intel_ringbuffer.c 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. struct intel_ring *ring = req->ring;
  59. u32 cmd;
  60. int ret;
  61. cmd = MI_FLUSH;
  62. if (mode & EMIT_INVALIDATE)
  63. cmd |= MI_READ_FLUSH;
  64. ret = intel_ring_begin(req, 2);
  65. if (ret)
  66. return ret;
  67. intel_ring_emit(ring, cmd);
  68. intel_ring_emit(ring, MI_NOOP);
  69. intel_ring_advance(ring);
  70. return 0;
  71. }
  72. static int
  73. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  74. {
  75. struct intel_ring *ring = req->ring;
  76. u32 cmd;
  77. int ret;
  78. /*
  79. * read/write caches:
  80. *
  81. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  82. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  83. * also flushed at 2d versus 3d pipeline switches.
  84. *
  85. * read-only caches:
  86. *
  87. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  88. * MI_READ_FLUSH is set, and is always flushed on 965.
  89. *
  90. * I915_GEM_DOMAIN_COMMAND may not exist?
  91. *
  92. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  93. * invalidated when MI_EXE_FLUSH is set.
  94. *
  95. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  96. * invalidated with every MI_FLUSH.
  97. *
  98. * TLBs:
  99. *
  100. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  101. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  102. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  103. * are flushed at any MI_FLUSH.
  104. */
  105. cmd = MI_FLUSH;
  106. if (mode & EMIT_INVALIDATE) {
  107. cmd |= MI_EXE_FLUSH;
  108. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  109. cmd |= MI_INVALIDATE_ISP;
  110. }
  111. ret = intel_ring_begin(req, 2);
  112. if (ret)
  113. return ret;
  114. intel_ring_emit(ring, cmd);
  115. intel_ring_emit(ring, MI_NOOP);
  116. intel_ring_advance(ring);
  117. return 0;
  118. }
  119. /**
  120. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  121. * implementing two workarounds on gen6. From section 1.4.7.1
  122. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  123. *
  124. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  125. * produced by non-pipelined state commands), software needs to first
  126. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  127. * 0.
  128. *
  129. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  130. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  131. *
  132. * And the workaround for these two requires this workaround first:
  133. *
  134. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  135. * BEFORE the pipe-control with a post-sync op and no write-cache
  136. * flushes.
  137. *
  138. * And this last workaround is tricky because of the requirements on
  139. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  140. * volume 2 part 1:
  141. *
  142. * "1 of the following must also be set:
  143. * - Render Target Cache Flush Enable ([12] of DW1)
  144. * - Depth Cache Flush Enable ([0] of DW1)
  145. * - Stall at Pixel Scoreboard ([1] of DW1)
  146. * - Depth Stall ([13] of DW1)
  147. * - Post-Sync Operation ([13] of DW1)
  148. * - Notify Enable ([8] of DW1)"
  149. *
  150. * The cache flushes require the workaround flush that triggered this
  151. * one, so we can't use it. Depth stall would trigger the same.
  152. * Post-sync nonzero is what triggered this second workaround, so we
  153. * can't use that one either. Notify enable is IRQs, which aren't
  154. * really our business. That leaves only stall at scoreboard.
  155. */
  156. static int
  157. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  158. {
  159. struct intel_ring *ring = req->ring;
  160. u32 scratch_addr =
  161. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  162. int ret;
  163. ret = intel_ring_begin(req, 6);
  164. if (ret)
  165. return ret;
  166. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  167. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  168. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  169. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  170. intel_ring_emit(ring, 0); /* low dword */
  171. intel_ring_emit(ring, 0); /* high dword */
  172. intel_ring_emit(ring, MI_NOOP);
  173. intel_ring_advance(ring);
  174. ret = intel_ring_begin(req, 6);
  175. if (ret)
  176. return ret;
  177. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  178. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  179. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, 0);
  182. intel_ring_emit(ring, MI_NOOP);
  183. intel_ring_advance(ring);
  184. return 0;
  185. }
  186. static int
  187. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  188. {
  189. struct intel_ring *ring = req->ring;
  190. u32 scratch_addr =
  191. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  192. u32 flags = 0;
  193. int ret;
  194. /* Force SNB workarounds for PIPE_CONTROL flushes */
  195. ret = intel_emit_post_sync_nonzero_flush(req);
  196. if (ret)
  197. return ret;
  198. /* Just flush everything. Experiments have shown that reducing the
  199. * number of bits based on the write domains has little performance
  200. * impact.
  201. */
  202. if (mode & EMIT_FLUSH) {
  203. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  204. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  205. /*
  206. * Ensure that any following seqno writes only happen
  207. * when the render cache is indeed flushed.
  208. */
  209. flags |= PIPE_CONTROL_CS_STALL;
  210. }
  211. if (mode & EMIT_INVALIDATE) {
  212. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  213. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  216. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  217. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  218. /*
  219. * TLB invalidate requires a post-sync write.
  220. */
  221. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  222. }
  223. ret = intel_ring_begin(req, 4);
  224. if (ret)
  225. return ret;
  226. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  227. intel_ring_emit(ring, flags);
  228. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  229. intel_ring_emit(ring, 0);
  230. intel_ring_advance(ring);
  231. return 0;
  232. }
  233. static int
  234. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  235. {
  236. struct intel_ring *ring = req->ring;
  237. int ret;
  238. ret = intel_ring_begin(req, 4);
  239. if (ret)
  240. return ret;
  241. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  242. intel_ring_emit(ring,
  243. PIPE_CONTROL_CS_STALL |
  244. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  245. intel_ring_emit(ring, 0);
  246. intel_ring_emit(ring, 0);
  247. intel_ring_advance(ring);
  248. return 0;
  249. }
  250. static int
  251. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  252. {
  253. struct intel_ring *ring = req->ring;
  254. u32 scratch_addr =
  255. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  256. u32 flags = 0;
  257. int ret;
  258. /*
  259. * Ensure that any following seqno writes only happen when the render
  260. * cache is indeed flushed.
  261. *
  262. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  263. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  264. * don't try to be clever and just set it unconditionally.
  265. */
  266. flags |= PIPE_CONTROL_CS_STALL;
  267. /* Just flush everything. Experiments have shown that reducing the
  268. * number of bits based on the write domains has little performance
  269. * impact.
  270. */
  271. if (mode & EMIT_FLUSH) {
  272. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  273. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  274. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  275. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  276. }
  277. if (mode & EMIT_INVALIDATE) {
  278. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  279. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  280. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  281. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  285. /*
  286. * TLB invalidate requires a post-sync write.
  287. */
  288. flags |= PIPE_CONTROL_QW_WRITE;
  289. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  290. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(req);
  295. }
  296. ret = intel_ring_begin(req, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. return 0;
  305. }
  306. static int
  307. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  308. u32 flags, u32 scratch_addr)
  309. {
  310. struct intel_ring *ring = req->ring;
  311. int ret;
  312. ret = intel_ring_begin(req, 6);
  313. if (ret)
  314. return ret;
  315. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  316. intel_ring_emit(ring, flags);
  317. intel_ring_emit(ring, scratch_addr);
  318. intel_ring_emit(ring, 0);
  319. intel_ring_emit(ring, 0);
  320. intel_ring_emit(ring, 0);
  321. intel_ring_advance(ring);
  322. return 0;
  323. }
  324. static int
  325. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  326. {
  327. u32 scratch_addr =
  328. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  329. u32 flags = 0;
  330. int ret;
  331. flags |= PIPE_CONTROL_CS_STALL;
  332. if (mode & EMIT_FLUSH) {
  333. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  334. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  335. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  336. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  337. }
  338. if (mode & EMIT_INVALIDATE) {
  339. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  340. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  341. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  342. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  343. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  344. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  345. flags |= PIPE_CONTROL_QW_WRITE;
  346. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  347. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  348. ret = gen8_emit_pipe_control(req,
  349. PIPE_CONTROL_CS_STALL |
  350. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  351. 0);
  352. if (ret)
  353. return ret;
  354. }
  355. return gen8_emit_pipe_control(req, flags, scratch_addr);
  356. }
  357. u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
  358. {
  359. struct drm_i915_private *dev_priv = engine->i915;
  360. u64 acthd;
  361. if (INTEL_GEN(dev_priv) >= 8)
  362. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  363. RING_ACTHD_UDW(engine->mmio_base));
  364. else if (INTEL_GEN(dev_priv) >= 4)
  365. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  366. else
  367. acthd = I915_READ(ACTHD);
  368. return acthd;
  369. }
  370. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  371. {
  372. struct drm_i915_private *dev_priv = engine->i915;
  373. u32 addr;
  374. addr = dev_priv->status_page_dmah->busaddr;
  375. if (INTEL_GEN(dev_priv) >= 4)
  376. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  377. I915_WRITE(HWS_PGA, addr);
  378. }
  379. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  380. {
  381. struct drm_i915_private *dev_priv = engine->i915;
  382. i915_reg_t mmio;
  383. /* The ring status page addresses are no longer next to the rest of
  384. * the ring registers as of gen7.
  385. */
  386. if (IS_GEN7(dev_priv)) {
  387. switch (engine->id) {
  388. case RCS:
  389. mmio = RENDER_HWS_PGA_GEN7;
  390. break;
  391. case BCS:
  392. mmio = BLT_HWS_PGA_GEN7;
  393. break;
  394. /*
  395. * VCS2 actually doesn't exist on Gen7. Only shut up
  396. * gcc switch check warning
  397. */
  398. case VCS2:
  399. case VCS:
  400. mmio = BSD_HWS_PGA_GEN7;
  401. break;
  402. case VECS:
  403. mmio = VEBOX_HWS_PGA_GEN7;
  404. break;
  405. }
  406. } else if (IS_GEN6(dev_priv)) {
  407. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  408. } else {
  409. /* XXX: gen8 returns to sanity */
  410. mmio = RING_HWS_PGA(engine->mmio_base);
  411. }
  412. I915_WRITE(mmio, engine->status_page.ggtt_offset);
  413. POSTING_READ(mmio);
  414. /*
  415. * Flush the TLB for this page
  416. *
  417. * FIXME: These two bits have disappeared on gen8, so a question
  418. * arises: do we still need this and if so how should we go about
  419. * invalidating the TLB?
  420. */
  421. if (IS_GEN(dev_priv, 6, 7)) {
  422. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  423. /* ring should be idle before issuing a sync flush*/
  424. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  425. I915_WRITE(reg,
  426. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  427. INSTPM_SYNC_FLUSH));
  428. if (intel_wait_for_register(dev_priv,
  429. reg, INSTPM_SYNC_FLUSH, 0,
  430. 1000))
  431. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  432. engine->name);
  433. }
  434. }
  435. static bool stop_ring(struct intel_engine_cs *engine)
  436. {
  437. struct drm_i915_private *dev_priv = engine->i915;
  438. if (INTEL_GEN(dev_priv) > 2) {
  439. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  440. if (intel_wait_for_register(dev_priv,
  441. RING_MI_MODE(engine->mmio_base),
  442. MODE_IDLE,
  443. MODE_IDLE,
  444. 1000)) {
  445. DRM_ERROR("%s : timed out trying to stop ring\n",
  446. engine->name);
  447. /* Sometimes we observe that the idle flag is not
  448. * set even though the ring is empty. So double
  449. * check before giving up.
  450. */
  451. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  452. return false;
  453. }
  454. }
  455. I915_WRITE_CTL(engine, 0);
  456. I915_WRITE_HEAD(engine, 0);
  457. I915_WRITE_TAIL(engine, 0);
  458. if (INTEL_GEN(dev_priv) > 2) {
  459. (void)I915_READ_CTL(engine);
  460. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  461. }
  462. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  463. }
  464. static int init_ring_common(struct intel_engine_cs *engine)
  465. {
  466. struct drm_i915_private *dev_priv = engine->i915;
  467. struct intel_ring *ring = engine->buffer;
  468. int ret = 0;
  469. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  470. if (!stop_ring(engine)) {
  471. /* G45 ring initialization often fails to reset head to zero */
  472. DRM_DEBUG_KMS("%s head not reset to zero "
  473. "ctl %08x head %08x tail %08x start %08x\n",
  474. engine->name,
  475. I915_READ_CTL(engine),
  476. I915_READ_HEAD(engine),
  477. I915_READ_TAIL(engine),
  478. I915_READ_START(engine));
  479. if (!stop_ring(engine)) {
  480. DRM_ERROR("failed to set %s head to zero "
  481. "ctl %08x head %08x tail %08x start %08x\n",
  482. engine->name,
  483. I915_READ_CTL(engine),
  484. I915_READ_HEAD(engine),
  485. I915_READ_TAIL(engine),
  486. I915_READ_START(engine));
  487. ret = -EIO;
  488. goto out;
  489. }
  490. }
  491. if (HWS_NEEDS_PHYSICAL(dev_priv))
  492. ring_setup_phys_status_page(engine);
  493. else
  494. intel_ring_setup_status_page(engine);
  495. intel_engine_reset_irq(engine);
  496. /* Enforce ordering by reading HEAD register back */
  497. I915_READ_HEAD(engine);
  498. /* Initialize the ring. This must happen _after_ we've cleared the ring
  499. * registers with the above sequence (the readback of the HEAD registers
  500. * also enforces ordering), otherwise the hw might lose the new ring
  501. * register values. */
  502. I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
  503. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  504. if (I915_READ_HEAD(engine))
  505. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  506. engine->name, I915_READ_HEAD(engine));
  507. intel_ring_update_space(ring);
  508. I915_WRITE_HEAD(engine, ring->head);
  509. I915_WRITE_TAIL(engine, ring->tail);
  510. (void)I915_READ_TAIL(engine);
  511. I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
  512. /* If the head is still not zero, the ring is dead */
  513. if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
  514. RING_VALID, RING_VALID,
  515. 50)) {
  516. DRM_ERROR("%s initialization failed "
  517. "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
  518. engine->name,
  519. I915_READ_CTL(engine),
  520. I915_READ_CTL(engine) & RING_VALID,
  521. I915_READ_HEAD(engine), ring->head,
  522. I915_READ_TAIL(engine), ring->tail,
  523. I915_READ_START(engine),
  524. i915_ggtt_offset(ring->vma));
  525. ret = -EIO;
  526. goto out;
  527. }
  528. intel_engine_init_hangcheck(engine);
  529. out:
  530. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  531. return ret;
  532. }
  533. static void reset_ring_common(struct intel_engine_cs *engine,
  534. struct drm_i915_gem_request *request)
  535. {
  536. struct intel_ring *ring = request->ring;
  537. ring->head = request->postfix;
  538. ring->last_retired_head = -1;
  539. }
  540. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  541. {
  542. struct intel_ring *ring = req->ring;
  543. struct i915_workarounds *w = &req->i915->workarounds;
  544. int ret, i;
  545. if (w->count == 0)
  546. return 0;
  547. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  548. if (ret)
  549. return ret;
  550. ret = intel_ring_begin(req, (w->count * 2 + 2));
  551. if (ret)
  552. return ret;
  553. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  554. for (i = 0; i < w->count; i++) {
  555. intel_ring_emit_reg(ring, w->reg[i].addr);
  556. intel_ring_emit(ring, w->reg[i].value);
  557. }
  558. intel_ring_emit(ring, MI_NOOP);
  559. intel_ring_advance(ring);
  560. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  561. if (ret)
  562. return ret;
  563. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  564. return 0;
  565. }
  566. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  567. {
  568. int ret;
  569. ret = intel_ring_workarounds_emit(req);
  570. if (ret != 0)
  571. return ret;
  572. ret = i915_gem_render_state_init(req);
  573. if (ret)
  574. return ret;
  575. return 0;
  576. }
  577. static int wa_add(struct drm_i915_private *dev_priv,
  578. i915_reg_t addr,
  579. const u32 mask, const u32 val)
  580. {
  581. const u32 idx = dev_priv->workarounds.count;
  582. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  583. return -ENOSPC;
  584. dev_priv->workarounds.reg[idx].addr = addr;
  585. dev_priv->workarounds.reg[idx].value = val;
  586. dev_priv->workarounds.reg[idx].mask = mask;
  587. dev_priv->workarounds.count++;
  588. return 0;
  589. }
  590. #define WA_REG(addr, mask, val) do { \
  591. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  592. if (r) \
  593. return r; \
  594. } while (0)
  595. #define WA_SET_BIT_MASKED(addr, mask) \
  596. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  597. #define WA_CLR_BIT_MASKED(addr, mask) \
  598. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  599. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  600. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  601. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  602. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  603. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  604. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  605. i915_reg_t reg)
  606. {
  607. struct drm_i915_private *dev_priv = engine->i915;
  608. struct i915_workarounds *wa = &dev_priv->workarounds;
  609. const uint32_t index = wa->hw_whitelist_count[engine->id];
  610. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  611. return -EINVAL;
  612. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  613. i915_mmio_reg_offset(reg));
  614. wa->hw_whitelist_count[engine->id]++;
  615. return 0;
  616. }
  617. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  618. {
  619. struct drm_i915_private *dev_priv = engine->i915;
  620. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  621. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  622. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  623. /* WaDisablePartialInstShootdown:bdw,chv */
  624. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  625. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  626. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  627. * workaround for for a possible hang in the unlikely event a TLB
  628. * invalidation occurs during a PSD flush.
  629. */
  630. /* WaForceEnableNonCoherent:bdw,chv */
  631. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  632. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  633. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  634. HDC_FORCE_NON_COHERENT);
  635. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  636. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  637. * polygons in the same 8x4 pixel/sample area to be processed without
  638. * stalling waiting for the earlier ones to write to Hierarchical Z
  639. * buffer."
  640. *
  641. * This optimization is off by default for BDW and CHV; turn it on.
  642. */
  643. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  644. /* Wa4x4STCOptimizationDisable:bdw,chv */
  645. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  646. /*
  647. * BSpec recommends 8x4 when MSAA is used,
  648. * however in practice 16x4 seems fastest.
  649. *
  650. * Note that PS/WM thread counts depend on the WIZ hashing
  651. * disable bit, which we don't touch here, but it's good
  652. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  653. */
  654. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  655. GEN6_WIZ_HASHING_MASK,
  656. GEN6_WIZ_HASHING_16x4);
  657. return 0;
  658. }
  659. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  660. {
  661. struct drm_i915_private *dev_priv = engine->i915;
  662. int ret;
  663. ret = gen8_init_workarounds(engine);
  664. if (ret)
  665. return ret;
  666. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  667. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  668. /* WaDisableDopClockGating:bdw */
  669. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  670. DOP_CLOCK_GATING_DISABLE);
  671. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  672. GEN8_SAMPLER_POWER_BYPASS_DIS);
  673. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  674. /* WaForceContextSaveRestoreNonCoherent:bdw */
  675. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  676. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  677. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  678. return 0;
  679. }
  680. static int chv_init_workarounds(struct intel_engine_cs *engine)
  681. {
  682. struct drm_i915_private *dev_priv = engine->i915;
  683. int ret;
  684. ret = gen8_init_workarounds(engine);
  685. if (ret)
  686. return ret;
  687. /* WaDisableThreadStallDopClockGating:chv */
  688. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  689. /* Improve HiZ throughput on CHV. */
  690. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  691. return 0;
  692. }
  693. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  694. {
  695. struct drm_i915_private *dev_priv = engine->i915;
  696. int ret;
  697. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  698. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  699. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  700. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  701. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  702. /* WaDisableKillLogic:bxt,skl,kbl */
  703. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  704. ECOCHK_DIS_TLB);
  705. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  706. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  707. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  708. FLOW_CONTROL_ENABLE |
  709. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  710. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  711. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  712. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  713. /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
  714. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  715. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  716. GEN9_DG_MIRROR_FIX_ENABLE);
  717. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
  718. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  719. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  720. GEN9_RHWO_OPTIMIZATION_DISABLE);
  721. /*
  722. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  723. * but we do that in per ctx batchbuffer as there is an issue
  724. * with this register not getting restored on ctx restore
  725. */
  726. }
  727. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  728. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  729. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  730. GEN9_ENABLE_YV12_BUGFIX |
  731. GEN9_ENABLE_GPGPU_PREEMPTION);
  732. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  733. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  734. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  735. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  736. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  737. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  738. GEN9_CCS_TLB_PREFETCH_ENABLE);
  739. /* WaDisableMaskBasedCammingInRCC:bxt */
  740. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  741. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  742. PIXEL_MASK_CAMMING_DISABLE);
  743. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  744. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  745. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  746. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  747. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  748. * both tied to WaForceContextSaveRestoreNonCoherent
  749. * in some hsds for skl. We keep the tie for all gen9. The
  750. * documentation is a bit hazy and so we want to get common behaviour,
  751. * even though there is no clear evidence we would need both on kbl/bxt.
  752. * This area has been source of system hangs so we play it safe
  753. * and mimic the skl regardless of what bspec says.
  754. *
  755. * Use Force Non-Coherent whenever executing a 3D context. This
  756. * is a workaround for a possible hang in the unlikely event
  757. * a TLB invalidation occurs during a PSD flush.
  758. */
  759. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  760. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  761. HDC_FORCE_NON_COHERENT);
  762. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  763. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  764. BDW_DISABLE_HDC_INVALIDATION);
  765. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  766. if (IS_SKYLAKE(dev_priv) ||
  767. IS_KABYLAKE(dev_priv) ||
  768. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  769. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  770. GEN8_SAMPLER_POWER_BYPASS_DIS);
  771. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  772. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  773. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  774. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  775. GEN8_LQSC_FLUSH_COHERENT_LINES));
  776. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  777. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  778. if (ret)
  779. return ret;
  780. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  781. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  782. if (ret)
  783. return ret;
  784. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  785. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  786. if (ret)
  787. return ret;
  788. return 0;
  789. }
  790. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  791. {
  792. struct drm_i915_private *dev_priv = engine->i915;
  793. u8 vals[3] = { 0, 0, 0 };
  794. unsigned int i;
  795. for (i = 0; i < 3; i++) {
  796. u8 ss;
  797. /*
  798. * Only consider slices where one, and only one, subslice has 7
  799. * EUs
  800. */
  801. if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
  802. continue;
  803. /*
  804. * subslice_7eu[i] != 0 (because of the check above) and
  805. * ss_max == 4 (maximum number of subslices possible per slice)
  806. *
  807. * -> 0 <= ss <= 3;
  808. */
  809. ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
  810. vals[i] = 3 - ss;
  811. }
  812. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  813. return 0;
  814. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  815. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  816. GEN9_IZ_HASHING_MASK(2) |
  817. GEN9_IZ_HASHING_MASK(1) |
  818. GEN9_IZ_HASHING_MASK(0),
  819. GEN9_IZ_HASHING(2, vals[2]) |
  820. GEN9_IZ_HASHING(1, vals[1]) |
  821. GEN9_IZ_HASHING(0, vals[0]));
  822. return 0;
  823. }
  824. static int skl_init_workarounds(struct intel_engine_cs *engine)
  825. {
  826. struct drm_i915_private *dev_priv = engine->i915;
  827. int ret;
  828. ret = gen9_init_workarounds(engine);
  829. if (ret)
  830. return ret;
  831. /*
  832. * Actual WA is to disable percontext preemption granularity control
  833. * until D0 which is the default case so this is equivalent to
  834. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  835. */
  836. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  837. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  838. /* WaEnableGapsTsvCreditFix:skl */
  839. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  840. GEN9_GAPS_TSV_CREDIT_DISABLE));
  841. /* WaDisableGafsUnitClkGating:skl */
  842. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  843. /* WaInPlaceDecompressionHang:skl */
  844. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  845. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  846. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  847. /* WaDisableLSQCROPERFforOCL:skl */
  848. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  849. if (ret)
  850. return ret;
  851. return skl_tune_iz_hashing(engine);
  852. }
  853. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  854. {
  855. struct drm_i915_private *dev_priv = engine->i915;
  856. int ret;
  857. ret = gen9_init_workarounds(engine);
  858. if (ret)
  859. return ret;
  860. /* WaStoreMultiplePTEenable:bxt */
  861. /* This is a requirement according to Hardware specification */
  862. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  863. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  864. /* WaSetClckGatingDisableMedia:bxt */
  865. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  866. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  867. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  868. }
  869. /* WaDisableThreadStallDopClockGating:bxt */
  870. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  871. STALL_DOP_GATING_DISABLE);
  872. /* WaDisablePooledEuLoadBalancingFix:bxt */
  873. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  874. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  875. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  876. }
  877. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  878. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  879. WA_SET_BIT_MASKED(
  880. GEN7_HALF_SLICE_CHICKEN1,
  881. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  882. }
  883. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  884. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  885. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  886. /* WaDisableLSQCROPERFforOCL:bxt */
  887. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  888. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  889. if (ret)
  890. return ret;
  891. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  892. if (ret)
  893. return ret;
  894. }
  895. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  896. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  897. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  898. L3_HIGH_PRIO_CREDITS(2));
  899. /* WaToEnableHwFixForPushConstHWBug:bxt */
  900. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  901. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  902. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  903. /* WaInPlaceDecompressionHang:bxt */
  904. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  905. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  906. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  907. return 0;
  908. }
  909. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  910. {
  911. struct drm_i915_private *dev_priv = engine->i915;
  912. int ret;
  913. ret = gen9_init_workarounds(engine);
  914. if (ret)
  915. return ret;
  916. /* WaEnableGapsTsvCreditFix:kbl */
  917. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  918. GEN9_GAPS_TSV_CREDIT_DISABLE));
  919. /* WaDisableDynamicCreditSharing:kbl */
  920. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  921. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  922. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  923. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  924. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  925. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  926. HDC_FENCE_DEST_SLM_DISABLE);
  927. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  928. * involving this register should also be added to WA batch as required.
  929. */
  930. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  931. /* WaDisableLSQCROPERFforOCL:kbl */
  932. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  933. GEN8_LQSC_RO_PERF_DIS);
  934. /* WaToEnableHwFixForPushConstHWBug:kbl */
  935. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  936. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  937. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  938. /* WaDisableGafsUnitClkGating:kbl */
  939. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  940. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  941. WA_SET_BIT_MASKED(
  942. GEN7_HALF_SLICE_CHICKEN1,
  943. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  944. /* WaInPlaceDecompressionHang:kbl */
  945. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  946. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  947. /* WaDisableLSQCROPERFforOCL:kbl */
  948. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  949. if (ret)
  950. return ret;
  951. return 0;
  952. }
  953. int init_workarounds_ring(struct intel_engine_cs *engine)
  954. {
  955. struct drm_i915_private *dev_priv = engine->i915;
  956. WARN_ON(engine->id != RCS);
  957. dev_priv->workarounds.count = 0;
  958. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  959. if (IS_BROADWELL(dev_priv))
  960. return bdw_init_workarounds(engine);
  961. if (IS_CHERRYVIEW(dev_priv))
  962. return chv_init_workarounds(engine);
  963. if (IS_SKYLAKE(dev_priv))
  964. return skl_init_workarounds(engine);
  965. if (IS_BROXTON(dev_priv))
  966. return bxt_init_workarounds(engine);
  967. if (IS_KABYLAKE(dev_priv))
  968. return kbl_init_workarounds(engine);
  969. return 0;
  970. }
  971. static int init_render_ring(struct intel_engine_cs *engine)
  972. {
  973. struct drm_i915_private *dev_priv = engine->i915;
  974. int ret = init_ring_common(engine);
  975. if (ret)
  976. return ret;
  977. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  978. if (IS_GEN(dev_priv, 4, 6))
  979. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  980. /* We need to disable the AsyncFlip performance optimisations in order
  981. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  982. * programmed to '1' on all products.
  983. *
  984. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  985. */
  986. if (IS_GEN(dev_priv, 6, 7))
  987. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  988. /* Required for the hardware to program scanline values for waiting */
  989. /* WaEnableFlushTlbInvalidationMode:snb */
  990. if (IS_GEN6(dev_priv))
  991. I915_WRITE(GFX_MODE,
  992. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  993. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  994. if (IS_GEN7(dev_priv))
  995. I915_WRITE(GFX_MODE_GEN7,
  996. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  997. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  998. if (IS_GEN6(dev_priv)) {
  999. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1000. * "If this bit is set, STCunit will have LRA as replacement
  1001. * policy. [...] This bit must be reset. LRA replacement
  1002. * policy is not supported."
  1003. */
  1004. I915_WRITE(CACHE_MODE_0,
  1005. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1006. }
  1007. if (IS_GEN(dev_priv, 6, 7))
  1008. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1009. if (INTEL_INFO(dev_priv)->gen >= 6)
  1010. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1011. return init_workarounds_ring(engine);
  1012. }
  1013. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1014. {
  1015. struct drm_i915_private *dev_priv = engine->i915;
  1016. i915_vma_unpin_and_release(&dev_priv->semaphore);
  1017. }
  1018. static int gen8_rcs_signal(struct drm_i915_gem_request *req)
  1019. {
  1020. struct intel_ring *ring = req->ring;
  1021. struct drm_i915_private *dev_priv = req->i915;
  1022. struct intel_engine_cs *waiter;
  1023. enum intel_engine_id id;
  1024. int ret, num_rings;
  1025. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1026. ret = intel_ring_begin(req, (num_rings-1) * 8);
  1027. if (ret)
  1028. return ret;
  1029. for_each_engine_id(waiter, dev_priv, id) {
  1030. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1031. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1032. continue;
  1033. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1034. intel_ring_emit(ring,
  1035. PIPE_CONTROL_GLOBAL_GTT_IVB |
  1036. PIPE_CONTROL_QW_WRITE |
  1037. PIPE_CONTROL_CS_STALL);
  1038. intel_ring_emit(ring, lower_32_bits(gtt_offset));
  1039. intel_ring_emit(ring, upper_32_bits(gtt_offset));
  1040. intel_ring_emit(ring, req->fence.seqno);
  1041. intel_ring_emit(ring, 0);
  1042. intel_ring_emit(ring,
  1043. MI_SEMAPHORE_SIGNAL |
  1044. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1045. intel_ring_emit(ring, 0);
  1046. }
  1047. intel_ring_advance(ring);
  1048. return 0;
  1049. }
  1050. static int gen8_xcs_signal(struct drm_i915_gem_request *req)
  1051. {
  1052. struct intel_ring *ring = req->ring;
  1053. struct drm_i915_private *dev_priv = req->i915;
  1054. struct intel_engine_cs *waiter;
  1055. enum intel_engine_id id;
  1056. int ret, num_rings;
  1057. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1058. ret = intel_ring_begin(req, (num_rings-1) * 6);
  1059. if (ret)
  1060. return ret;
  1061. for_each_engine_id(waiter, dev_priv, id) {
  1062. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1063. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1064. continue;
  1065. intel_ring_emit(ring,
  1066. (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
  1067. intel_ring_emit(ring,
  1068. lower_32_bits(gtt_offset) |
  1069. MI_FLUSH_DW_USE_GTT);
  1070. intel_ring_emit(ring, upper_32_bits(gtt_offset));
  1071. intel_ring_emit(ring, req->fence.seqno);
  1072. intel_ring_emit(ring,
  1073. MI_SEMAPHORE_SIGNAL |
  1074. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1075. intel_ring_emit(ring, 0);
  1076. }
  1077. intel_ring_advance(ring);
  1078. return 0;
  1079. }
  1080. static int gen6_signal(struct drm_i915_gem_request *req)
  1081. {
  1082. struct intel_ring *ring = req->ring;
  1083. struct drm_i915_private *dev_priv = req->i915;
  1084. struct intel_engine_cs *engine;
  1085. int ret, num_rings;
  1086. num_rings = INTEL_INFO(dev_priv)->num_rings;
  1087. ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
  1088. if (ret)
  1089. return ret;
  1090. for_each_engine(engine, dev_priv) {
  1091. i915_reg_t mbox_reg;
  1092. if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
  1093. continue;
  1094. mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
  1095. if (i915_mmio_reg_valid(mbox_reg)) {
  1096. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  1097. intel_ring_emit_reg(ring, mbox_reg);
  1098. intel_ring_emit(ring, req->fence.seqno);
  1099. }
  1100. }
  1101. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1102. if (num_rings % 2 == 0)
  1103. intel_ring_emit(ring, MI_NOOP);
  1104. intel_ring_advance(ring);
  1105. return 0;
  1106. }
  1107. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1108. {
  1109. struct drm_i915_private *dev_priv = request->i915;
  1110. I915_WRITE_TAIL(request->engine,
  1111. intel_ring_offset(request->ring, request->tail));
  1112. }
  1113. static int i9xx_emit_request(struct drm_i915_gem_request *req)
  1114. {
  1115. struct intel_ring *ring = req->ring;
  1116. int ret;
  1117. ret = intel_ring_begin(req, 4);
  1118. if (ret)
  1119. return ret;
  1120. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1121. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1122. intel_ring_emit(ring, req->fence.seqno);
  1123. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1124. intel_ring_advance(ring);
  1125. req->tail = ring->tail;
  1126. return 0;
  1127. }
  1128. /**
  1129. * gen6_sema_emit_request - Update the semaphore mailbox registers
  1130. *
  1131. * @request - request to write to the ring
  1132. *
  1133. * Update the mailbox registers in the *other* rings with the current seqno.
  1134. * This acts like a signal in the canonical semaphore.
  1135. */
  1136. static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
  1137. {
  1138. int ret;
  1139. ret = req->engine->semaphore.signal(req);
  1140. if (ret)
  1141. return ret;
  1142. return i9xx_emit_request(req);
  1143. }
  1144. static int gen8_render_emit_request(struct drm_i915_gem_request *req)
  1145. {
  1146. struct intel_engine_cs *engine = req->engine;
  1147. struct intel_ring *ring = req->ring;
  1148. int ret;
  1149. if (engine->semaphore.signal) {
  1150. ret = engine->semaphore.signal(req);
  1151. if (ret)
  1152. return ret;
  1153. }
  1154. ret = intel_ring_begin(req, 8);
  1155. if (ret)
  1156. return ret;
  1157. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1158. intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1159. PIPE_CONTROL_CS_STALL |
  1160. PIPE_CONTROL_QW_WRITE));
  1161. intel_ring_emit(ring, intel_hws_seqno_address(engine));
  1162. intel_ring_emit(ring, 0);
  1163. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1164. /* We're thrashing one dword of HWS. */
  1165. intel_ring_emit(ring, 0);
  1166. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1167. intel_ring_emit(ring, MI_NOOP);
  1168. intel_ring_advance(ring);
  1169. req->tail = ring->tail;
  1170. return 0;
  1171. }
  1172. /**
  1173. * intel_ring_sync - sync the waiter to the signaller on seqno
  1174. *
  1175. * @waiter - ring that is waiting
  1176. * @signaller - ring which has, or will signal
  1177. * @seqno - seqno which the waiter will block on
  1178. */
  1179. static int
  1180. gen8_ring_sync_to(struct drm_i915_gem_request *req,
  1181. struct drm_i915_gem_request *signal)
  1182. {
  1183. struct intel_ring *ring = req->ring;
  1184. struct drm_i915_private *dev_priv = req->i915;
  1185. u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
  1186. struct i915_hw_ppgtt *ppgtt;
  1187. int ret;
  1188. ret = intel_ring_begin(req, 4);
  1189. if (ret)
  1190. return ret;
  1191. intel_ring_emit(ring,
  1192. MI_SEMAPHORE_WAIT |
  1193. MI_SEMAPHORE_GLOBAL_GTT |
  1194. MI_SEMAPHORE_SAD_GTE_SDD);
  1195. intel_ring_emit(ring, signal->fence.seqno);
  1196. intel_ring_emit(ring, lower_32_bits(offset));
  1197. intel_ring_emit(ring, upper_32_bits(offset));
  1198. intel_ring_advance(ring);
  1199. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1200. * pagetables and we must reload them before executing the batch.
  1201. * We do this on the i915_switch_context() following the wait and
  1202. * before the dispatch.
  1203. */
  1204. ppgtt = req->ctx->ppgtt;
  1205. if (ppgtt && req->engine->id != RCS)
  1206. ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
  1207. return 0;
  1208. }
  1209. static int
  1210. gen6_ring_sync_to(struct drm_i915_gem_request *req,
  1211. struct drm_i915_gem_request *signal)
  1212. {
  1213. struct intel_ring *ring = req->ring;
  1214. u32 dw1 = MI_SEMAPHORE_MBOX |
  1215. MI_SEMAPHORE_COMPARE |
  1216. MI_SEMAPHORE_REGISTER;
  1217. u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
  1218. int ret;
  1219. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1220. ret = intel_ring_begin(req, 4);
  1221. if (ret)
  1222. return ret;
  1223. intel_ring_emit(ring, dw1 | wait_mbox);
  1224. /* Throughout all of the GEM code, seqno passed implies our current
  1225. * seqno is >= the last seqno executed. However for hardware the
  1226. * comparison is strictly greater than.
  1227. */
  1228. intel_ring_emit(ring, signal->fence.seqno - 1);
  1229. intel_ring_emit(ring, 0);
  1230. intel_ring_emit(ring, MI_NOOP);
  1231. intel_ring_advance(ring);
  1232. return 0;
  1233. }
  1234. static void
  1235. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1236. {
  1237. /* MI_STORE are internally buffered by the GPU and not flushed
  1238. * either by MI_FLUSH or SyncFlush or any other combination of
  1239. * MI commands.
  1240. *
  1241. * "Only the submission of the store operation is guaranteed.
  1242. * The write result will be complete (coherent) some time later
  1243. * (this is practically a finite period but there is no guaranteed
  1244. * latency)."
  1245. *
  1246. * Empirically, we observe that we need a delay of at least 75us to
  1247. * be sure that the seqno write is visible by the CPU.
  1248. */
  1249. usleep_range(125, 250);
  1250. }
  1251. static void
  1252. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1253. {
  1254. struct drm_i915_private *dev_priv = engine->i915;
  1255. /* Workaround to force correct ordering between irq and seqno writes on
  1256. * ivb (and maybe also on snb) by reading from a CS register (like
  1257. * ACTHD) before reading the status page.
  1258. *
  1259. * Note that this effectively stalls the read by the time it takes to
  1260. * do a memory transaction, which more or less ensures that the write
  1261. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1262. * Alternatively we could delay the interrupt from the CS ring to give
  1263. * the write time to land, but that would incur a delay after every
  1264. * batch i.e. much more frequent than a delay when waiting for the
  1265. * interrupt (with the same net latency).
  1266. *
  1267. * Also note that to prevent whole machine hangs on gen7, we have to
  1268. * take the spinlock to guard against concurrent cacheline access.
  1269. */
  1270. spin_lock_irq(&dev_priv->uncore.lock);
  1271. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1272. spin_unlock_irq(&dev_priv->uncore.lock);
  1273. }
  1274. static void
  1275. gen5_irq_enable(struct intel_engine_cs *engine)
  1276. {
  1277. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1278. }
  1279. static void
  1280. gen5_irq_disable(struct intel_engine_cs *engine)
  1281. {
  1282. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1283. }
  1284. static void
  1285. i9xx_irq_enable(struct intel_engine_cs *engine)
  1286. {
  1287. struct drm_i915_private *dev_priv = engine->i915;
  1288. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1289. I915_WRITE(IMR, dev_priv->irq_mask);
  1290. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1291. }
  1292. static void
  1293. i9xx_irq_disable(struct intel_engine_cs *engine)
  1294. {
  1295. struct drm_i915_private *dev_priv = engine->i915;
  1296. dev_priv->irq_mask |= engine->irq_enable_mask;
  1297. I915_WRITE(IMR, dev_priv->irq_mask);
  1298. }
  1299. static void
  1300. i8xx_irq_enable(struct intel_engine_cs *engine)
  1301. {
  1302. struct drm_i915_private *dev_priv = engine->i915;
  1303. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1304. I915_WRITE16(IMR, dev_priv->irq_mask);
  1305. POSTING_READ16(RING_IMR(engine->mmio_base));
  1306. }
  1307. static void
  1308. i8xx_irq_disable(struct intel_engine_cs *engine)
  1309. {
  1310. struct drm_i915_private *dev_priv = engine->i915;
  1311. dev_priv->irq_mask |= engine->irq_enable_mask;
  1312. I915_WRITE16(IMR, dev_priv->irq_mask);
  1313. }
  1314. static int
  1315. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1316. {
  1317. struct intel_ring *ring = req->ring;
  1318. int ret;
  1319. ret = intel_ring_begin(req, 2);
  1320. if (ret)
  1321. return ret;
  1322. intel_ring_emit(ring, MI_FLUSH);
  1323. intel_ring_emit(ring, MI_NOOP);
  1324. intel_ring_advance(ring);
  1325. return 0;
  1326. }
  1327. static void
  1328. gen6_irq_enable(struct intel_engine_cs *engine)
  1329. {
  1330. struct drm_i915_private *dev_priv = engine->i915;
  1331. I915_WRITE_IMR(engine,
  1332. ~(engine->irq_enable_mask |
  1333. engine->irq_keep_mask));
  1334. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1335. }
  1336. static void
  1337. gen6_irq_disable(struct intel_engine_cs *engine)
  1338. {
  1339. struct drm_i915_private *dev_priv = engine->i915;
  1340. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1341. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1342. }
  1343. static void
  1344. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1345. {
  1346. struct drm_i915_private *dev_priv = engine->i915;
  1347. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1348. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1349. }
  1350. static void
  1351. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1352. {
  1353. struct drm_i915_private *dev_priv = engine->i915;
  1354. I915_WRITE_IMR(engine, ~0);
  1355. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1356. }
  1357. static void
  1358. gen8_irq_enable(struct intel_engine_cs *engine)
  1359. {
  1360. struct drm_i915_private *dev_priv = engine->i915;
  1361. I915_WRITE_IMR(engine,
  1362. ~(engine->irq_enable_mask |
  1363. engine->irq_keep_mask));
  1364. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1365. }
  1366. static void
  1367. gen8_irq_disable(struct intel_engine_cs *engine)
  1368. {
  1369. struct drm_i915_private *dev_priv = engine->i915;
  1370. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1371. }
  1372. static int
  1373. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1374. u64 offset, u32 length,
  1375. unsigned int dispatch_flags)
  1376. {
  1377. struct intel_ring *ring = req->ring;
  1378. int ret;
  1379. ret = intel_ring_begin(req, 2);
  1380. if (ret)
  1381. return ret;
  1382. intel_ring_emit(ring,
  1383. MI_BATCH_BUFFER_START |
  1384. MI_BATCH_GTT |
  1385. (dispatch_flags & I915_DISPATCH_SECURE ?
  1386. 0 : MI_BATCH_NON_SECURE_I965));
  1387. intel_ring_emit(ring, offset);
  1388. intel_ring_advance(ring);
  1389. return 0;
  1390. }
  1391. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1392. #define I830_BATCH_LIMIT (256*1024)
  1393. #define I830_TLB_ENTRIES (2)
  1394. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1395. static int
  1396. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1397. u64 offset, u32 len,
  1398. unsigned int dispatch_flags)
  1399. {
  1400. struct intel_ring *ring = req->ring;
  1401. u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
  1402. int ret;
  1403. ret = intel_ring_begin(req, 6);
  1404. if (ret)
  1405. return ret;
  1406. /* Evict the invalid PTE TLBs */
  1407. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1408. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1409. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1410. intel_ring_emit(ring, cs_offset);
  1411. intel_ring_emit(ring, 0xdeadbeef);
  1412. intel_ring_emit(ring, MI_NOOP);
  1413. intel_ring_advance(ring);
  1414. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1415. if (len > I830_BATCH_LIMIT)
  1416. return -ENOSPC;
  1417. ret = intel_ring_begin(req, 6 + 2);
  1418. if (ret)
  1419. return ret;
  1420. /* Blit the batch (which has now all relocs applied) to the
  1421. * stable batch scratch bo area (so that the CS never
  1422. * stumbles over its tlb invalidation bug) ...
  1423. */
  1424. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1425. intel_ring_emit(ring,
  1426. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1427. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1428. intel_ring_emit(ring, cs_offset);
  1429. intel_ring_emit(ring, 4096);
  1430. intel_ring_emit(ring, offset);
  1431. intel_ring_emit(ring, MI_FLUSH);
  1432. intel_ring_emit(ring, MI_NOOP);
  1433. intel_ring_advance(ring);
  1434. /* ... and execute it. */
  1435. offset = cs_offset;
  1436. }
  1437. ret = intel_ring_begin(req, 2);
  1438. if (ret)
  1439. return ret;
  1440. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1441. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1442. 0 : MI_BATCH_NON_SECURE));
  1443. intel_ring_advance(ring);
  1444. return 0;
  1445. }
  1446. static int
  1447. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1448. u64 offset, u32 len,
  1449. unsigned int dispatch_flags)
  1450. {
  1451. struct intel_ring *ring = req->ring;
  1452. int ret;
  1453. ret = intel_ring_begin(req, 2);
  1454. if (ret)
  1455. return ret;
  1456. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1457. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1458. 0 : MI_BATCH_NON_SECURE));
  1459. intel_ring_advance(ring);
  1460. return 0;
  1461. }
  1462. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1463. {
  1464. struct drm_i915_private *dev_priv = engine->i915;
  1465. if (!dev_priv->status_page_dmah)
  1466. return;
  1467. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1468. engine->status_page.page_addr = NULL;
  1469. }
  1470. static void cleanup_status_page(struct intel_engine_cs *engine)
  1471. {
  1472. struct i915_vma *vma;
  1473. vma = fetch_and_zero(&engine->status_page.vma);
  1474. if (!vma)
  1475. return;
  1476. i915_vma_unpin(vma);
  1477. i915_gem_object_unpin_map(vma->obj);
  1478. i915_vma_put(vma);
  1479. }
  1480. static int init_status_page(struct intel_engine_cs *engine)
  1481. {
  1482. struct drm_i915_gem_object *obj;
  1483. struct i915_vma *vma;
  1484. unsigned int flags;
  1485. int ret;
  1486. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1487. if (IS_ERR(obj)) {
  1488. DRM_ERROR("Failed to allocate status page\n");
  1489. return PTR_ERR(obj);
  1490. }
  1491. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1492. if (ret)
  1493. goto err;
  1494. vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
  1495. if (IS_ERR(vma)) {
  1496. ret = PTR_ERR(vma);
  1497. goto err;
  1498. }
  1499. flags = PIN_GLOBAL;
  1500. if (!HAS_LLC(engine->i915))
  1501. /* On g33, we cannot place HWS above 256MiB, so
  1502. * restrict its pinning to the low mappable arena.
  1503. * Though this restriction is not documented for
  1504. * gen4, gen5, or byt, they also behave similarly
  1505. * and hang if the HWS is placed at the top of the
  1506. * GTT. To generalise, it appears that all !llc
  1507. * platforms have issues with us placing the HWS
  1508. * above the mappable region (even though we never
  1509. * actualy map it).
  1510. */
  1511. flags |= PIN_MAPPABLE;
  1512. ret = i915_vma_pin(vma, 0, 4096, flags);
  1513. if (ret)
  1514. goto err;
  1515. engine->status_page.vma = vma;
  1516. engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
  1517. engine->status_page.page_addr =
  1518. i915_gem_object_pin_map(obj, I915_MAP_WB);
  1519. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1520. engine->name, i915_ggtt_offset(vma));
  1521. return 0;
  1522. err:
  1523. i915_gem_object_put(obj);
  1524. return ret;
  1525. }
  1526. static int init_phys_status_page(struct intel_engine_cs *engine)
  1527. {
  1528. struct drm_i915_private *dev_priv = engine->i915;
  1529. dev_priv->status_page_dmah =
  1530. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1531. if (!dev_priv->status_page_dmah)
  1532. return -ENOMEM;
  1533. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1534. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1535. return 0;
  1536. }
  1537. int intel_ring_pin(struct intel_ring *ring)
  1538. {
  1539. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1540. unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
  1541. enum i915_map_type map;
  1542. struct i915_vma *vma = ring->vma;
  1543. void *addr;
  1544. int ret;
  1545. GEM_BUG_ON(ring->vaddr);
  1546. map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
  1547. if (vma->obj->stolen)
  1548. flags |= PIN_MAPPABLE;
  1549. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1550. if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
  1551. ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
  1552. else
  1553. ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
  1554. if (unlikely(ret))
  1555. return ret;
  1556. }
  1557. ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
  1558. if (unlikely(ret))
  1559. return ret;
  1560. if (i915_vma_is_map_and_fenceable(vma))
  1561. addr = (void __force *)i915_vma_pin_iomap(vma);
  1562. else
  1563. addr = i915_gem_object_pin_map(vma->obj, map);
  1564. if (IS_ERR(addr))
  1565. goto err;
  1566. ring->vaddr = addr;
  1567. return 0;
  1568. err:
  1569. i915_vma_unpin(vma);
  1570. return PTR_ERR(addr);
  1571. }
  1572. void intel_ring_unpin(struct intel_ring *ring)
  1573. {
  1574. GEM_BUG_ON(!ring->vma);
  1575. GEM_BUG_ON(!ring->vaddr);
  1576. if (i915_vma_is_map_and_fenceable(ring->vma))
  1577. i915_vma_unpin_iomap(ring->vma);
  1578. else
  1579. i915_gem_object_unpin_map(ring->vma->obj);
  1580. ring->vaddr = NULL;
  1581. i915_vma_unpin(ring->vma);
  1582. }
  1583. static struct i915_vma *
  1584. intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
  1585. {
  1586. struct drm_i915_gem_object *obj;
  1587. struct i915_vma *vma;
  1588. obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
  1589. if (!obj)
  1590. obj = i915_gem_object_create(&dev_priv->drm, size);
  1591. if (IS_ERR(obj))
  1592. return ERR_CAST(obj);
  1593. /* mark ring buffers as read-only from GPU side by default */
  1594. obj->gt_ro = 1;
  1595. vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
  1596. if (IS_ERR(vma))
  1597. goto err;
  1598. return vma;
  1599. err:
  1600. i915_gem_object_put(obj);
  1601. return vma;
  1602. }
  1603. struct intel_ring *
  1604. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1605. {
  1606. struct intel_ring *ring;
  1607. struct i915_vma *vma;
  1608. GEM_BUG_ON(!is_power_of_2(size));
  1609. GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
  1610. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1611. if (!ring)
  1612. return ERR_PTR(-ENOMEM);
  1613. ring->engine = engine;
  1614. INIT_LIST_HEAD(&ring->request_list);
  1615. ring->size = size;
  1616. /* Workaround an erratum on the i830 which causes a hang if
  1617. * the TAIL pointer points to within the last 2 cachelines
  1618. * of the buffer.
  1619. */
  1620. ring->effective_size = size;
  1621. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1622. ring->effective_size -= 2 * CACHELINE_BYTES;
  1623. ring->last_retired_head = -1;
  1624. intel_ring_update_space(ring);
  1625. vma = intel_ring_create_vma(engine->i915, size);
  1626. if (IS_ERR(vma)) {
  1627. kfree(ring);
  1628. return ERR_CAST(vma);
  1629. }
  1630. ring->vma = vma;
  1631. return ring;
  1632. }
  1633. void
  1634. intel_ring_free(struct intel_ring *ring)
  1635. {
  1636. i915_vma_put(ring->vma);
  1637. kfree(ring);
  1638. }
  1639. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1640. struct intel_engine_cs *engine)
  1641. {
  1642. struct intel_context *ce = &ctx->engine[engine->id];
  1643. int ret;
  1644. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1645. if (ce->pin_count++)
  1646. return 0;
  1647. if (ce->state) {
  1648. ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
  1649. if (ret)
  1650. goto error;
  1651. ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
  1652. PIN_GLOBAL | PIN_HIGH);
  1653. if (ret)
  1654. goto error;
  1655. }
  1656. /* The kernel context is only used as a placeholder for flushing the
  1657. * active context. It is never used for submitting user rendering and
  1658. * as such never requires the golden render context, and so we can skip
  1659. * emitting it when we switch to the kernel context. This is required
  1660. * as during eviction we cannot allocate and pin the renderstate in
  1661. * order to initialise the context.
  1662. */
  1663. if (ctx == ctx->i915->kernel_context)
  1664. ce->initialised = true;
  1665. i915_gem_context_get(ctx);
  1666. return 0;
  1667. error:
  1668. ce->pin_count = 0;
  1669. return ret;
  1670. }
  1671. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1672. struct intel_engine_cs *engine)
  1673. {
  1674. struct intel_context *ce = &ctx->engine[engine->id];
  1675. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1676. if (--ce->pin_count)
  1677. return;
  1678. if (ce->state)
  1679. i915_vma_unpin(ce->state);
  1680. i915_gem_context_put(ctx);
  1681. }
  1682. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1683. {
  1684. struct drm_i915_private *dev_priv = engine->i915;
  1685. struct intel_ring *ring;
  1686. int ret;
  1687. WARN_ON(engine->buffer);
  1688. intel_engine_setup_common(engine);
  1689. memset(engine->semaphore.sync_seqno, 0,
  1690. sizeof(engine->semaphore.sync_seqno));
  1691. ret = intel_engine_init_common(engine);
  1692. if (ret)
  1693. goto error;
  1694. /* We may need to do things with the shrinker which
  1695. * require us to immediately switch back to the default
  1696. * context. This can cause a problem as pinning the
  1697. * default context also requires GTT space which may not
  1698. * be available. To avoid this we always pin the default
  1699. * context.
  1700. */
  1701. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1702. if (ret)
  1703. goto error;
  1704. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1705. if (IS_ERR(ring)) {
  1706. ret = PTR_ERR(ring);
  1707. goto error;
  1708. }
  1709. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1710. WARN_ON(engine->id != RCS);
  1711. ret = init_phys_status_page(engine);
  1712. if (ret)
  1713. goto error;
  1714. } else {
  1715. ret = init_status_page(engine);
  1716. if (ret)
  1717. goto error;
  1718. }
  1719. ret = intel_ring_pin(ring);
  1720. if (ret) {
  1721. intel_ring_free(ring);
  1722. goto error;
  1723. }
  1724. engine->buffer = ring;
  1725. return 0;
  1726. error:
  1727. intel_engine_cleanup(engine);
  1728. return ret;
  1729. }
  1730. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1731. {
  1732. struct drm_i915_private *dev_priv;
  1733. if (!intel_engine_initialized(engine))
  1734. return;
  1735. dev_priv = engine->i915;
  1736. if (engine->buffer) {
  1737. WARN_ON(INTEL_GEN(dev_priv) > 2 &&
  1738. (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1739. intel_ring_unpin(engine->buffer);
  1740. intel_ring_free(engine->buffer);
  1741. engine->buffer = NULL;
  1742. }
  1743. if (engine->cleanup)
  1744. engine->cleanup(engine);
  1745. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1746. WARN_ON(engine->id != RCS);
  1747. cleanup_phys_status_page(engine);
  1748. } else {
  1749. cleanup_status_page(engine);
  1750. }
  1751. intel_engine_cleanup_common(engine);
  1752. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1753. engine->i915 = NULL;
  1754. }
  1755. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
  1756. {
  1757. struct intel_engine_cs *engine;
  1758. for_each_engine(engine, dev_priv) {
  1759. engine->buffer->head = engine->buffer->tail;
  1760. engine->buffer->last_retired_head = -1;
  1761. }
  1762. }
  1763. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1764. {
  1765. int ret;
  1766. /* Flush enough space to reduce the likelihood of waiting after
  1767. * we start building the request - in which case we will just
  1768. * have to repeat work.
  1769. */
  1770. request->reserved_space += LEGACY_REQUEST_SIZE;
  1771. request->ring = request->engine->buffer;
  1772. ret = intel_ring_begin(request, 0);
  1773. if (ret)
  1774. return ret;
  1775. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1776. return 0;
  1777. }
  1778. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1779. {
  1780. struct intel_ring *ring = req->ring;
  1781. struct drm_i915_gem_request *target;
  1782. int ret;
  1783. intel_ring_update_space(ring);
  1784. if (ring->space >= bytes)
  1785. return 0;
  1786. /*
  1787. * Space is reserved in the ringbuffer for finalising the request,
  1788. * as that cannot be allowed to fail. During request finalisation,
  1789. * reserved_space is set to 0 to stop the overallocation and the
  1790. * assumption is that then we never need to wait (which has the
  1791. * risk of failing with EINTR).
  1792. *
  1793. * See also i915_gem_request_alloc() and i915_add_request().
  1794. */
  1795. GEM_BUG_ON(!req->reserved_space);
  1796. list_for_each_entry(target, &ring->request_list, ring_link) {
  1797. unsigned space;
  1798. /* Would completion of this request free enough space? */
  1799. space = __intel_ring_space(target->postfix, ring->tail,
  1800. ring->size);
  1801. if (space >= bytes)
  1802. break;
  1803. }
  1804. if (WARN_ON(&target->ring_link == &ring->request_list))
  1805. return -ENOSPC;
  1806. ret = i915_wait_request(target,
  1807. I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
  1808. NULL, NO_WAITBOOST);
  1809. if (ret)
  1810. return ret;
  1811. i915_gem_request_retire_upto(target);
  1812. intel_ring_update_space(ring);
  1813. GEM_BUG_ON(ring->space < bytes);
  1814. return 0;
  1815. }
  1816. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1817. {
  1818. struct intel_ring *ring = req->ring;
  1819. int remain_actual = ring->size - ring->tail;
  1820. int remain_usable = ring->effective_size - ring->tail;
  1821. int bytes = num_dwords * sizeof(u32);
  1822. int total_bytes, wait_bytes;
  1823. bool need_wrap = false;
  1824. total_bytes = bytes + req->reserved_space;
  1825. if (unlikely(bytes > remain_usable)) {
  1826. /*
  1827. * Not enough space for the basic request. So need to flush
  1828. * out the remainder and then wait for base + reserved.
  1829. */
  1830. wait_bytes = remain_actual + total_bytes;
  1831. need_wrap = true;
  1832. } else if (unlikely(total_bytes > remain_usable)) {
  1833. /*
  1834. * The base request will fit but the reserved space
  1835. * falls off the end. So we don't need an immediate wrap
  1836. * and only need to effectively wait for the reserved
  1837. * size space from the start of ringbuffer.
  1838. */
  1839. wait_bytes = remain_actual + req->reserved_space;
  1840. } else {
  1841. /* No wrapping required, just waiting. */
  1842. wait_bytes = total_bytes;
  1843. }
  1844. if (wait_bytes > ring->space) {
  1845. int ret = wait_for_space(req, wait_bytes);
  1846. if (unlikely(ret))
  1847. return ret;
  1848. }
  1849. if (unlikely(need_wrap)) {
  1850. GEM_BUG_ON(remain_actual > ring->space);
  1851. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1852. /* Fill the tail with MI_NOOP */
  1853. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1854. ring->tail = 0;
  1855. ring->space -= remain_actual;
  1856. }
  1857. ring->space -= bytes;
  1858. GEM_BUG_ON(ring->space < 0);
  1859. return 0;
  1860. }
  1861. /* Align the ring tail to a cacheline boundary */
  1862. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1863. {
  1864. struct intel_ring *ring = req->ring;
  1865. int num_dwords =
  1866. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1867. int ret;
  1868. if (num_dwords == 0)
  1869. return 0;
  1870. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1871. ret = intel_ring_begin(req, num_dwords);
  1872. if (ret)
  1873. return ret;
  1874. while (num_dwords--)
  1875. intel_ring_emit(ring, MI_NOOP);
  1876. intel_ring_advance(ring);
  1877. return 0;
  1878. }
  1879. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  1880. {
  1881. struct drm_i915_private *dev_priv = request->i915;
  1882. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1883. /* Every tail move must follow the sequence below */
  1884. /* Disable notification that the ring is IDLE. The GT
  1885. * will then assume that it is busy and bring it out of rc6.
  1886. */
  1887. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1888. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1889. /* Clear the context id. Here be magic! */
  1890. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  1891. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1892. if (intel_wait_for_register_fw(dev_priv,
  1893. GEN6_BSD_SLEEP_PSMI_CONTROL,
  1894. GEN6_BSD_SLEEP_INDICATOR,
  1895. 0,
  1896. 50))
  1897. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1898. /* Now that the ring is fully powered up, update the tail */
  1899. i9xx_submit_request(request);
  1900. /* Let the ring send IDLE messages to the GT again,
  1901. * and so let it sleep to conserve power when idle.
  1902. */
  1903. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1904. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1905. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1906. }
  1907. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1908. {
  1909. struct intel_ring *ring = req->ring;
  1910. uint32_t cmd;
  1911. int ret;
  1912. ret = intel_ring_begin(req, 4);
  1913. if (ret)
  1914. return ret;
  1915. cmd = MI_FLUSH_DW;
  1916. if (INTEL_GEN(req->i915) >= 8)
  1917. cmd += 1;
  1918. /* We always require a command barrier so that subsequent
  1919. * commands, such as breadcrumb interrupts, are strictly ordered
  1920. * wrt the contents of the write cache being flushed to memory
  1921. * (and thus being coherent from the CPU).
  1922. */
  1923. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1924. /*
  1925. * Bspec vol 1c.5 - video engine command streamer:
  1926. * "If ENABLED, all TLBs will be invalidated once the flush
  1927. * operation is complete. This bit is only valid when the
  1928. * Post-Sync Operation field is a value of 1h or 3h."
  1929. */
  1930. if (mode & EMIT_INVALIDATE)
  1931. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1932. intel_ring_emit(ring, cmd);
  1933. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1934. if (INTEL_GEN(req->i915) >= 8) {
  1935. intel_ring_emit(ring, 0); /* upper addr */
  1936. intel_ring_emit(ring, 0); /* value */
  1937. } else {
  1938. intel_ring_emit(ring, 0);
  1939. intel_ring_emit(ring, MI_NOOP);
  1940. }
  1941. intel_ring_advance(ring);
  1942. return 0;
  1943. }
  1944. static int
  1945. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  1946. u64 offset, u32 len,
  1947. unsigned int dispatch_flags)
  1948. {
  1949. struct intel_ring *ring = req->ring;
  1950. bool ppgtt = USES_PPGTT(req->i915) &&
  1951. !(dispatch_flags & I915_DISPATCH_SECURE);
  1952. int ret;
  1953. ret = intel_ring_begin(req, 4);
  1954. if (ret)
  1955. return ret;
  1956. /* FIXME(BDW): Address space and security selectors. */
  1957. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  1958. (dispatch_flags & I915_DISPATCH_RS ?
  1959. MI_BATCH_RESOURCE_STREAMER : 0));
  1960. intel_ring_emit(ring, lower_32_bits(offset));
  1961. intel_ring_emit(ring, upper_32_bits(offset));
  1962. intel_ring_emit(ring, MI_NOOP);
  1963. intel_ring_advance(ring);
  1964. return 0;
  1965. }
  1966. static int
  1967. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  1968. u64 offset, u32 len,
  1969. unsigned int dispatch_flags)
  1970. {
  1971. struct intel_ring *ring = req->ring;
  1972. int ret;
  1973. ret = intel_ring_begin(req, 2);
  1974. if (ret)
  1975. return ret;
  1976. intel_ring_emit(ring,
  1977. MI_BATCH_BUFFER_START |
  1978. (dispatch_flags & I915_DISPATCH_SECURE ?
  1979. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  1980. (dispatch_flags & I915_DISPATCH_RS ?
  1981. MI_BATCH_RESOURCE_STREAMER : 0));
  1982. /* bit0-7 is the length on GEN6+ */
  1983. intel_ring_emit(ring, offset);
  1984. intel_ring_advance(ring);
  1985. return 0;
  1986. }
  1987. static int
  1988. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  1989. u64 offset, u32 len,
  1990. unsigned int dispatch_flags)
  1991. {
  1992. struct intel_ring *ring = req->ring;
  1993. int ret;
  1994. ret = intel_ring_begin(req, 2);
  1995. if (ret)
  1996. return ret;
  1997. intel_ring_emit(ring,
  1998. MI_BATCH_BUFFER_START |
  1999. (dispatch_flags & I915_DISPATCH_SECURE ?
  2000. 0 : MI_BATCH_NON_SECURE_I965));
  2001. /* bit0-7 is the length on GEN6+ */
  2002. intel_ring_emit(ring, offset);
  2003. intel_ring_advance(ring);
  2004. return 0;
  2005. }
  2006. /* Blitter support (SandyBridge+) */
  2007. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  2008. {
  2009. struct intel_ring *ring = req->ring;
  2010. uint32_t cmd;
  2011. int ret;
  2012. ret = intel_ring_begin(req, 4);
  2013. if (ret)
  2014. return ret;
  2015. cmd = MI_FLUSH_DW;
  2016. if (INTEL_GEN(req->i915) >= 8)
  2017. cmd += 1;
  2018. /* We always require a command barrier so that subsequent
  2019. * commands, such as breadcrumb interrupts, are strictly ordered
  2020. * wrt the contents of the write cache being flushed to memory
  2021. * (and thus being coherent from the CPU).
  2022. */
  2023. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2024. /*
  2025. * Bspec vol 1c.3 - blitter engine command streamer:
  2026. * "If ENABLED, all TLBs will be invalidated once the flush
  2027. * operation is complete. This bit is only valid when the
  2028. * Post-Sync Operation field is a value of 1h or 3h."
  2029. */
  2030. if (mode & EMIT_INVALIDATE)
  2031. cmd |= MI_INVALIDATE_TLB;
  2032. intel_ring_emit(ring, cmd);
  2033. intel_ring_emit(ring,
  2034. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2035. if (INTEL_GEN(req->i915) >= 8) {
  2036. intel_ring_emit(ring, 0); /* upper addr */
  2037. intel_ring_emit(ring, 0); /* value */
  2038. } else {
  2039. intel_ring_emit(ring, 0);
  2040. intel_ring_emit(ring, MI_NOOP);
  2041. }
  2042. intel_ring_advance(ring);
  2043. return 0;
  2044. }
  2045. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2046. struct intel_engine_cs *engine)
  2047. {
  2048. struct drm_i915_gem_object *obj;
  2049. int ret, i;
  2050. if (!i915.semaphores)
  2051. return;
  2052. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
  2053. struct i915_vma *vma;
  2054. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2055. if (IS_ERR(obj))
  2056. goto err;
  2057. vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
  2058. if (IS_ERR(vma))
  2059. goto err_obj;
  2060. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  2061. if (ret)
  2062. goto err_obj;
  2063. ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
  2064. if (ret)
  2065. goto err_obj;
  2066. dev_priv->semaphore = vma;
  2067. }
  2068. if (INTEL_GEN(dev_priv) >= 8) {
  2069. u32 offset = i915_ggtt_offset(dev_priv->semaphore);
  2070. engine->semaphore.sync_to = gen8_ring_sync_to;
  2071. engine->semaphore.signal = gen8_xcs_signal;
  2072. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2073. u32 ring_offset;
  2074. if (i != engine->id)
  2075. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2076. else
  2077. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2078. engine->semaphore.signal_ggtt[i] = ring_offset;
  2079. }
  2080. } else if (INTEL_GEN(dev_priv) >= 6) {
  2081. engine->semaphore.sync_to = gen6_ring_sync_to;
  2082. engine->semaphore.signal = gen6_signal;
  2083. /*
  2084. * The current semaphore is only applied on pre-gen8
  2085. * platform. And there is no VCS2 ring on the pre-gen8
  2086. * platform. So the semaphore between RCS and VCS2 is
  2087. * initialized as INVALID. Gen8 will initialize the
  2088. * sema between VCS2 and RCS later.
  2089. */
  2090. for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
  2091. static const struct {
  2092. u32 wait_mbox;
  2093. i915_reg_t mbox_reg;
  2094. } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
  2095. [RCS_HW] = {
  2096. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2097. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2098. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2099. },
  2100. [VCS_HW] = {
  2101. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2102. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2103. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2104. },
  2105. [BCS_HW] = {
  2106. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2107. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2108. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2109. },
  2110. [VECS_HW] = {
  2111. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2112. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2113. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2114. },
  2115. };
  2116. u32 wait_mbox;
  2117. i915_reg_t mbox_reg;
  2118. if (i == engine->hw_id) {
  2119. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2120. mbox_reg = GEN6_NOSYNC;
  2121. } else {
  2122. wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
  2123. mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
  2124. }
  2125. engine->semaphore.mbox.wait[i] = wait_mbox;
  2126. engine->semaphore.mbox.signal[i] = mbox_reg;
  2127. }
  2128. }
  2129. return;
  2130. err_obj:
  2131. i915_gem_object_put(obj);
  2132. err:
  2133. DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
  2134. i915.semaphores = 0;
  2135. }
  2136. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2137. struct intel_engine_cs *engine)
  2138. {
  2139. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2140. if (INTEL_GEN(dev_priv) >= 8) {
  2141. engine->irq_enable = gen8_irq_enable;
  2142. engine->irq_disable = gen8_irq_disable;
  2143. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2144. } else if (INTEL_GEN(dev_priv) >= 6) {
  2145. engine->irq_enable = gen6_irq_enable;
  2146. engine->irq_disable = gen6_irq_disable;
  2147. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2148. } else if (INTEL_GEN(dev_priv) >= 5) {
  2149. engine->irq_enable = gen5_irq_enable;
  2150. engine->irq_disable = gen5_irq_disable;
  2151. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2152. } else if (INTEL_GEN(dev_priv) >= 3) {
  2153. engine->irq_enable = i9xx_irq_enable;
  2154. engine->irq_disable = i9xx_irq_disable;
  2155. } else {
  2156. engine->irq_enable = i8xx_irq_enable;
  2157. engine->irq_disable = i8xx_irq_disable;
  2158. }
  2159. }
  2160. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2161. struct intel_engine_cs *engine)
  2162. {
  2163. intel_ring_init_irq(dev_priv, engine);
  2164. intel_ring_init_semaphores(dev_priv, engine);
  2165. engine->init_hw = init_ring_common;
  2166. engine->reset_hw = reset_ring_common;
  2167. engine->emit_request = i9xx_emit_request;
  2168. if (i915.semaphores)
  2169. engine->emit_request = gen6_sema_emit_request;
  2170. engine->submit_request = i9xx_submit_request;
  2171. if (INTEL_GEN(dev_priv) >= 8)
  2172. engine->emit_bb_start = gen8_emit_bb_start;
  2173. else if (INTEL_GEN(dev_priv) >= 6)
  2174. engine->emit_bb_start = gen6_emit_bb_start;
  2175. else if (INTEL_GEN(dev_priv) >= 4)
  2176. engine->emit_bb_start = i965_emit_bb_start;
  2177. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2178. engine->emit_bb_start = i830_emit_bb_start;
  2179. else
  2180. engine->emit_bb_start = i915_emit_bb_start;
  2181. }
  2182. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2183. {
  2184. struct drm_i915_private *dev_priv = engine->i915;
  2185. int ret;
  2186. intel_ring_default_vfuncs(dev_priv, engine);
  2187. if (HAS_L3_DPF(dev_priv))
  2188. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2189. if (INTEL_GEN(dev_priv) >= 8) {
  2190. engine->init_context = intel_rcs_ctx_init;
  2191. engine->emit_request = gen8_render_emit_request;
  2192. engine->emit_flush = gen8_render_ring_flush;
  2193. if (i915.semaphores)
  2194. engine->semaphore.signal = gen8_rcs_signal;
  2195. } else if (INTEL_GEN(dev_priv) >= 6) {
  2196. engine->init_context = intel_rcs_ctx_init;
  2197. engine->emit_flush = gen7_render_ring_flush;
  2198. if (IS_GEN6(dev_priv))
  2199. engine->emit_flush = gen6_render_ring_flush;
  2200. } else if (IS_GEN5(dev_priv)) {
  2201. engine->emit_flush = gen4_render_ring_flush;
  2202. } else {
  2203. if (INTEL_GEN(dev_priv) < 4)
  2204. engine->emit_flush = gen2_render_ring_flush;
  2205. else
  2206. engine->emit_flush = gen4_render_ring_flush;
  2207. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2208. }
  2209. if (IS_HASWELL(dev_priv))
  2210. engine->emit_bb_start = hsw_emit_bb_start;
  2211. engine->init_hw = init_render_ring;
  2212. engine->cleanup = render_ring_cleanup;
  2213. ret = intel_init_ring_buffer(engine);
  2214. if (ret)
  2215. return ret;
  2216. if (INTEL_GEN(dev_priv) >= 6) {
  2217. ret = intel_engine_create_scratch(engine, 4096);
  2218. if (ret)
  2219. return ret;
  2220. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2221. ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
  2222. if (ret)
  2223. return ret;
  2224. }
  2225. return 0;
  2226. }
  2227. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2228. {
  2229. struct drm_i915_private *dev_priv = engine->i915;
  2230. intel_ring_default_vfuncs(dev_priv, engine);
  2231. if (INTEL_GEN(dev_priv) >= 6) {
  2232. /* gen6 bsd needs a special wa for tail updates */
  2233. if (IS_GEN6(dev_priv))
  2234. engine->submit_request = gen6_bsd_submit_request;
  2235. engine->emit_flush = gen6_bsd_ring_flush;
  2236. if (INTEL_GEN(dev_priv) < 8)
  2237. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2238. } else {
  2239. engine->mmio_base = BSD_RING_BASE;
  2240. engine->emit_flush = bsd_ring_flush;
  2241. if (IS_GEN5(dev_priv))
  2242. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2243. else
  2244. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2245. }
  2246. return intel_init_ring_buffer(engine);
  2247. }
  2248. /**
  2249. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2250. */
  2251. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2252. {
  2253. struct drm_i915_private *dev_priv = engine->i915;
  2254. intel_ring_default_vfuncs(dev_priv, engine);
  2255. engine->emit_flush = gen6_bsd_ring_flush;
  2256. return intel_init_ring_buffer(engine);
  2257. }
  2258. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2259. {
  2260. struct drm_i915_private *dev_priv = engine->i915;
  2261. intel_ring_default_vfuncs(dev_priv, engine);
  2262. engine->emit_flush = gen6_ring_flush;
  2263. if (INTEL_GEN(dev_priv) < 8)
  2264. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2265. return intel_init_ring_buffer(engine);
  2266. }
  2267. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2268. {
  2269. struct drm_i915_private *dev_priv = engine->i915;
  2270. intel_ring_default_vfuncs(dev_priv, engine);
  2271. engine->emit_flush = gen6_ring_flush;
  2272. if (INTEL_GEN(dev_priv) < 8) {
  2273. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2274. engine->irq_enable = hsw_vebox_irq_enable;
  2275. engine->irq_disable = hsw_vebox_irq_disable;
  2276. }
  2277. return intel_init_ring_buffer(engine);
  2278. }