spi-fsl-dspi.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /*
  2. * drivers/spi/spi-fsl-dspi.c
  3. *
  4. * Copyright 2013 Freescale Semiconductor, Inc.
  5. *
  6. * Freescale DSPI driver
  7. * This file contains a driver for the Freescale DSPI
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/err.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/io.h>
  21. #include <linux/kernel.h>
  22. #include <linux/math64.h>
  23. #include <linux/module.h>
  24. #include <linux/of.h>
  25. #include <linux/of_device.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/pm_runtime.h>
  28. #include <linux/regmap.h>
  29. #include <linux/sched.h>
  30. #include <linux/spi/spi.h>
  31. #include <linux/spi/spi_bitbang.h>
  32. #include <linux/time.h>
  33. #define DRIVER_NAME "fsl-dspi"
  34. #define TRAN_STATE_RX_VOID 0x01
  35. #define TRAN_STATE_TX_VOID 0x02
  36. #define TRAN_STATE_WORD_ODD_NUM 0x04
  37. #define DSPI_FIFO_SIZE 4
  38. #define SPI_MCR 0x00
  39. #define SPI_MCR_MASTER (1 << 31)
  40. #define SPI_MCR_PCSIS (0x3F << 16)
  41. #define SPI_MCR_CLR_TXF (1 << 11)
  42. #define SPI_MCR_CLR_RXF (1 << 10)
  43. #define SPI_TCR 0x08
  44. #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
  45. #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
  46. #define SPI_CTAR_CPOL(x) ((x) << 26)
  47. #define SPI_CTAR_CPHA(x) ((x) << 25)
  48. #define SPI_CTAR_LSBFE(x) ((x) << 24)
  49. #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
  50. #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
  51. #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
  52. #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
  53. #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
  54. #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
  55. #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
  56. #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
  57. #define SPI_CTAR_SCALE_BITS 0xf
  58. #define SPI_CTAR0_SLAVE 0x0c
  59. #define SPI_SR 0x2c
  60. #define SPI_SR_EOQF 0x10000000
  61. #define SPI_RSER 0x30
  62. #define SPI_RSER_EOQFE 0x10000000
  63. #define SPI_PUSHR 0x34
  64. #define SPI_PUSHR_CONT (1 << 31)
  65. #define SPI_PUSHR_CTAS(x) (((x) & 0x00000003) << 28)
  66. #define SPI_PUSHR_EOQ (1 << 27)
  67. #define SPI_PUSHR_CTCNT (1 << 26)
  68. #define SPI_PUSHR_PCS(x) (((1 << x) & 0x0000003f) << 16)
  69. #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
  70. #define SPI_PUSHR_SLAVE 0x34
  71. #define SPI_POPR 0x38
  72. #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
  73. #define SPI_TXFR0 0x3c
  74. #define SPI_TXFR1 0x40
  75. #define SPI_TXFR2 0x44
  76. #define SPI_TXFR3 0x48
  77. #define SPI_RXFR0 0x7c
  78. #define SPI_RXFR1 0x80
  79. #define SPI_RXFR2 0x84
  80. #define SPI_RXFR3 0x88
  81. #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
  82. #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
  83. #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
  84. #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
  85. #define SPI_CS_INIT 0x01
  86. #define SPI_CS_ASSERT 0x02
  87. #define SPI_CS_DROP 0x04
  88. struct chip_data {
  89. u32 mcr_val;
  90. u32 ctar_val;
  91. u16 void_write_data;
  92. };
  93. struct fsl_dspi {
  94. struct spi_master *master;
  95. struct platform_device *pdev;
  96. struct regmap *regmap;
  97. int irq;
  98. struct clk *clk;
  99. struct spi_transfer *cur_transfer;
  100. struct spi_message *cur_msg;
  101. struct chip_data *cur_chip;
  102. size_t len;
  103. void *tx;
  104. void *tx_end;
  105. void *rx;
  106. void *rx_end;
  107. char dataflags;
  108. u8 cs;
  109. u16 void_write_data;
  110. u32 cs_change;
  111. wait_queue_head_t waitq;
  112. u32 waitflags;
  113. };
  114. static inline int is_double_byte_mode(struct fsl_dspi *dspi)
  115. {
  116. unsigned int val;
  117. regmap_read(dspi->regmap, SPI_CTAR(dspi->cs), &val);
  118. return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
  119. }
  120. static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
  121. unsigned long clkrate)
  122. {
  123. /* Valid baud rate pre-scaler values */
  124. int pbr_tbl[4] = {2, 3, 5, 7};
  125. int brs[16] = { 2, 4, 6, 8,
  126. 16, 32, 64, 128,
  127. 256, 512, 1024, 2048,
  128. 4096, 8192, 16384, 32768 };
  129. int scale_needed, scale, minscale = INT_MAX;
  130. int i, j;
  131. scale_needed = clkrate / speed_hz;
  132. if (clkrate % speed_hz)
  133. scale_needed++;
  134. for (i = 0; i < ARRAY_SIZE(brs); i++)
  135. for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
  136. scale = brs[i] * pbr_tbl[j];
  137. if (scale >= scale_needed) {
  138. if (scale < minscale) {
  139. minscale = scale;
  140. *br = i;
  141. *pbr = j;
  142. }
  143. break;
  144. }
  145. }
  146. if (minscale == INT_MAX) {
  147. pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
  148. speed_hz, clkrate);
  149. *pbr = ARRAY_SIZE(pbr_tbl) - 1;
  150. *br = ARRAY_SIZE(brs) - 1;
  151. }
  152. }
  153. static void ns_delay_scale(char *psc, char *sc, int delay_ns,
  154. unsigned long clkrate)
  155. {
  156. int pscale_tbl[4] = {1, 3, 5, 7};
  157. int scale_needed, scale, minscale = INT_MAX;
  158. int i, j;
  159. u32 remainder;
  160. scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
  161. &remainder);
  162. if (remainder)
  163. scale_needed++;
  164. for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
  165. for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
  166. scale = pscale_tbl[i] * (2 << j);
  167. if (scale >= scale_needed) {
  168. if (scale < minscale) {
  169. minscale = scale;
  170. *psc = i;
  171. *sc = j;
  172. }
  173. break;
  174. }
  175. }
  176. if (minscale == INT_MAX) {
  177. pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
  178. delay_ns, clkrate);
  179. *psc = ARRAY_SIZE(pscale_tbl) - 1;
  180. *sc = SPI_CTAR_SCALE_BITS;
  181. }
  182. }
  183. static int dspi_transfer_write(struct fsl_dspi *dspi)
  184. {
  185. int tx_count = 0;
  186. int tx_word;
  187. u16 d16;
  188. u8 d8;
  189. u32 dspi_pushr = 0;
  190. int first = 1;
  191. tx_word = is_double_byte_mode(dspi);
  192. /* If we are in word mode, but only have a single byte to transfer
  193. * then switch to byte mode temporarily. Will switch back at the
  194. * end of the transfer.
  195. */
  196. if (tx_word && (dspi->len == 1)) {
  197. dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
  198. regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
  199. SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
  200. tx_word = 0;
  201. }
  202. while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
  203. if (tx_word) {
  204. if (dspi->len == 1)
  205. break;
  206. if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
  207. d16 = *(u16 *)dspi->tx;
  208. dspi->tx += 2;
  209. } else {
  210. d16 = dspi->void_write_data;
  211. }
  212. dspi_pushr = SPI_PUSHR_TXDATA(d16) |
  213. SPI_PUSHR_PCS(dspi->cs) |
  214. SPI_PUSHR_CTAS(dspi->cs) |
  215. SPI_PUSHR_CONT;
  216. dspi->len -= 2;
  217. } else {
  218. if (!(dspi->dataflags & TRAN_STATE_TX_VOID)) {
  219. d8 = *(u8 *)dspi->tx;
  220. dspi->tx++;
  221. } else {
  222. d8 = (u8)dspi->void_write_data;
  223. }
  224. dspi_pushr = SPI_PUSHR_TXDATA(d8) |
  225. SPI_PUSHR_PCS(dspi->cs) |
  226. SPI_PUSHR_CTAS(dspi->cs) |
  227. SPI_PUSHR_CONT;
  228. dspi->len--;
  229. }
  230. if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
  231. /* last transfer in the transfer */
  232. dspi_pushr |= SPI_PUSHR_EOQ;
  233. if ((dspi->cs_change) && (!dspi->len))
  234. dspi_pushr &= ~SPI_PUSHR_CONT;
  235. } else if (tx_word && (dspi->len == 1))
  236. dspi_pushr |= SPI_PUSHR_EOQ;
  237. if (first) {
  238. first = 0;
  239. dspi_pushr |= SPI_PUSHR_CTCNT; /* clear counter */
  240. }
  241. regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
  242. tx_count++;
  243. }
  244. return tx_count * (tx_word + 1);
  245. }
  246. static int dspi_transfer_read(struct fsl_dspi *dspi)
  247. {
  248. int rx_count = 0;
  249. int rx_word = is_double_byte_mode(dspi);
  250. u16 d;
  251. while ((dspi->rx < dspi->rx_end)
  252. && (rx_count < DSPI_FIFO_SIZE)) {
  253. if (rx_word) {
  254. unsigned int val;
  255. if ((dspi->rx_end - dspi->rx) == 1)
  256. break;
  257. regmap_read(dspi->regmap, SPI_POPR, &val);
  258. d = SPI_POPR_RXDATA(val);
  259. if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
  260. *(u16 *)dspi->rx = d;
  261. dspi->rx += 2;
  262. } else {
  263. unsigned int val;
  264. regmap_read(dspi->regmap, SPI_POPR, &val);
  265. d = SPI_POPR_RXDATA(val);
  266. if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
  267. *(u8 *)dspi->rx = d;
  268. dspi->rx++;
  269. }
  270. rx_count++;
  271. }
  272. return rx_count;
  273. }
  274. static int dspi_transfer_one_message(struct spi_master *master,
  275. struct spi_message *message)
  276. {
  277. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  278. struct spi_device *spi = message->spi;
  279. struct spi_transfer *transfer;
  280. int status = 0;
  281. message->actual_length = 0;
  282. list_for_each_entry(transfer, &message->transfers, transfer_list) {
  283. dspi->cur_transfer = transfer;
  284. dspi->cur_msg = message;
  285. dspi->cur_chip = spi_get_ctldata(spi);
  286. dspi->cs = spi->chip_select;
  287. if (dspi->cur_transfer->transfer_list.next
  288. == &dspi->cur_msg->transfers)
  289. transfer->cs_change = 1;
  290. dspi->cs_change = transfer->cs_change;
  291. dspi->void_write_data = dspi->cur_chip->void_write_data;
  292. dspi->dataflags = 0;
  293. dspi->tx = (void *)transfer->tx_buf;
  294. dspi->tx_end = dspi->tx + transfer->len;
  295. dspi->rx = transfer->rx_buf;
  296. dspi->rx_end = dspi->rx + transfer->len;
  297. dspi->len = transfer->len;
  298. if (!dspi->rx)
  299. dspi->dataflags |= TRAN_STATE_RX_VOID;
  300. if (!dspi->tx)
  301. dspi->dataflags |= TRAN_STATE_TX_VOID;
  302. regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
  303. regmap_update_bits(dspi->regmap, SPI_MCR,
  304. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
  305. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
  306. regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
  307. dspi->cur_chip->ctar_val);
  308. if (transfer->speed_hz)
  309. regmap_write(dspi->regmap, SPI_CTAR(dspi->cs),
  310. dspi->cur_chip->ctar_val);
  311. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
  312. message->actual_length += dspi_transfer_write(dspi);
  313. if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
  314. dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
  315. dspi->waitflags = 0;
  316. if (transfer->delay_usecs)
  317. udelay(transfer->delay_usecs);
  318. }
  319. message->status = status;
  320. spi_finalize_current_message(master);
  321. return status;
  322. }
  323. static int dspi_setup(struct spi_device *spi)
  324. {
  325. struct chip_data *chip;
  326. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  327. u32 cs_sck_delay = 0, sck_cs_delay = 0;
  328. unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
  329. unsigned char pasc = 0, asc = 0, fmsz = 0;
  330. unsigned long clkrate;
  331. if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
  332. fmsz = spi->bits_per_word - 1;
  333. } else {
  334. pr_err("Invalid wordsize\n");
  335. return -ENODEV;
  336. }
  337. /* Only alloc on first setup */
  338. chip = spi_get_ctldata(spi);
  339. if (chip == NULL) {
  340. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  341. if (!chip)
  342. return -ENOMEM;
  343. }
  344. of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
  345. &cs_sck_delay);
  346. of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
  347. &sck_cs_delay);
  348. chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
  349. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
  350. chip->void_write_data = 0;
  351. clkrate = clk_get_rate(dspi->clk);
  352. hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
  353. /* Set PCS to SCK delay scale values */
  354. ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
  355. /* Set After SCK delay scale values */
  356. ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
  357. chip->ctar_val = SPI_CTAR_FMSZ(fmsz)
  358. | SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
  359. | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
  360. | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
  361. | SPI_CTAR_PCSSCK(pcssck)
  362. | SPI_CTAR_CSSCK(cssck)
  363. | SPI_CTAR_PASC(pasc)
  364. | SPI_CTAR_ASC(asc)
  365. | SPI_CTAR_PBR(pbr)
  366. | SPI_CTAR_BR(br);
  367. spi_set_ctldata(spi, chip);
  368. return 0;
  369. }
  370. static void dspi_cleanup(struct spi_device *spi)
  371. {
  372. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  373. dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
  374. spi->master->bus_num, spi->chip_select);
  375. kfree(chip);
  376. }
  377. static irqreturn_t dspi_interrupt(int irq, void *dev_id)
  378. {
  379. struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
  380. struct spi_message *msg = dspi->cur_msg;
  381. regmap_write(dspi->regmap, SPI_SR, SPI_SR_EOQF);
  382. dspi_transfer_read(dspi);
  383. if (!dspi->len) {
  384. if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
  385. regmap_update_bits(dspi->regmap, SPI_CTAR(dspi->cs),
  386. SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(16));
  387. dspi->waitflags = 1;
  388. wake_up_interruptible(&dspi->waitq);
  389. } else
  390. msg->actual_length += dspi_transfer_write(dspi);
  391. return IRQ_HANDLED;
  392. }
  393. static const struct of_device_id fsl_dspi_dt_ids[] = {
  394. { .compatible = "fsl,vf610-dspi", .data = NULL, },
  395. { /* sentinel */ }
  396. };
  397. MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
  398. #ifdef CONFIG_PM_SLEEP
  399. static int dspi_suspend(struct device *dev)
  400. {
  401. struct spi_master *master = dev_get_drvdata(dev);
  402. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  403. spi_master_suspend(master);
  404. clk_disable_unprepare(dspi->clk);
  405. return 0;
  406. }
  407. static int dspi_resume(struct device *dev)
  408. {
  409. struct spi_master *master = dev_get_drvdata(dev);
  410. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  411. clk_prepare_enable(dspi->clk);
  412. spi_master_resume(master);
  413. return 0;
  414. }
  415. #endif /* CONFIG_PM_SLEEP */
  416. static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
  417. static const struct regmap_config dspi_regmap_config = {
  418. .reg_bits = 32,
  419. .val_bits = 32,
  420. .reg_stride = 4,
  421. .max_register = 0x88,
  422. };
  423. static int dspi_probe(struct platform_device *pdev)
  424. {
  425. struct device_node *np = pdev->dev.of_node;
  426. struct spi_master *master;
  427. struct fsl_dspi *dspi;
  428. struct resource *res;
  429. void __iomem *base;
  430. int ret = 0, cs_num, bus_num;
  431. master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
  432. if (!master)
  433. return -ENOMEM;
  434. dspi = spi_master_get_devdata(master);
  435. dspi->pdev = pdev;
  436. dspi->master = master;
  437. master->transfer = NULL;
  438. master->setup = dspi_setup;
  439. master->transfer_one_message = dspi_transfer_one_message;
  440. master->dev.of_node = pdev->dev.of_node;
  441. master->cleanup = dspi_cleanup;
  442. master->mode_bits = SPI_CPOL | SPI_CPHA;
  443. master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
  444. SPI_BPW_MASK(16);
  445. ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
  446. if (ret < 0) {
  447. dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
  448. goto out_master_put;
  449. }
  450. master->num_chipselect = cs_num;
  451. ret = of_property_read_u32(np, "bus-num", &bus_num);
  452. if (ret < 0) {
  453. dev_err(&pdev->dev, "can't get bus-num\n");
  454. goto out_master_put;
  455. }
  456. master->bus_num = bus_num;
  457. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  458. base = devm_ioremap_resource(&pdev->dev, res);
  459. if (IS_ERR(base)) {
  460. ret = PTR_ERR(base);
  461. goto out_master_put;
  462. }
  463. dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dspi", base,
  464. &dspi_regmap_config);
  465. if (IS_ERR(dspi->regmap)) {
  466. dev_err(&pdev->dev, "failed to init regmap: %ld\n",
  467. PTR_ERR(dspi->regmap));
  468. return PTR_ERR(dspi->regmap);
  469. }
  470. dspi->irq = platform_get_irq(pdev, 0);
  471. if (dspi->irq < 0) {
  472. dev_err(&pdev->dev, "can't get platform irq\n");
  473. ret = dspi->irq;
  474. goto out_master_put;
  475. }
  476. ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
  477. pdev->name, dspi);
  478. if (ret < 0) {
  479. dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
  480. goto out_master_put;
  481. }
  482. dspi->clk = devm_clk_get(&pdev->dev, "dspi");
  483. if (IS_ERR(dspi->clk)) {
  484. ret = PTR_ERR(dspi->clk);
  485. dev_err(&pdev->dev, "unable to get clock\n");
  486. goto out_master_put;
  487. }
  488. clk_prepare_enable(dspi->clk);
  489. init_waitqueue_head(&dspi->waitq);
  490. platform_set_drvdata(pdev, master);
  491. ret = spi_register_master(master);
  492. if (ret != 0) {
  493. dev_err(&pdev->dev, "Problem registering DSPI master\n");
  494. goto out_clk_put;
  495. }
  496. return ret;
  497. out_clk_put:
  498. clk_disable_unprepare(dspi->clk);
  499. out_master_put:
  500. spi_master_put(master);
  501. return ret;
  502. }
  503. static int dspi_remove(struct platform_device *pdev)
  504. {
  505. struct spi_master *master = platform_get_drvdata(pdev);
  506. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  507. /* Disconnect from the SPI framework */
  508. clk_disable_unprepare(dspi->clk);
  509. spi_unregister_master(dspi->master);
  510. spi_master_put(dspi->master);
  511. return 0;
  512. }
  513. static struct platform_driver fsl_dspi_driver = {
  514. .driver.name = DRIVER_NAME,
  515. .driver.of_match_table = fsl_dspi_dt_ids,
  516. .driver.owner = THIS_MODULE,
  517. .driver.pm = &dspi_pm,
  518. .probe = dspi_probe,
  519. .remove = dspi_remove,
  520. };
  521. module_platform_driver(fsl_dspi_driver);
  522. MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
  523. MODULE_LICENSE("GPL");
  524. MODULE_ALIAS("platform:" DRIVER_NAME);