);
  3418. while (!list_empty(&splice)) {
  3419. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3420. delalloc_inodes);
  3421. list_del_init(&btrfs_inode->delalloc_inodes);
  3422. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3423. &btrfs_inode->runtime_flags);
  3424. spin_unlock(&root->delalloc_lock);
  3425. btrfs_invalidate_inodes(btrfs_inode->root);
  3426. spin_lock(&root->delalloc_lock);
  3427. }
  3428. spin_unlock(&root->delalloc_lock);
  3429. }
  3430. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3431. {
  3432. struct btrfs_root *root;
  3433. struct list_head splice;
  3434. INIT_LIST_HEAD(&splice);
  3435. spin_lock(&fs_info->delalloc_root_lock);
  3436. list_splice_init(&fs_info->delalloc_roots, &splice);
  3437. while (!list_empty(&splice)) {
  3438. root = list_first_entry(&splice, struct btrfs_root,
  3439. delalloc_root);
  3440. list_del_init(&root->delalloc_root);
  3441. root = btrfs_grab_fs_root(root);
  3442. BUG_ON(!root);
  3443. spin_unlock(&fs_info->delalloc_root_lock);
  3444. btrfs_destroy_delalloc_inodes(root);
  3445. btrfs_put_fs_root(root);
  3446. spin_lock(&fs_info->delalloc_root_lock);
  3447. }
  3448. spin_unlock(&fs_info->delalloc_root_lock);
  3449. }
  3450. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3451. struct extent_io_tree *dirty_pages,
  3452. int mark)
  3453. {
  3454. int ret;
  3455. struct extent_buffer *eb;
  3456. u64 start = 0;
  3457. u64 end;
  3458. while (1) {
  3459. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3460. mark, NULL);
  3461. if (ret)
  3462. break;
  3463. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3464. while (start <= end) {
  3465. eb = btrfs_find_tree_block(root, start,
  3466. root->nodesize);
  3467. start += root->nodesize;
  3468. if (!eb)
  3469. continue;
  3470. wait_on_extent_buffer_writeback(eb);
  3471. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3472. &eb->bflags))
  3473. clear_extent_buffer_dirty(eb);
  3474. free_extent_buffer_stale(eb);
  3475. }
  3476. }
  3477. return ret;
  3478. }
  3479. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3480. struct extent_io_tree *pinned_extents)
  3481. {
  3482. struct extent_io_tree *unpin;
  3483. u64 start;
  3484. u64 end;
  3485. int ret;
  3486. bool loop = true;
  3487. unpin = pinned_extents;
  3488. again:
  3489. while (1) {
  3490. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3491. EXTENT_DIRTY, NULL);
  3492. if (ret)
  3493. break;
  3494. /* opt_discard */
  3495. if (btrfs_test_opt(root, DISCARD))
  3496. ret = btrfs_error_discard_extent(root, start,
  3497. end + 1 - start,
  3498. NULL);
  3499. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3500. btrfs_error_unpin_extent_range(root, start, end);
  3501. cond_resched();
  3502. }
  3503. if (loop) {
  3504. if (unpin == &root->fs_info->freed_extents[0])
  3505. unpin = &root->fs_info->freed_extents[1];
  3506. else
  3507. unpin = &root->fs_info->freed_extents[0];
  3508. loop = false;
  3509. goto again;
  3510. }
  3511. return 0;
  3512. }
  3513. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3514. struct btrfs_root *root)
  3515. {
  3516. btrfs_destroy_delayed_refs(cur_trans, root);
  3517. cur_trans->state = TRANS_STATE_COMMIT_START;
  3518. wake_up(&root->fs_info->transaction_blocked_wait);
  3519. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3520. wake_up(&root->fs_info->transaction_wait);
  3521. btrfs_destroy_delayed_inodes(root);
  3522. btrfs_assert_delayed_root_empty(root);
  3523. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3524. EXTENT_DIRTY);
  3525. btrfs_destroy_pinned_extent(root,
  3526. root->fs_info->pinned_extents);
  3527. cur_trans->state =TRANS_STATE_COMPLETED;
  3528. wake_up(&cur_trans->commit_wait);
  3529. /*
  3530. memset(cur_trans, 0, sizeof(*cur_trans));
  3531. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3532. */
  3533. }
  3534. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3535. {
  3536. struct btrfs_transaction *t;
  3537. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3538. spin_lock(&root->fs_info->trans_lock);
  3539. while (!list_empty(&root->fs_info->trans_list)) {
  3540. t = list_first_entry(&root->fs_info->trans_list,
  3541. struct btrfs_transaction, list);
  3542. if (t->state >= TRANS_STATE_COMMIT_START) {
  3543. atomic_inc(&t->use_count);
  3544. spin_unlock(&root->fs_info->trans_lock);
  3545. btrfs_wait_for_commit(root, t->transid);
  3546. btrfs_put_transaction(t);
  3547. spin_lock(&root->fs_info->trans_lock);
  3548. continue;
  3549. }
  3550. if (t == root->fs_info->running_transaction) {
  3551. t->state = TRANS_STATE_COMMIT_DOING;
  3552. spin_unlock(&root->fs_info->trans_lock);
  3553. /*
  3554. * We wait for 0 num_writers since we don't hold a trans
  3555. * handle open currently for this transaction.
  3556. */
  3557. wait_event(t->writer_wait,
  3558. atomic_read(&t->num_writers) == 0);
  3559. } else {
  3560. spin_unlock(&root->fs_info->trans_lock);
  3561. }
  3562. btrfs_cleanup_one_transaction(t, root);
  3563. spin_lock(&root->fs_info->trans_lock);
  3564. if (t == root->fs_info->running_transaction)
  3565. root->fs_info->running_transaction = NULL;
  3566. list_del_init(&t->list);
  3567. spin_unlock(&root->fs_info->trans_lock);
  3568. btrfs_put_transaction(t);
  3569. trace_btrfs_transaction_commit(root);
  3570. spin_lock(&root->fs_info->trans_lock);
  3571. }
  3572. spin_unlock(&root->fs_info->trans_lock);
  3573. btrfs_destroy_all_ordered_extents(root->fs_info);
  3574. btrfs_destroy_delayed_inodes(root);
  3575. btrfs_assert_delayed_root_empty(root);
  3576. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3577. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3578. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3579. return 0;
  3580. }
  3581. static struct extent_io_ops btree_extent_io_ops = {
  3582. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3583. .readpage_io_failed_hook = btree_io_failed_hook,
  3584. .submit_bio_hook = btree_submit_bio_hook,
  3585. /* note we're sharing with inode.c for the merge bio hook */
  3586. .merge_bio_hook = btrfs_merge_bio_hook,
  3587. };