sock.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/filter.h>
  131. #include <trace/events/sock.h>
  132. #ifdef CONFIG_INET
  133. #include <net/tcp.h>
  134. #endif
  135. #include <net/busy_poll.h>
  136. static DEFINE_MUTEX(proto_list_mutex);
  137. static LIST_HEAD(proto_list);
  138. /**
  139. * sk_ns_capable - General socket capability test
  140. * @sk: Socket to use a capability on or through
  141. * @user_ns: The user namespace of the capability to use
  142. * @cap: The capability to use
  143. *
  144. * Test to see if the opener of the socket had when the socket was
  145. * created and the current process has the capability @cap in the user
  146. * namespace @user_ns.
  147. */
  148. bool sk_ns_capable(const struct sock *sk,
  149. struct user_namespace *user_ns, int cap)
  150. {
  151. return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
  152. ns_capable(user_ns, cap);
  153. }
  154. EXPORT_SYMBOL(sk_ns_capable);
  155. /**
  156. * sk_capable - Socket global capability test
  157. * @sk: Socket to use a capability on or through
  158. * @cap: The global capability to use
  159. *
  160. * Test to see if the opener of the socket had when the socket was
  161. * created and the current process has the capability @cap in all user
  162. * namespaces.
  163. */
  164. bool sk_capable(const struct sock *sk, int cap)
  165. {
  166. return sk_ns_capable(sk, &init_user_ns, cap);
  167. }
  168. EXPORT_SYMBOL(sk_capable);
  169. /**
  170. * sk_net_capable - Network namespace socket capability test
  171. * @sk: Socket to use a capability on or through
  172. * @cap: The capability to use
  173. *
  174. * Test to see if the opener of the socket had when the socket was created
  175. * and the current process has the capability @cap over the network namespace
  176. * the socket is a member of.
  177. */
  178. bool sk_net_capable(const struct sock *sk, int cap)
  179. {
  180. return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
  181. }
  182. EXPORT_SYMBOL(sk_net_capable);
  183. #ifdef CONFIG_MEMCG_KMEM
  184. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  185. {
  186. struct proto *proto;
  187. int ret = 0;
  188. mutex_lock(&proto_list_mutex);
  189. list_for_each_entry(proto, &proto_list, node) {
  190. if (proto->init_cgroup) {
  191. ret = proto->init_cgroup(memcg, ss);
  192. if (ret)
  193. goto out;
  194. }
  195. }
  196. mutex_unlock(&proto_list_mutex);
  197. return ret;
  198. out:
  199. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  200. if (proto->destroy_cgroup)
  201. proto->destroy_cgroup(memcg);
  202. mutex_unlock(&proto_list_mutex);
  203. return ret;
  204. }
  205. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  206. {
  207. struct proto *proto;
  208. mutex_lock(&proto_list_mutex);
  209. list_for_each_entry_reverse(proto, &proto_list, node)
  210. if (proto->destroy_cgroup)
  211. proto->destroy_cgroup(memcg);
  212. mutex_unlock(&proto_list_mutex);
  213. }
  214. #endif
  215. /*
  216. * Each address family might have different locking rules, so we have
  217. * one slock key per address family:
  218. */
  219. static struct lock_class_key af_family_keys[AF_MAX];
  220. static struct lock_class_key af_family_slock_keys[AF_MAX];
  221. #if defined(CONFIG_MEMCG_KMEM)
  222. struct static_key memcg_socket_limit_enabled;
  223. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  224. #endif
  225. /*
  226. * Make lock validator output more readable. (we pre-construct these
  227. * strings build-time, so that runtime initialization of socket
  228. * locks is fast):
  229. */
  230. static const char *const af_family_key_strings[AF_MAX+1] = {
  231. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  232. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  233. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  234. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  235. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  236. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  237. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  238. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  239. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  240. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  241. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  242. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  243. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  244. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  245. };
  246. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  247. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  248. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  249. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  250. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  251. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  252. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  253. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  254. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  255. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  256. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  257. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  258. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  259. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  260. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
  261. };
  262. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  263. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  264. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  265. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  266. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  267. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  268. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  269. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  270. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  271. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  272. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  273. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  274. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  275. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  276. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  277. };
  278. /*
  279. * sk_callback_lock locking rules are per-address-family,
  280. * so split the lock classes by using a per-AF key:
  281. */
  282. static struct lock_class_key af_callback_keys[AF_MAX];
  283. /* Take into consideration the size of the struct sk_buff overhead in the
  284. * determination of these values, since that is non-constant across
  285. * platforms. This makes socket queueing behavior and performance
  286. * not depend upon such differences.
  287. */
  288. #define _SK_MEM_PACKETS 256
  289. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  290. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  291. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  292. /* Run time adjustable parameters. */
  293. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  294. EXPORT_SYMBOL(sysctl_wmem_max);
  295. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  296. EXPORT_SYMBOL(sysctl_rmem_max);
  297. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  298. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  299. /* Maximal space eaten by iovec or ancillary data plus some space */
  300. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  301. EXPORT_SYMBOL(sysctl_optmem_max);
  302. int sysctl_tstamp_allow_data __read_mostly = 1;
  303. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  304. EXPORT_SYMBOL_GPL(memalloc_socks);
  305. /**
  306. * sk_set_memalloc - sets %SOCK_MEMALLOC
  307. * @sk: socket to set it on
  308. *
  309. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  310. * It's the responsibility of the admin to adjust min_free_kbytes
  311. * to meet the requirements
  312. */
  313. void sk_set_memalloc(struct sock *sk)
  314. {
  315. sock_set_flag(sk, SOCK_MEMALLOC);
  316. sk->sk_allocation |= __GFP_MEMALLOC;
  317. static_key_slow_inc(&memalloc_socks);
  318. }
  319. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  320. void sk_clear_memalloc(struct sock *sk)
  321. {
  322. sock_reset_flag(sk, SOCK_MEMALLOC);
  323. sk->sk_allocation &= ~__GFP_MEMALLOC;
  324. static_key_slow_dec(&memalloc_socks);
  325. /*
  326. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  327. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  328. * it has rmem allocations there is a risk that the user of the
  329. * socket cannot make forward progress due to exceeding the rmem
  330. * limits. By rights, sk_clear_memalloc() should only be called
  331. * on sockets being torn down but warn and reset the accounting if
  332. * that assumption breaks.
  333. */
  334. if (WARN_ON(sk->sk_forward_alloc))
  335. sk_mem_reclaim(sk);
  336. }
  337. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  338. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  339. {
  340. int ret;
  341. unsigned long pflags = current->flags;
  342. /* these should have been dropped before queueing */
  343. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  344. current->flags |= PF_MEMALLOC;
  345. ret = sk->sk_backlog_rcv(sk, skb);
  346. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL(__sk_backlog_rcv);
  350. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  351. {
  352. struct timeval tv;
  353. if (optlen < sizeof(tv))
  354. return -EINVAL;
  355. if (copy_from_user(&tv, optval, sizeof(tv)))
  356. return -EFAULT;
  357. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  358. return -EDOM;
  359. if (tv.tv_sec < 0) {
  360. static int warned __read_mostly;
  361. *timeo_p = 0;
  362. if (warned < 10 && net_ratelimit()) {
  363. warned++;
  364. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  365. __func__, current->comm, task_pid_nr(current));
  366. }
  367. return 0;
  368. }
  369. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  370. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  371. return 0;
  372. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  373. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  374. return 0;
  375. }
  376. static void sock_warn_obsolete_bsdism(const char *name)
  377. {
  378. static int warned;
  379. static char warncomm[TASK_COMM_LEN];
  380. if (strcmp(warncomm, current->comm) && warned < 5) {
  381. strcpy(warncomm, current->comm);
  382. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  383. warncomm, name);
  384. warned++;
  385. }
  386. }
  387. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  388. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  389. {
  390. if (sk->sk_flags & flags) {
  391. sk->sk_flags &= ~flags;
  392. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  393. net_disable_timestamp();
  394. }
  395. }
  396. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  397. {
  398. int err;
  399. unsigned long flags;
  400. struct sk_buff_head *list = &sk->sk_receive_queue;
  401. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  402. atomic_inc(&sk->sk_drops);
  403. trace_sock_rcvqueue_full(sk, skb);
  404. return -ENOMEM;
  405. }
  406. err = sk_filter(sk, skb);
  407. if (err)
  408. return err;
  409. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  410. atomic_inc(&sk->sk_drops);
  411. return -ENOBUFS;
  412. }
  413. skb->dev = NULL;
  414. skb_set_owner_r(skb, sk);
  415. /* we escape from rcu protected region, make sure we dont leak
  416. * a norefcounted dst
  417. */
  418. skb_dst_force(skb);
  419. spin_lock_irqsave(&list->lock, flags);
  420. skb->dropcount = atomic_read(&sk->sk_drops);
  421. __skb_queue_tail(list, skb);
  422. spin_unlock_irqrestore(&list->lock, flags);
  423. if (!sock_flag(sk, SOCK_DEAD))
  424. sk->sk_data_ready(sk);
  425. return 0;
  426. }
  427. EXPORT_SYMBOL(sock_queue_rcv_skb);
  428. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  429. {
  430. int rc = NET_RX_SUCCESS;
  431. if (sk_filter(sk, skb))
  432. goto discard_and_relse;
  433. skb->dev = NULL;
  434. if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
  435. atomic_inc(&sk->sk_drops);
  436. goto discard_and_relse;
  437. }
  438. if (nested)
  439. bh_lock_sock_nested(sk);
  440. else
  441. bh_lock_sock(sk);
  442. if (!sock_owned_by_user(sk)) {
  443. /*
  444. * trylock + unlock semantics:
  445. */
  446. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  447. rc = sk_backlog_rcv(sk, skb);
  448. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  449. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  450. bh_unlock_sock(sk);
  451. atomic_inc(&sk->sk_drops);
  452. goto discard_and_relse;
  453. }
  454. bh_unlock_sock(sk);
  455. out:
  456. sock_put(sk);
  457. return rc;
  458. discard_and_relse:
  459. kfree_skb(skb);
  460. goto out;
  461. }
  462. EXPORT_SYMBOL(sk_receive_skb);
  463. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  464. {
  465. struct dst_entry *dst = __sk_dst_get(sk);
  466. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  467. sk_tx_queue_clear(sk);
  468. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  469. dst_release(dst);
  470. return NULL;
  471. }
  472. return dst;
  473. }
  474. EXPORT_SYMBOL(__sk_dst_check);
  475. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  476. {
  477. struct dst_entry *dst = sk_dst_get(sk);
  478. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  479. sk_dst_reset(sk);
  480. dst_release(dst);
  481. return NULL;
  482. }
  483. return dst;
  484. }
  485. EXPORT_SYMBOL(sk_dst_check);
  486. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  487. int optlen)
  488. {
  489. int ret = -ENOPROTOOPT;
  490. #ifdef CONFIG_NETDEVICES
  491. struct net *net = sock_net(sk);
  492. char devname[IFNAMSIZ];
  493. int index;
  494. /* Sorry... */
  495. ret = -EPERM;
  496. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  497. goto out;
  498. ret = -EINVAL;
  499. if (optlen < 0)
  500. goto out;
  501. /* Bind this socket to a particular device like "eth0",
  502. * as specified in the passed interface name. If the
  503. * name is "" or the option length is zero the socket
  504. * is not bound.
  505. */
  506. if (optlen > IFNAMSIZ - 1)
  507. optlen = IFNAMSIZ - 1;
  508. memset(devname, 0, sizeof(devname));
  509. ret = -EFAULT;
  510. if (copy_from_user(devname, optval, optlen))
  511. goto out;
  512. index = 0;
  513. if (devname[0] != '\0') {
  514. struct net_device *dev;
  515. rcu_read_lock();
  516. dev = dev_get_by_name_rcu(net, devname);
  517. if (dev)
  518. index = dev->ifindex;
  519. rcu_read_unlock();
  520. ret = -ENODEV;
  521. if (!dev)
  522. goto out;
  523. }
  524. lock_sock(sk);
  525. sk->sk_bound_dev_if = index;
  526. sk_dst_reset(sk);
  527. release_sock(sk);
  528. ret = 0;
  529. out:
  530. #endif
  531. return ret;
  532. }
  533. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  534. int __user *optlen, int len)
  535. {
  536. int ret = -ENOPROTOOPT;
  537. #ifdef CONFIG_NETDEVICES
  538. struct net *net = sock_net(sk);
  539. char devname[IFNAMSIZ];
  540. if (sk->sk_bound_dev_if == 0) {
  541. len = 0;
  542. goto zero;
  543. }
  544. ret = -EINVAL;
  545. if (len < IFNAMSIZ)
  546. goto out;
  547. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  548. if (ret)
  549. goto out;
  550. len = strlen(devname) + 1;
  551. ret = -EFAULT;
  552. if (copy_to_user(optval, devname, len))
  553. goto out;
  554. zero:
  555. ret = -EFAULT;
  556. if (put_user(len, optlen))
  557. goto out;
  558. ret = 0;
  559. out:
  560. #endif
  561. return ret;
  562. }
  563. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  564. {
  565. if (valbool)
  566. sock_set_flag(sk, bit);
  567. else
  568. sock_reset_flag(sk, bit);
  569. }
  570. /*
  571. * This is meant for all protocols to use and covers goings on
  572. * at the socket level. Everything here is generic.
  573. */
  574. int sock_setsockopt(struct socket *sock, int level, int optname,
  575. char __user *optval, unsigned int optlen)
  576. {
  577. struct sock *sk = sock->sk;
  578. int val;
  579. int valbool;
  580. struct linger ling;
  581. int ret = 0;
  582. /*
  583. * Options without arguments
  584. */
  585. if (optname == SO_BINDTODEVICE)
  586. return sock_setbindtodevice(sk, optval, optlen);
  587. if (optlen < sizeof(int))
  588. return -EINVAL;
  589. if (get_user(val, (int __user *)optval))
  590. return -EFAULT;
  591. valbool = val ? 1 : 0;
  592. lock_sock(sk);
  593. switch (optname) {
  594. case SO_DEBUG:
  595. if (val && !capable(CAP_NET_ADMIN))
  596. ret = -EACCES;
  597. else
  598. sock_valbool_flag(sk, SOCK_DBG, valbool);
  599. break;
  600. case SO_REUSEADDR:
  601. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  602. break;
  603. case SO_REUSEPORT:
  604. sk->sk_reuseport = valbool;
  605. break;
  606. case SO_TYPE:
  607. case SO_PROTOCOL:
  608. case SO_DOMAIN:
  609. case SO_ERROR:
  610. ret = -ENOPROTOOPT;
  611. break;
  612. case SO_DONTROUTE:
  613. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  614. break;
  615. case SO_BROADCAST:
  616. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  617. break;
  618. case SO_SNDBUF:
  619. /* Don't error on this BSD doesn't and if you think
  620. * about it this is right. Otherwise apps have to
  621. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  622. * are treated in BSD as hints
  623. */
  624. val = min_t(u32, val, sysctl_wmem_max);
  625. set_sndbuf:
  626. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  627. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  628. /* Wake up sending tasks if we upped the value. */
  629. sk->sk_write_space(sk);
  630. break;
  631. case SO_SNDBUFFORCE:
  632. if (!capable(CAP_NET_ADMIN)) {
  633. ret = -EPERM;
  634. break;
  635. }
  636. goto set_sndbuf;
  637. case SO_RCVBUF:
  638. /* Don't error on this BSD doesn't and if you think
  639. * about it this is right. Otherwise apps have to
  640. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  641. * are treated in BSD as hints
  642. */
  643. val = min_t(u32, val, sysctl_rmem_max);
  644. set_rcvbuf:
  645. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  646. /*
  647. * We double it on the way in to account for
  648. * "struct sk_buff" etc. overhead. Applications
  649. * assume that the SO_RCVBUF setting they make will
  650. * allow that much actual data to be received on that
  651. * socket.
  652. *
  653. * Applications are unaware that "struct sk_buff" and
  654. * other overheads allocate from the receive buffer
  655. * during socket buffer allocation.
  656. *
  657. * And after considering the possible alternatives,
  658. * returning the value we actually used in getsockopt
  659. * is the most desirable behavior.
  660. */
  661. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  662. break;
  663. case SO_RCVBUFFORCE:
  664. if (!capable(CAP_NET_ADMIN)) {
  665. ret = -EPERM;
  666. break;
  667. }
  668. goto set_rcvbuf;
  669. case SO_KEEPALIVE:
  670. #ifdef CONFIG_INET
  671. if (sk->sk_protocol == IPPROTO_TCP &&
  672. sk->sk_type == SOCK_STREAM)
  673. tcp_set_keepalive(sk, valbool);
  674. #endif
  675. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  676. break;
  677. case SO_OOBINLINE:
  678. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  679. break;
  680. case SO_NO_CHECK:
  681. sk->sk_no_check_tx = valbool;
  682. break;
  683. case SO_PRIORITY:
  684. if ((val >= 0 && val <= 6) ||
  685. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  686. sk->sk_priority = val;
  687. else
  688. ret = -EPERM;
  689. break;
  690. case SO_LINGER:
  691. if (optlen < sizeof(ling)) {
  692. ret = -EINVAL; /* 1003.1g */
  693. break;
  694. }
  695. if (copy_from_user(&ling, optval, sizeof(ling))) {
  696. ret = -EFAULT;
  697. break;
  698. }
  699. if (!ling.l_onoff)
  700. sock_reset_flag(sk, SOCK_LINGER);
  701. else {
  702. #if (BITS_PER_LONG == 32)
  703. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  704. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  705. else
  706. #endif
  707. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  708. sock_set_flag(sk, SOCK_LINGER);
  709. }
  710. break;
  711. case SO_BSDCOMPAT:
  712. sock_warn_obsolete_bsdism("setsockopt");
  713. break;
  714. case SO_PASSCRED:
  715. if (valbool)
  716. set_bit(SOCK_PASSCRED, &sock->flags);
  717. else
  718. clear_bit(SOCK_PASSCRED, &sock->flags);
  719. break;
  720. case SO_TIMESTAMP:
  721. case SO_TIMESTAMPNS:
  722. if (valbool) {
  723. if (optname == SO_TIMESTAMP)
  724. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  725. else
  726. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  727. sock_set_flag(sk, SOCK_RCVTSTAMP);
  728. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  729. } else {
  730. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  731. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  732. }
  733. break;
  734. case SO_TIMESTAMPING:
  735. if (val & ~SOF_TIMESTAMPING_MASK) {
  736. ret = -EINVAL;
  737. break;
  738. }
  739. if (val & SOF_TIMESTAMPING_OPT_ID &&
  740. !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
  741. if (sk->sk_protocol == IPPROTO_TCP) {
  742. if (sk->sk_state != TCP_ESTABLISHED) {
  743. ret = -EINVAL;
  744. break;
  745. }
  746. sk->sk_tskey = tcp_sk(sk)->snd_una;
  747. } else {
  748. sk->sk_tskey = 0;
  749. }
  750. }
  751. sk->sk_tsflags = val;
  752. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  753. sock_enable_timestamp(sk,
  754. SOCK_TIMESTAMPING_RX_SOFTWARE);
  755. else
  756. sock_disable_timestamp(sk,
  757. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  758. break;
  759. case SO_RCVLOWAT:
  760. if (val < 0)
  761. val = INT_MAX;
  762. sk->sk_rcvlowat = val ? : 1;
  763. break;
  764. case SO_RCVTIMEO:
  765. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  766. break;
  767. case SO_SNDTIMEO:
  768. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  769. break;
  770. case SO_ATTACH_FILTER:
  771. ret = -EINVAL;
  772. if (optlen == sizeof(struct sock_fprog)) {
  773. struct sock_fprog fprog;
  774. ret = -EFAULT;
  775. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  776. break;
  777. ret = sk_attach_filter(&fprog, sk);
  778. }
  779. break;
  780. case SO_ATTACH_BPF:
  781. ret = -EINVAL;
  782. if (optlen == sizeof(u32)) {
  783. u32 ufd;
  784. ret = -EFAULT;
  785. if (copy_from_user(&ufd, optval, sizeof(ufd)))
  786. break;
  787. ret = sk_attach_bpf(ufd, sk);
  788. }
  789. break;
  790. case SO_DETACH_FILTER:
  791. ret = sk_detach_filter(sk);
  792. break;
  793. case SO_LOCK_FILTER:
  794. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  795. ret = -EPERM;
  796. else
  797. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  798. break;
  799. case SO_PASSSEC:
  800. if (valbool)
  801. set_bit(SOCK_PASSSEC, &sock->flags);
  802. else
  803. clear_bit(SOCK_PASSSEC, &sock->flags);
  804. break;
  805. case SO_MARK:
  806. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  807. ret = -EPERM;
  808. else
  809. sk->sk_mark = val;
  810. break;
  811. /* We implement the SO_SNDLOWAT etc to
  812. not be settable (1003.1g 5.3) */
  813. case SO_RXQ_OVFL:
  814. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  815. break;
  816. case SO_WIFI_STATUS:
  817. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  818. break;
  819. case SO_PEEK_OFF:
  820. if (sock->ops->set_peek_off)
  821. ret = sock->ops->set_peek_off(sk, val);
  822. else
  823. ret = -EOPNOTSUPP;
  824. break;
  825. case SO_NOFCS:
  826. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  827. break;
  828. case SO_SELECT_ERR_QUEUE:
  829. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  830. break;
  831. #ifdef CONFIG_NET_RX_BUSY_POLL
  832. case SO_BUSY_POLL:
  833. /* allow unprivileged users to decrease the value */
  834. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  835. ret = -EPERM;
  836. else {
  837. if (val < 0)
  838. ret = -EINVAL;
  839. else
  840. sk->sk_ll_usec = val;
  841. }
  842. break;
  843. #endif
  844. case SO_MAX_PACING_RATE:
  845. sk->sk_max_pacing_rate = val;
  846. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  847. sk->sk_max_pacing_rate);
  848. break;
  849. default:
  850. ret = -ENOPROTOOPT;
  851. break;
  852. }
  853. release_sock(sk);
  854. return ret;
  855. }
  856. EXPORT_SYMBOL(sock_setsockopt);
  857. static void cred_to_ucred(struct pid *pid, const struct cred *cred,
  858. struct ucred *ucred)
  859. {
  860. ucred->pid = pid_vnr(pid);
  861. ucred->uid = ucred->gid = -1;
  862. if (cred) {
  863. struct user_namespace *current_ns = current_user_ns();
  864. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  865. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  866. }
  867. }
  868. int sock_getsockopt(struct socket *sock, int level, int optname,
  869. char __user *optval, int __user *optlen)
  870. {
  871. struct sock *sk = sock->sk;
  872. union {
  873. int val;
  874. struct linger ling;
  875. struct timeval tm;
  876. } v;
  877. int lv = sizeof(int);
  878. int len;
  879. if (get_user(len, optlen))
  880. return -EFAULT;
  881. if (len < 0)
  882. return -EINVAL;
  883. memset(&v, 0, sizeof(v));
  884. switch (optname) {
  885. case SO_DEBUG:
  886. v.val = sock_flag(sk, SOCK_DBG);
  887. break;
  888. case SO_DONTROUTE:
  889. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  890. break;
  891. case SO_BROADCAST:
  892. v.val = sock_flag(sk, SOCK_BROADCAST);
  893. break;
  894. case SO_SNDBUF:
  895. v.val = sk->sk_sndbuf;
  896. break;
  897. case SO_RCVBUF:
  898. v.val = sk->sk_rcvbuf;
  899. break;
  900. case SO_REUSEADDR:
  901. v.val = sk->sk_reuse;
  902. break;
  903. case SO_REUSEPORT:
  904. v.val = sk->sk_reuseport;
  905. break;
  906. case SO_KEEPALIVE:
  907. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  908. break;
  909. case SO_TYPE:
  910. v.val = sk->sk_type;
  911. break;
  912. case SO_PROTOCOL:
  913. v.val = sk->sk_protocol;
  914. break;
  915. case SO_DOMAIN:
  916. v.val = sk->sk_family;
  917. break;
  918. case SO_ERROR:
  919. v.val = -sock_error(sk);
  920. if (v.val == 0)
  921. v.val = xchg(&sk->sk_err_soft, 0);
  922. break;
  923. case SO_OOBINLINE:
  924. v.val = sock_flag(sk, SOCK_URGINLINE);
  925. break;
  926. case SO_NO_CHECK:
  927. v.val = sk->sk_no_check_tx;
  928. break;
  929. case SO_PRIORITY:
  930. v.val = sk->sk_priority;
  931. break;
  932. case SO_LINGER:
  933. lv = sizeof(v.ling);
  934. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  935. v.ling.l_linger = sk->sk_lingertime / HZ;
  936. break;
  937. case SO_BSDCOMPAT:
  938. sock_warn_obsolete_bsdism("getsockopt");
  939. break;
  940. case SO_TIMESTAMP:
  941. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  942. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  943. break;
  944. case SO_TIMESTAMPNS:
  945. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  946. break;
  947. case SO_TIMESTAMPING:
  948. v.val = sk->sk_tsflags;
  949. break;
  950. case SO_RCVTIMEO:
  951. lv = sizeof(struct timeval);
  952. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  953. v.tm.tv_sec = 0;
  954. v.tm.tv_usec = 0;
  955. } else {
  956. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  957. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  958. }
  959. break;
  960. case SO_SNDTIMEO:
  961. lv = sizeof(struct timeval);
  962. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  963. v.tm.tv_sec = 0;
  964. v.tm.tv_usec = 0;
  965. } else {
  966. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  967. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  968. }
  969. break;
  970. case SO_RCVLOWAT:
  971. v.val = sk->sk_rcvlowat;
  972. break;
  973. case SO_SNDLOWAT:
  974. v.val = 1;
  975. break;
  976. case SO_PASSCRED:
  977. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  978. break;
  979. case SO_PEERCRED:
  980. {
  981. struct ucred peercred;
  982. if (len > sizeof(peercred))
  983. len = sizeof(peercred);
  984. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  985. if (copy_to_user(optval, &peercred, len))
  986. return -EFAULT;
  987. goto lenout;
  988. }
  989. case SO_PEERNAME:
  990. {
  991. char address[128];
  992. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  993. return -ENOTCONN;
  994. if (lv < len)
  995. return -EINVAL;
  996. if (copy_to_user(optval, address, len))
  997. return -EFAULT;
  998. goto lenout;
  999. }
  1000. /* Dubious BSD thing... Probably nobody even uses it, but
  1001. * the UNIX standard wants it for whatever reason... -DaveM
  1002. */
  1003. case SO_ACCEPTCONN:
  1004. v.val = sk->sk_state == TCP_LISTEN;
  1005. break;
  1006. case SO_PASSSEC:
  1007. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  1008. break;
  1009. case SO_PEERSEC:
  1010. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  1011. case SO_MARK:
  1012. v.val = sk->sk_mark;
  1013. break;
  1014. case SO_RXQ_OVFL:
  1015. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  1016. break;
  1017. case SO_WIFI_STATUS:
  1018. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  1019. break;
  1020. case SO_PEEK_OFF:
  1021. if (!sock->ops->set_peek_off)
  1022. return -EOPNOTSUPP;
  1023. v.val = sk->sk_peek_off;
  1024. break;
  1025. case SO_NOFCS:
  1026. v.val = sock_flag(sk, SOCK_NOFCS);
  1027. break;
  1028. case SO_BINDTODEVICE:
  1029. return sock_getbindtodevice(sk, optval, optlen, len);
  1030. case SO_GET_FILTER:
  1031. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1032. if (len < 0)
  1033. return len;
  1034. goto lenout;
  1035. case SO_LOCK_FILTER:
  1036. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1037. break;
  1038. case SO_BPF_EXTENSIONS:
  1039. v.val = bpf_tell_extensions();
  1040. break;
  1041. case SO_SELECT_ERR_QUEUE:
  1042. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1043. break;
  1044. #ifdef CONFIG_NET_RX_BUSY_POLL
  1045. case SO_BUSY_POLL:
  1046. v.val = sk->sk_ll_usec;
  1047. break;
  1048. #endif
  1049. case SO_MAX_PACING_RATE:
  1050. v.val = sk->sk_max_pacing_rate;
  1051. break;
  1052. case SO_INCOMING_CPU:
  1053. v.val = sk->sk_incoming_cpu;
  1054. break;
  1055. default:
  1056. return -ENOPROTOOPT;
  1057. }
  1058. if (len > lv)
  1059. len = lv;
  1060. if (copy_to_user(optval, &v, len))
  1061. return -EFAULT;
  1062. lenout:
  1063. if (put_user(len, optlen))
  1064. return -EFAULT;
  1065. return 0;
  1066. }
  1067. /*
  1068. * Initialize an sk_lock.
  1069. *
  1070. * (We also register the sk_lock with the lock validator.)
  1071. */
  1072. static inline void sock_lock_init(struct sock *sk)
  1073. {
  1074. sock_lock_init_class_and_name(sk,
  1075. af_family_slock_key_strings[sk->sk_family],
  1076. af_family_slock_keys + sk->sk_family,
  1077. af_family_key_strings[sk->sk_family],
  1078. af_family_keys + sk->sk_family);
  1079. }
  1080. /*
  1081. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1082. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1083. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1084. */
  1085. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1086. {
  1087. #ifdef CONFIG_SECURITY_NETWORK
  1088. void *sptr = nsk->sk_security;
  1089. #endif
  1090. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1091. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1092. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1093. #ifdef CONFIG_SECURITY_NETWORK
  1094. nsk->sk_security = sptr;
  1095. security_sk_clone(osk, nsk);
  1096. #endif
  1097. }
  1098. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1099. {
  1100. unsigned long nulls1, nulls2;
  1101. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1102. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1103. if (nulls1 > nulls2)
  1104. swap(nulls1, nulls2);
  1105. if (nulls1 != 0)
  1106. memset((char *)sk, 0, nulls1);
  1107. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1108. nulls2 - nulls1 - sizeof(void *));
  1109. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1110. size - nulls2 - sizeof(void *));
  1111. }
  1112. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1113. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1114. int family)
  1115. {
  1116. struct sock *sk;
  1117. struct kmem_cache *slab;
  1118. slab = prot->slab;
  1119. if (slab != NULL) {
  1120. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1121. if (!sk)
  1122. return sk;
  1123. if (priority & __GFP_ZERO) {
  1124. if (prot->clear_sk)
  1125. prot->clear_sk(sk, prot->obj_size);
  1126. else
  1127. sk_prot_clear_nulls(sk, prot->obj_size);
  1128. }
  1129. } else
  1130. sk = kmalloc(prot->obj_size, priority);
  1131. if (sk != NULL) {
  1132. kmemcheck_annotate_bitfield(sk, flags);
  1133. if (security_sk_alloc(sk, family, priority))
  1134. goto out_free;
  1135. if (!try_module_get(prot->owner))
  1136. goto out_free_sec;
  1137. sk_tx_queue_clear(sk);
  1138. }
  1139. return sk;
  1140. out_free_sec:
  1141. security_sk_free(sk);
  1142. out_free:
  1143. if (slab != NULL)
  1144. kmem_cache_free(slab, sk);
  1145. else
  1146. kfree(sk);
  1147. return NULL;
  1148. }
  1149. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1150. {
  1151. struct kmem_cache *slab;
  1152. struct module *owner;
  1153. owner = prot->owner;
  1154. slab = prot->slab;
  1155. security_sk_free(sk);
  1156. if (slab != NULL)
  1157. kmem_cache_free(slab, sk);
  1158. else
  1159. kfree(sk);
  1160. module_put(owner);
  1161. }
  1162. #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
  1163. void sock_update_netprioidx(struct sock *sk)
  1164. {
  1165. if (in_interrupt())
  1166. return;
  1167. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1168. }
  1169. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1170. #endif
  1171. /**
  1172. * sk_alloc - All socket objects are allocated here
  1173. * @net: the applicable net namespace
  1174. * @family: protocol family
  1175. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1176. * @prot: struct proto associated with this new sock instance
  1177. */
  1178. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1179. struct proto *prot)
  1180. {
  1181. struct sock *sk;
  1182. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1183. if (sk) {
  1184. sk->sk_family = family;
  1185. /*
  1186. * See comment in struct sock definition to understand
  1187. * why we need sk_prot_creator -acme
  1188. */
  1189. sk->sk_prot = sk->sk_prot_creator = prot;
  1190. sock_lock_init(sk);
  1191. sock_net_set(sk, get_net(net));
  1192. atomic_set(&sk->sk_wmem_alloc, 1);
  1193. sock_update_classid(sk);
  1194. sock_update_netprioidx(sk);
  1195. }
  1196. return sk;
  1197. }
  1198. EXPORT_SYMBOL(sk_alloc);
  1199. static void __sk_free(struct sock *sk)
  1200. {
  1201. struct sk_filter *filter;
  1202. if (sk->sk_destruct)
  1203. sk->sk_destruct(sk);
  1204. filter = rcu_dereference_check(sk->sk_filter,
  1205. atomic_read(&sk->sk_wmem_alloc) == 0);
  1206. if (filter) {
  1207. sk_filter_uncharge(sk, filter);
  1208. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1209. }
  1210. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1211. if (atomic_read(&sk->sk_omem_alloc))
  1212. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1213. __func__, atomic_read(&sk->sk_omem_alloc));
  1214. if (sk->sk_peer_cred)
  1215. put_cred(sk->sk_peer_cred);
  1216. put_pid(sk->sk_peer_pid);
  1217. put_net(sock_net(sk));
  1218. sk_prot_free(sk->sk_prot_creator, sk);
  1219. }
  1220. void sk_free(struct sock *sk)
  1221. {
  1222. /*
  1223. * We subtract one from sk_wmem_alloc and can know if
  1224. * some packets are still in some tx queue.
  1225. * If not null, sock_wfree() will call __sk_free(sk) later
  1226. */
  1227. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1228. __sk_free(sk);
  1229. }
  1230. EXPORT_SYMBOL(sk_free);
  1231. /*
  1232. * Last sock_put should drop reference to sk->sk_net. It has already
  1233. * been dropped in sk_change_net. Taking reference to stopping namespace
  1234. * is not an option.
  1235. * Take reference to a socket to remove it from hash _alive_ and after that
  1236. * destroy it in the context of init_net.
  1237. */
  1238. void sk_release_kernel(struct sock *sk)
  1239. {
  1240. if (sk == NULL || sk->sk_socket == NULL)
  1241. return;
  1242. sock_hold(sk);
  1243. sock_release(sk->sk_socket);
  1244. release_net(sock_net(sk));
  1245. sock_net_set(sk, get_net(&init_net));
  1246. sock_put(sk);
  1247. }
  1248. EXPORT_SYMBOL(sk_release_kernel);
  1249. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1250. {
  1251. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1252. sock_update_memcg(newsk);
  1253. }
  1254. /**
  1255. * sk_clone_lock - clone a socket, and lock its clone
  1256. * @sk: the socket to clone
  1257. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1258. *
  1259. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1260. */
  1261. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1262. {
  1263. struct sock *newsk;
  1264. bool is_charged = true;
  1265. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1266. if (newsk != NULL) {
  1267. struct sk_filter *filter;
  1268. sock_copy(newsk, sk);
  1269. /* SANITY */
  1270. get_net(sock_net(newsk));
  1271. sk_node_init(&newsk->sk_node);
  1272. sock_lock_init(newsk);
  1273. bh_lock_sock(newsk);
  1274. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1275. newsk->sk_backlog.len = 0;
  1276. atomic_set(&newsk->sk_rmem_alloc, 0);
  1277. /*
  1278. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1279. */
  1280. atomic_set(&newsk->sk_wmem_alloc, 1);
  1281. atomic_set(&newsk->sk_omem_alloc, 0);
  1282. skb_queue_head_init(&newsk->sk_receive_queue);
  1283. skb_queue_head_init(&newsk->sk_write_queue);
  1284. spin_lock_init(&newsk->sk_dst_lock);
  1285. rwlock_init(&newsk->sk_callback_lock);
  1286. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1287. af_callback_keys + newsk->sk_family,
  1288. af_family_clock_key_strings[newsk->sk_family]);
  1289. newsk->sk_dst_cache = NULL;
  1290. newsk->sk_wmem_queued = 0;
  1291. newsk->sk_forward_alloc = 0;
  1292. newsk->sk_send_head = NULL;
  1293. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1294. sock_reset_flag(newsk, SOCK_DONE);
  1295. skb_queue_head_init(&newsk->sk_error_queue);
  1296. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1297. if (filter != NULL)
  1298. /* though it's an empty new sock, the charging may fail
  1299. * if sysctl_optmem_max was changed between creation of
  1300. * original socket and cloning
  1301. */
  1302. is_charged = sk_filter_charge(newsk, filter);
  1303. if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
  1304. /* It is still raw copy of parent, so invalidate
  1305. * destructor and make plain sk_free() */
  1306. newsk->sk_destruct = NULL;
  1307. bh_unlock_sock(newsk);
  1308. sk_free(newsk);
  1309. newsk = NULL;
  1310. goto out;
  1311. }
  1312. newsk->sk_err = 0;
  1313. newsk->sk_priority = 0;
  1314. newsk->sk_incoming_cpu = raw_smp_processor_id();
  1315. /*
  1316. * Before updating sk_refcnt, we must commit prior changes to memory
  1317. * (Documentation/RCU/rculist_nulls.txt for details)
  1318. */
  1319. smp_wmb();
  1320. atomic_set(&newsk->sk_refcnt, 2);
  1321. /*
  1322. * Increment the counter in the same struct proto as the master
  1323. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1324. * is the same as sk->sk_prot->socks, as this field was copied
  1325. * with memcpy).
  1326. *
  1327. * This _changes_ the previous behaviour, where
  1328. * tcp_create_openreq_child always was incrementing the
  1329. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1330. * to be taken into account in all callers. -acme
  1331. */
  1332. sk_refcnt_debug_inc(newsk);
  1333. sk_set_socket(newsk, NULL);
  1334. newsk->sk_wq = NULL;
  1335. sk_update_clone(sk, newsk);
  1336. if (newsk->sk_prot->sockets_allocated)
  1337. sk_sockets_allocated_inc(newsk);
  1338. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1339. net_enable_timestamp();
  1340. }
  1341. out:
  1342. return newsk;
  1343. }
  1344. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1345. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1346. {
  1347. __sk_dst_set(sk, dst);
  1348. sk->sk_route_caps = dst->dev->features;
  1349. if (sk->sk_route_caps & NETIF_F_GSO)
  1350. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1351. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1352. if (sk_can_gso(sk)) {
  1353. if (dst->header_len) {
  1354. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1355. } else {
  1356. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1357. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1358. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1359. }
  1360. }
  1361. }
  1362. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1363. /*
  1364. * Simple resource managers for sockets.
  1365. */
  1366. /*
  1367. * Write buffer destructor automatically called from kfree_skb.
  1368. */
  1369. void sock_wfree(struct sk_buff *skb)
  1370. {
  1371. struct sock *sk = skb->sk;
  1372. unsigned int len = skb->truesize;
  1373. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1374. /*
  1375. * Keep a reference on sk_wmem_alloc, this will be released
  1376. * after sk_write_space() call
  1377. */
  1378. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1379. sk->sk_write_space(sk);
  1380. len = 1;
  1381. }
  1382. /*
  1383. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1384. * could not do because of in-flight packets
  1385. */
  1386. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1387. __sk_free(sk);
  1388. }
  1389. EXPORT_SYMBOL(sock_wfree);
  1390. void skb_orphan_partial(struct sk_buff *skb)
  1391. {
  1392. /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
  1393. * so we do not completely orphan skb, but transfert all
  1394. * accounted bytes but one, to avoid unexpected reorders.
  1395. */
  1396. if (skb->destructor == sock_wfree
  1397. #ifdef CONFIG_INET
  1398. || skb->destructor == tcp_wfree
  1399. #endif
  1400. ) {
  1401. atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
  1402. skb->truesize = 1;
  1403. } else {
  1404. skb_orphan(skb);
  1405. }
  1406. }
  1407. EXPORT_SYMBOL(skb_orphan_partial);
  1408. /*
  1409. * Read buffer destructor automatically called from kfree_skb.
  1410. */
  1411. void sock_rfree(struct sk_buff *skb)
  1412. {
  1413. struct sock *sk = skb->sk;
  1414. unsigned int len = skb->truesize;
  1415. atomic_sub(len, &sk->sk_rmem_alloc);
  1416. sk_mem_uncharge(sk, len);
  1417. }
  1418. EXPORT_SYMBOL(sock_rfree);
  1419. void sock_efree(struct sk_buff *skb)
  1420. {
  1421. sock_put(skb->sk);
  1422. }
  1423. EXPORT_SYMBOL(sock_efree);
  1424. #ifdef CONFIG_INET
  1425. void sock_edemux(struct sk_buff *skb)
  1426. {
  1427. struct sock *sk = skb->sk;
  1428. if (sk->sk_state == TCP_TIME_WAIT)
  1429. inet_twsk_put(inet_twsk(sk));
  1430. else
  1431. sock_put(sk);
  1432. }
  1433. EXPORT_SYMBOL(sock_edemux);
  1434. #endif
  1435. kuid_t sock_i_uid(struct sock *sk)
  1436. {
  1437. kuid_t uid;
  1438. read_lock_bh(&sk->sk_callback_lock);
  1439. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1440. read_unlock_bh(&sk->sk_callback_lock);
  1441. return uid;
  1442. }
  1443. EXPORT_SYMBOL(sock_i_uid);
  1444. unsigned long sock_i_ino(struct sock *sk)
  1445. {
  1446. unsigned long ino;
  1447. read_lock_bh(&sk->sk_callback_lock);
  1448. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1449. read_unlock_bh(&sk->sk_callback_lock);
  1450. return ino;
  1451. }
  1452. EXPORT_SYMBOL(sock_i_ino);
  1453. /*
  1454. * Allocate a skb from the socket's send buffer.
  1455. */
  1456. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1457. gfp_t priority)
  1458. {
  1459. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1460. struct sk_buff *skb = alloc_skb(size, priority);
  1461. if (skb) {
  1462. skb_set_owner_w(skb, sk);
  1463. return skb;
  1464. }
  1465. }
  1466. return NULL;
  1467. }
  1468. EXPORT_SYMBOL(sock_wmalloc);
  1469. /*
  1470. * Allocate a memory block from the socket's option memory buffer.
  1471. */
  1472. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1473. {
  1474. if ((unsigned int)size <= sysctl_optmem_max &&
  1475. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1476. void *mem;
  1477. /* First do the add, to avoid the race if kmalloc
  1478. * might sleep.
  1479. */
  1480. atomic_add(size, &sk->sk_omem_alloc);
  1481. mem = kmalloc(size, priority);
  1482. if (mem)
  1483. return mem;
  1484. atomic_sub(size, &sk->sk_omem_alloc);
  1485. }
  1486. return NULL;
  1487. }
  1488. EXPORT_SYMBOL(sock_kmalloc);
  1489. /* Free an option memory block. Note, we actually want the inline
  1490. * here as this allows gcc to detect the nullify and fold away the
  1491. * condition entirely.
  1492. */
  1493. static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
  1494. const bool nullify)
  1495. {
  1496. if (WARN_ON_ONCE(!mem))
  1497. return;
  1498. if (nullify)
  1499. kzfree(mem);
  1500. else
  1501. kfree(mem);
  1502. atomic_sub(size, &sk->sk_omem_alloc);
  1503. }
  1504. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1505. {
  1506. __sock_kfree_s(sk, mem, size, false);
  1507. }
  1508. EXPORT_SYMBOL(sock_kfree_s);
  1509. void sock_kzfree_s(struct sock *sk, void *mem, int size)
  1510. {
  1511. __sock_kfree_s(sk, mem, size, true);
  1512. }
  1513. EXPORT_SYMBOL(sock_kzfree_s);
  1514. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1515. I think, these locks should be removed for datagram sockets.
  1516. */
  1517. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1518. {
  1519. DEFINE_WAIT(wait);
  1520. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1521. for (;;) {
  1522. if (!timeo)
  1523. break;
  1524. if (signal_pending(current))
  1525. break;
  1526. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1527. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1528. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1529. break;
  1530. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1531. break;
  1532. if (sk->sk_err)
  1533. break;
  1534. timeo = schedule_timeout(timeo);
  1535. }
  1536. finish_wait(sk_sleep(sk), &wait);
  1537. return timeo;
  1538. }
  1539. /*
  1540. * Generic send/receive buffer handlers
  1541. */
  1542. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1543. unsigned long data_len, int noblock,
  1544. int *errcode, int max_page_order)
  1545. {
  1546. struct sk_buff *skb;
  1547. long timeo;
  1548. int err;
  1549. timeo = sock_sndtimeo(sk, noblock);
  1550. for (;;) {
  1551. err = sock_error(sk);
  1552. if (err != 0)
  1553. goto failure;
  1554. err = -EPIPE;
  1555. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1556. goto failure;
  1557. if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
  1558. break;
  1559. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1560. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1561. err = -EAGAIN;
  1562. if (!timeo)
  1563. goto failure;
  1564. if (signal_pending(current))
  1565. goto interrupted;
  1566. timeo = sock_wait_for_wmem(sk, timeo);
  1567. }
  1568. skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
  1569. errcode, sk->sk_allocation);
  1570. if (skb)
  1571. skb_set_owner_w(skb, sk);
  1572. return skb;
  1573. interrupted:
  1574. err = sock_intr_errno(timeo);
  1575. failure:
  1576. *errcode = err;
  1577. return NULL;
  1578. }
  1579. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1580. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1581. int noblock, int *errcode)
  1582. {
  1583. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1584. }
  1585. EXPORT_SYMBOL(sock_alloc_send_skb);
  1586. /* On 32bit arches, an skb frag is limited to 2^15 */
  1587. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1588. /**
  1589. * skb_page_frag_refill - check that a page_frag contains enough room
  1590. * @sz: minimum size of the fragment we want to get
  1591. * @pfrag: pointer to page_frag
  1592. * @gfp: priority for memory allocation
  1593. *
  1594. * Note: While this allocator tries to use high order pages, there is
  1595. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1596. * less or equal than PAGE_SIZE.
  1597. */
  1598. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
  1599. {
  1600. if (pfrag->page) {
  1601. if (atomic_read(&pfrag->page->_count) == 1) {
  1602. pfrag->offset = 0;
  1603. return true;
  1604. }
  1605. if (pfrag->offset + sz <= pfrag->size)
  1606. return true;
  1607. put_page(pfrag->page);
  1608. }
  1609. pfrag->offset = 0;
  1610. if (SKB_FRAG_PAGE_ORDER) {
  1611. pfrag->page = alloc_pages(gfp | __GFP_COMP |
  1612. __GFP_NOWARN | __GFP_NORETRY,
  1613. SKB_FRAG_PAGE_ORDER);
  1614. if (likely(pfrag->page)) {
  1615. pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
  1616. return true;
  1617. }
  1618. }
  1619. pfrag->page = alloc_page(gfp);
  1620. if (likely(pfrag->page)) {
  1621. pfrag->size = PAGE_SIZE;
  1622. return true;
  1623. }
  1624. return false;
  1625. }
  1626. EXPORT_SYMBOL(skb_page_frag_refill);
  1627. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1628. {
  1629. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1630. return true;
  1631. sk_enter_memory_pressure(sk);
  1632. sk_stream_moderate_sndbuf(sk);
  1633. return false;
  1634. }
  1635. EXPORT_SYMBOL(sk_page_frag_refill);
  1636. static void __lock_sock(struct sock *sk)
  1637. __releases(&sk->sk_lock.slock)
  1638. __acquires(&sk->sk_lock.slock)
  1639. {
  1640. DEFINE_WAIT(wait);
  1641. for (;;) {
  1642. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1643. TASK_UNINTERRUPTIBLE);
  1644. spin_unlock_bh(&sk->sk_lock.slock);
  1645. schedule();
  1646. spin_lock_bh(&sk->sk_lock.slock);
  1647. if (!sock_owned_by_user(sk))
  1648. break;
  1649. }
  1650. finish_wait(&sk->sk_lock.wq, &wait);
  1651. }
  1652. static void __release_sock(struct sock *sk)
  1653. __releases(&sk->sk_lock.slock)
  1654. __acquires(&sk->sk_lock.slock)
  1655. {
  1656. struct sk_buff *skb = sk->sk_backlog.head;
  1657. do {
  1658. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1659. bh_unlock_sock(sk);
  1660. do {
  1661. struct sk_buff *next = skb->next;
  1662. prefetch(next);
  1663. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1664. skb->next = NULL;
  1665. sk_backlog_rcv(sk, skb);
  1666. /*
  1667. * We are in process context here with softirqs
  1668. * disabled, use cond_resched_softirq() to preempt.
  1669. * This is safe to do because we've taken the backlog
  1670. * queue private:
  1671. */
  1672. cond_resched_softirq();
  1673. skb = next;
  1674. } while (skb != NULL);
  1675. bh_lock_sock(sk);
  1676. } while ((skb = sk->sk_backlog.head) != NULL);
  1677. /*
  1678. * Doing the zeroing here guarantee we can not loop forever
  1679. * while a wild producer attempts to flood us.
  1680. */
  1681. sk->sk_backlog.len = 0;
  1682. }
  1683. /**
  1684. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1685. * @sk: sock to wait on
  1686. * @timeo: for how long
  1687. *
  1688. * Now socket state including sk->sk_err is changed only under lock,
  1689. * hence we may omit checks after joining wait queue.
  1690. * We check receive queue before schedule() only as optimization;
  1691. * it is very likely that release_sock() added new data.
  1692. */
  1693. int sk_wait_data(struct sock *sk, long *timeo)
  1694. {
  1695. int rc;
  1696. DEFINE_WAIT(wait);
  1697. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1698. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1699. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1700. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1701. finish_wait(sk_sleep(sk), &wait);
  1702. return rc;
  1703. }
  1704. EXPORT_SYMBOL(sk_wait_data);
  1705. /**
  1706. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1707. * @sk: socket
  1708. * @size: memory size to allocate
  1709. * @kind: allocation type
  1710. *
  1711. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1712. * rmem allocation. This function assumes that protocols which have
  1713. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1714. */
  1715. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1716. {
  1717. struct proto *prot = sk->sk_prot;
  1718. int amt = sk_mem_pages(size);
  1719. long allocated;
  1720. int parent_status = UNDER_LIMIT;
  1721. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1722. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1723. /* Under limit. */
  1724. if (parent_status == UNDER_LIMIT &&
  1725. allocated <= sk_prot_mem_limits(sk, 0)) {
  1726. sk_leave_memory_pressure(sk);
  1727. return 1;
  1728. }
  1729. /* Under pressure. (we or our parents) */
  1730. if ((parent_status > SOFT_LIMIT) ||
  1731. allocated > sk_prot_mem_limits(sk, 1))
  1732. sk_enter_memory_pressure(sk);
  1733. /* Over hard limit (we or our parents) */
  1734. if ((parent_status == OVER_LIMIT) ||
  1735. (allocated > sk_prot_mem_limits(sk, 2)))
  1736. goto suppress_allocation;
  1737. /* guarantee minimum buffer size under pressure */
  1738. if (kind == SK_MEM_RECV) {
  1739. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1740. return 1;
  1741. } else { /* SK_MEM_SEND */
  1742. if (sk->sk_type == SOCK_STREAM) {
  1743. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1744. return 1;
  1745. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1746. prot->sysctl_wmem[0])
  1747. return 1;
  1748. }
  1749. if (sk_has_memory_pressure(sk)) {
  1750. int alloc;
  1751. if (!sk_under_memory_pressure(sk))
  1752. return 1;
  1753. alloc = sk_sockets_allocated_read_positive(sk);
  1754. if (sk_prot_mem_limits(sk, 2) > alloc *
  1755. sk_mem_pages(sk->sk_wmem_queued +
  1756. atomic_read(&sk->sk_rmem_alloc) +
  1757. sk->sk_forward_alloc))
  1758. return 1;
  1759. }
  1760. suppress_allocation:
  1761. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1762. sk_stream_moderate_sndbuf(sk);
  1763. /* Fail only if socket is _under_ its sndbuf.
  1764. * In this case we cannot block, so that we have to fail.
  1765. */
  1766. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1767. return 1;
  1768. }
  1769. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1770. /* Alas. Undo changes. */
  1771. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1772. sk_memory_allocated_sub(sk, amt);
  1773. return 0;
  1774. }
  1775. EXPORT_SYMBOL(__sk_mem_schedule);
  1776. /**
  1777. * __sk_reclaim - reclaim memory_allocated
  1778. * @sk: socket
  1779. */
  1780. void __sk_mem_reclaim(struct sock *sk)
  1781. {
  1782. sk_memory_allocated_sub(sk,
  1783. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1784. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1785. if (sk_under_memory_pressure(sk) &&
  1786. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1787. sk_leave_memory_pressure(sk);
  1788. }
  1789. EXPORT_SYMBOL(__sk_mem_reclaim);
  1790. /*
  1791. * Set of default routines for initialising struct proto_ops when
  1792. * the protocol does not support a particular function. In certain
  1793. * cases where it makes no sense for a protocol to have a "do nothing"
  1794. * function, some default processing is provided.
  1795. */
  1796. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1797. {
  1798. return -EOPNOTSUPP;
  1799. }
  1800. EXPORT_SYMBOL(sock_no_bind);
  1801. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1802. int len, int flags)
  1803. {
  1804. return -EOPNOTSUPP;
  1805. }
  1806. EXPORT_SYMBOL(sock_no_connect);
  1807. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1808. {
  1809. return -EOPNOTSUPP;
  1810. }
  1811. EXPORT_SYMBOL(sock_no_socketpair);
  1812. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1813. {
  1814. return -EOPNOTSUPP;
  1815. }
  1816. EXPORT_SYMBOL(sock_no_accept);
  1817. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1818. int *len, int peer)
  1819. {
  1820. return -EOPNOTSUPP;
  1821. }
  1822. EXPORT_SYMBOL(sock_no_getname);
  1823. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1824. {
  1825. return 0;
  1826. }
  1827. EXPORT_SYMBOL(sock_no_poll);
  1828. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1829. {
  1830. return -EOPNOTSUPP;
  1831. }
  1832. EXPORT_SYMBOL(sock_no_ioctl);
  1833. int sock_no_listen(struct socket *sock, int backlog)
  1834. {
  1835. return -EOPNOTSUPP;
  1836. }
  1837. EXPORT_SYMBOL(sock_no_listen);
  1838. int sock_no_shutdown(struct socket *sock, int how)
  1839. {
  1840. return -EOPNOTSUPP;
  1841. }
  1842. EXPORT_SYMBOL(sock_no_shutdown);
  1843. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1844. char __user *optval, unsigned int optlen)
  1845. {
  1846. return -EOPNOTSUPP;
  1847. }
  1848. EXPORT_SYMBOL(sock_no_setsockopt);
  1849. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1850. char __user *optval, int __user *optlen)
  1851. {
  1852. return -EOPNOTSUPP;
  1853. }
  1854. EXPORT_SYMBOL(sock_no_getsockopt);
  1855. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1856. size_t len)
  1857. {
  1858. return -EOPNOTSUPP;
  1859. }
  1860. EXPORT_SYMBOL(sock_no_sendmsg);
  1861. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1862. size_t len, int flags)
  1863. {
  1864. return -EOPNOTSUPP;
  1865. }
  1866. EXPORT_SYMBOL(sock_no_recvmsg);
  1867. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1868. {
  1869. /* Mirror missing mmap method error code */
  1870. return -ENODEV;
  1871. }
  1872. EXPORT_SYMBOL(sock_no_mmap);
  1873. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1874. {
  1875. ssize_t res;
  1876. struct msghdr msg = {.msg_flags = flags};
  1877. struct kvec iov;
  1878. char *kaddr = kmap(page);
  1879. iov.iov_base = kaddr + offset;
  1880. iov.iov_len = size;
  1881. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1882. kunmap(page);
  1883. return res;
  1884. }
  1885. EXPORT_SYMBOL(sock_no_sendpage);
  1886. /*
  1887. * Default Socket Callbacks
  1888. */
  1889. static void sock_def_wakeup(struct sock *sk)
  1890. {
  1891. struct socket_wq *wq;
  1892. rcu_read_lock();
  1893. wq = rcu_dereference(sk->sk_wq);
  1894. if (wq_has_sleeper(wq))
  1895. wake_up_interruptible_all(&wq->wait);
  1896. rcu_read_unlock();
  1897. }
  1898. static void sock_def_error_report(struct sock *sk)
  1899. {
  1900. struct socket_wq *wq;
  1901. rcu_read_lock();
  1902. wq = rcu_dereference(sk->sk_wq);
  1903. if (wq_has_sleeper(wq))
  1904. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1905. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1906. rcu_read_unlock();
  1907. }
  1908. static void sock_def_readable(struct sock *sk)
  1909. {
  1910. struct socket_wq *wq;
  1911. rcu_read_lock();
  1912. wq = rcu_dereference(sk->sk_wq);
  1913. if (wq_has_sleeper(wq))
  1914. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1915. POLLRDNORM | POLLRDBAND);
  1916. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1917. rcu_read_unlock();
  1918. }
  1919. static void sock_def_write_space(struct sock *sk)
  1920. {
  1921. struct socket_wq *wq;
  1922. rcu_read_lock();
  1923. /* Do not wake up a writer until he can make "significant"
  1924. * progress. --DaveM
  1925. */
  1926. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1927. wq = rcu_dereference(sk->sk_wq);
  1928. if (wq_has_sleeper(wq))
  1929. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1930. POLLWRNORM | POLLWRBAND);
  1931. /* Should agree with poll, otherwise some programs break */
  1932. if (sock_writeable(sk))
  1933. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1934. }
  1935. rcu_read_unlock();
  1936. }
  1937. static void sock_def_destruct(struct sock *sk)
  1938. {
  1939. kfree(sk->sk_protinfo);
  1940. }
  1941. void sk_send_sigurg(struct sock *sk)
  1942. {
  1943. if (sk->sk_socket && sk->sk_socket->file)
  1944. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1945. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1946. }
  1947. EXPORT_SYMBOL(sk_send_sigurg);
  1948. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1949. unsigned long expires)
  1950. {
  1951. if (!mod_timer(timer, expires))
  1952. sock_hold(sk);
  1953. }
  1954. EXPORT_SYMBOL(sk_reset_timer);
  1955. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1956. {
  1957. if (del_timer(timer))
  1958. __sock_put(sk);
  1959. }
  1960. EXPORT_SYMBOL(sk_stop_timer);
  1961. void sock_init_data(struct socket *sock, struct sock *sk)
  1962. {
  1963. skb_queue_head_init(&sk->sk_receive_queue);
  1964. skb_queue_head_init(&sk->sk_write_queue);
  1965. skb_queue_head_init(&sk->sk_error_queue);
  1966. sk->sk_send_head = NULL;
  1967. init_timer(&sk->sk_timer);
  1968. sk->sk_allocation = GFP_KERNEL;
  1969. sk->sk_rcvbuf = sysctl_rmem_default;
  1970. sk->sk_sndbuf = sysctl_wmem_default;
  1971. sk->sk_state = TCP_CLOSE;
  1972. sk_set_socket(sk, sock);
  1973. sock_set_flag(sk, SOCK_ZAPPED);
  1974. if (sock) {
  1975. sk->sk_type = sock->type;
  1976. sk->sk_wq = sock->wq;
  1977. sock->sk = sk;
  1978. } else
  1979. sk->sk_wq = NULL;
  1980. spin_lock_init(&sk->sk_dst_lock);
  1981. rwlock_init(&sk->sk_callback_lock);
  1982. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1983. af_callback_keys + sk->sk_family,
  1984. af_family_clock_key_strings[sk->sk_family]);
  1985. sk->sk_state_change = sock_def_wakeup;
  1986. sk->sk_data_ready = sock_def_readable;
  1987. sk->sk_write_space = sock_def_write_space;
  1988. sk->sk_error_report = sock_def_error_report;
  1989. sk->sk_destruct = sock_def_destruct;
  1990. sk->sk_frag.page = NULL;
  1991. sk->sk_frag.offset = 0;
  1992. sk->sk_peek_off = -1;
  1993. sk->sk_peer_pid = NULL;
  1994. sk->sk_peer_cred = NULL;
  1995. sk->sk_write_pending = 0;
  1996. sk->sk_rcvlowat = 1;
  1997. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1998. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1999. sk->sk_stamp = ktime_set(-1L, 0);
  2000. #ifdef CONFIG_NET_RX_BUSY_POLL
  2001. sk->sk_napi_id = 0;
  2002. sk->sk_ll_usec = sysctl_net_busy_read;
  2003. #endif
  2004. sk->sk_max_pacing_rate = ~0U;
  2005. sk->sk_pacing_rate = ~0U;
  2006. /*
  2007. * Before updating sk_refcnt, we must commit prior changes to memory
  2008. * (Documentation/RCU/rculist_nulls.txt for details)
  2009. */
  2010. smp_wmb();
  2011. atomic_set(&sk->sk_refcnt, 1);
  2012. atomic_set(&sk->sk_drops, 0);
  2013. }
  2014. EXPORT_SYMBOL(sock_init_data);
  2015. void lock_sock_nested(struct sock *sk, int subclass)
  2016. {
  2017. might_sleep();
  2018. spin_lock_bh(&sk->sk_lock.slock);
  2019. if (sk->sk_lock.owned)
  2020. __lock_sock(sk);
  2021. sk->sk_lock.owned = 1;
  2022. spin_unlock(&sk->sk_lock.slock);
  2023. /*
  2024. * The sk_lock has mutex_lock() semantics here:
  2025. */
  2026. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2027. local_bh_enable();
  2028. }
  2029. EXPORT_SYMBOL(lock_sock_nested);
  2030. void release_sock(struct sock *sk)
  2031. {
  2032. /*
  2033. * The sk_lock has mutex_unlock() semantics:
  2034. */
  2035. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  2036. spin_lock_bh(&sk->sk_lock.slock);
  2037. if (sk->sk_backlog.tail)
  2038. __release_sock(sk);
  2039. /* Warning : release_cb() might need to release sk ownership,
  2040. * ie call sock_release_ownership(sk) before us.
  2041. */
  2042. if (sk->sk_prot->release_cb)
  2043. sk->sk_prot->release_cb(sk);
  2044. sock_release_ownership(sk);
  2045. if (waitqueue_active(&sk->sk_lock.wq))
  2046. wake_up(&sk->sk_lock.wq);
  2047. spin_unlock_bh(&sk->sk_lock.slock);
  2048. }
  2049. EXPORT_SYMBOL(release_sock);
  2050. /**
  2051. * lock_sock_fast - fast version of lock_sock
  2052. * @sk: socket
  2053. *
  2054. * This version should be used for very small section, where process wont block
  2055. * return false if fast path is taken
  2056. * sk_lock.slock locked, owned = 0, BH disabled
  2057. * return true if slow path is taken
  2058. * sk_lock.slock unlocked, owned = 1, BH enabled
  2059. */
  2060. bool lock_sock_fast(struct sock *sk)
  2061. {
  2062. might_sleep();
  2063. spin_lock_bh(&sk->sk_lock.slock);
  2064. if (!sk->sk_lock.owned)
  2065. /*
  2066. * Note : We must disable BH
  2067. */
  2068. return false;
  2069. __lock_sock(sk);
  2070. sk->sk_lock.owned = 1;
  2071. spin_unlock(&sk->sk_lock.slock);
  2072. /*
  2073. * The sk_lock has mutex_lock() semantics here:
  2074. */
  2075. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2076. local_bh_enable();
  2077. return true;
  2078. }
  2079. EXPORT_SYMBOL(lock_sock_fast);
  2080. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2081. {
  2082. struct timeval tv;
  2083. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2084. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2085. tv = ktime_to_timeval(sk->sk_stamp);
  2086. if (tv.tv_sec == -1)
  2087. return -ENOENT;
  2088. if (tv.tv_sec == 0) {
  2089. sk->sk_stamp = ktime_get_real();
  2090. tv = ktime_to_timeval(sk->sk_stamp);
  2091. }
  2092. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2093. }
  2094. EXPORT_SYMBOL(sock_get_timestamp);
  2095. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2096. {
  2097. struct timespec ts;
  2098. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2099. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2100. ts = ktime_to_timespec(sk->sk_stamp);
  2101. if (ts.tv_sec == -1)
  2102. return -ENOENT;
  2103. if (ts.tv_sec == 0) {
  2104. sk->sk_stamp = ktime_get_real();
  2105. ts = ktime_to_timespec(sk->sk_stamp);
  2106. }
  2107. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2108. }
  2109. EXPORT_SYMBOL(sock_get_timestampns);
  2110. void sock_enable_timestamp(struct sock *sk, int flag)
  2111. {
  2112. if (!sock_flag(sk, flag)) {
  2113. unsigned long previous_flags = sk->sk_flags;
  2114. sock_set_flag(sk, flag);
  2115. /*
  2116. * we just set one of the two flags which require net
  2117. * time stamping, but time stamping might have been on
  2118. * already because of the other one
  2119. */
  2120. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2121. net_enable_timestamp();
  2122. }
  2123. }
  2124. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2125. int level, int type)
  2126. {
  2127. struct sock_exterr_skb *serr;
  2128. struct sk_buff *skb;
  2129. int copied, err;
  2130. err = -EAGAIN;
  2131. skb = sock_dequeue_err_skb(sk);
  2132. if (skb == NULL)
  2133. goto out;
  2134. copied = skb->len;
  2135. if (copied > len) {
  2136. msg->msg_flags |= MSG_TRUNC;
  2137. copied = len;
  2138. }
  2139. err = skb_copy_datagram_msg(skb, 0, msg, copied);
  2140. if (err)
  2141. goto out_free_skb;
  2142. sock_recv_timestamp(msg, sk, skb);
  2143. serr = SKB_EXT_ERR(skb);
  2144. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2145. msg->msg_flags |= MSG_ERRQUEUE;
  2146. err = copied;
  2147. out_free_skb:
  2148. kfree_skb(skb);
  2149. out:
  2150. return err;
  2151. }
  2152. EXPORT_SYMBOL(sock_recv_errqueue);
  2153. /*
  2154. * Get a socket option on an socket.
  2155. *
  2156. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2157. * asynchronous errors should be reported by getsockopt. We assume
  2158. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2159. */
  2160. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2161. char __user *optval, int __user *optlen)
  2162. {
  2163. struct sock *sk = sock->sk;
  2164. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2165. }
  2166. EXPORT_SYMBOL(sock_common_getsockopt);
  2167. #ifdef CONFIG_COMPAT
  2168. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2169. char __user *optval, int __user *optlen)
  2170. {
  2171. struct sock *sk = sock->sk;
  2172. if (sk->sk_prot->compat_getsockopt != NULL)
  2173. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2174. optval, optlen);
  2175. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2176. }
  2177. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2178. #endif
  2179. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2180. struct msghdr *msg, size_t size, int flags)
  2181. {
  2182. struct sock *sk = sock->sk;
  2183. int addr_len = 0;
  2184. int err;
  2185. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2186. flags & ~MSG_DONTWAIT, &addr_len);
  2187. if (err >= 0)
  2188. msg->msg_namelen = addr_len;
  2189. return err;
  2190. }
  2191. EXPORT_SYMBOL(sock_common_recvmsg);
  2192. /*
  2193. * Set socket options on an inet socket.
  2194. */
  2195. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2196. char __user *optval, unsigned int optlen)
  2197. {
  2198. struct sock *sk = sock->sk;
  2199. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2200. }
  2201. EXPORT_SYMBOL(sock_common_setsockopt);
  2202. #ifdef CONFIG_COMPAT
  2203. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2204. char __user *optval, unsigned int optlen)
  2205. {
  2206. struct sock *sk = sock->sk;
  2207. if (sk->sk_prot->compat_setsockopt != NULL)
  2208. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2209. optval, optlen);
  2210. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2211. }
  2212. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2213. #endif
  2214. void sk_common_release(struct sock *sk)
  2215. {
  2216. if (sk->sk_prot->destroy)
  2217. sk->sk_prot->destroy(sk);
  2218. /*
  2219. * Observation: when sock_common_release is called, processes have
  2220. * no access to socket. But net still has.
  2221. * Step one, detach it from networking:
  2222. *
  2223. * A. Remove from hash tables.
  2224. */
  2225. sk->sk_prot->unhash(sk);
  2226. /*
  2227. * In this point socket cannot receive new packets, but it is possible
  2228. * that some packets are in flight because some CPU runs receiver and
  2229. * did hash table lookup before we unhashed socket. They will achieve
  2230. * receive queue and will be purged by socket destructor.
  2231. *
  2232. * Also we still have packets pending on receive queue and probably,
  2233. * our own packets waiting in device queues. sock_destroy will drain
  2234. * receive queue, but transmitted packets will delay socket destruction
  2235. * until the last reference will be released.
  2236. */
  2237. sock_orphan(sk);
  2238. xfrm_sk_free_policy(sk);
  2239. sk_refcnt_debug_release(sk);
  2240. if (sk->sk_frag.page) {
  2241. put_page(sk->sk_frag.page);
  2242. sk->sk_frag.page = NULL;
  2243. }
  2244. sock_put(sk);
  2245. }
  2246. EXPORT_SYMBOL(sk_common_release);
  2247. #ifdef CONFIG_PROC_FS
  2248. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2249. struct prot_inuse {
  2250. int val[PROTO_INUSE_NR];
  2251. };
  2252. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2253. #ifdef CONFIG_NET_NS
  2254. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2255. {
  2256. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2257. }
  2258. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2259. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2260. {
  2261. int cpu, idx = prot->inuse_idx;
  2262. int res = 0;
  2263. for_each_possible_cpu(cpu)
  2264. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2265. return res >= 0 ? res : 0;
  2266. }
  2267. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2268. static int __net_init sock_inuse_init_net(struct net *net)
  2269. {
  2270. net->core.inuse = alloc_percpu(struct prot_inuse);
  2271. return net->core.inuse ? 0 : -ENOMEM;
  2272. }
  2273. static void __net_exit sock_inuse_exit_net(struct net *net)
  2274. {
  2275. free_percpu(net->core.inuse);
  2276. }
  2277. static struct pernet_operations net_inuse_ops = {
  2278. .init = sock_inuse_init_net,
  2279. .exit = sock_inuse_exit_net,
  2280. };
  2281. static __init int net_inuse_init(void)
  2282. {
  2283. if (register_pernet_subsys(&net_inuse_ops))
  2284. panic("Cannot initialize net inuse counters");
  2285. return 0;
  2286. }
  2287. core_initcall(net_inuse_init);
  2288. #else
  2289. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2290. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2291. {
  2292. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2293. }
  2294. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2295. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2296. {
  2297. int cpu, idx = prot->inuse_idx;
  2298. int res = 0;
  2299. for_each_possible_cpu(cpu)
  2300. res += per_cpu(prot_inuse, cpu).val[idx];
  2301. return res >= 0 ? res : 0;
  2302. }
  2303. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2304. #endif
  2305. static void assign_proto_idx(struct proto *prot)
  2306. {
  2307. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2308. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2309. pr_err("PROTO_INUSE_NR exhausted\n");
  2310. return;
  2311. }
  2312. set_bit(prot->inuse_idx, proto_inuse_idx);
  2313. }
  2314. static void release_proto_idx(struct proto *prot)
  2315. {
  2316. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2317. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2318. }
  2319. #else
  2320. static inline void assign_proto_idx(struct proto *prot)
  2321. {
  2322. }
  2323. static inline void release_proto_idx(struct proto *prot)
  2324. {
  2325. }
  2326. #endif
  2327. int proto_register(struct proto *prot, int alloc_slab)
  2328. {
  2329. if (alloc_slab) {
  2330. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2331. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2332. NULL);
  2333. if (prot->slab == NULL) {
  2334. pr_crit("%s: Can't create sock SLAB cache!\n",
  2335. prot->name);
  2336. goto out;
  2337. }
  2338. if (prot->rsk_prot != NULL) {
  2339. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2340. if (prot->rsk_prot->slab_name == NULL)
  2341. goto out_free_sock_slab;
  2342. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2343. prot->rsk_prot->obj_size, 0,
  2344. SLAB_HWCACHE_ALIGN, NULL);
  2345. if (prot->rsk_prot->slab == NULL) {
  2346. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2347. prot->name);
  2348. goto out_free_request_sock_slab_name;
  2349. }
  2350. }
  2351. if (prot->twsk_prot != NULL) {
  2352. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2353. if (prot->twsk_prot->twsk_slab_name == NULL)
  2354. goto out_free_request_sock_slab;
  2355. prot->twsk_prot->twsk_slab =
  2356. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2357. prot->twsk_prot->twsk_obj_size,
  2358. 0,
  2359. SLAB_HWCACHE_ALIGN |
  2360. prot->slab_flags,
  2361. NULL);
  2362. if (prot->twsk_prot->twsk_slab == NULL)
  2363. goto out_free_timewait_sock_slab_name;
  2364. }
  2365. }
  2366. mutex_lock(&proto_list_mutex);
  2367. list_add(&prot->node, &proto_list);
  2368. assign_proto_idx(prot);
  2369. mutex_unlock(&proto_list_mutex);
  2370. return 0;
  2371. out_free_timewait_sock_slab_name:
  2372. kfree(prot->twsk_prot->twsk_slab_name);
  2373. out_free_request_sock_slab:
  2374. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2375. kmem_cache_destroy(prot->rsk_prot->slab);
  2376. prot->rsk_prot->slab = NULL;
  2377. }
  2378. out_free_request_sock_slab_name:
  2379. if (prot->rsk_prot)
  2380. kfree(prot->rsk_prot->slab_name);
  2381. out_free_sock_slab:
  2382. kmem_cache_destroy(prot->slab);
  2383. prot->slab = NULL;
  2384. out:
  2385. return -ENOBUFS;
  2386. }
  2387. EXPORT_SYMBOL(proto_register);
  2388. void proto_unregister(struct proto *prot)
  2389. {
  2390. mutex_lock(&proto_list_mutex);
  2391. release_proto_idx(prot);
  2392. list_del(&prot->node);
  2393. mutex_unlock(&proto_list_mutex);
  2394. if (prot->slab != NULL) {
  2395. kmem_cache_destroy(prot->slab);
  2396. prot->slab = NULL;
  2397. }
  2398. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2399. kmem_cache_destroy(prot->rsk_prot->slab);
  2400. kfree(prot->rsk_prot->slab_name);
  2401. prot->rsk_prot->slab = NULL;
  2402. }
  2403. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2404. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2405. kfree(prot->twsk_prot->twsk_slab_name);
  2406. prot->twsk_prot->twsk_slab = NULL;
  2407. }
  2408. }
  2409. EXPORT_SYMBOL(proto_unregister);
  2410. #ifdef CONFIG_PROC_FS
  2411. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2412. __acquires(proto_list_mutex)
  2413. {
  2414. mutex_lock(&proto_list_mutex);
  2415. return seq_list_start_head(&proto_list, *pos);
  2416. }
  2417. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2418. {
  2419. return seq_list_next(v, &proto_list, pos);
  2420. }
  2421. static void proto_seq_stop(struct seq_file *seq, void *v)
  2422. __releases(proto_list_mutex)
  2423. {
  2424. mutex_unlock(&proto_list_mutex);
  2425. }
  2426. static char proto_method_implemented(const void *method)
  2427. {
  2428. return method == NULL ? 'n' : 'y';
  2429. }
  2430. static long sock_prot_memory_allocated(struct proto *proto)
  2431. {
  2432. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2433. }
  2434. static char *sock_prot_memory_pressure(struct proto *proto)
  2435. {
  2436. return proto->memory_pressure != NULL ?
  2437. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2438. }
  2439. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2440. {
  2441. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2442. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2443. proto->name,
  2444. proto->obj_size,
  2445. sock_prot_inuse_get(seq_file_net(seq), proto),
  2446. sock_prot_memory_allocated(proto),
  2447. sock_prot_memory_pressure(proto),
  2448. proto->max_header,
  2449. proto->slab == NULL ? "no" : "yes",
  2450. module_name(proto->owner),
  2451. proto_method_implemented(proto->close),
  2452. proto_method_implemented(proto->connect),
  2453. proto_method_implemented(proto->disconnect),
  2454. proto_method_implemented(proto->accept),
  2455. proto_method_implemented(proto->ioctl),
  2456. proto_method_implemented(proto->init),
  2457. proto_method_implemented(proto->destroy),
  2458. proto_method_implemented(proto->shutdown),
  2459. proto_method_implemented(proto->setsockopt),
  2460. proto_method_implemented(proto->getsockopt),
  2461. proto_method_implemented(proto->sendmsg),
  2462. proto_method_implemented(proto->recvmsg),
  2463. proto_method_implemented(proto->sendpage),
  2464. proto_method_implemented(proto->bind),
  2465. proto_method_implemented(proto->backlog_rcv),
  2466. proto_method_implemented(proto->hash),
  2467. proto_method_implemented(proto->unhash),
  2468. proto_method_implemented(proto->get_port),
  2469. proto_method_implemented(proto->enter_memory_pressure));
  2470. }
  2471. static int proto_seq_show(struct seq_file *seq, void *v)
  2472. {
  2473. if (v == &proto_list)
  2474. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2475. "protocol",
  2476. "size",
  2477. "sockets",
  2478. "memory",
  2479. "press",
  2480. "maxhdr",
  2481. "slab",
  2482. "module",
  2483. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2484. else
  2485. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2486. return 0;
  2487. }
  2488. static const struct seq_operations proto_seq_ops = {
  2489. .start = proto_seq_start,
  2490. .next = proto_seq_next,
  2491. .stop = proto_seq_stop,
  2492. .show = proto_seq_show,
  2493. };
  2494. static int proto_seq_open(struct inode *inode, struct file *file)
  2495. {
  2496. return seq_open_net(inode, file, &proto_seq_ops,
  2497. sizeof(struct seq_net_private));
  2498. }
  2499. static const struct file_operations proto_seq_fops = {
  2500. .owner = THIS_MODULE,
  2501. .open = proto_seq_open,
  2502. .read = seq_read,
  2503. .llseek = seq_lseek,
  2504. .release = seq_release_net,
  2505. };
  2506. static __net_init int proto_init_net(struct net *net)
  2507. {
  2508. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2509. return -ENOMEM;
  2510. return 0;
  2511. }
  2512. static __net_exit void proto_exit_net(struct net *net)
  2513. {
  2514. remove_proc_entry("protocols", net->proc_net);
  2515. }
  2516. static __net_initdata struct pernet_operations proto_net_ops = {
  2517. .init = proto_init_net,
  2518. .exit = proto_exit_net,
  2519. };
  2520. static int __init proto_init(void)
  2521. {
  2522. return register_pernet_subsys(&proto_net_ops);
  2523. }
  2524. subsys_initcall(proto_init);
  2525. #endif /* PROC_FS */