deadline.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748
  1. /*
  2. * Deadline Scheduling Class (SCHED_DEADLINE)
  3. *
  4. * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
  5. *
  6. * Tasks that periodically executes their instances for less than their
  7. * runtime won't miss any of their deadlines.
  8. * Tasks that are not periodic or sporadic or that tries to execute more
  9. * than their reserved bandwidth will be slowed down (and may potentially
  10. * miss some of their deadlines), and won't affect any other task.
  11. *
  12. * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  13. * Juri Lelli <juri.lelli@gmail.com>,
  14. * Michael Trimarchi <michael@amarulasolutions.com>,
  15. * Fabio Checconi <fchecconi@gmail.com>
  16. */
  17. #include "sched.h"
  18. #include <linux/slab.h>
  19. struct dl_bandwidth def_dl_bandwidth;
  20. static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  21. {
  22. return container_of(dl_se, struct task_struct, dl);
  23. }
  24. static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  25. {
  26. return container_of(dl_rq, struct rq, dl);
  27. }
  28. static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  29. {
  30. struct task_struct *p = dl_task_of(dl_se);
  31. struct rq *rq = task_rq(p);
  32. return &rq->dl;
  33. }
  34. static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  35. {
  36. return !RB_EMPTY_NODE(&dl_se->rb_node);
  37. }
  38. static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
  39. {
  40. struct sched_dl_entity *dl_se = &p->dl;
  41. return dl_rq->rb_leftmost == &dl_se->rb_node;
  42. }
  43. void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
  44. {
  45. raw_spin_lock_init(&dl_b->dl_runtime_lock);
  46. dl_b->dl_period = period;
  47. dl_b->dl_runtime = runtime;
  48. }
  49. void init_dl_bw(struct dl_bw *dl_b)
  50. {
  51. raw_spin_lock_init(&dl_b->lock);
  52. raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
  53. if (global_rt_runtime() == RUNTIME_INF)
  54. dl_b->bw = -1;
  55. else
  56. dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
  57. raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
  58. dl_b->total_bw = 0;
  59. }
  60. void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
  61. {
  62. dl_rq->rb_root = RB_ROOT;
  63. #ifdef CONFIG_SMP
  64. /* zero means no -deadline tasks */
  65. dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
  66. dl_rq->dl_nr_migratory = 0;
  67. dl_rq->overloaded = 0;
  68. dl_rq->pushable_dl_tasks_root = RB_ROOT;
  69. #else
  70. init_dl_bw(&dl_rq->dl_bw);
  71. #endif
  72. }
  73. #ifdef CONFIG_SMP
  74. static inline int dl_overloaded(struct rq *rq)
  75. {
  76. return atomic_read(&rq->rd->dlo_count);
  77. }
  78. static inline void dl_set_overload(struct rq *rq)
  79. {
  80. if (!rq->online)
  81. return;
  82. cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
  83. /*
  84. * Must be visible before the overload count is
  85. * set (as in sched_rt.c).
  86. *
  87. * Matched by the barrier in pull_dl_task().
  88. */
  89. smp_wmb();
  90. atomic_inc(&rq->rd->dlo_count);
  91. }
  92. static inline void dl_clear_overload(struct rq *rq)
  93. {
  94. if (!rq->online)
  95. return;
  96. atomic_dec(&rq->rd->dlo_count);
  97. cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
  98. }
  99. static void update_dl_migration(struct dl_rq *dl_rq)
  100. {
  101. if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
  102. if (!dl_rq->overloaded) {
  103. dl_set_overload(rq_of_dl_rq(dl_rq));
  104. dl_rq->overloaded = 1;
  105. }
  106. } else if (dl_rq->overloaded) {
  107. dl_clear_overload(rq_of_dl_rq(dl_rq));
  108. dl_rq->overloaded = 0;
  109. }
  110. }
  111. static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
  112. {
  113. struct task_struct *p = dl_task_of(dl_se);
  114. if (p->nr_cpus_allowed > 1)
  115. dl_rq->dl_nr_migratory++;
  116. update_dl_migration(dl_rq);
  117. }
  118. static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
  119. {
  120. struct task_struct *p = dl_task_of(dl_se);
  121. if (p->nr_cpus_allowed > 1)
  122. dl_rq->dl_nr_migratory--;
  123. update_dl_migration(dl_rq);
  124. }
  125. /*
  126. * The list of pushable -deadline task is not a plist, like in
  127. * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
  128. */
  129. static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
  130. {
  131. struct dl_rq *dl_rq = &rq->dl;
  132. struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
  133. struct rb_node *parent = NULL;
  134. struct task_struct *entry;
  135. int leftmost = 1;
  136. BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
  137. while (*link) {
  138. parent = *link;
  139. entry = rb_entry(parent, struct task_struct,
  140. pushable_dl_tasks);
  141. if (dl_entity_preempt(&p->dl, &entry->dl))
  142. link = &parent->rb_left;
  143. else {
  144. link = &parent->rb_right;
  145. leftmost = 0;
  146. }
  147. }
  148. if (leftmost)
  149. dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
  150. rb_link_node(&p->pushable_dl_tasks, parent, link);
  151. rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
  152. }
  153. static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
  154. {
  155. struct dl_rq *dl_rq = &rq->dl;
  156. if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
  157. return;
  158. if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
  159. struct rb_node *next_node;
  160. next_node = rb_next(&p->pushable_dl_tasks);
  161. dl_rq->pushable_dl_tasks_leftmost = next_node;
  162. }
  163. rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
  164. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  165. }
  166. static inline int has_pushable_dl_tasks(struct rq *rq)
  167. {
  168. return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
  169. }
  170. static int push_dl_task(struct rq *rq);
  171. static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
  172. {
  173. return dl_task(prev);
  174. }
  175. static inline void set_post_schedule(struct rq *rq)
  176. {
  177. rq->post_schedule = has_pushable_dl_tasks(rq);
  178. }
  179. #else
  180. static inline
  181. void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
  182. {
  183. }
  184. static inline
  185. void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
  186. {
  187. }
  188. static inline
  189. void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
  190. {
  191. }
  192. static inline
  193. void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
  194. {
  195. }
  196. static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
  197. {
  198. return false;
  199. }
  200. static inline int pull_dl_task(struct rq *rq)
  201. {
  202. return 0;
  203. }
  204. static inline void set_post_schedule(struct rq *rq)
  205. {
  206. }
  207. #endif /* CONFIG_SMP */
  208. static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
  209. static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
  210. static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
  211. int flags);
  212. /*
  213. * We are being explicitly informed that a new instance is starting,
  214. * and this means that:
  215. * - the absolute deadline of the entity has to be placed at
  216. * current time + relative deadline;
  217. * - the runtime of the entity has to be set to the maximum value.
  218. *
  219. * The capability of specifying such event is useful whenever a -deadline
  220. * entity wants to (try to!) synchronize its behaviour with the scheduler's
  221. * one, and to (try to!) reconcile itself with its own scheduling
  222. * parameters.
  223. */
  224. static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
  225. struct sched_dl_entity *pi_se)
  226. {
  227. struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
  228. struct rq *rq = rq_of_dl_rq(dl_rq);
  229. WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
  230. /*
  231. * We use the regular wall clock time to set deadlines in the
  232. * future; in fact, we must consider execution overheads (time
  233. * spent on hardirq context, etc.).
  234. */
  235. dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
  236. dl_se->runtime = pi_se->dl_runtime;
  237. dl_se->dl_new = 0;
  238. }
  239. /*
  240. * Pure Earliest Deadline First (EDF) scheduling does not deal with the
  241. * possibility of a entity lasting more than what it declared, and thus
  242. * exhausting its runtime.
  243. *
  244. * Here we are interested in making runtime overrun possible, but we do
  245. * not want a entity which is misbehaving to affect the scheduling of all
  246. * other entities.
  247. * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
  248. * is used, in order to confine each entity within its own bandwidth.
  249. *
  250. * This function deals exactly with that, and ensures that when the runtime
  251. * of a entity is replenished, its deadline is also postponed. That ensures
  252. * the overrunning entity can't interfere with other entity in the system and
  253. * can't make them miss their deadlines. Reasons why this kind of overruns
  254. * could happen are, typically, a entity voluntarily trying to overcome its
  255. * runtime, or it just underestimated it during sched_setattr().
  256. */
  257. static void replenish_dl_entity(struct sched_dl_entity *dl_se,
  258. struct sched_dl_entity *pi_se)
  259. {
  260. struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
  261. struct rq *rq = rq_of_dl_rq(dl_rq);
  262. BUG_ON(pi_se->dl_runtime <= 0);
  263. /*
  264. * This could be the case for a !-dl task that is boosted.
  265. * Just go with full inherited parameters.
  266. */
  267. if (dl_se->dl_deadline == 0) {
  268. dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
  269. dl_se->runtime = pi_se->dl_runtime;
  270. }
  271. /*
  272. * We keep moving the deadline away until we get some
  273. * available runtime for the entity. This ensures correct
  274. * handling of situations where the runtime overrun is
  275. * arbitrary large.
  276. */
  277. while (dl_se->runtime <= 0) {
  278. dl_se->deadline += pi_se->dl_period;
  279. dl_se->runtime += pi_se->dl_runtime;
  280. }
  281. /*
  282. * At this point, the deadline really should be "in
  283. * the future" with respect to rq->clock. If it's
  284. * not, we are, for some reason, lagging too much!
  285. * Anyway, after having warn userspace abut that,
  286. * we still try to keep the things running by
  287. * resetting the deadline and the budget of the
  288. * entity.
  289. */
  290. if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
  291. printk_deferred_once("sched: DL replenish lagged to much\n");
  292. dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
  293. dl_se->runtime = pi_se->dl_runtime;
  294. }
  295. if (dl_se->dl_yielded)
  296. dl_se->dl_yielded = 0;
  297. if (dl_se->dl_throttled)
  298. dl_se->dl_throttled = 0;
  299. }
  300. /*
  301. * Here we check if --at time t-- an entity (which is probably being
  302. * [re]activated or, in general, enqueued) can use its remaining runtime
  303. * and its current deadline _without_ exceeding the bandwidth it is
  304. * assigned (function returns true if it can't). We are in fact applying
  305. * one of the CBS rules: when a task wakes up, if the residual runtime
  306. * over residual deadline fits within the allocated bandwidth, then we
  307. * can keep the current (absolute) deadline and residual budget without
  308. * disrupting the schedulability of the system. Otherwise, we should
  309. * refill the runtime and set the deadline a period in the future,
  310. * because keeping the current (absolute) deadline of the task would
  311. * result in breaking guarantees promised to other tasks (refer to
  312. * Documentation/scheduler/sched-deadline.txt for more informations).
  313. *
  314. * This function returns true if:
  315. *
  316. * runtime / (deadline - t) > dl_runtime / dl_period ,
  317. *
  318. * IOW we can't recycle current parameters.
  319. *
  320. * Notice that the bandwidth check is done against the period. For
  321. * task with deadline equal to period this is the same of using
  322. * dl_deadline instead of dl_period in the equation above.
  323. */
  324. static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
  325. struct sched_dl_entity *pi_se, u64 t)
  326. {
  327. u64 left, right;
  328. /*
  329. * left and right are the two sides of the equation above,
  330. * after a bit of shuffling to use multiplications instead
  331. * of divisions.
  332. *
  333. * Note that none of the time values involved in the two
  334. * multiplications are absolute: dl_deadline and dl_runtime
  335. * are the relative deadline and the maximum runtime of each
  336. * instance, runtime is the runtime left for the last instance
  337. * and (deadline - t), since t is rq->clock, is the time left
  338. * to the (absolute) deadline. Even if overflowing the u64 type
  339. * is very unlikely to occur in both cases, here we scale down
  340. * as we want to avoid that risk at all. Scaling down by 10
  341. * means that we reduce granularity to 1us. We are fine with it,
  342. * since this is only a true/false check and, anyway, thinking
  343. * of anything below microseconds resolution is actually fiction
  344. * (but still we want to give the user that illusion >;).
  345. */
  346. left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
  347. right = ((dl_se->deadline - t) >> DL_SCALE) *
  348. (pi_se->dl_runtime >> DL_SCALE);
  349. return dl_time_before(right, left);
  350. }
  351. /*
  352. * When a -deadline entity is queued back on the runqueue, its runtime and
  353. * deadline might need updating.
  354. *
  355. * The policy here is that we update the deadline of the entity only if:
  356. * - the current deadline is in the past,
  357. * - using the remaining runtime with the current deadline would make
  358. * the entity exceed its bandwidth.
  359. */
  360. static void update_dl_entity(struct sched_dl_entity *dl_se,
  361. struct sched_dl_entity *pi_se)
  362. {
  363. struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
  364. struct rq *rq = rq_of_dl_rq(dl_rq);
  365. /*
  366. * The arrival of a new instance needs special treatment, i.e.,
  367. * the actual scheduling parameters have to be "renewed".
  368. */
  369. if (dl_se->dl_new) {
  370. setup_new_dl_entity(dl_se, pi_se);
  371. return;
  372. }
  373. if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
  374. dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
  375. dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
  376. dl_se->runtime = pi_se->dl_runtime;
  377. }
  378. }
  379. /*
  380. * If the entity depleted all its runtime, and if we want it to sleep
  381. * while waiting for some new execution time to become available, we
  382. * set the bandwidth enforcement timer to the replenishment instant
  383. * and try to activate it.
  384. *
  385. * Notice that it is important for the caller to know if the timer
  386. * actually started or not (i.e., the replenishment instant is in
  387. * the future or in the past).
  388. */
  389. static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
  390. {
  391. struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
  392. struct rq *rq = rq_of_dl_rq(dl_rq);
  393. ktime_t now, act;
  394. ktime_t soft, hard;
  395. unsigned long range;
  396. s64 delta;
  397. if (boosted)
  398. return 0;
  399. /*
  400. * We want the timer to fire at the deadline, but considering
  401. * that it is actually coming from rq->clock and not from
  402. * hrtimer's time base reading.
  403. */
  404. act = ns_to_ktime(dl_se->deadline);
  405. now = hrtimer_cb_get_time(&dl_se->dl_timer);
  406. delta = ktime_to_ns(now) - rq_clock(rq);
  407. act = ktime_add_ns(act, delta);
  408. /*
  409. * If the expiry time already passed, e.g., because the value
  410. * chosen as the deadline is too small, don't even try to
  411. * start the timer in the past!
  412. */
  413. if (ktime_us_delta(act, now) < 0)
  414. return 0;
  415. hrtimer_set_expires(&dl_se->dl_timer, act);
  416. soft = hrtimer_get_softexpires(&dl_se->dl_timer);
  417. hard = hrtimer_get_expires(&dl_se->dl_timer);
  418. range = ktime_to_ns(ktime_sub(hard, soft));
  419. __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
  420. range, HRTIMER_MODE_ABS, 0);
  421. return hrtimer_active(&dl_se->dl_timer);
  422. }
  423. /*
  424. * This is the bandwidth enforcement timer callback. If here, we know
  425. * a task is not on its dl_rq, since the fact that the timer was running
  426. * means the task is throttled and needs a runtime replenishment.
  427. *
  428. * However, what we actually do depends on the fact the task is active,
  429. * (it is on its rq) or has been removed from there by a call to
  430. * dequeue_task_dl(). In the former case we must issue the runtime
  431. * replenishment and add the task back to the dl_rq; in the latter, we just
  432. * do nothing but clearing dl_throttled, so that runtime and deadline
  433. * updating (and the queueing back to dl_rq) will be done by the
  434. * next call to enqueue_task_dl().
  435. */
  436. static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
  437. {
  438. struct sched_dl_entity *dl_se = container_of(timer,
  439. struct sched_dl_entity,
  440. dl_timer);
  441. struct task_struct *p = dl_task_of(dl_se);
  442. struct rq *rq;
  443. again:
  444. rq = task_rq(p);
  445. raw_spin_lock(&rq->lock);
  446. if (rq != task_rq(p)) {
  447. /* Task was moved, retrying. */
  448. raw_spin_unlock(&rq->lock);
  449. goto again;
  450. }
  451. /*
  452. * We need to take care of several possible races here:
  453. *
  454. * - the task might have changed its scheduling policy
  455. * to something different than SCHED_DEADLINE
  456. * - the task might have changed its reservation parameters
  457. * (through sched_setattr())
  458. * - the task might have been boosted by someone else and
  459. * might be in the boosting/deboosting path
  460. *
  461. * In all this cases we bail out, as the task is already
  462. * in the runqueue or is going to be enqueued back anyway.
  463. */
  464. if (!dl_task(p) || dl_se->dl_new ||
  465. dl_se->dl_boosted || !dl_se->dl_throttled)
  466. goto unlock;
  467. sched_clock_tick();
  468. update_rq_clock(rq);
  469. enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
  470. if (dl_task(rq->curr))
  471. check_preempt_curr_dl(rq, p, 0);
  472. else
  473. resched_curr(rq);
  474. #ifdef CONFIG_SMP
  475. /*
  476. * Queueing this task back might have overloaded rq,
  477. * check if we need to kick someone away.
  478. */
  479. if (has_pushable_dl_tasks(rq))
  480. push_dl_task(rq);
  481. #endif
  482. unlock:
  483. raw_spin_unlock(&rq->lock);
  484. return HRTIMER_NORESTART;
  485. }
  486. void init_dl_task_timer(struct sched_dl_entity *dl_se)
  487. {
  488. struct hrtimer *timer = &dl_se->dl_timer;
  489. hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  490. timer->function = dl_task_timer;
  491. }
  492. static
  493. int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
  494. {
  495. return (dl_se->runtime <= 0);
  496. }
  497. extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
  498. /*
  499. * Update the current task's runtime statistics (provided it is still
  500. * a -deadline task and has not been removed from the dl_rq).
  501. */
  502. static void update_curr_dl(struct rq *rq)
  503. {
  504. struct task_struct *curr = rq->curr;
  505. struct sched_dl_entity *dl_se = &curr->dl;
  506. u64 delta_exec;
  507. if (!dl_task(curr) || !on_dl_rq(dl_se))
  508. return;
  509. /*
  510. * Consumed budget is computed considering the time as
  511. * observed by schedulable tasks (excluding time spent
  512. * in hardirq context, etc.). Deadlines are instead
  513. * computed using hard walltime. This seems to be the more
  514. * natural solution, but the full ramifications of this
  515. * approach need further study.
  516. */
  517. delta_exec = rq_clock_task(rq) - curr->se.exec_start;
  518. if (unlikely((s64)delta_exec <= 0))
  519. return;
  520. schedstat_set(curr->se.statistics.exec_max,
  521. max(curr->se.statistics.exec_max, delta_exec));
  522. curr->se.sum_exec_runtime += delta_exec;
  523. account_group_exec_runtime(curr, delta_exec);
  524. curr->se.exec_start = rq_clock_task(rq);
  525. cpuacct_charge(curr, delta_exec);
  526. sched_rt_avg_update(rq, delta_exec);
  527. dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
  528. if (dl_runtime_exceeded(rq, dl_se)) {
  529. dl_se->dl_throttled = 1;
  530. __dequeue_task_dl(rq, curr, 0);
  531. if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
  532. enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
  533. if (!is_leftmost(curr, &rq->dl))
  534. resched_curr(rq);
  535. }
  536. /*
  537. * Because -- for now -- we share the rt bandwidth, we need to
  538. * account our runtime there too, otherwise actual rt tasks
  539. * would be able to exceed the shared quota.
  540. *
  541. * Account to the root rt group for now.
  542. *
  543. * The solution we're working towards is having the RT groups scheduled
  544. * using deadline servers -- however there's a few nasties to figure
  545. * out before that can happen.
  546. */
  547. if (rt_bandwidth_enabled()) {
  548. struct rt_rq *rt_rq = &rq->rt;
  549. raw_spin_lock(&rt_rq->rt_runtime_lock);
  550. /*
  551. * We'll let actual RT tasks worry about the overflow here, we
  552. * have our own CBS to keep us inline; only account when RT
  553. * bandwidth is relevant.
  554. */
  555. if (sched_rt_bandwidth_account(rt_rq))
  556. rt_rq->rt_time += delta_exec;
  557. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  558. }
  559. }
  560. #ifdef CONFIG_SMP
  561. static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
  562. static inline u64 next_deadline(struct rq *rq)
  563. {
  564. struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
  565. if (next && dl_prio(next->prio))
  566. return next->dl.deadline;
  567. else
  568. return 0;
  569. }
  570. static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
  571. {
  572. struct rq *rq = rq_of_dl_rq(dl_rq);
  573. if (dl_rq->earliest_dl.curr == 0 ||
  574. dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
  575. /*
  576. * If the dl_rq had no -deadline tasks, or if the new task
  577. * has shorter deadline than the current one on dl_rq, we
  578. * know that the previous earliest becomes our next earliest,
  579. * as the new task becomes the earliest itself.
  580. */
  581. dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
  582. dl_rq->earliest_dl.curr = deadline;
  583. cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
  584. } else if (dl_rq->earliest_dl.next == 0 ||
  585. dl_time_before(deadline, dl_rq->earliest_dl.next)) {
  586. /*
  587. * On the other hand, if the new -deadline task has a
  588. * a later deadline than the earliest one on dl_rq, but
  589. * it is earlier than the next (if any), we must
  590. * recompute the next-earliest.
  591. */
  592. dl_rq->earliest_dl.next = next_deadline(rq);
  593. }
  594. }
  595. static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
  596. {
  597. struct rq *rq = rq_of_dl_rq(dl_rq);
  598. /*
  599. * Since we may have removed our earliest (and/or next earliest)
  600. * task we must recompute them.
  601. */
  602. if (!dl_rq->dl_nr_running) {
  603. dl_rq->earliest_dl.curr = 0;
  604. dl_rq->earliest_dl.next = 0;
  605. cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
  606. } else {
  607. struct rb_node *leftmost = dl_rq->rb_leftmost;
  608. struct sched_dl_entity *entry;
  609. entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
  610. dl_rq->earliest_dl.curr = entry->deadline;
  611. dl_rq->earliest_dl.next = next_deadline(rq);
  612. cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
  613. }
  614. }
  615. #else
  616. static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
  617. static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
  618. #endif /* CONFIG_SMP */
  619. static inline
  620. void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
  621. {
  622. int prio = dl_task_of(dl_se)->prio;
  623. u64 deadline = dl_se->deadline;
  624. WARN_ON(!dl_prio(prio));
  625. dl_rq->dl_nr_running++;
  626. add_nr_running(rq_of_dl_rq(dl_rq), 1);
  627. inc_dl_deadline(dl_rq, deadline);
  628. inc_dl_migration(dl_se, dl_rq);
  629. }
  630. static inline
  631. void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
  632. {
  633. int prio = dl_task_of(dl_se)->prio;
  634. WARN_ON(!dl_prio(prio));
  635. WARN_ON(!dl_rq->dl_nr_running);
  636. dl_rq->dl_nr_running--;
  637. sub_nr_running(rq_of_dl_rq(dl_rq), 1);
  638. dec_dl_deadline(dl_rq, dl_se->deadline);
  639. dec_dl_migration(dl_se, dl_rq);
  640. }
  641. static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
  642. {
  643. struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
  644. struct rb_node **link = &dl_rq->rb_root.rb_node;
  645. struct rb_node *parent = NULL;
  646. struct sched_dl_entity *entry;
  647. int leftmost = 1;
  648. BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
  649. while (*link) {
  650. parent = *link;
  651. entry = rb_entry(parent, struct sched_dl_entity, rb_node);
  652. if (dl_time_before(dl_se->deadline, entry->deadline))
  653. link = &parent->rb_left;
  654. else {
  655. link = &parent->rb_right;
  656. leftmost = 0;
  657. }
  658. }
  659. if (leftmost)
  660. dl_rq->rb_leftmost = &dl_se->rb_node;
  661. rb_link_node(&dl_se->rb_node, parent, link);
  662. rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
  663. inc_dl_tasks(dl_se, dl_rq);
  664. }
  665. static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
  666. {
  667. struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
  668. if (RB_EMPTY_NODE(&dl_se->rb_node))
  669. return;
  670. if (dl_rq->rb_leftmost == &dl_se->rb_node) {
  671. struct rb_node *next_node;
  672. next_node = rb_next(&dl_se->rb_node);
  673. dl_rq->rb_leftmost = next_node;
  674. }
  675. rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
  676. RB_CLEAR_NODE(&dl_se->rb_node);
  677. dec_dl_tasks(dl_se, dl_rq);
  678. }
  679. static void
  680. enqueue_dl_entity(struct sched_dl_entity *dl_se,
  681. struct sched_dl_entity *pi_se, int flags)
  682. {
  683. BUG_ON(on_dl_rq(dl_se));
  684. /*
  685. * If this is a wakeup or a new instance, the scheduling
  686. * parameters of the task might need updating. Otherwise,
  687. * we want a replenishment of its runtime.
  688. */
  689. if (dl_se->dl_new || flags & ENQUEUE_WAKEUP)
  690. update_dl_entity(dl_se, pi_se);
  691. else if (flags & ENQUEUE_REPLENISH)
  692. replenish_dl_entity(dl_se, pi_se);
  693. __enqueue_dl_entity(dl_se);
  694. }
  695. static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
  696. {
  697. __dequeue_dl_entity(dl_se);
  698. }
  699. static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
  700. {
  701. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  702. struct sched_dl_entity *pi_se = &p->dl;
  703. /*
  704. * Use the scheduling parameters of the top pi-waiter
  705. * task if we have one and its (relative) deadline is
  706. * smaller than our one... OTW we keep our runtime and
  707. * deadline.
  708. */
  709. if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
  710. pi_se = &pi_task->dl;
  711. } else if (!dl_prio(p->normal_prio)) {
  712. /*
  713. * Special case in which we have a !SCHED_DEADLINE task
  714. * that is going to be deboosted, but exceedes its
  715. * runtime while doing so. No point in replenishing
  716. * it, as it's going to return back to its original
  717. * scheduling class after this.
  718. */
  719. BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
  720. return;
  721. }
  722. /*
  723. * If p is throttled, we do nothing. In fact, if it exhausted
  724. * its budget it needs a replenishment and, since it now is on
  725. * its rq, the bandwidth timer callback (which clearly has not
  726. * run yet) will take care of this.
  727. */
  728. if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
  729. return;
  730. enqueue_dl_entity(&p->dl, pi_se, flags);
  731. if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
  732. enqueue_pushable_dl_task(rq, p);
  733. }
  734. static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
  735. {
  736. dequeue_dl_entity(&p->dl);
  737. dequeue_pushable_dl_task(rq, p);
  738. }
  739. static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
  740. {
  741. update_curr_dl(rq);
  742. __dequeue_task_dl(rq, p, flags);
  743. }
  744. /*
  745. * Yield task semantic for -deadline tasks is:
  746. *
  747. * get off from the CPU until our next instance, with
  748. * a new runtime. This is of little use now, since we
  749. * don't have a bandwidth reclaiming mechanism. Anyway,
  750. * bandwidth reclaiming is planned for the future, and
  751. * yield_task_dl will indicate that some spare budget
  752. * is available for other task instances to use it.
  753. */
  754. static void yield_task_dl(struct rq *rq)
  755. {
  756. struct task_struct *p = rq->curr;
  757. /*
  758. * We make the task go to sleep until its current deadline by
  759. * forcing its runtime to zero. This way, update_curr_dl() stops
  760. * it and the bandwidth timer will wake it up and will give it
  761. * new scheduling parameters (thanks to dl_yielded=1).
  762. */
  763. if (p->dl.runtime > 0) {
  764. rq->curr->dl.dl_yielded = 1;
  765. p->dl.runtime = 0;
  766. }
  767. update_curr_dl(rq);
  768. }
  769. #ifdef CONFIG_SMP
  770. static int find_later_rq(struct task_struct *task);
  771. static int
  772. select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
  773. {
  774. struct task_struct *curr;
  775. struct rq *rq;
  776. if (sd_flag != SD_BALANCE_WAKE)
  777. goto out;
  778. rq = cpu_rq(cpu);
  779. rcu_read_lock();
  780. curr = ACCESS_ONCE(rq->curr); /* unlocked access */
  781. /*
  782. * If we are dealing with a -deadline task, we must
  783. * decide where to wake it up.
  784. * If it has a later deadline and the current task
  785. * on this rq can't move (provided the waking task
  786. * can!) we prefer to send it somewhere else. On the
  787. * other hand, if it has a shorter deadline, we
  788. * try to make it stay here, it might be important.
  789. */
  790. if (unlikely(dl_task(curr)) &&
  791. (curr->nr_cpus_allowed < 2 ||
  792. !dl_entity_preempt(&p->dl, &curr->dl)) &&
  793. (p->nr_cpus_allowed > 1)) {
  794. int target = find_later_rq(p);
  795. if (target != -1)
  796. cpu = target;
  797. }
  798. rcu_read_unlock();
  799. out:
  800. return cpu;
  801. }
  802. static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
  803. {
  804. /*
  805. * Current can't be migrated, useless to reschedule,
  806. * let's hope p can move out.
  807. */
  808. if (rq->curr->nr_cpus_allowed == 1 ||
  809. cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
  810. return;
  811. /*
  812. * p is migratable, so let's not schedule it and
  813. * see if it is pushed or pulled somewhere else.
  814. */
  815. if (p->nr_cpus_allowed != 1 &&
  816. cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
  817. return;
  818. resched_curr(rq);
  819. }
  820. static int pull_dl_task(struct rq *this_rq);
  821. #endif /* CONFIG_SMP */
  822. /*
  823. * Only called when both the current and waking task are -deadline
  824. * tasks.
  825. */
  826. static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
  827. int flags)
  828. {
  829. if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
  830. resched_curr(rq);
  831. return;
  832. }
  833. #ifdef CONFIG_SMP
  834. /*
  835. * In the unlikely case current and p have the same deadline
  836. * let us try to decide what's the best thing to do...
  837. */
  838. if ((p->dl.deadline == rq->curr->dl.deadline) &&
  839. !test_tsk_need_resched(rq->curr))
  840. check_preempt_equal_dl(rq, p);
  841. #endif /* CONFIG_SMP */
  842. }
  843. #ifdef CONFIG_SCHED_HRTICK
  844. static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
  845. {
  846. hrtick_start(rq, p->dl.runtime);
  847. }
  848. #else /* !CONFIG_SCHED_HRTICK */
  849. static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
  850. {
  851. }
  852. #endif
  853. static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
  854. struct dl_rq *dl_rq)
  855. {
  856. struct rb_node *left = dl_rq->rb_leftmost;
  857. if (!left)
  858. return NULL;
  859. return rb_entry(left, struct sched_dl_entity, rb_node);
  860. }
  861. struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
  862. {
  863. struct sched_dl_entity *dl_se;
  864. struct task_struct *p;
  865. struct dl_rq *dl_rq;
  866. dl_rq = &rq->dl;
  867. if (need_pull_dl_task(rq, prev)) {
  868. pull_dl_task(rq);
  869. /*
  870. * pull_rt_task() can drop (and re-acquire) rq->lock; this
  871. * means a stop task can slip in, in which case we need to
  872. * re-start task selection.
  873. */
  874. if (rq->stop && task_on_rq_queued(rq->stop))
  875. return RETRY_TASK;
  876. }
  877. /*
  878. * When prev is DL, we may throttle it in put_prev_task().
  879. * So, we update time before we check for dl_nr_running.
  880. */
  881. if (prev->sched_class == &dl_sched_class)
  882. update_curr_dl(rq);
  883. if (unlikely(!dl_rq->dl_nr_running))
  884. return NULL;
  885. put_prev_task(rq, prev);
  886. dl_se = pick_next_dl_entity(rq, dl_rq);
  887. BUG_ON(!dl_se);
  888. p = dl_task_of(dl_se);
  889. p->se.exec_start = rq_clock_task(rq);
  890. /* Running task will never be pushed. */
  891. dequeue_pushable_dl_task(rq, p);
  892. if (hrtick_enabled(rq))
  893. start_hrtick_dl(rq, p);
  894. set_post_schedule(rq);
  895. return p;
  896. }
  897. static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
  898. {
  899. update_curr_dl(rq);
  900. if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
  901. enqueue_pushable_dl_task(rq, p);
  902. }
  903. static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
  904. {
  905. update_curr_dl(rq);
  906. /*
  907. * Even when we have runtime, update_curr_dl() might have resulted in us
  908. * not being the leftmost task anymore. In that case NEED_RESCHED will
  909. * be set and schedule() will start a new hrtick for the next task.
  910. */
  911. if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
  912. is_leftmost(p, &rq->dl))
  913. start_hrtick_dl(rq, p);
  914. }
  915. static void task_fork_dl(struct task_struct *p)
  916. {
  917. /*
  918. * SCHED_DEADLINE tasks cannot fork and this is achieved through
  919. * sched_fork()
  920. */
  921. }
  922. static void task_dead_dl(struct task_struct *p)
  923. {
  924. struct hrtimer *timer = &p->dl.dl_timer;
  925. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  926. /*
  927. * Since we are TASK_DEAD we won't slip out of the domain!
  928. */
  929. raw_spin_lock_irq(&dl_b->lock);
  930. /* XXX we should retain the bw until 0-lag */
  931. dl_b->total_bw -= p->dl.dl_bw;
  932. raw_spin_unlock_irq(&dl_b->lock);
  933. hrtimer_cancel(timer);
  934. }
  935. static void set_curr_task_dl(struct rq *rq)
  936. {
  937. struct task_struct *p = rq->curr;
  938. p->se.exec_start = rq_clock_task(rq);
  939. /* You can't push away the running task */
  940. dequeue_pushable_dl_task(rq, p);
  941. }
  942. #ifdef CONFIG_SMP
  943. /* Only try algorithms three times */
  944. #define DL_MAX_TRIES 3
  945. static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
  946. {
  947. if (!task_running(rq, p) &&
  948. cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  949. return 1;
  950. return 0;
  951. }
  952. /* Returns the second earliest -deadline task, NULL otherwise */
  953. static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
  954. {
  955. struct rb_node *next_node = rq->dl.rb_leftmost;
  956. struct sched_dl_entity *dl_se;
  957. struct task_struct *p = NULL;
  958. next_node:
  959. next_node = rb_next(next_node);
  960. if (next_node) {
  961. dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
  962. p = dl_task_of(dl_se);
  963. if (pick_dl_task(rq, p, cpu))
  964. return p;
  965. goto next_node;
  966. }
  967. return NULL;
  968. }
  969. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
  970. static int find_later_rq(struct task_struct *task)
  971. {
  972. struct sched_domain *sd;
  973. struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
  974. int this_cpu = smp_processor_id();
  975. int best_cpu, cpu = task_cpu(task);
  976. /* Make sure the mask is initialized first */
  977. if (unlikely(!later_mask))
  978. return -1;
  979. if (task->nr_cpus_allowed == 1)
  980. return -1;
  981. /*
  982. * We have to consider system topology and task affinity
  983. * first, then we can look for a suitable cpu.
  984. */
  985. best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
  986. task, later_mask);
  987. if (best_cpu == -1)
  988. return -1;
  989. /*
  990. * If we are here, some target has been found,
  991. * the most suitable of which is cached in best_cpu.
  992. * This is, among the runqueues where the current tasks
  993. * have later deadlines than the task's one, the rq
  994. * with the latest possible one.
  995. *
  996. * Now we check how well this matches with task's
  997. * affinity and system topology.
  998. *
  999. * The last cpu where the task run is our first
  1000. * guess, since it is most likely cache-hot there.
  1001. */
  1002. if (cpumask_test_cpu(cpu, later_mask))
  1003. return cpu;
  1004. /*
  1005. * Check if this_cpu is to be skipped (i.e., it is
  1006. * not in the mask) or not.
  1007. */
  1008. if (!cpumask_test_cpu(this_cpu, later_mask))
  1009. this_cpu = -1;
  1010. rcu_read_lock();
  1011. for_each_domain(cpu, sd) {
  1012. if (sd->flags & SD_WAKE_AFFINE) {
  1013. /*
  1014. * If possible, preempting this_cpu is
  1015. * cheaper than migrating.
  1016. */
  1017. if (this_cpu != -1 &&
  1018. cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
  1019. rcu_read_unlock();
  1020. return this_cpu;
  1021. }
  1022. /*
  1023. * Last chance: if best_cpu is valid and is
  1024. * in the mask, that becomes our choice.
  1025. */
  1026. if (best_cpu < nr_cpu_ids &&
  1027. cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
  1028. rcu_read_unlock();
  1029. return best_cpu;
  1030. }
  1031. }
  1032. }
  1033. rcu_read_unlock();
  1034. /*
  1035. * At this point, all our guesses failed, we just return
  1036. * 'something', and let the caller sort the things out.
  1037. */
  1038. if (this_cpu != -1)
  1039. return this_cpu;
  1040. cpu = cpumask_any(later_mask);
  1041. if (cpu < nr_cpu_ids)
  1042. return cpu;
  1043. return -1;
  1044. }
  1045. /* Locks the rq it finds */
  1046. static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
  1047. {
  1048. struct rq *later_rq = NULL;
  1049. int tries;
  1050. int cpu;
  1051. for (tries = 0; tries < DL_MAX_TRIES; tries++) {
  1052. cpu = find_later_rq(task);
  1053. if ((cpu == -1) || (cpu == rq->cpu))
  1054. break;
  1055. later_rq = cpu_rq(cpu);
  1056. /* Retry if something changed. */
  1057. if (double_lock_balance(rq, later_rq)) {
  1058. if (unlikely(task_rq(task) != rq ||
  1059. !cpumask_test_cpu(later_rq->cpu,
  1060. &task->cpus_allowed) ||
  1061. task_running(rq, task) ||
  1062. !task_on_rq_queued(task))) {
  1063. double_unlock_balance(rq, later_rq);
  1064. later_rq = NULL;
  1065. break;
  1066. }
  1067. }
  1068. /*
  1069. * If the rq we found has no -deadline task, or
  1070. * its earliest one has a later deadline than our
  1071. * task, the rq is a good one.
  1072. */
  1073. if (!later_rq->dl.dl_nr_running ||
  1074. dl_time_before(task->dl.deadline,
  1075. later_rq->dl.earliest_dl.curr))
  1076. break;
  1077. /* Otherwise we try again. */
  1078. double_unlock_balance(rq, later_rq);
  1079. later_rq = NULL;
  1080. }
  1081. return later_rq;
  1082. }
  1083. static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
  1084. {
  1085. struct task_struct *p;
  1086. if (!has_pushable_dl_tasks(rq))
  1087. return NULL;
  1088. p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
  1089. struct task_struct, pushable_dl_tasks);
  1090. BUG_ON(rq->cpu != task_cpu(p));
  1091. BUG_ON(task_current(rq, p));
  1092. BUG_ON(p->nr_cpus_allowed <= 1);
  1093. BUG_ON(!task_on_rq_queued(p));
  1094. BUG_ON(!dl_task(p));
  1095. return p;
  1096. }
  1097. /*
  1098. * See if the non running -deadline tasks on this rq
  1099. * can be sent to some other CPU where they can preempt
  1100. * and start executing.
  1101. */
  1102. static int push_dl_task(struct rq *rq)
  1103. {
  1104. struct task_struct *next_task;
  1105. struct rq *later_rq;
  1106. int ret = 0;
  1107. if (!rq->dl.overloaded)
  1108. return 0;
  1109. next_task = pick_next_pushable_dl_task(rq);
  1110. if (!next_task)
  1111. return 0;
  1112. retry:
  1113. if (unlikely(next_task == rq->curr)) {
  1114. WARN_ON(1);
  1115. return 0;
  1116. }
  1117. /*
  1118. * If next_task preempts rq->curr, and rq->curr
  1119. * can move away, it makes sense to just reschedule
  1120. * without going further in pushing next_task.
  1121. */
  1122. if (dl_task(rq->curr) &&
  1123. dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
  1124. rq->curr->nr_cpus_allowed > 1) {
  1125. resched_curr(rq);
  1126. return 0;
  1127. }
  1128. /* We might release rq lock */
  1129. get_task_struct(next_task);
  1130. /* Will lock the rq it'll find */
  1131. later_rq = find_lock_later_rq(next_task, rq);
  1132. if (!later_rq) {
  1133. struct task_struct *task;
  1134. /*
  1135. * We must check all this again, since
  1136. * find_lock_later_rq releases rq->lock and it is
  1137. * then possible that next_task has migrated.
  1138. */
  1139. task = pick_next_pushable_dl_task(rq);
  1140. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1141. /*
  1142. * The task is still there. We don't try
  1143. * again, some other cpu will pull it when ready.
  1144. */
  1145. goto out;
  1146. }
  1147. if (!task)
  1148. /* No more tasks */
  1149. goto out;
  1150. put_task_struct(next_task);
  1151. next_task = task;
  1152. goto retry;
  1153. }
  1154. deactivate_task(rq, next_task, 0);
  1155. set_task_cpu(next_task, later_rq->cpu);
  1156. activate_task(later_rq, next_task, 0);
  1157. ret = 1;
  1158. resched_curr(later_rq);
  1159. double_unlock_balance(rq, later_rq);
  1160. out:
  1161. put_task_struct(next_task);
  1162. return ret;
  1163. }
  1164. static void push_dl_tasks(struct rq *rq)
  1165. {
  1166. /* Terminates as it moves a -deadline task */
  1167. while (push_dl_task(rq))
  1168. ;
  1169. }
  1170. static int pull_dl_task(struct rq *this_rq)
  1171. {
  1172. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1173. struct task_struct *p;
  1174. struct rq *src_rq;
  1175. u64 dmin = LONG_MAX;
  1176. if (likely(!dl_overloaded(this_rq)))
  1177. return 0;
  1178. /*
  1179. * Match the barrier from dl_set_overloaded; this guarantees that if we
  1180. * see overloaded we must also see the dlo_mask bit.
  1181. */
  1182. smp_rmb();
  1183. for_each_cpu(cpu, this_rq->rd->dlo_mask) {
  1184. if (this_cpu == cpu)
  1185. continue;
  1186. src_rq = cpu_rq(cpu);
  1187. /*
  1188. * It looks racy, abd it is! However, as in sched_rt.c,
  1189. * we are fine with this.
  1190. */
  1191. if (this_rq->dl.dl_nr_running &&
  1192. dl_time_before(this_rq->dl.earliest_dl.curr,
  1193. src_rq->dl.earliest_dl.next))
  1194. continue;
  1195. /* Might drop this_rq->lock */
  1196. double_lock_balance(this_rq, src_rq);
  1197. /*
  1198. * If there are no more pullable tasks on the
  1199. * rq, we're done with it.
  1200. */
  1201. if (src_rq->dl.dl_nr_running <= 1)
  1202. goto skip;
  1203. p = pick_next_earliest_dl_task(src_rq, this_cpu);
  1204. /*
  1205. * We found a task to be pulled if:
  1206. * - it preempts our current (if there's one),
  1207. * - it will preempt the last one we pulled (if any).
  1208. */
  1209. if (p && dl_time_before(p->dl.deadline, dmin) &&
  1210. (!this_rq->dl.dl_nr_running ||
  1211. dl_time_before(p->dl.deadline,
  1212. this_rq->dl.earliest_dl.curr))) {
  1213. WARN_ON(p == src_rq->curr);
  1214. WARN_ON(!task_on_rq_queued(p));
  1215. /*
  1216. * Then we pull iff p has actually an earlier
  1217. * deadline than the current task of its runqueue.
  1218. */
  1219. if (dl_time_before(p->dl.deadline,
  1220. src_rq->curr->dl.deadline))
  1221. goto skip;
  1222. ret = 1;
  1223. deactivate_task(src_rq, p, 0);
  1224. set_task_cpu(p, this_cpu);
  1225. activate_task(this_rq, p, 0);
  1226. dmin = p->dl.deadline;
  1227. /* Is there any other task even earlier? */
  1228. }
  1229. skip:
  1230. double_unlock_balance(this_rq, src_rq);
  1231. }
  1232. return ret;
  1233. }
  1234. static void post_schedule_dl(struct rq *rq)
  1235. {
  1236. push_dl_tasks(rq);
  1237. }
  1238. /*
  1239. * Since the task is not running and a reschedule is not going to happen
  1240. * anytime soon on its runqueue, we try pushing it away now.
  1241. */
  1242. static void task_woken_dl(struct rq *rq, struct task_struct *p)
  1243. {
  1244. if (!task_running(rq, p) &&
  1245. !test_tsk_need_resched(rq->curr) &&
  1246. has_pushable_dl_tasks(rq) &&
  1247. p->nr_cpus_allowed > 1 &&
  1248. dl_task(rq->curr) &&
  1249. (rq->curr->nr_cpus_allowed < 2 ||
  1250. !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
  1251. push_dl_tasks(rq);
  1252. }
  1253. }
  1254. static void set_cpus_allowed_dl(struct task_struct *p,
  1255. const struct cpumask *new_mask)
  1256. {
  1257. struct rq *rq;
  1258. struct root_domain *src_rd;
  1259. int weight;
  1260. BUG_ON(!dl_task(p));
  1261. rq = task_rq(p);
  1262. src_rd = rq->rd;
  1263. /*
  1264. * Migrating a SCHED_DEADLINE task between exclusive
  1265. * cpusets (different root_domains) entails a bandwidth
  1266. * update. We already made space for us in the destination
  1267. * domain (see cpuset_can_attach()).
  1268. */
  1269. if (!cpumask_intersects(src_rd->span, new_mask)) {
  1270. struct dl_bw *src_dl_b;
  1271. src_dl_b = dl_bw_of(cpu_of(rq));
  1272. /*
  1273. * We now free resources of the root_domain we are migrating
  1274. * off. In the worst case, sched_setattr() may temporary fail
  1275. * until we complete the update.
  1276. */
  1277. raw_spin_lock(&src_dl_b->lock);
  1278. __dl_clear(src_dl_b, p->dl.dl_bw);
  1279. raw_spin_unlock(&src_dl_b->lock);
  1280. }
  1281. /*
  1282. * Update only if the task is actually running (i.e.,
  1283. * it is on the rq AND it is not throttled).
  1284. */
  1285. if (!on_dl_rq(&p->dl))
  1286. return;
  1287. weight = cpumask_weight(new_mask);
  1288. /*
  1289. * Only update if the process changes its state from whether it
  1290. * can migrate or not.
  1291. */
  1292. if ((p->nr_cpus_allowed > 1) == (weight > 1))
  1293. return;
  1294. /*
  1295. * The process used to be able to migrate OR it can now migrate
  1296. */
  1297. if (weight <= 1) {
  1298. if (!task_current(rq, p))
  1299. dequeue_pushable_dl_task(rq, p);
  1300. BUG_ON(!rq->dl.dl_nr_migratory);
  1301. rq->dl.dl_nr_migratory--;
  1302. } else {
  1303. if (!task_current(rq, p))
  1304. enqueue_pushable_dl_task(rq, p);
  1305. rq->dl.dl_nr_migratory++;
  1306. }
  1307. update_dl_migration(&rq->dl);
  1308. }
  1309. /* Assumes rq->lock is held */
  1310. static void rq_online_dl(struct rq *rq)
  1311. {
  1312. if (rq->dl.overloaded)
  1313. dl_set_overload(rq);
  1314. cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
  1315. if (rq->dl.dl_nr_running > 0)
  1316. cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
  1317. }
  1318. /* Assumes rq->lock is held */
  1319. static void rq_offline_dl(struct rq *rq)
  1320. {
  1321. if (rq->dl.overloaded)
  1322. dl_clear_overload(rq);
  1323. cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
  1324. cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
  1325. }
  1326. void init_sched_dl_class(void)
  1327. {
  1328. unsigned int i;
  1329. for_each_possible_cpu(i)
  1330. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
  1331. GFP_KERNEL, cpu_to_node(i));
  1332. }
  1333. #endif /* CONFIG_SMP */
  1334. /*
  1335. * Ensure p's dl_timer is cancelled. May drop rq->lock for a while.
  1336. */
  1337. static void cancel_dl_timer(struct rq *rq, struct task_struct *p)
  1338. {
  1339. struct hrtimer *dl_timer = &p->dl.dl_timer;
  1340. /* Nobody will change task's class if pi_lock is held */
  1341. lockdep_assert_held(&p->pi_lock);
  1342. if (hrtimer_active(dl_timer)) {
  1343. int ret = hrtimer_try_to_cancel(dl_timer);
  1344. if (unlikely(ret == -1)) {
  1345. /*
  1346. * Note, p may migrate OR new deadline tasks
  1347. * may appear in rq when we are unlocking it.
  1348. * A caller of us must be fine with that.
  1349. */
  1350. raw_spin_unlock(&rq->lock);
  1351. hrtimer_cancel(dl_timer);
  1352. raw_spin_lock(&rq->lock);
  1353. }
  1354. }
  1355. }
  1356. static void switched_from_dl(struct rq *rq, struct task_struct *p)
  1357. {
  1358. /* XXX we should retain the bw until 0-lag */
  1359. cancel_dl_timer(rq, p);
  1360. __dl_clear_params(p);
  1361. /*
  1362. * Since this might be the only -deadline task on the rq,
  1363. * this is the right place to try to pull some other one
  1364. * from an overloaded cpu, if any.
  1365. */
  1366. if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
  1367. return;
  1368. if (pull_dl_task(rq))
  1369. resched_curr(rq);
  1370. }
  1371. /*
  1372. * When switching to -deadline, we may overload the rq, then
  1373. * we try to push someone off, if possible.
  1374. */
  1375. static void switched_to_dl(struct rq *rq, struct task_struct *p)
  1376. {
  1377. int check_resched = 1;
  1378. /*
  1379. * If p is throttled, don't consider the possibility
  1380. * of preempting rq->curr, the check will be done right
  1381. * after its runtime will get replenished.
  1382. */
  1383. if (unlikely(p->dl.dl_throttled))
  1384. return;
  1385. if (task_on_rq_queued(p) && rq->curr != p) {
  1386. #ifdef CONFIG_SMP
  1387. if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
  1388. push_dl_task(rq) && rq != task_rq(p))
  1389. /* Only reschedule if pushing failed */
  1390. check_resched = 0;
  1391. #endif /* CONFIG_SMP */
  1392. if (check_resched) {
  1393. if (dl_task(rq->curr))
  1394. check_preempt_curr_dl(rq, p, 0);
  1395. else
  1396. resched_curr(rq);
  1397. }
  1398. }
  1399. }
  1400. /*
  1401. * If the scheduling parameters of a -deadline task changed,
  1402. * a push or pull operation might be needed.
  1403. */
  1404. static void prio_changed_dl(struct rq *rq, struct task_struct *p,
  1405. int oldprio)
  1406. {
  1407. if (task_on_rq_queued(p) || rq->curr == p) {
  1408. #ifdef CONFIG_SMP
  1409. /*
  1410. * This might be too much, but unfortunately
  1411. * we don't have the old deadline value, and
  1412. * we can't argue if the task is increasing
  1413. * or lowering its prio, so...
  1414. */
  1415. if (!rq->dl.overloaded)
  1416. pull_dl_task(rq);
  1417. /*
  1418. * If we now have a earlier deadline task than p,
  1419. * then reschedule, provided p is still on this
  1420. * runqueue.
  1421. */
  1422. if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
  1423. rq->curr == p)
  1424. resched_curr(rq);
  1425. #else
  1426. /*
  1427. * Again, we don't know if p has a earlier
  1428. * or later deadline, so let's blindly set a
  1429. * (maybe not needed) rescheduling point.
  1430. */
  1431. resched_curr(rq);
  1432. #endif /* CONFIG_SMP */
  1433. } else
  1434. switched_to_dl(rq, p);
  1435. }
  1436. const struct sched_class dl_sched_class = {
  1437. .next = &rt_sched_class,
  1438. .enqueue_task = enqueue_task_dl,
  1439. .dequeue_task = dequeue_task_dl,
  1440. .yield_task = yield_task_dl,
  1441. .check_preempt_curr = check_preempt_curr_dl,
  1442. .pick_next_task = pick_next_task_dl,
  1443. .put_prev_task = put_prev_task_dl,
  1444. #ifdef CONFIG_SMP
  1445. .select_task_rq = select_task_rq_dl,
  1446. .set_cpus_allowed = set_cpus_allowed_dl,
  1447. .rq_online = rq_online_dl,
  1448. .rq_offline = rq_offline_dl,
  1449. .post_schedule = post_schedule_dl,
  1450. .task_woken = task_woken_dl,
  1451. #endif
  1452. .set_curr_task = set_curr_task_dl,
  1453. .task_tick = task_tick_dl,
  1454. .task_fork = task_fork_dl,
  1455. .task_dead = task_dead_dl,
  1456. .prio_changed = prio_changed_dl,
  1457. .switched_from = switched_from_dl,
  1458. .switched_to = switched_to_dl,
  1459. .update_curr = update_curr_dl,
  1460. };
  1461. #ifdef CONFIG_SCHED_DEBUG
  1462. extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
  1463. void print_dl_stats(struct seq_file *m, int cpu)
  1464. {
  1465. print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
  1466. }
  1467. #endif /* CONFIG_SCHED_DEBUG */