spi-orion.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848
  1. /*
  2. * Marvell Orion SPI controller driver
  3. *
  4. * Author: Shadi Ammouri <shadi@marvell.com>
  5. * Copyright (C) 2007-2008 Marvell Ltd.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/interrupt.h>
  12. #include <linux/delay.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/err.h>
  15. #include <linux/io.h>
  16. #include <linux/spi/spi.h>
  17. #include <linux/module.h>
  18. #include <linux/pm_runtime.h>
  19. #include <linux/of.h>
  20. #include <linux/of_address.h>
  21. #include <linux/of_device.h>
  22. #include <linux/clk.h>
  23. #include <linux/sizes.h>
  24. #include <linux/gpio.h>
  25. #include <asm/unaligned.h>
  26. #define DRIVER_NAME "orion_spi"
  27. /* Runtime PM autosuspend timeout: PM is fairly light on this driver */
  28. #define SPI_AUTOSUSPEND_TIMEOUT 200
  29. /* Some SoCs using this driver support up to 8 chip selects.
  30. * It is up to the implementer to only use the chip selects
  31. * that are available.
  32. */
  33. #define ORION_NUM_CHIPSELECTS 8
  34. #define ORION_SPI_WAIT_RDY_MAX_LOOP 2000 /* in usec */
  35. #define ORION_SPI_IF_CTRL_REG 0x00
  36. #define ORION_SPI_IF_CONFIG_REG 0x04
  37. #define ORION_SPI_IF_RXLSBF BIT(14)
  38. #define ORION_SPI_IF_TXLSBF BIT(13)
  39. #define ORION_SPI_DATA_OUT_REG 0x08
  40. #define ORION_SPI_DATA_IN_REG 0x0c
  41. #define ORION_SPI_INT_CAUSE_REG 0x10
  42. #define ORION_SPI_TIMING_PARAMS_REG 0x18
  43. /* Register for the "Direct Mode" */
  44. #define SPI_DIRECT_WRITE_CONFIG_REG 0x20
  45. #define ORION_SPI_TMISO_SAMPLE_MASK (0x3 << 6)
  46. #define ORION_SPI_TMISO_SAMPLE_1 (1 << 6)
  47. #define ORION_SPI_TMISO_SAMPLE_2 (2 << 6)
  48. #define ORION_SPI_MODE_CPOL (1 << 11)
  49. #define ORION_SPI_MODE_CPHA (1 << 12)
  50. #define ORION_SPI_IF_8_16_BIT_MODE (1 << 5)
  51. #define ORION_SPI_CLK_PRESCALE_MASK 0x1F
  52. #define ARMADA_SPI_CLK_PRESCALE_MASK 0xDF
  53. #define ORION_SPI_MODE_MASK (ORION_SPI_MODE_CPOL | \
  54. ORION_SPI_MODE_CPHA)
  55. #define ORION_SPI_CS_MASK 0x1C
  56. #define ORION_SPI_CS_SHIFT 2
  57. #define ORION_SPI_CS(cs) ((cs << ORION_SPI_CS_SHIFT) & \
  58. ORION_SPI_CS_MASK)
  59. enum orion_spi_type {
  60. ORION_SPI,
  61. ARMADA_SPI,
  62. };
  63. struct orion_spi_dev {
  64. enum orion_spi_type typ;
  65. /*
  66. * min_divisor and max_hz should be exclusive, the only we can
  67. * have both is for managing the armada-370-spi case with old
  68. * device tree
  69. */
  70. unsigned long max_hz;
  71. unsigned int min_divisor;
  72. unsigned int max_divisor;
  73. u32 prescale_mask;
  74. bool is_errata_50mhz_ac;
  75. };
  76. struct orion_direct_acc {
  77. void __iomem *vaddr;
  78. u32 size;
  79. };
  80. struct orion_spi {
  81. struct spi_master *master;
  82. void __iomem *base;
  83. struct clk *clk;
  84. struct clk *axi_clk;
  85. const struct orion_spi_dev *devdata;
  86. int unused_hw_gpio;
  87. struct orion_direct_acc direct_access[ORION_NUM_CHIPSELECTS];
  88. };
  89. static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg)
  90. {
  91. return orion_spi->base + reg;
  92. }
  93. static inline void
  94. orion_spi_setbits(struct orion_spi *orion_spi, u32 reg, u32 mask)
  95. {
  96. void __iomem *reg_addr = spi_reg(orion_spi, reg);
  97. u32 val;
  98. val = readl(reg_addr);
  99. val |= mask;
  100. writel(val, reg_addr);
  101. }
  102. static inline void
  103. orion_spi_clrbits(struct orion_spi *orion_spi, u32 reg, u32 mask)
  104. {
  105. void __iomem *reg_addr = spi_reg(orion_spi, reg);
  106. u32 val;
  107. val = readl(reg_addr);
  108. val &= ~mask;
  109. writel(val, reg_addr);
  110. }
  111. static int orion_spi_baudrate_set(struct spi_device *spi, unsigned int speed)
  112. {
  113. u32 tclk_hz;
  114. u32 rate;
  115. u32 prescale;
  116. u32 reg;
  117. struct orion_spi *orion_spi;
  118. const struct orion_spi_dev *devdata;
  119. orion_spi = spi_master_get_devdata(spi->master);
  120. devdata = orion_spi->devdata;
  121. tclk_hz = clk_get_rate(orion_spi->clk);
  122. if (devdata->typ == ARMADA_SPI) {
  123. /*
  124. * Given the core_clk (tclk_hz) and the target rate (speed) we
  125. * determine the best values for SPR (in [0 .. 15]) and SPPR (in
  126. * [0..7]) such that
  127. *
  128. * core_clk / (SPR * 2 ** SPPR)
  129. *
  130. * is as big as possible but not bigger than speed.
  131. */
  132. /* best integer divider: */
  133. unsigned divider = DIV_ROUND_UP(tclk_hz, speed);
  134. unsigned spr, sppr;
  135. if (divider < 16) {
  136. /* This is the easy case, divider is less than 16 */
  137. spr = divider;
  138. sppr = 0;
  139. } else {
  140. unsigned two_pow_sppr;
  141. /*
  142. * Find the highest bit set in divider. This and the
  143. * three next bits define SPR (apart from rounding).
  144. * SPPR is then the number of zero bits that must be
  145. * appended:
  146. */
  147. sppr = fls(divider) - 4;
  148. /*
  149. * As SPR only has 4 bits, we have to round divider up
  150. * to the next multiple of 2 ** sppr.
  151. */
  152. two_pow_sppr = 1 << sppr;
  153. divider = (divider + two_pow_sppr - 1) & -two_pow_sppr;
  154. /*
  155. * recalculate sppr as rounding up divider might have
  156. * increased it enough to change the position of the
  157. * highest set bit. In this case the bit that now
  158. * doesn't make it into SPR is 0, so there is no need to
  159. * round again.
  160. */
  161. sppr = fls(divider) - 4;
  162. spr = divider >> sppr;
  163. /*
  164. * Now do range checking. SPR is constructed to have a
  165. * width of 4 bits, so this is fine for sure. So we
  166. * still need to check for sppr to fit into 3 bits:
  167. */
  168. if (sppr > 7)
  169. return -EINVAL;
  170. }
  171. prescale = ((sppr & 0x6) << 5) | ((sppr & 0x1) << 4) | spr;
  172. } else {
  173. /*
  174. * the supported rates are: 4,6,8...30
  175. * round up as we look for equal or less speed
  176. */
  177. rate = DIV_ROUND_UP(tclk_hz, speed);
  178. rate = roundup(rate, 2);
  179. /* check if requested speed is too small */
  180. if (rate > 30)
  181. return -EINVAL;
  182. if (rate < 4)
  183. rate = 4;
  184. /* Convert the rate to SPI clock divisor value. */
  185. prescale = 0x10 + rate/2;
  186. }
  187. reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
  188. reg = ((reg & ~devdata->prescale_mask) | prescale);
  189. writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
  190. return 0;
  191. }
  192. static void
  193. orion_spi_mode_set(struct spi_device *spi)
  194. {
  195. u32 reg;
  196. struct orion_spi *orion_spi;
  197. orion_spi = spi_master_get_devdata(spi->master);
  198. reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
  199. reg &= ~ORION_SPI_MODE_MASK;
  200. if (spi->mode & SPI_CPOL)
  201. reg |= ORION_SPI_MODE_CPOL;
  202. if (spi->mode & SPI_CPHA)
  203. reg |= ORION_SPI_MODE_CPHA;
  204. if (spi->mode & SPI_LSB_FIRST)
  205. reg |= ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF;
  206. else
  207. reg &= ~(ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF);
  208. writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG));
  209. }
  210. static void
  211. orion_spi_50mhz_ac_timing_erratum(struct spi_device *spi, unsigned int speed)
  212. {
  213. u32 reg;
  214. struct orion_spi *orion_spi;
  215. orion_spi = spi_master_get_devdata(spi->master);
  216. /*
  217. * Erratum description: (Erratum NO. FE-9144572) The device
  218. * SPI interface supports frequencies of up to 50 MHz.
  219. * However, due to this erratum, when the device core clock is
  220. * 250 MHz and the SPI interfaces is configured for 50MHz SPI
  221. * clock and CPOL=CPHA=1 there might occur data corruption on
  222. * reads from the SPI device.
  223. * Erratum Workaround:
  224. * Work in one of the following configurations:
  225. * 1. Set CPOL=CPHA=0 in "SPI Interface Configuration
  226. * Register".
  227. * 2. Set TMISO_SAMPLE value to 0x2 in "SPI Timing Parameters 1
  228. * Register" before setting the interface.
  229. */
  230. reg = readl(spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG));
  231. reg &= ~ORION_SPI_TMISO_SAMPLE_MASK;
  232. if (clk_get_rate(orion_spi->clk) == 250000000 &&
  233. speed == 50000000 && spi->mode & SPI_CPOL &&
  234. spi->mode & SPI_CPHA)
  235. reg |= ORION_SPI_TMISO_SAMPLE_2;
  236. else
  237. reg |= ORION_SPI_TMISO_SAMPLE_1; /* This is the default value */
  238. writel(reg, spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG));
  239. }
  240. /*
  241. * called only when no transfer is active on the bus
  242. */
  243. static int
  244. orion_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
  245. {
  246. struct orion_spi *orion_spi;
  247. unsigned int speed = spi->max_speed_hz;
  248. unsigned int bits_per_word = spi->bits_per_word;
  249. int rc;
  250. orion_spi = spi_master_get_devdata(spi->master);
  251. if ((t != NULL) && t->speed_hz)
  252. speed = t->speed_hz;
  253. if ((t != NULL) && t->bits_per_word)
  254. bits_per_word = t->bits_per_word;
  255. orion_spi_mode_set(spi);
  256. if (orion_spi->devdata->is_errata_50mhz_ac)
  257. orion_spi_50mhz_ac_timing_erratum(spi, speed);
  258. rc = orion_spi_baudrate_set(spi, speed);
  259. if (rc)
  260. return rc;
  261. if (bits_per_word == 16)
  262. orion_spi_setbits(orion_spi, ORION_SPI_IF_CONFIG_REG,
  263. ORION_SPI_IF_8_16_BIT_MODE);
  264. else
  265. orion_spi_clrbits(orion_spi, ORION_SPI_IF_CONFIG_REG,
  266. ORION_SPI_IF_8_16_BIT_MODE);
  267. return 0;
  268. }
  269. static void orion_spi_set_cs(struct spi_device *spi, bool enable)
  270. {
  271. struct orion_spi *orion_spi;
  272. int cs;
  273. orion_spi = spi_master_get_devdata(spi->master);
  274. if (gpio_is_valid(spi->cs_gpio))
  275. cs = orion_spi->unused_hw_gpio;
  276. else
  277. cs = spi->chip_select;
  278. orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, ORION_SPI_CS_MASK);
  279. orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG,
  280. ORION_SPI_CS(cs));
  281. /* Chip select logic is inverted from spi_set_cs */
  282. if (!enable)
  283. orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
  284. else
  285. orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
  286. }
  287. static inline int orion_spi_wait_till_ready(struct orion_spi *orion_spi)
  288. {
  289. int i;
  290. for (i = 0; i < ORION_SPI_WAIT_RDY_MAX_LOOP; i++) {
  291. if (readl(spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG)))
  292. return 1;
  293. udelay(1);
  294. }
  295. return -1;
  296. }
  297. static inline int
  298. orion_spi_write_read_8bit(struct spi_device *spi,
  299. const u8 **tx_buf, u8 **rx_buf)
  300. {
  301. void __iomem *tx_reg, *rx_reg, *int_reg;
  302. struct orion_spi *orion_spi;
  303. orion_spi = spi_master_get_devdata(spi->master);
  304. tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
  305. rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
  306. int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG);
  307. /* clear the interrupt cause register */
  308. writel(0x0, int_reg);
  309. if (tx_buf && *tx_buf)
  310. writel(*(*tx_buf)++, tx_reg);
  311. else
  312. writel(0, tx_reg);
  313. if (orion_spi_wait_till_ready(orion_spi) < 0) {
  314. dev_err(&spi->dev, "TXS timed out\n");
  315. return -1;
  316. }
  317. if (rx_buf && *rx_buf)
  318. *(*rx_buf)++ = readl(rx_reg);
  319. return 1;
  320. }
  321. static inline int
  322. orion_spi_write_read_16bit(struct spi_device *spi,
  323. const u16 **tx_buf, u16 **rx_buf)
  324. {
  325. void __iomem *tx_reg, *rx_reg, *int_reg;
  326. struct orion_spi *orion_spi;
  327. orion_spi = spi_master_get_devdata(spi->master);
  328. tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG);
  329. rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG);
  330. int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG);
  331. /* clear the interrupt cause register */
  332. writel(0x0, int_reg);
  333. if (tx_buf && *tx_buf)
  334. writel(__cpu_to_le16(get_unaligned((*tx_buf)++)), tx_reg);
  335. else
  336. writel(0, tx_reg);
  337. if (orion_spi_wait_till_ready(orion_spi) < 0) {
  338. dev_err(&spi->dev, "TXS timed out\n");
  339. return -1;
  340. }
  341. if (rx_buf && *rx_buf)
  342. put_unaligned(__le16_to_cpu(readl(rx_reg)), (*rx_buf)++);
  343. return 1;
  344. }
  345. static unsigned int
  346. orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer)
  347. {
  348. unsigned int count;
  349. int word_len;
  350. struct orion_spi *orion_spi;
  351. int cs = spi->chip_select;
  352. word_len = spi->bits_per_word;
  353. count = xfer->len;
  354. orion_spi = spi_master_get_devdata(spi->master);
  355. /*
  356. * Use SPI direct write mode if base address is available. Otherwise
  357. * fall back to PIO mode for this transfer.
  358. */
  359. if ((orion_spi->direct_access[cs].vaddr) && (xfer->tx_buf) &&
  360. (word_len == 8)) {
  361. unsigned int cnt = count / 4;
  362. unsigned int rem = count % 4;
  363. /*
  364. * Send the TX-data to the SPI device via the direct
  365. * mapped address window
  366. */
  367. iowrite32_rep(orion_spi->direct_access[cs].vaddr,
  368. xfer->tx_buf, cnt);
  369. if (rem) {
  370. u32 *buf = (u32 *)xfer->tx_buf;
  371. iowrite8_rep(orion_spi->direct_access[cs].vaddr,
  372. &buf[cnt], rem);
  373. }
  374. return count;
  375. }
  376. if (word_len == 8) {
  377. const u8 *tx = xfer->tx_buf;
  378. u8 *rx = xfer->rx_buf;
  379. do {
  380. if (orion_spi_write_read_8bit(spi, &tx, &rx) < 0)
  381. goto out;
  382. count--;
  383. } while (count);
  384. } else if (word_len == 16) {
  385. const u16 *tx = xfer->tx_buf;
  386. u16 *rx = xfer->rx_buf;
  387. do {
  388. if (orion_spi_write_read_16bit(spi, &tx, &rx) < 0)
  389. goto out;
  390. count -= 2;
  391. } while (count);
  392. }
  393. out:
  394. return xfer->len - count;
  395. }
  396. static int orion_spi_transfer_one(struct spi_master *master,
  397. struct spi_device *spi,
  398. struct spi_transfer *t)
  399. {
  400. int status = 0;
  401. status = orion_spi_setup_transfer(spi, t);
  402. if (status < 0)
  403. return status;
  404. if (t->len)
  405. orion_spi_write_read(spi, t);
  406. return status;
  407. }
  408. static int orion_spi_setup(struct spi_device *spi)
  409. {
  410. if (gpio_is_valid(spi->cs_gpio)) {
  411. gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
  412. }
  413. return orion_spi_setup_transfer(spi, NULL);
  414. }
  415. static int orion_spi_reset(struct orion_spi *orion_spi)
  416. {
  417. /* Verify that the CS is deasserted */
  418. orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
  419. /* Don't deassert CS between the direct mapped SPI transfers */
  420. writel(0, spi_reg(orion_spi, SPI_DIRECT_WRITE_CONFIG_REG));
  421. return 0;
  422. }
  423. static const struct orion_spi_dev orion_spi_dev_data = {
  424. .typ = ORION_SPI,
  425. .min_divisor = 4,
  426. .max_divisor = 30,
  427. .prescale_mask = ORION_SPI_CLK_PRESCALE_MASK,
  428. };
  429. static const struct orion_spi_dev armada_370_spi_dev_data = {
  430. .typ = ARMADA_SPI,
  431. .min_divisor = 4,
  432. .max_divisor = 1920,
  433. .max_hz = 50000000,
  434. .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
  435. };
  436. static const struct orion_spi_dev armada_xp_spi_dev_data = {
  437. .typ = ARMADA_SPI,
  438. .max_hz = 50000000,
  439. .max_divisor = 1920,
  440. .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
  441. };
  442. static const struct orion_spi_dev armada_375_spi_dev_data = {
  443. .typ = ARMADA_SPI,
  444. .min_divisor = 15,
  445. .max_divisor = 1920,
  446. .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
  447. };
  448. static const struct orion_spi_dev armada_380_spi_dev_data = {
  449. .typ = ARMADA_SPI,
  450. .max_hz = 50000000,
  451. .max_divisor = 1920,
  452. .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK,
  453. .is_errata_50mhz_ac = true,
  454. };
  455. static const struct of_device_id orion_spi_of_match_table[] = {
  456. {
  457. .compatible = "marvell,orion-spi",
  458. .data = &orion_spi_dev_data,
  459. },
  460. {
  461. .compatible = "marvell,armada-370-spi",
  462. .data = &armada_370_spi_dev_data,
  463. },
  464. {
  465. .compatible = "marvell,armada-375-spi",
  466. .data = &armada_375_spi_dev_data,
  467. },
  468. {
  469. .compatible = "marvell,armada-380-spi",
  470. .data = &armada_380_spi_dev_data,
  471. },
  472. {
  473. .compatible = "marvell,armada-390-spi",
  474. .data = &armada_xp_spi_dev_data,
  475. },
  476. {
  477. .compatible = "marvell,armada-xp-spi",
  478. .data = &armada_xp_spi_dev_data,
  479. },
  480. {}
  481. };
  482. MODULE_DEVICE_TABLE(of, orion_spi_of_match_table);
  483. static int orion_spi_probe(struct platform_device *pdev)
  484. {
  485. const struct of_device_id *of_id;
  486. const struct orion_spi_dev *devdata;
  487. struct spi_master *master;
  488. struct orion_spi *spi;
  489. struct resource *r;
  490. unsigned long tclk_hz;
  491. int status = 0;
  492. struct device_node *np;
  493. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  494. if (master == NULL) {
  495. dev_dbg(&pdev->dev, "master allocation failed\n");
  496. return -ENOMEM;
  497. }
  498. if (pdev->id != -1)
  499. master->bus_num = pdev->id;
  500. if (pdev->dev.of_node) {
  501. u32 cell_index;
  502. if (!of_property_read_u32(pdev->dev.of_node, "cell-index",
  503. &cell_index))
  504. master->bus_num = cell_index;
  505. }
  506. /* we support all 4 SPI modes and LSB first option */
  507. master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST;
  508. master->set_cs = orion_spi_set_cs;
  509. master->transfer_one = orion_spi_transfer_one;
  510. master->num_chipselect = ORION_NUM_CHIPSELECTS;
  511. master->setup = orion_spi_setup;
  512. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  513. master->auto_runtime_pm = true;
  514. master->flags = SPI_MASTER_GPIO_SS;
  515. platform_set_drvdata(pdev, master);
  516. spi = spi_master_get_devdata(master);
  517. spi->master = master;
  518. spi->unused_hw_gpio = -1;
  519. of_id = of_match_device(orion_spi_of_match_table, &pdev->dev);
  520. devdata = (of_id) ? of_id->data : &orion_spi_dev_data;
  521. spi->devdata = devdata;
  522. spi->clk = devm_clk_get(&pdev->dev, NULL);
  523. if (IS_ERR(spi->clk)) {
  524. status = PTR_ERR(spi->clk);
  525. goto out;
  526. }
  527. status = clk_prepare_enable(spi->clk);
  528. if (status)
  529. goto out;
  530. /* The following clock is only used by some SoCs */
  531. spi->axi_clk = devm_clk_get(&pdev->dev, "axi");
  532. if (IS_ERR(spi->axi_clk) &&
  533. PTR_ERR(spi->axi_clk) == -EPROBE_DEFER) {
  534. status = -EPROBE_DEFER;
  535. goto out_rel_clk;
  536. }
  537. if (!IS_ERR(spi->axi_clk))
  538. clk_prepare_enable(spi->axi_clk);
  539. tclk_hz = clk_get_rate(spi->clk);
  540. /*
  541. * With old device tree, armada-370-spi could be used with
  542. * Armada XP, however for this SoC the maximum frequency is
  543. * 50MHz instead of tclk/4. On Armada 370, tclk cannot be
  544. * higher than 200MHz. So, in order to be able to handle both
  545. * SoCs, we can take the minimum of 50MHz and tclk/4.
  546. */
  547. if (of_device_is_compatible(pdev->dev.of_node,
  548. "marvell,armada-370-spi"))
  549. master->max_speed_hz = min(devdata->max_hz,
  550. DIV_ROUND_UP(tclk_hz, devdata->min_divisor));
  551. else if (devdata->min_divisor)
  552. master->max_speed_hz =
  553. DIV_ROUND_UP(tclk_hz, devdata->min_divisor);
  554. else
  555. master->max_speed_hz = devdata->max_hz;
  556. master->min_speed_hz = DIV_ROUND_UP(tclk_hz, devdata->max_divisor);
  557. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  558. spi->base = devm_ioremap_resource(&pdev->dev, r);
  559. if (IS_ERR(spi->base)) {
  560. status = PTR_ERR(spi->base);
  561. goto out_rel_axi_clk;
  562. }
  563. /* Scan all SPI devices of this controller for direct mapped devices */
  564. for_each_available_child_of_node(pdev->dev.of_node, np) {
  565. u32 cs;
  566. /* Get chip-select number from the "reg" property */
  567. status = of_property_read_u32(np, "reg", &cs);
  568. if (status) {
  569. dev_err(&pdev->dev,
  570. "%pOF has no valid 'reg' property (%d)\n",
  571. np, status);
  572. continue;
  573. }
  574. /*
  575. * Check if an address is configured for this SPI device. If
  576. * not, the MBus mapping via the 'ranges' property in the 'soc'
  577. * node is not configured and this device should not use the
  578. * direct mode. In this case, just continue with the next
  579. * device.
  580. */
  581. status = of_address_to_resource(pdev->dev.of_node, cs + 1, r);
  582. if (status)
  583. continue;
  584. /*
  585. * Only map one page for direct access. This is enough for the
  586. * simple TX transfer which only writes to the first word.
  587. * This needs to get extended for the direct SPI-NOR / SPI-NAND
  588. * support, once this gets implemented.
  589. */
  590. spi->direct_access[cs].vaddr = devm_ioremap(&pdev->dev,
  591. r->start,
  592. PAGE_SIZE);
  593. if (!spi->direct_access[cs].vaddr) {
  594. status = -ENOMEM;
  595. goto out_rel_axi_clk;
  596. }
  597. spi->direct_access[cs].size = PAGE_SIZE;
  598. dev_info(&pdev->dev, "CS%d configured for direct access\n", cs);
  599. }
  600. pm_runtime_set_active(&pdev->dev);
  601. pm_runtime_use_autosuspend(&pdev->dev);
  602. pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
  603. pm_runtime_enable(&pdev->dev);
  604. status = orion_spi_reset(spi);
  605. if (status < 0)
  606. goto out_rel_pm;
  607. pm_runtime_mark_last_busy(&pdev->dev);
  608. pm_runtime_put_autosuspend(&pdev->dev);
  609. master->dev.of_node = pdev->dev.of_node;
  610. status = spi_register_master(master);
  611. if (status < 0)
  612. goto out_rel_pm;
  613. if (master->cs_gpios) {
  614. int i;
  615. for (i = 0; i < master->num_chipselect; ++i) {
  616. char *gpio_name;
  617. if (!gpio_is_valid(master->cs_gpios[i])) {
  618. continue;
  619. }
  620. gpio_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
  621. "%s-CS%d", dev_name(&pdev->dev), i);
  622. if (!gpio_name) {
  623. status = -ENOMEM;
  624. goto out_rel_master;
  625. }
  626. status = devm_gpio_request(&pdev->dev,
  627. master->cs_gpios[i], gpio_name);
  628. if (status) {
  629. dev_err(&pdev->dev,
  630. "Can't request GPIO for CS %d\n",
  631. master->cs_gpios[i]);
  632. goto out_rel_master;
  633. }
  634. if (spi->unused_hw_gpio == -1) {
  635. dev_info(&pdev->dev,
  636. "Selected unused HW CS#%d for any GPIO CSes\n",
  637. i);
  638. spi->unused_hw_gpio = i;
  639. }
  640. }
  641. }
  642. return status;
  643. out_rel_master:
  644. spi_unregister_master(master);
  645. out_rel_pm:
  646. pm_runtime_disable(&pdev->dev);
  647. out_rel_axi_clk:
  648. clk_disable_unprepare(spi->axi_clk);
  649. out_rel_clk:
  650. clk_disable_unprepare(spi->clk);
  651. out:
  652. spi_master_put(master);
  653. return status;
  654. }
  655. static int orion_spi_remove(struct platform_device *pdev)
  656. {
  657. struct spi_master *master = platform_get_drvdata(pdev);
  658. struct orion_spi *spi = spi_master_get_devdata(master);
  659. pm_runtime_get_sync(&pdev->dev);
  660. clk_disable_unprepare(spi->axi_clk);
  661. clk_disable_unprepare(spi->clk);
  662. spi_unregister_master(master);
  663. pm_runtime_disable(&pdev->dev);
  664. return 0;
  665. }
  666. MODULE_ALIAS("platform:" DRIVER_NAME);
  667. #ifdef CONFIG_PM
  668. static int orion_spi_runtime_suspend(struct device *dev)
  669. {
  670. struct spi_master *master = dev_get_drvdata(dev);
  671. struct orion_spi *spi = spi_master_get_devdata(master);
  672. clk_disable_unprepare(spi->axi_clk);
  673. clk_disable_unprepare(spi->clk);
  674. return 0;
  675. }
  676. static int orion_spi_runtime_resume(struct device *dev)
  677. {
  678. struct spi_master *master = dev_get_drvdata(dev);
  679. struct orion_spi *spi = spi_master_get_devdata(master);
  680. if (!IS_ERR(spi->axi_clk))
  681. clk_prepare_enable(spi->axi_clk);
  682. return clk_prepare_enable(spi->clk);
  683. }
  684. #endif
  685. static const struct dev_pm_ops orion_spi_pm_ops = {
  686. SET_RUNTIME_PM_OPS(orion_spi_runtime_suspend,
  687. orion_spi_runtime_resume,
  688. NULL)
  689. };
  690. static struct platform_driver orion_spi_driver = {
  691. .driver = {
  692. .name = DRIVER_NAME,
  693. .pm = &orion_spi_pm_ops,
  694. .of_match_table = of_match_ptr(orion_spi_of_match_table),
  695. },
  696. .probe = orion_spi_probe,
  697. .remove = orion_spi_remove,
  698. };
  699. module_platform_driver(orion_spi_driver);
  700. MODULE_DESCRIPTION("Orion SPI driver");
  701. MODULE_AUTHOR("Shadi Ammouri <shadi@marvell.com>");
  702. MODULE_LICENSE("GPL");