dev.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. /*
  2. * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3. * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4. * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17. */
  18. #include <linux/module.h>
  19. #include <linux/kernel.h>
  20. #include <linux/slab.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/can.h>
  24. #include <linux/can/dev.h>
  25. #include <linux/can/skb.h>
  26. #include <linux/can/netlink.h>
  27. #include <linux/can/led.h>
  28. #include <net/rtnetlink.h>
  29. #define MOD_DESC "CAN device driver interface"
  30. MODULE_DESCRIPTION(MOD_DESC);
  31. MODULE_LICENSE("GPL v2");
  32. MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  33. /* CAN DLC to real data length conversion helpers */
  34. static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  35. 8, 12, 16, 20, 24, 32, 48, 64};
  36. /* get data length from can_dlc with sanitized can_dlc */
  37. u8 can_dlc2len(u8 can_dlc)
  38. {
  39. return dlc2len[can_dlc & 0x0F];
  40. }
  41. EXPORT_SYMBOL_GPL(can_dlc2len);
  42. static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
  43. 9, 9, 9, 9, /* 9 - 12 */
  44. 10, 10, 10, 10, /* 13 - 16 */
  45. 11, 11, 11, 11, /* 17 - 20 */
  46. 12, 12, 12, 12, /* 21 - 24 */
  47. 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
  48. 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
  49. 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
  50. 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
  51. 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
  52. /* map the sanitized data length to an appropriate data length code */
  53. u8 can_len2dlc(u8 len)
  54. {
  55. if (unlikely(len > 64))
  56. return 0xF;
  57. return len2dlc[len];
  58. }
  59. EXPORT_SYMBOL_GPL(can_len2dlc);
  60. #ifdef CONFIG_CAN_CALC_BITTIMING
  61. #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  62. /*
  63. * Bit-timing calculation derived from:
  64. *
  65. * Code based on LinCAN sources and H8S2638 project
  66. * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  67. * Copyright 2005 Stanislav Marek
  68. * email: pisa@cmp.felk.cvut.cz
  69. *
  70. * Calculates proper bit-timing parameters for a specified bit-rate
  71. * and sample-point, which can then be used to set the bit-timing
  72. * registers of the CAN controller. You can find more information
  73. * in the header file linux/can/netlink.h.
  74. */
  75. static int can_update_spt(const struct can_bittiming_const *btc,
  76. int sampl_pt, int tseg, int *tseg1, int *tseg2)
  77. {
  78. *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  79. if (*tseg2 < btc->tseg2_min)
  80. *tseg2 = btc->tseg2_min;
  81. if (*tseg2 > btc->tseg2_max)
  82. *tseg2 = btc->tseg2_max;
  83. *tseg1 = tseg - *tseg2;
  84. if (*tseg1 > btc->tseg1_max) {
  85. *tseg1 = btc->tseg1_max;
  86. *tseg2 = tseg - *tseg1;
  87. }
  88. return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
  89. }
  90. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
  91. const struct can_bittiming_const *btc)
  92. {
  93. struct can_priv *priv = netdev_priv(dev);
  94. long best_error = 1000000000, error = 0;
  95. int best_tseg = 0, best_brp = 0, brp = 0;
  96. int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
  97. int spt_error = 1000, spt = 0, sampl_pt;
  98. long rate;
  99. u64 v64;
  100. /* Use CiA recommended sample points */
  101. if (bt->sample_point) {
  102. sampl_pt = bt->sample_point;
  103. } else {
  104. if (bt->bitrate > 800000)
  105. sampl_pt = 750;
  106. else if (bt->bitrate > 500000)
  107. sampl_pt = 800;
  108. else
  109. sampl_pt = 875;
  110. }
  111. /* tseg even = round down, odd = round up */
  112. for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
  113. tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
  114. tsegall = 1 + tseg / 2;
  115. /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
  116. brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
  117. /* chose brp step which is possible in system */
  118. brp = (brp / btc->brp_inc) * btc->brp_inc;
  119. if ((brp < btc->brp_min) || (brp > btc->brp_max))
  120. continue;
  121. rate = priv->clock.freq / (brp * tsegall);
  122. error = bt->bitrate - rate;
  123. /* tseg brp biterror */
  124. if (error < 0)
  125. error = -error;
  126. if (error > best_error)
  127. continue;
  128. best_error = error;
  129. if (error == 0) {
  130. spt = can_update_spt(btc, sampl_pt, tseg / 2,
  131. &tseg1, &tseg2);
  132. error = sampl_pt - spt;
  133. if (error < 0)
  134. error = -error;
  135. if (error > spt_error)
  136. continue;
  137. spt_error = error;
  138. }
  139. best_tseg = tseg / 2;
  140. best_brp = brp;
  141. if (error == 0)
  142. break;
  143. }
  144. if (best_error) {
  145. /* Error in one-tenth of a percent */
  146. error = (best_error * 1000) / bt->bitrate;
  147. if (error > CAN_CALC_MAX_ERROR) {
  148. netdev_err(dev,
  149. "bitrate error %ld.%ld%% too high\n",
  150. error / 10, error % 10);
  151. return -EDOM;
  152. } else {
  153. netdev_warn(dev, "bitrate error %ld.%ld%%\n",
  154. error / 10, error % 10);
  155. }
  156. }
  157. /* real sample point */
  158. bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
  159. &tseg1, &tseg2);
  160. v64 = (u64)best_brp * 1000000000UL;
  161. do_div(v64, priv->clock.freq);
  162. bt->tq = (u32)v64;
  163. bt->prop_seg = tseg1 / 2;
  164. bt->phase_seg1 = tseg1 - bt->prop_seg;
  165. bt->phase_seg2 = tseg2;
  166. /* check for sjw user settings */
  167. if (!bt->sjw || !btc->sjw_max)
  168. bt->sjw = 1;
  169. else {
  170. /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
  171. if (bt->sjw > btc->sjw_max)
  172. bt->sjw = btc->sjw_max;
  173. /* bt->sjw must not be higher than tseg2 */
  174. if (tseg2 < bt->sjw)
  175. bt->sjw = tseg2;
  176. }
  177. bt->brp = best_brp;
  178. /* real bit-rate */
  179. bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
  180. return 0;
  181. }
  182. #else /* !CONFIG_CAN_CALC_BITTIMING */
  183. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
  184. const struct can_bittiming_const *btc)
  185. {
  186. netdev_err(dev, "bit-timing calculation not available\n");
  187. return -EINVAL;
  188. }
  189. #endif /* CONFIG_CAN_CALC_BITTIMING */
  190. /*
  191. * Checks the validity of the specified bit-timing parameters prop_seg,
  192. * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
  193. * prescaler value brp. You can find more information in the header
  194. * file linux/can/netlink.h.
  195. */
  196. static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
  197. const struct can_bittiming_const *btc)
  198. {
  199. struct can_priv *priv = netdev_priv(dev);
  200. int tseg1, alltseg;
  201. u64 brp64;
  202. tseg1 = bt->prop_seg + bt->phase_seg1;
  203. if (!bt->sjw)
  204. bt->sjw = 1;
  205. if (bt->sjw > btc->sjw_max ||
  206. tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
  207. bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
  208. return -ERANGE;
  209. brp64 = (u64)priv->clock.freq * (u64)bt->tq;
  210. if (btc->brp_inc > 1)
  211. do_div(brp64, btc->brp_inc);
  212. brp64 += 500000000UL - 1;
  213. do_div(brp64, 1000000000UL); /* the practicable BRP */
  214. if (btc->brp_inc > 1)
  215. brp64 *= btc->brp_inc;
  216. bt->brp = (u32)brp64;
  217. if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
  218. return -EINVAL;
  219. alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
  220. bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
  221. bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
  222. return 0;
  223. }
  224. static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
  225. const struct can_bittiming_const *btc)
  226. {
  227. int err;
  228. /* Check if the CAN device has bit-timing parameters */
  229. if (!btc)
  230. return -EOPNOTSUPP;
  231. /*
  232. * Depending on the given can_bittiming parameter structure the CAN
  233. * timing parameters are calculated based on the provided bitrate OR
  234. * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
  235. * provided directly which are then checked and fixed up.
  236. */
  237. if (!bt->tq && bt->bitrate)
  238. err = can_calc_bittiming(dev, bt, btc);
  239. else if (bt->tq && !bt->bitrate)
  240. err = can_fixup_bittiming(dev, bt, btc);
  241. else
  242. err = -EINVAL;
  243. return err;
  244. }
  245. static void can_update_state_error_stats(struct net_device *dev,
  246. enum can_state new_state)
  247. {
  248. struct can_priv *priv = netdev_priv(dev);
  249. if (new_state <= priv->state)
  250. return;
  251. switch (new_state) {
  252. case CAN_STATE_ERROR_WARNING:
  253. priv->can_stats.error_warning++;
  254. break;
  255. case CAN_STATE_ERROR_PASSIVE:
  256. priv->can_stats.error_passive++;
  257. break;
  258. case CAN_STATE_BUS_OFF:
  259. priv->can_stats.bus_off++;
  260. break;
  261. default:
  262. break;
  263. }
  264. }
  265. static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
  266. {
  267. switch (state) {
  268. case CAN_STATE_ERROR_ACTIVE:
  269. return CAN_ERR_CRTL_ACTIVE;
  270. case CAN_STATE_ERROR_WARNING:
  271. return CAN_ERR_CRTL_TX_WARNING;
  272. case CAN_STATE_ERROR_PASSIVE:
  273. return CAN_ERR_CRTL_TX_PASSIVE;
  274. default:
  275. return 0;
  276. }
  277. }
  278. static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
  279. {
  280. switch (state) {
  281. case CAN_STATE_ERROR_ACTIVE:
  282. return CAN_ERR_CRTL_ACTIVE;
  283. case CAN_STATE_ERROR_WARNING:
  284. return CAN_ERR_CRTL_RX_WARNING;
  285. case CAN_STATE_ERROR_PASSIVE:
  286. return CAN_ERR_CRTL_RX_PASSIVE;
  287. default:
  288. return 0;
  289. }
  290. }
  291. void can_change_state(struct net_device *dev, struct can_frame *cf,
  292. enum can_state tx_state, enum can_state rx_state)
  293. {
  294. struct can_priv *priv = netdev_priv(dev);
  295. enum can_state new_state = max(tx_state, rx_state);
  296. if (unlikely(new_state == priv->state)) {
  297. netdev_warn(dev, "%s: oops, state did not change", __func__);
  298. return;
  299. }
  300. netdev_dbg(dev, "New error state: %d\n", new_state);
  301. can_update_state_error_stats(dev, new_state);
  302. priv->state = new_state;
  303. if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
  304. cf->can_id |= CAN_ERR_BUSOFF;
  305. return;
  306. }
  307. cf->can_id |= CAN_ERR_CRTL;
  308. cf->data[1] |= tx_state >= rx_state ?
  309. can_tx_state_to_frame(dev, tx_state) : 0;
  310. cf->data[1] |= tx_state <= rx_state ?
  311. can_rx_state_to_frame(dev, rx_state) : 0;
  312. }
  313. EXPORT_SYMBOL_GPL(can_change_state);
  314. /*
  315. * Local echo of CAN messages
  316. *
  317. * CAN network devices *should* support a local echo functionality
  318. * (see Documentation/networking/can.txt). To test the handling of CAN
  319. * interfaces that do not support the local echo both driver types are
  320. * implemented. In the case that the driver does not support the echo
  321. * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
  322. * to perform the echo as a fallback solution.
  323. */
  324. static void can_flush_echo_skb(struct net_device *dev)
  325. {
  326. struct can_priv *priv = netdev_priv(dev);
  327. struct net_device_stats *stats = &dev->stats;
  328. int i;
  329. for (i = 0; i < priv->echo_skb_max; i++) {
  330. if (priv->echo_skb[i]) {
  331. kfree_skb(priv->echo_skb[i]);
  332. priv->echo_skb[i] = NULL;
  333. stats->tx_dropped++;
  334. stats->tx_aborted_errors++;
  335. }
  336. }
  337. }
  338. /*
  339. * Put the skb on the stack to be looped backed locally lateron
  340. *
  341. * The function is typically called in the start_xmit function
  342. * of the device driver. The driver must protect access to
  343. * priv->echo_skb, if necessary.
  344. */
  345. void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
  346. unsigned int idx)
  347. {
  348. struct can_priv *priv = netdev_priv(dev);
  349. BUG_ON(idx >= priv->echo_skb_max);
  350. /* check flag whether this packet has to be looped back */
  351. if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
  352. (skb->protocol != htons(ETH_P_CAN) &&
  353. skb->protocol != htons(ETH_P_CANFD))) {
  354. kfree_skb(skb);
  355. return;
  356. }
  357. if (!priv->echo_skb[idx]) {
  358. skb = can_create_echo_skb(skb);
  359. if (!skb)
  360. return;
  361. /* make settings for echo to reduce code in irq context */
  362. skb->pkt_type = PACKET_BROADCAST;
  363. skb->ip_summed = CHECKSUM_UNNECESSARY;
  364. skb->dev = dev;
  365. /* save this skb for tx interrupt echo handling */
  366. priv->echo_skb[idx] = skb;
  367. } else {
  368. /* locking problem with netif_stop_queue() ?? */
  369. netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
  370. kfree_skb(skb);
  371. }
  372. }
  373. EXPORT_SYMBOL_GPL(can_put_echo_skb);
  374. /*
  375. * Get the skb from the stack and loop it back locally
  376. *
  377. * The function is typically called when the TX done interrupt
  378. * is handled in the device driver. The driver must protect
  379. * access to priv->echo_skb, if necessary.
  380. */
  381. unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
  382. {
  383. struct can_priv *priv = netdev_priv(dev);
  384. BUG_ON(idx >= priv->echo_skb_max);
  385. if (priv->echo_skb[idx]) {
  386. struct sk_buff *skb = priv->echo_skb[idx];
  387. struct can_frame *cf = (struct can_frame *)skb->data;
  388. u8 dlc = cf->can_dlc;
  389. netif_rx(priv->echo_skb[idx]);
  390. priv->echo_skb[idx] = NULL;
  391. return dlc;
  392. }
  393. return 0;
  394. }
  395. EXPORT_SYMBOL_GPL(can_get_echo_skb);
  396. /*
  397. * Remove the skb from the stack and free it.
  398. *
  399. * The function is typically called when TX failed.
  400. */
  401. void can_free_echo_skb(struct net_device *dev, unsigned int idx)
  402. {
  403. struct can_priv *priv = netdev_priv(dev);
  404. BUG_ON(idx >= priv->echo_skb_max);
  405. if (priv->echo_skb[idx]) {
  406. dev_kfree_skb_any(priv->echo_skb[idx]);
  407. priv->echo_skb[idx] = NULL;
  408. }
  409. }
  410. EXPORT_SYMBOL_GPL(can_free_echo_skb);
  411. /*
  412. * CAN device restart for bus-off recovery
  413. */
  414. static void can_restart(unsigned long data)
  415. {
  416. struct net_device *dev = (struct net_device *)data;
  417. struct can_priv *priv = netdev_priv(dev);
  418. struct net_device_stats *stats = &dev->stats;
  419. struct sk_buff *skb;
  420. struct can_frame *cf;
  421. int err;
  422. BUG_ON(netif_carrier_ok(dev));
  423. /*
  424. * No synchronization needed because the device is bus-off and
  425. * no messages can come in or go out.
  426. */
  427. can_flush_echo_skb(dev);
  428. /* send restart message upstream */
  429. skb = alloc_can_err_skb(dev, &cf);
  430. if (skb == NULL) {
  431. err = -ENOMEM;
  432. goto restart;
  433. }
  434. cf->can_id |= CAN_ERR_RESTARTED;
  435. netif_rx(skb);
  436. stats->rx_packets++;
  437. stats->rx_bytes += cf->can_dlc;
  438. restart:
  439. netdev_dbg(dev, "restarted\n");
  440. priv->can_stats.restarts++;
  441. /* Now restart the device */
  442. err = priv->do_set_mode(dev, CAN_MODE_START);
  443. netif_carrier_on(dev);
  444. if (err)
  445. netdev_err(dev, "Error %d during restart", err);
  446. }
  447. int can_restart_now(struct net_device *dev)
  448. {
  449. struct can_priv *priv = netdev_priv(dev);
  450. /*
  451. * A manual restart is only permitted if automatic restart is
  452. * disabled and the device is in the bus-off state
  453. */
  454. if (priv->restart_ms)
  455. return -EINVAL;
  456. if (priv->state != CAN_STATE_BUS_OFF)
  457. return -EBUSY;
  458. /* Runs as soon as possible in the timer context */
  459. mod_timer(&priv->restart_timer, jiffies);
  460. return 0;
  461. }
  462. /*
  463. * CAN bus-off
  464. *
  465. * This functions should be called when the device goes bus-off to
  466. * tell the netif layer that no more packets can be sent or received.
  467. * If enabled, a timer is started to trigger bus-off recovery.
  468. */
  469. void can_bus_off(struct net_device *dev)
  470. {
  471. struct can_priv *priv = netdev_priv(dev);
  472. netdev_dbg(dev, "bus-off\n");
  473. netif_carrier_off(dev);
  474. if (priv->restart_ms)
  475. mod_timer(&priv->restart_timer,
  476. jiffies + (priv->restart_ms * HZ) / 1000);
  477. }
  478. EXPORT_SYMBOL_GPL(can_bus_off);
  479. static void can_setup(struct net_device *dev)
  480. {
  481. dev->type = ARPHRD_CAN;
  482. dev->mtu = CAN_MTU;
  483. dev->hard_header_len = 0;
  484. dev->addr_len = 0;
  485. dev->tx_queue_len = 10;
  486. /* New-style flags. */
  487. dev->flags = IFF_NOARP;
  488. dev->features = NETIF_F_HW_CSUM;
  489. }
  490. struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
  491. {
  492. struct sk_buff *skb;
  493. skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
  494. sizeof(struct can_frame));
  495. if (unlikely(!skb))
  496. return NULL;
  497. skb->protocol = htons(ETH_P_CAN);
  498. skb->pkt_type = PACKET_BROADCAST;
  499. skb->ip_summed = CHECKSUM_UNNECESSARY;
  500. can_skb_reserve(skb);
  501. can_skb_prv(skb)->ifindex = dev->ifindex;
  502. *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  503. memset(*cf, 0, sizeof(struct can_frame));
  504. return skb;
  505. }
  506. EXPORT_SYMBOL_GPL(alloc_can_skb);
  507. struct sk_buff *alloc_canfd_skb(struct net_device *dev,
  508. struct canfd_frame **cfd)
  509. {
  510. struct sk_buff *skb;
  511. skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
  512. sizeof(struct canfd_frame));
  513. if (unlikely(!skb))
  514. return NULL;
  515. skb->protocol = htons(ETH_P_CANFD);
  516. skb->pkt_type = PACKET_BROADCAST;
  517. skb->ip_summed = CHECKSUM_UNNECESSARY;
  518. can_skb_reserve(skb);
  519. can_skb_prv(skb)->ifindex = dev->ifindex;
  520. *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
  521. memset(*cfd, 0, sizeof(struct canfd_frame));
  522. return skb;
  523. }
  524. EXPORT_SYMBOL_GPL(alloc_canfd_skb);
  525. struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
  526. {
  527. struct sk_buff *skb;
  528. skb = alloc_can_skb(dev, cf);
  529. if (unlikely(!skb))
  530. return NULL;
  531. (*cf)->can_id = CAN_ERR_FLAG;
  532. (*cf)->can_dlc = CAN_ERR_DLC;
  533. return skb;
  534. }
  535. EXPORT_SYMBOL_GPL(alloc_can_err_skb);
  536. /*
  537. * Allocate and setup space for the CAN network device
  538. */
  539. struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
  540. {
  541. struct net_device *dev;
  542. struct can_priv *priv;
  543. int size;
  544. if (echo_skb_max)
  545. size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
  546. echo_skb_max * sizeof(struct sk_buff *);
  547. else
  548. size = sizeof_priv;
  549. dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
  550. if (!dev)
  551. return NULL;
  552. priv = netdev_priv(dev);
  553. if (echo_skb_max) {
  554. priv->echo_skb_max = echo_skb_max;
  555. priv->echo_skb = (void *)priv +
  556. ALIGN(sizeof_priv, sizeof(struct sk_buff *));
  557. }
  558. priv->state = CAN_STATE_STOPPED;
  559. init_timer(&priv->restart_timer);
  560. return dev;
  561. }
  562. EXPORT_SYMBOL_GPL(alloc_candev);
  563. /*
  564. * Free space of the CAN network device
  565. */
  566. void free_candev(struct net_device *dev)
  567. {
  568. free_netdev(dev);
  569. }
  570. EXPORT_SYMBOL_GPL(free_candev);
  571. /*
  572. * changing MTU and control mode for CAN/CANFD devices
  573. */
  574. int can_change_mtu(struct net_device *dev, int new_mtu)
  575. {
  576. struct can_priv *priv = netdev_priv(dev);
  577. /* Do not allow changing the MTU while running */
  578. if (dev->flags & IFF_UP)
  579. return -EBUSY;
  580. /* allow change of MTU according to the CANFD ability of the device */
  581. switch (new_mtu) {
  582. case CAN_MTU:
  583. priv->ctrlmode &= ~CAN_CTRLMODE_FD;
  584. break;
  585. case CANFD_MTU:
  586. if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD))
  587. return -EINVAL;
  588. priv->ctrlmode |= CAN_CTRLMODE_FD;
  589. break;
  590. default:
  591. return -EINVAL;
  592. }
  593. dev->mtu = new_mtu;
  594. return 0;
  595. }
  596. EXPORT_SYMBOL_GPL(can_change_mtu);
  597. /*
  598. * Common open function when the device gets opened.
  599. *
  600. * This function should be called in the open function of the device
  601. * driver.
  602. */
  603. int open_candev(struct net_device *dev)
  604. {
  605. struct can_priv *priv = netdev_priv(dev);
  606. if (!priv->bittiming.bitrate) {
  607. netdev_err(dev, "bit-timing not yet defined\n");
  608. return -EINVAL;
  609. }
  610. /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
  611. if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
  612. (!priv->data_bittiming.bitrate ||
  613. (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
  614. netdev_err(dev, "incorrect/missing data bit-timing\n");
  615. return -EINVAL;
  616. }
  617. /* Switch carrier on if device was stopped while in bus-off state */
  618. if (!netif_carrier_ok(dev))
  619. netif_carrier_on(dev);
  620. setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
  621. return 0;
  622. }
  623. EXPORT_SYMBOL_GPL(open_candev);
  624. /*
  625. * Common close function for cleanup before the device gets closed.
  626. *
  627. * This function should be called in the close function of the device
  628. * driver.
  629. */
  630. void close_candev(struct net_device *dev)
  631. {
  632. struct can_priv *priv = netdev_priv(dev);
  633. del_timer_sync(&priv->restart_timer);
  634. can_flush_echo_skb(dev);
  635. }
  636. EXPORT_SYMBOL_GPL(close_candev);
  637. /*
  638. * CAN netlink interface
  639. */
  640. static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
  641. [IFLA_CAN_STATE] = { .type = NLA_U32 },
  642. [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
  643. [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
  644. [IFLA_CAN_RESTART] = { .type = NLA_U32 },
  645. [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
  646. [IFLA_CAN_BITTIMING_CONST]
  647. = { .len = sizeof(struct can_bittiming_const) },
  648. [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
  649. [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
  650. [IFLA_CAN_DATA_BITTIMING]
  651. = { .len = sizeof(struct can_bittiming) },
  652. [IFLA_CAN_DATA_BITTIMING_CONST]
  653. = { .len = sizeof(struct can_bittiming_const) },
  654. };
  655. static int can_changelink(struct net_device *dev,
  656. struct nlattr *tb[], struct nlattr *data[])
  657. {
  658. struct can_priv *priv = netdev_priv(dev);
  659. int err;
  660. /* We need synchronization with dev->stop() */
  661. ASSERT_RTNL();
  662. if (data[IFLA_CAN_BITTIMING]) {
  663. struct can_bittiming bt;
  664. /* Do not allow changing bittiming while running */
  665. if (dev->flags & IFF_UP)
  666. return -EBUSY;
  667. memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
  668. err = can_get_bittiming(dev, &bt, priv->bittiming_const);
  669. if (err)
  670. return err;
  671. memcpy(&priv->bittiming, &bt, sizeof(bt));
  672. if (priv->do_set_bittiming) {
  673. /* Finally, set the bit-timing registers */
  674. err = priv->do_set_bittiming(dev);
  675. if (err)
  676. return err;
  677. }
  678. }
  679. if (data[IFLA_CAN_CTRLMODE]) {
  680. struct can_ctrlmode *cm;
  681. /* Do not allow changing controller mode while running */
  682. if (dev->flags & IFF_UP)
  683. return -EBUSY;
  684. cm = nla_data(data[IFLA_CAN_CTRLMODE]);
  685. /* check whether changed bits are allowed to be modified */
  686. if (cm->mask & ~priv->ctrlmode_supported)
  687. return -EOPNOTSUPP;
  688. /* clear bits to be modified and copy the flag values */
  689. priv->ctrlmode &= ~cm->mask;
  690. priv->ctrlmode |= (cm->flags & cm->mask);
  691. /* CAN_CTRLMODE_FD can only be set when driver supports FD */
  692. if (priv->ctrlmode & CAN_CTRLMODE_FD)
  693. dev->mtu = CANFD_MTU;
  694. else
  695. dev->mtu = CAN_MTU;
  696. }
  697. if (data[IFLA_CAN_RESTART_MS]) {
  698. /* Do not allow changing restart delay while running */
  699. if (dev->flags & IFF_UP)
  700. return -EBUSY;
  701. priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
  702. }
  703. if (data[IFLA_CAN_RESTART]) {
  704. /* Do not allow a restart while not running */
  705. if (!(dev->flags & IFF_UP))
  706. return -EINVAL;
  707. err = can_restart_now(dev);
  708. if (err)
  709. return err;
  710. }
  711. if (data[IFLA_CAN_DATA_BITTIMING]) {
  712. struct can_bittiming dbt;
  713. /* Do not allow changing bittiming while running */
  714. if (dev->flags & IFF_UP)
  715. return -EBUSY;
  716. memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
  717. sizeof(dbt));
  718. err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
  719. if (err)
  720. return err;
  721. memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
  722. if (priv->do_set_data_bittiming) {
  723. /* Finally, set the bit-timing registers */
  724. err = priv->do_set_data_bittiming(dev);
  725. if (err)
  726. return err;
  727. }
  728. }
  729. return 0;
  730. }
  731. static size_t can_get_size(const struct net_device *dev)
  732. {
  733. struct can_priv *priv = netdev_priv(dev);
  734. size_t size = 0;
  735. if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
  736. size += nla_total_size(sizeof(struct can_bittiming));
  737. if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
  738. size += nla_total_size(sizeof(struct can_bittiming_const));
  739. size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
  740. size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
  741. size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
  742. size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
  743. if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
  744. size += nla_total_size(sizeof(struct can_berr_counter));
  745. if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
  746. size += nla_total_size(sizeof(struct can_bittiming));
  747. if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
  748. size += nla_total_size(sizeof(struct can_bittiming_const));
  749. return size;
  750. }
  751. static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
  752. {
  753. struct can_priv *priv = netdev_priv(dev);
  754. struct can_ctrlmode cm = {.flags = priv->ctrlmode};
  755. struct can_berr_counter bec;
  756. enum can_state state = priv->state;
  757. if (priv->do_get_state)
  758. priv->do_get_state(dev, &state);
  759. if ((priv->bittiming.bitrate &&
  760. nla_put(skb, IFLA_CAN_BITTIMING,
  761. sizeof(priv->bittiming), &priv->bittiming)) ||
  762. (priv->bittiming_const &&
  763. nla_put(skb, IFLA_CAN_BITTIMING_CONST,
  764. sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
  765. nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) ||
  766. nla_put_u32(skb, IFLA_CAN_STATE, state) ||
  767. nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
  768. nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
  769. (priv->do_get_berr_counter &&
  770. !priv->do_get_berr_counter(dev, &bec) &&
  771. nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
  772. (priv->data_bittiming.bitrate &&
  773. nla_put(skb, IFLA_CAN_DATA_BITTIMING,
  774. sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
  775. (priv->data_bittiming_const &&
  776. nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
  777. sizeof(*priv->data_bittiming_const),
  778. priv->data_bittiming_const)))
  779. return -EMSGSIZE;
  780. return 0;
  781. }
  782. static size_t can_get_xstats_size(const struct net_device *dev)
  783. {
  784. return sizeof(struct can_device_stats);
  785. }
  786. static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
  787. {
  788. struct can_priv *priv = netdev_priv(dev);
  789. if (nla_put(skb, IFLA_INFO_XSTATS,
  790. sizeof(priv->can_stats), &priv->can_stats))
  791. goto nla_put_failure;
  792. return 0;
  793. nla_put_failure:
  794. return -EMSGSIZE;
  795. }
  796. static int can_newlink(struct net *src_net, struct net_device *dev,
  797. struct nlattr *tb[], struct nlattr *data[])
  798. {
  799. return -EOPNOTSUPP;
  800. }
  801. static struct rtnl_link_ops can_link_ops __read_mostly = {
  802. .kind = "can",
  803. .maxtype = IFLA_CAN_MAX,
  804. .policy = can_policy,
  805. .setup = can_setup,
  806. .newlink = can_newlink,
  807. .changelink = can_changelink,
  808. .get_size = can_get_size,
  809. .fill_info = can_fill_info,
  810. .get_xstats_size = can_get_xstats_size,
  811. .fill_xstats = can_fill_xstats,
  812. };
  813. /*
  814. * Register the CAN network device
  815. */
  816. int register_candev(struct net_device *dev)
  817. {
  818. dev->rtnl_link_ops = &can_link_ops;
  819. return register_netdev(dev);
  820. }
  821. EXPORT_SYMBOL_GPL(register_candev);
  822. /*
  823. * Unregister the CAN network device
  824. */
  825. void unregister_candev(struct net_device *dev)
  826. {
  827. unregister_netdev(dev);
  828. }
  829. EXPORT_SYMBOL_GPL(unregister_candev);
  830. /*
  831. * Test if a network device is a candev based device
  832. * and return the can_priv* if so.
  833. */
  834. struct can_priv *safe_candev_priv(struct net_device *dev)
  835. {
  836. if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
  837. return NULL;
  838. return netdev_priv(dev);
  839. }
  840. EXPORT_SYMBOL_GPL(safe_candev_priv);
  841. static __init int can_dev_init(void)
  842. {
  843. int err;
  844. can_led_notifier_init();
  845. err = rtnl_link_register(&can_link_ops);
  846. if (!err)
  847. printk(KERN_INFO MOD_DESC "\n");
  848. return err;
  849. }
  850. module_init(can_dev_init);
  851. static __exit void can_dev_exit(void)
  852. {
  853. rtnl_link_unregister(&can_link_ops);
  854. can_led_notifier_exit();
  855. }
  856. module_exit(can_dev_exit);
  857. MODULE_ALIAS_RTNL_LINK("can");