intel_ringbuffer.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #include "i915_gem_timeline.h"
  7. #include "i915_selftest.h"
  8. #define I915_CMD_HASH_ORDER 9
  9. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  10. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  11. * to give some inclination as to some of the magic values used in the various
  12. * workarounds!
  13. */
  14. #define CACHELINE_BYTES 64
  15. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  16. /*
  17. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  18. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  19. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  20. *
  21. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  22. * cacheline, the Head Pointer must not be greater than the Tail
  23. * Pointer."
  24. */
  25. #define I915_RING_FREE_SPACE 64
  26. struct intel_hw_status_page {
  27. struct i915_vma *vma;
  28. u32 *page_addr;
  29. u32 ggtt_offset;
  30. };
  31. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  32. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  33. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  34. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  35. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  36. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  37. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  38. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  39. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  40. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  41. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  42. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  43. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  44. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  45. */
  46. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  47. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  48. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  49. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  50. (dev_priv->semaphore->node.start + \
  51. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  52. #define GEN8_WAIT_OFFSET(__ring, from) \
  53. (dev_priv->semaphore->node.start + \
  54. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  55. enum intel_engine_hangcheck_action {
  56. ENGINE_IDLE = 0,
  57. ENGINE_WAIT,
  58. ENGINE_ACTIVE_SEQNO,
  59. ENGINE_ACTIVE_HEAD,
  60. ENGINE_ACTIVE_SUBUNITS,
  61. ENGINE_WAIT_KICK,
  62. ENGINE_DEAD,
  63. };
  64. static inline const char *
  65. hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  66. {
  67. switch (a) {
  68. case ENGINE_IDLE:
  69. return "idle";
  70. case ENGINE_WAIT:
  71. return "wait";
  72. case ENGINE_ACTIVE_SEQNO:
  73. return "active seqno";
  74. case ENGINE_ACTIVE_HEAD:
  75. return "active head";
  76. case ENGINE_ACTIVE_SUBUNITS:
  77. return "active subunits";
  78. case ENGINE_WAIT_KICK:
  79. return "wait kick";
  80. case ENGINE_DEAD:
  81. return "dead";
  82. }
  83. return "unknown";
  84. }
  85. #define I915_MAX_SLICES 3
  86. #define I915_MAX_SUBSLICES 3
  87. #define instdone_slice_mask(dev_priv__) \
  88. (INTEL_GEN(dev_priv__) == 7 ? \
  89. 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  90. #define instdone_subslice_mask(dev_priv__) \
  91. (INTEL_GEN(dev_priv__) == 7 ? \
  92. 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  93. #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  94. for ((slice__) = 0, (subslice__) = 0; \
  95. (slice__) < I915_MAX_SLICES; \
  96. (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  97. (slice__) += ((subslice__) == 0)) \
  98. for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  99. (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  100. struct intel_instdone {
  101. u32 instdone;
  102. /* The following exist only in the RCS engine */
  103. u32 slice_common;
  104. u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  105. u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  106. };
  107. struct intel_engine_hangcheck {
  108. u64 acthd;
  109. u32 seqno;
  110. enum intel_engine_hangcheck_action action;
  111. unsigned long action_timestamp;
  112. int deadlock;
  113. struct intel_instdone instdone;
  114. bool stalled;
  115. };
  116. struct intel_ring {
  117. struct i915_vma *vma;
  118. void *vaddr;
  119. struct list_head request_list;
  120. u32 head;
  121. u32 tail;
  122. u32 emit;
  123. int space;
  124. int size;
  125. int effective_size;
  126. };
  127. struct i915_gem_context;
  128. struct drm_i915_reg_table;
  129. /*
  130. * we use a single page to load ctx workarounds so all of these
  131. * values are referred in terms of dwords
  132. *
  133. * struct i915_wa_ctx_bb:
  134. * offset: specifies batch starting position, also helpful in case
  135. * if we want to have multiple batches at different offsets based on
  136. * some criteria. It is not a requirement at the moment but provides
  137. * an option for future use.
  138. * size: size of the batch in DWORDS
  139. */
  140. struct i915_ctx_workarounds {
  141. struct i915_wa_ctx_bb {
  142. u32 offset;
  143. u32 size;
  144. } indirect_ctx, per_ctx;
  145. struct i915_vma *vma;
  146. };
  147. struct drm_i915_gem_request;
  148. struct intel_render_state;
  149. /*
  150. * Engine IDs definitions.
  151. * Keep instances of the same type engine together.
  152. */
  153. enum intel_engine_id {
  154. RCS = 0,
  155. BCS,
  156. VCS,
  157. VCS2,
  158. #define _VCS(n) (VCS + (n))
  159. VECS
  160. };
  161. #define INTEL_ENGINE_CS_MAX_NAME 8
  162. struct intel_engine_cs {
  163. struct drm_i915_private *i915;
  164. char name[INTEL_ENGINE_CS_MAX_NAME];
  165. enum intel_engine_id id;
  166. unsigned int uabi_id;
  167. unsigned int hw_id;
  168. unsigned int guc_id;
  169. u8 class;
  170. u8 instance;
  171. u32 context_size;
  172. u32 mmio_base;
  173. unsigned int irq_shift;
  174. struct intel_ring *buffer;
  175. struct intel_timeline *timeline;
  176. struct intel_render_state *render_state;
  177. atomic_t irq_count;
  178. unsigned long irq_posted;
  179. #define ENGINE_IRQ_BREADCRUMB 0
  180. #define ENGINE_IRQ_EXECLIST 1
  181. /* Rather than have every client wait upon all user interrupts,
  182. * with the herd waking after every interrupt and each doing the
  183. * heavyweight seqno dance, we delegate the task (of being the
  184. * bottom-half of the user interrupt) to the first client. After
  185. * every interrupt, we wake up one client, who does the heavyweight
  186. * coherent seqno read and either goes back to sleep (if incomplete),
  187. * or wakes up all the completed clients in parallel, before then
  188. * transferring the bottom-half status to the next client in the queue.
  189. *
  190. * Compared to walking the entire list of waiters in a single dedicated
  191. * bottom-half, we reduce the latency of the first waiter by avoiding
  192. * a context switch, but incur additional coherent seqno reads when
  193. * following the chain of request breadcrumbs. Since it is most likely
  194. * that we have a single client waiting on each seqno, then reducing
  195. * the overhead of waking that client is much preferred.
  196. */
  197. struct intel_breadcrumbs {
  198. spinlock_t irq_lock; /* protects irq_*; irqsafe */
  199. struct intel_wait *irq_wait; /* oldest waiter by retirement */
  200. spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
  201. struct rb_root waiters; /* sorted by retirement, priority */
  202. struct rb_root signals; /* sorted by retirement */
  203. struct task_struct *signaler; /* used for fence signalling */
  204. struct drm_i915_gem_request __rcu *first_signal;
  205. struct timer_list fake_irq; /* used after a missed interrupt */
  206. struct timer_list hangcheck; /* detect missed interrupts */
  207. unsigned int hangcheck_interrupts;
  208. bool irq_armed : 1;
  209. bool irq_enabled : 1;
  210. I915_SELFTEST_DECLARE(bool mock : 1);
  211. } breadcrumbs;
  212. /*
  213. * A pool of objects to use as shadow copies of client batch buffers
  214. * when the command parser is enabled. Prevents the client from
  215. * modifying the batch contents after software parsing.
  216. */
  217. struct i915_gem_batch_pool batch_pool;
  218. struct intel_hw_status_page status_page;
  219. struct i915_ctx_workarounds wa_ctx;
  220. struct i915_vma *scratch;
  221. u32 irq_keep_mask; /* always keep these interrupts */
  222. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  223. void (*irq_enable)(struct intel_engine_cs *engine);
  224. void (*irq_disable)(struct intel_engine_cs *engine);
  225. int (*init_hw)(struct intel_engine_cs *engine);
  226. void (*reset_hw)(struct intel_engine_cs *engine,
  227. struct drm_i915_gem_request *req);
  228. void (*set_default_submission)(struct intel_engine_cs *engine);
  229. int (*context_pin)(struct intel_engine_cs *engine,
  230. struct i915_gem_context *ctx);
  231. void (*context_unpin)(struct intel_engine_cs *engine,
  232. struct i915_gem_context *ctx);
  233. int (*request_alloc)(struct drm_i915_gem_request *req);
  234. int (*init_context)(struct drm_i915_gem_request *req);
  235. int (*emit_flush)(struct drm_i915_gem_request *request,
  236. u32 mode);
  237. #define EMIT_INVALIDATE BIT(0)
  238. #define EMIT_FLUSH BIT(1)
  239. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  240. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  241. u64 offset, u32 length,
  242. unsigned int dispatch_flags);
  243. #define I915_DISPATCH_SECURE BIT(0)
  244. #define I915_DISPATCH_PINNED BIT(1)
  245. #define I915_DISPATCH_RS BIT(2)
  246. void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
  247. u32 *cs);
  248. int emit_breadcrumb_sz;
  249. /* Pass the request to the hardware queue (e.g. directly into
  250. * the legacy ringbuffer or to the end of an execlist).
  251. *
  252. * This is called from an atomic context with irqs disabled; must
  253. * be irq safe.
  254. */
  255. void (*submit_request)(struct drm_i915_gem_request *req);
  256. /* Call when the priority on a request has changed and it and its
  257. * dependencies may need rescheduling. Note the request itself may
  258. * not be ready to run!
  259. *
  260. * Called under the struct_mutex.
  261. */
  262. void (*schedule)(struct drm_i915_gem_request *request,
  263. int priority);
  264. /* Some chipsets are not quite as coherent as advertised and need
  265. * an expensive kick to force a true read of the up-to-date seqno.
  266. * However, the up-to-date seqno is not always required and the last
  267. * seen value is good enough. Note that the seqno will always be
  268. * monotonic, even if not coherent.
  269. */
  270. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  271. void (*cleanup)(struct intel_engine_cs *engine);
  272. /* GEN8 signal/wait table - never trust comments!
  273. * signal to signal to signal to signal to signal to
  274. * RCS VCS BCS VECS VCS2
  275. * --------------------------------------------------------------------
  276. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  277. * |-------------------------------------------------------------------
  278. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  279. * |-------------------------------------------------------------------
  280. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  281. * |-------------------------------------------------------------------
  282. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  283. * |-------------------------------------------------------------------
  284. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  285. * |-------------------------------------------------------------------
  286. *
  287. * Generalization:
  288. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  289. * ie. transpose of g(x, y)
  290. *
  291. * sync from sync from sync from sync from sync from
  292. * RCS VCS BCS VECS VCS2
  293. * --------------------------------------------------------------------
  294. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  295. * |-------------------------------------------------------------------
  296. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  297. * |-------------------------------------------------------------------
  298. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  299. * |-------------------------------------------------------------------
  300. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  301. * |-------------------------------------------------------------------
  302. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  303. * |-------------------------------------------------------------------
  304. *
  305. * Generalization:
  306. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  307. * ie. transpose of f(x, y)
  308. */
  309. struct {
  310. union {
  311. #define GEN6_SEMAPHORE_LAST VECS_HW
  312. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  313. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  314. struct {
  315. /* our mbox written by others */
  316. u32 wait[GEN6_NUM_SEMAPHORES];
  317. /* mboxes this ring signals to */
  318. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  319. } mbox;
  320. u64 signal_ggtt[I915_NUM_ENGINES];
  321. };
  322. /* AKA wait() */
  323. int (*sync_to)(struct drm_i915_gem_request *req,
  324. struct drm_i915_gem_request *signal);
  325. u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
  326. } semaphore;
  327. /* Execlists */
  328. struct tasklet_struct irq_tasklet;
  329. struct execlist_port {
  330. struct drm_i915_gem_request *request;
  331. unsigned int count;
  332. GEM_DEBUG_DECL(u32 context_id);
  333. } execlist_port[2];
  334. struct rb_root execlist_queue;
  335. struct rb_node *execlist_first;
  336. unsigned int fw_domains;
  337. /* Contexts are pinned whilst they are active on the GPU. The last
  338. * context executed remains active whilst the GPU is idle - the
  339. * switch away and write to the context object only occurs on the
  340. * next execution. Contexts are only unpinned on retirement of the
  341. * following request ensuring that we can always write to the object
  342. * on the context switch even after idling. Across suspend, we switch
  343. * to the kernel context and trash it as the save may not happen
  344. * before the hardware is powered down.
  345. */
  346. struct i915_gem_context *last_retired_context;
  347. /* We track the current MI_SET_CONTEXT in order to eliminate
  348. * redudant context switches. This presumes that requests are not
  349. * reordered! Or when they are the tracking is updated along with
  350. * the emission of individual requests into the legacy command
  351. * stream (ring).
  352. */
  353. struct i915_gem_context *legacy_active_context;
  354. /* status_notifier: list of callbacks for context-switch changes */
  355. struct atomic_notifier_head context_status_notifier;
  356. struct intel_engine_hangcheck hangcheck;
  357. bool needs_cmd_parser;
  358. /*
  359. * Table of commands the command parser needs to know about
  360. * for this engine.
  361. */
  362. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  363. /*
  364. * Table of registers allowed in commands that read/write registers.
  365. */
  366. const struct drm_i915_reg_table *reg_tables;
  367. int reg_table_count;
  368. /*
  369. * Returns the bitmask for the length field of the specified command.
  370. * Return 0 for an unrecognized/invalid command.
  371. *
  372. * If the command parser finds an entry for a command in the engine's
  373. * cmd_tables, it gets the command's length based on the table entry.
  374. * If not, it calls this function to determine the per-engine length
  375. * field encoding for the command (i.e. different opcode ranges use
  376. * certain bits to encode the command length in the header).
  377. */
  378. u32 (*get_cmd_length_mask)(u32 cmd_header);
  379. };
  380. static inline unsigned int
  381. intel_engine_flag(const struct intel_engine_cs *engine)
  382. {
  383. return BIT(engine->id);
  384. }
  385. static inline u32
  386. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  387. {
  388. /* Ensure that the compiler doesn't optimize away the load. */
  389. return READ_ONCE(engine->status_page.page_addr[reg]);
  390. }
  391. static inline void
  392. intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
  393. {
  394. /* Writing into the status page should be done sparingly. Since
  395. * we do when we are uncertain of the device state, we take a bit
  396. * of extra paranoia to try and ensure that the HWS takes the value
  397. * we give and that it doesn't end up trapped inside the CPU!
  398. */
  399. if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
  400. mb();
  401. clflush(&engine->status_page.page_addr[reg]);
  402. engine->status_page.page_addr[reg] = value;
  403. clflush(&engine->status_page.page_addr[reg]);
  404. mb();
  405. } else {
  406. WRITE_ONCE(engine->status_page.page_addr[reg], value);
  407. }
  408. }
  409. /*
  410. * Reads a dword out of the status page, which is written to from the command
  411. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  412. * MI_STORE_DATA_IMM.
  413. *
  414. * The following dwords have a reserved meaning:
  415. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  416. * 0x04: ring 0 head pointer
  417. * 0x05: ring 1 head pointer (915-class)
  418. * 0x06: ring 2 head pointer (915-class)
  419. * 0x10-0x1b: Context status DWords (GM45)
  420. * 0x1f: Last written status offset. (GM45)
  421. * 0x20-0x2f: Reserved (Gen6+)
  422. *
  423. * The area from dword 0x30 to 0x3ff is available for driver usage.
  424. */
  425. #define I915_GEM_HWS_INDEX 0x30
  426. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  427. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  428. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  429. struct intel_ring *
  430. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  431. int intel_ring_pin(struct intel_ring *ring,
  432. struct drm_i915_private *i915,
  433. unsigned int offset_bias);
  434. void intel_ring_reset(struct intel_ring *ring, u32 tail);
  435. void intel_ring_update_space(struct intel_ring *ring);
  436. void intel_ring_unpin(struct intel_ring *ring);
  437. void intel_ring_free(struct intel_ring *ring);
  438. void intel_engine_stop(struct intel_engine_cs *engine);
  439. void intel_engine_cleanup(struct intel_engine_cs *engine);
  440. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  441. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  442. u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req, int n);
  443. static inline void
  444. intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
  445. {
  446. /* Dummy function.
  447. *
  448. * This serves as a placeholder in the code so that the reader
  449. * can compare against the preceding intel_ring_begin() and
  450. * check that the number of dwords emitted matches the space
  451. * reserved for the command packet (i.e. the value passed to
  452. * intel_ring_begin()).
  453. */
  454. GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
  455. }
  456. static inline u32
  457. intel_ring_wrap(const struct intel_ring *ring, u32 pos)
  458. {
  459. return pos & (ring->size - 1);
  460. }
  461. static inline u32
  462. intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
  463. {
  464. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  465. u32 offset = addr - req->ring->vaddr;
  466. GEM_BUG_ON(offset > req->ring->size);
  467. return intel_ring_wrap(req->ring, offset);
  468. }
  469. static inline void
  470. assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
  471. {
  472. /* We could combine these into a single tail operation, but keeping
  473. * them as seperate tests will help identify the cause should one
  474. * ever fire.
  475. */
  476. GEM_BUG_ON(!IS_ALIGNED(tail, 8));
  477. GEM_BUG_ON(tail >= ring->size);
  478. }
  479. static inline unsigned int
  480. intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
  481. {
  482. /* Whilst writes to the tail are strictly order, there is no
  483. * serialisation between readers and the writers. The tail may be
  484. * read by i915_gem_request_retire() just as it is being updated
  485. * by execlists, as although the breadcrumb is complete, the context
  486. * switch hasn't been seen.
  487. */
  488. assert_ring_tail_valid(ring, tail);
  489. ring->tail = tail;
  490. return tail;
  491. }
  492. void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
  493. void intel_engine_setup_common(struct intel_engine_cs *engine);
  494. int intel_engine_init_common(struct intel_engine_cs *engine);
  495. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  496. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  497. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  498. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  499. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  500. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  501. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  502. u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
  503. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  504. {
  505. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  506. }
  507. static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
  508. {
  509. /* We are only peeking at the tail of the submit queue (and not the
  510. * queue itself) in order to gain a hint as to the current active
  511. * state of the engine. Callers are not expected to be taking
  512. * engine->timeline->lock, nor are they expected to be concerned
  513. * wtih serialising this hint with anything, so document it as
  514. * a hint and nothing more.
  515. */
  516. return READ_ONCE(engine->timeline->seqno);
  517. }
  518. int init_workarounds_ring(struct intel_engine_cs *engine);
  519. int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
  520. void intel_engine_get_instdone(struct intel_engine_cs *engine,
  521. struct intel_instdone *instdone);
  522. /*
  523. * Arbitrary size for largest possible 'add request' sequence. The code paths
  524. * are complex and variable. Empirical measurement shows that the worst case
  525. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  526. * we need to allocate double the largest single packet within that emission
  527. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  528. */
  529. #define MIN_SPACE_FOR_ADD_REQUEST 336
  530. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  531. {
  532. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  533. }
  534. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  535. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  536. static inline void intel_wait_init(struct intel_wait *wait,
  537. struct drm_i915_gem_request *rq)
  538. {
  539. wait->tsk = current;
  540. wait->request = rq;
  541. }
  542. static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
  543. {
  544. wait->tsk = current;
  545. wait->seqno = seqno;
  546. }
  547. static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
  548. {
  549. return wait->seqno;
  550. }
  551. static inline bool
  552. intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
  553. {
  554. wait->seqno = seqno;
  555. return intel_wait_has_seqno(wait);
  556. }
  557. static inline bool
  558. intel_wait_update_request(struct intel_wait *wait,
  559. const struct drm_i915_gem_request *rq)
  560. {
  561. return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
  562. }
  563. static inline bool
  564. intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
  565. {
  566. return wait->seqno == seqno;
  567. }
  568. static inline bool
  569. intel_wait_check_request(const struct intel_wait *wait,
  570. const struct drm_i915_gem_request *rq)
  571. {
  572. return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
  573. }
  574. static inline bool intel_wait_complete(const struct intel_wait *wait)
  575. {
  576. return RB_EMPTY_NODE(&wait->node);
  577. }
  578. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  579. struct intel_wait *wait);
  580. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  581. struct intel_wait *wait);
  582. void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
  583. bool wakeup);
  584. void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
  585. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  586. {
  587. return READ_ONCE(engine->breadcrumbs.irq_wait);
  588. }
  589. unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
  590. #define ENGINE_WAKEUP_WAITER BIT(0)
  591. #define ENGINE_WAKEUP_ASLEEP BIT(1)
  592. void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
  593. void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
  594. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  595. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  596. bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
  597. static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
  598. {
  599. memset(batch, 0, 6 * sizeof(u32));
  600. batch[0] = GFX_OP_PIPE_CONTROL(6);
  601. batch[1] = flags;
  602. batch[2] = offset;
  603. return batch + 6;
  604. }
  605. bool intel_engine_is_idle(struct intel_engine_cs *engine);
  606. bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
  607. void intel_engines_reset_default_submission(struct drm_i915_private *i915);
  608. #endif /* _INTEL_RINGBUFFER_H_ */