spi-ti-qspi.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862
  1. /*
  2. * TI QSPI driver
  3. *
  4. * Copyright (C) 2013 Texas Instruments Incorporated - http://www.ti.com
  5. * Author: Sourav Poddar <sourav.poddar@ti.com>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GPLv2.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR /PURPOSE. See the
  13. * GNU General Public License for more details.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dmaengine.h>
  23. #include <linux/omap-dma.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/err.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/slab.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/of.h>
  31. #include <linux/of_device.h>
  32. #include <linux/pinctrl/consumer.h>
  33. #include <linux/mfd/syscon.h>
  34. #include <linux/regmap.h>
  35. #include <linux/sizes.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/spi/spi-mem.h>
  38. struct ti_qspi_regs {
  39. u32 clkctrl;
  40. };
  41. struct ti_qspi {
  42. struct completion transfer_complete;
  43. /* list synchronization */
  44. struct mutex list_lock;
  45. struct spi_master *master;
  46. void __iomem *base;
  47. void __iomem *mmap_base;
  48. size_t mmap_size;
  49. struct regmap *ctrl_base;
  50. unsigned int ctrl_reg;
  51. struct clk *fclk;
  52. struct device *dev;
  53. struct ti_qspi_regs ctx_reg;
  54. dma_addr_t mmap_phys_base;
  55. dma_addr_t rx_bb_dma_addr;
  56. void *rx_bb_addr;
  57. struct dma_chan *rx_chan;
  58. u32 spi_max_frequency;
  59. u32 cmd;
  60. u32 dc;
  61. bool mmap_enabled;
  62. };
  63. #define QSPI_PID (0x0)
  64. #define QSPI_SYSCONFIG (0x10)
  65. #define QSPI_SPI_CLOCK_CNTRL_REG (0x40)
  66. #define QSPI_SPI_DC_REG (0x44)
  67. #define QSPI_SPI_CMD_REG (0x48)
  68. #define QSPI_SPI_STATUS_REG (0x4c)
  69. #define QSPI_SPI_DATA_REG (0x50)
  70. #define QSPI_SPI_SETUP_REG(n) ((0x54 + 4 * n))
  71. #define QSPI_SPI_SWITCH_REG (0x64)
  72. #define QSPI_SPI_DATA_REG_1 (0x68)
  73. #define QSPI_SPI_DATA_REG_2 (0x6c)
  74. #define QSPI_SPI_DATA_REG_3 (0x70)
  75. #define QSPI_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
  76. #define QSPI_FCLK 192000000
  77. /* Clock Control */
  78. #define QSPI_CLK_EN (1 << 31)
  79. #define QSPI_CLK_DIV_MAX 0xffff
  80. /* Command */
  81. #define QSPI_EN_CS(n) (n << 28)
  82. #define QSPI_WLEN(n) ((n - 1) << 19)
  83. #define QSPI_3_PIN (1 << 18)
  84. #define QSPI_RD_SNGL (1 << 16)
  85. #define QSPI_WR_SNGL (2 << 16)
  86. #define QSPI_RD_DUAL (3 << 16)
  87. #define QSPI_RD_QUAD (7 << 16)
  88. #define QSPI_INVAL (4 << 16)
  89. #define QSPI_FLEN(n) ((n - 1) << 0)
  90. #define QSPI_WLEN_MAX_BITS 128
  91. #define QSPI_WLEN_MAX_BYTES 16
  92. #define QSPI_WLEN_MASK QSPI_WLEN(QSPI_WLEN_MAX_BITS)
  93. /* STATUS REGISTER */
  94. #define BUSY 0x01
  95. #define WC 0x02
  96. /* Device Control */
  97. #define QSPI_DD(m, n) (m << (3 + n * 8))
  98. #define QSPI_CKPHA(n) (1 << (2 + n * 8))
  99. #define QSPI_CSPOL(n) (1 << (1 + n * 8))
  100. #define QSPI_CKPOL(n) (1 << (n * 8))
  101. #define QSPI_FRAME 4096
  102. #define QSPI_AUTOSUSPEND_TIMEOUT 2000
  103. #define MEM_CS_EN(n) ((n + 1) << 8)
  104. #define MEM_CS_MASK (7 << 8)
  105. #define MM_SWITCH 0x1
  106. #define QSPI_SETUP_RD_NORMAL (0x0 << 12)
  107. #define QSPI_SETUP_RD_DUAL (0x1 << 12)
  108. #define QSPI_SETUP_RD_QUAD (0x3 << 12)
  109. #define QSPI_SETUP_ADDR_SHIFT 8
  110. #define QSPI_SETUP_DUMMY_SHIFT 10
  111. #define QSPI_DMA_BUFFER_SIZE SZ_64K
  112. static inline unsigned long ti_qspi_read(struct ti_qspi *qspi,
  113. unsigned long reg)
  114. {
  115. return readl(qspi->base + reg);
  116. }
  117. static inline void ti_qspi_write(struct ti_qspi *qspi,
  118. unsigned long val, unsigned long reg)
  119. {
  120. writel(val, qspi->base + reg);
  121. }
  122. static int ti_qspi_setup(struct spi_device *spi)
  123. {
  124. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  125. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  126. int clk_div = 0, ret;
  127. u32 clk_ctrl_reg, clk_rate, clk_mask;
  128. if (spi->master->busy) {
  129. dev_dbg(qspi->dev, "master busy doing other transfers\n");
  130. return -EBUSY;
  131. }
  132. if (!qspi->spi_max_frequency) {
  133. dev_err(qspi->dev, "spi max frequency not defined\n");
  134. return -EINVAL;
  135. }
  136. clk_rate = clk_get_rate(qspi->fclk);
  137. clk_div = DIV_ROUND_UP(clk_rate, qspi->spi_max_frequency) - 1;
  138. if (clk_div < 0) {
  139. dev_dbg(qspi->dev, "clock divider < 0, using /1 divider\n");
  140. return -EINVAL;
  141. }
  142. if (clk_div > QSPI_CLK_DIV_MAX) {
  143. dev_dbg(qspi->dev, "clock divider >%d , using /%d divider\n",
  144. QSPI_CLK_DIV_MAX, QSPI_CLK_DIV_MAX + 1);
  145. return -EINVAL;
  146. }
  147. dev_dbg(qspi->dev, "hz: %d, clock divider %d\n",
  148. qspi->spi_max_frequency, clk_div);
  149. ret = pm_runtime_get_sync(qspi->dev);
  150. if (ret < 0) {
  151. dev_err(qspi->dev, "pm_runtime_get_sync() failed\n");
  152. return ret;
  153. }
  154. clk_ctrl_reg = ti_qspi_read(qspi, QSPI_SPI_CLOCK_CNTRL_REG);
  155. clk_ctrl_reg &= ~QSPI_CLK_EN;
  156. /* disable SCLK */
  157. ti_qspi_write(qspi, clk_ctrl_reg, QSPI_SPI_CLOCK_CNTRL_REG);
  158. /* enable SCLK */
  159. clk_mask = QSPI_CLK_EN | clk_div;
  160. ti_qspi_write(qspi, clk_mask, QSPI_SPI_CLOCK_CNTRL_REG);
  161. ctx_reg->clkctrl = clk_mask;
  162. pm_runtime_mark_last_busy(qspi->dev);
  163. ret = pm_runtime_put_autosuspend(qspi->dev);
  164. if (ret < 0) {
  165. dev_err(qspi->dev, "pm_runtime_put_autosuspend() failed\n");
  166. return ret;
  167. }
  168. return 0;
  169. }
  170. static void ti_qspi_restore_ctx(struct ti_qspi *qspi)
  171. {
  172. struct ti_qspi_regs *ctx_reg = &qspi->ctx_reg;
  173. ti_qspi_write(qspi, ctx_reg->clkctrl, QSPI_SPI_CLOCK_CNTRL_REG);
  174. }
  175. static inline u32 qspi_is_busy(struct ti_qspi *qspi)
  176. {
  177. u32 stat;
  178. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  179. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  180. while ((stat & BUSY) && time_after(timeout, jiffies)) {
  181. cpu_relax();
  182. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  183. }
  184. WARN(stat & BUSY, "qspi busy\n");
  185. return stat & BUSY;
  186. }
  187. static inline int ti_qspi_poll_wc(struct ti_qspi *qspi)
  188. {
  189. u32 stat;
  190. unsigned long timeout = jiffies + QSPI_COMPLETION_TIMEOUT;
  191. do {
  192. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  193. if (stat & WC)
  194. return 0;
  195. cpu_relax();
  196. } while (time_after(timeout, jiffies));
  197. stat = ti_qspi_read(qspi, QSPI_SPI_STATUS_REG);
  198. if (stat & WC)
  199. return 0;
  200. return -ETIMEDOUT;
  201. }
  202. static int qspi_write_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  203. int count)
  204. {
  205. int wlen, xfer_len;
  206. unsigned int cmd;
  207. const u8 *txbuf;
  208. u32 data;
  209. txbuf = t->tx_buf;
  210. cmd = qspi->cmd | QSPI_WR_SNGL;
  211. wlen = t->bits_per_word >> 3; /* in bytes */
  212. xfer_len = wlen;
  213. while (count) {
  214. if (qspi_is_busy(qspi))
  215. return -EBUSY;
  216. switch (wlen) {
  217. case 1:
  218. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %02x\n",
  219. cmd, qspi->dc, *txbuf);
  220. if (count >= QSPI_WLEN_MAX_BYTES) {
  221. u32 *txp = (u32 *)txbuf;
  222. data = cpu_to_be32(*txp++);
  223. writel(data, qspi->base +
  224. QSPI_SPI_DATA_REG_3);
  225. data = cpu_to_be32(*txp++);
  226. writel(data, qspi->base +
  227. QSPI_SPI_DATA_REG_2);
  228. data = cpu_to_be32(*txp++);
  229. writel(data, qspi->base +
  230. QSPI_SPI_DATA_REG_1);
  231. data = cpu_to_be32(*txp++);
  232. writel(data, qspi->base +
  233. QSPI_SPI_DATA_REG);
  234. xfer_len = QSPI_WLEN_MAX_BYTES;
  235. cmd |= QSPI_WLEN(QSPI_WLEN_MAX_BITS);
  236. } else {
  237. writeb(*txbuf, qspi->base + QSPI_SPI_DATA_REG);
  238. cmd = qspi->cmd | QSPI_WR_SNGL;
  239. xfer_len = wlen;
  240. cmd |= QSPI_WLEN(wlen);
  241. }
  242. break;
  243. case 2:
  244. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %04x\n",
  245. cmd, qspi->dc, *txbuf);
  246. writew(*((u16 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  247. break;
  248. case 4:
  249. dev_dbg(qspi->dev, "tx cmd %08x dc %08x data %08x\n",
  250. cmd, qspi->dc, *txbuf);
  251. writel(*((u32 *)txbuf), qspi->base + QSPI_SPI_DATA_REG);
  252. break;
  253. }
  254. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  255. if (ti_qspi_poll_wc(qspi)) {
  256. dev_err(qspi->dev, "write timed out\n");
  257. return -ETIMEDOUT;
  258. }
  259. txbuf += xfer_len;
  260. count -= xfer_len;
  261. }
  262. return 0;
  263. }
  264. static int qspi_read_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  265. int count)
  266. {
  267. int wlen;
  268. unsigned int cmd;
  269. u8 *rxbuf;
  270. rxbuf = t->rx_buf;
  271. cmd = qspi->cmd;
  272. switch (t->rx_nbits) {
  273. case SPI_NBITS_DUAL:
  274. cmd |= QSPI_RD_DUAL;
  275. break;
  276. case SPI_NBITS_QUAD:
  277. cmd |= QSPI_RD_QUAD;
  278. break;
  279. default:
  280. cmd |= QSPI_RD_SNGL;
  281. break;
  282. }
  283. wlen = t->bits_per_word >> 3; /* in bytes */
  284. while (count) {
  285. dev_dbg(qspi->dev, "rx cmd %08x dc %08x\n", cmd, qspi->dc);
  286. if (qspi_is_busy(qspi))
  287. return -EBUSY;
  288. ti_qspi_write(qspi, cmd, QSPI_SPI_CMD_REG);
  289. if (ti_qspi_poll_wc(qspi)) {
  290. dev_err(qspi->dev, "read timed out\n");
  291. return -ETIMEDOUT;
  292. }
  293. switch (wlen) {
  294. case 1:
  295. *rxbuf = readb(qspi->base + QSPI_SPI_DATA_REG);
  296. break;
  297. case 2:
  298. *((u16 *)rxbuf) = readw(qspi->base + QSPI_SPI_DATA_REG);
  299. break;
  300. case 4:
  301. *((u32 *)rxbuf) = readl(qspi->base + QSPI_SPI_DATA_REG);
  302. break;
  303. }
  304. rxbuf += wlen;
  305. count -= wlen;
  306. }
  307. return 0;
  308. }
  309. static int qspi_transfer_msg(struct ti_qspi *qspi, struct spi_transfer *t,
  310. int count)
  311. {
  312. int ret;
  313. if (t->tx_buf) {
  314. ret = qspi_write_msg(qspi, t, count);
  315. if (ret) {
  316. dev_dbg(qspi->dev, "Error while writing\n");
  317. return ret;
  318. }
  319. }
  320. if (t->rx_buf) {
  321. ret = qspi_read_msg(qspi, t, count);
  322. if (ret) {
  323. dev_dbg(qspi->dev, "Error while reading\n");
  324. return ret;
  325. }
  326. }
  327. return 0;
  328. }
  329. static void ti_qspi_dma_callback(void *param)
  330. {
  331. struct ti_qspi *qspi = param;
  332. complete(&qspi->transfer_complete);
  333. }
  334. static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
  335. dma_addr_t dma_src, size_t len)
  336. {
  337. struct dma_chan *chan = qspi->rx_chan;
  338. dma_cookie_t cookie;
  339. enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
  340. struct dma_async_tx_descriptor *tx;
  341. int ret;
  342. tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
  343. if (!tx) {
  344. dev_err(qspi->dev, "device_prep_dma_memcpy error\n");
  345. return -EIO;
  346. }
  347. tx->callback = ti_qspi_dma_callback;
  348. tx->callback_param = qspi;
  349. cookie = tx->tx_submit(tx);
  350. reinit_completion(&qspi->transfer_complete);
  351. ret = dma_submit_error(cookie);
  352. if (ret) {
  353. dev_err(qspi->dev, "dma_submit_error %d\n", cookie);
  354. return -EIO;
  355. }
  356. dma_async_issue_pending(chan);
  357. ret = wait_for_completion_timeout(&qspi->transfer_complete,
  358. msecs_to_jiffies(len));
  359. if (ret <= 0) {
  360. dmaengine_terminate_sync(chan);
  361. dev_err(qspi->dev, "DMA wait_for_completion_timeout\n");
  362. return -ETIMEDOUT;
  363. }
  364. return 0;
  365. }
  366. static int ti_qspi_dma_bounce_buffer(struct ti_qspi *qspi, loff_t offs,
  367. void *to, size_t readsize)
  368. {
  369. dma_addr_t dma_src = qspi->mmap_phys_base + offs;
  370. int ret = 0;
  371. /*
  372. * Use bounce buffer as FS like jffs2, ubifs may pass
  373. * buffers that does not belong to kernel lowmem region.
  374. */
  375. while (readsize != 0) {
  376. size_t xfer_len = min_t(size_t, QSPI_DMA_BUFFER_SIZE,
  377. readsize);
  378. ret = ti_qspi_dma_xfer(qspi, qspi->rx_bb_dma_addr,
  379. dma_src, xfer_len);
  380. if (ret != 0)
  381. return ret;
  382. memcpy(to, qspi->rx_bb_addr, xfer_len);
  383. readsize -= xfer_len;
  384. dma_src += xfer_len;
  385. to += xfer_len;
  386. }
  387. return ret;
  388. }
  389. static int ti_qspi_dma_xfer_sg(struct ti_qspi *qspi, struct sg_table rx_sg,
  390. loff_t from)
  391. {
  392. struct scatterlist *sg;
  393. dma_addr_t dma_src = qspi->mmap_phys_base + from;
  394. dma_addr_t dma_dst;
  395. int i, len, ret;
  396. for_each_sg(rx_sg.sgl, sg, rx_sg.nents, i) {
  397. dma_dst = sg_dma_address(sg);
  398. len = sg_dma_len(sg);
  399. ret = ti_qspi_dma_xfer(qspi, dma_dst, dma_src, len);
  400. if (ret)
  401. return ret;
  402. dma_src += len;
  403. }
  404. return 0;
  405. }
  406. static void ti_qspi_enable_memory_map(struct spi_device *spi)
  407. {
  408. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  409. ti_qspi_write(qspi, MM_SWITCH, QSPI_SPI_SWITCH_REG);
  410. if (qspi->ctrl_base) {
  411. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  412. MEM_CS_EN(spi->chip_select),
  413. MEM_CS_MASK);
  414. }
  415. qspi->mmap_enabled = true;
  416. }
  417. static void ti_qspi_disable_memory_map(struct spi_device *spi)
  418. {
  419. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  420. ti_qspi_write(qspi, 0, QSPI_SPI_SWITCH_REG);
  421. if (qspi->ctrl_base)
  422. regmap_update_bits(qspi->ctrl_base, qspi->ctrl_reg,
  423. 0, MEM_CS_MASK);
  424. qspi->mmap_enabled = false;
  425. }
  426. static void ti_qspi_setup_mmap_read(struct spi_device *spi, u8 opcode,
  427. u8 data_nbits, u8 addr_width,
  428. u8 dummy_bytes)
  429. {
  430. struct ti_qspi *qspi = spi_master_get_devdata(spi->master);
  431. u32 memval = opcode;
  432. switch (data_nbits) {
  433. case SPI_NBITS_QUAD:
  434. memval |= QSPI_SETUP_RD_QUAD;
  435. break;
  436. case SPI_NBITS_DUAL:
  437. memval |= QSPI_SETUP_RD_DUAL;
  438. break;
  439. default:
  440. memval |= QSPI_SETUP_RD_NORMAL;
  441. break;
  442. }
  443. memval |= ((addr_width - 1) << QSPI_SETUP_ADDR_SHIFT |
  444. dummy_bytes << QSPI_SETUP_DUMMY_SHIFT);
  445. ti_qspi_write(qspi, memval,
  446. QSPI_SPI_SETUP_REG(spi->chip_select));
  447. }
  448. static int ti_qspi_exec_mem_op(struct spi_mem *mem,
  449. const struct spi_mem_op *op)
  450. {
  451. struct ti_qspi *qspi = spi_master_get_devdata(mem->spi->master);
  452. u32 from = 0;
  453. int ret = 0;
  454. /* Only optimize read path. */
  455. if (!op->data.nbytes || op->data.dir != SPI_MEM_DATA_IN ||
  456. !op->addr.nbytes || op->addr.nbytes > 4)
  457. return -ENOTSUPP;
  458. /* Address exceeds MMIO window size, fall back to regular mode. */
  459. from = op->addr.val;
  460. if (from + op->data.nbytes > qspi->mmap_size)
  461. return -ENOTSUPP;
  462. mutex_lock(&qspi->list_lock);
  463. if (!qspi->mmap_enabled)
  464. ti_qspi_enable_memory_map(mem->spi);
  465. ti_qspi_setup_mmap_read(mem->spi, op->cmd.opcode, op->data.buswidth,
  466. op->addr.nbytes, op->dummy.nbytes);
  467. if (qspi->rx_chan) {
  468. struct sg_table sgt;
  469. if (virt_addr_valid(op->data.buf.in) &&
  470. !spi_controller_dma_map_mem_op_data(mem->spi->master, op,
  471. &sgt)) {
  472. ret = ti_qspi_dma_xfer_sg(qspi, sgt, from);
  473. spi_controller_dma_unmap_mem_op_data(mem->spi->master,
  474. op, &sgt);
  475. } else {
  476. ret = ti_qspi_dma_bounce_buffer(qspi, from,
  477. op->data.buf.in,
  478. op->data.nbytes);
  479. }
  480. } else {
  481. memcpy_fromio(op->data.buf.in, qspi->mmap_base + from,
  482. op->data.nbytes);
  483. }
  484. mutex_unlock(&qspi->list_lock);
  485. return ret;
  486. }
  487. static const struct spi_controller_mem_ops ti_qspi_mem_ops = {
  488. .exec_op = ti_qspi_exec_mem_op,
  489. };
  490. static int ti_qspi_start_transfer_one(struct spi_master *master,
  491. struct spi_message *m)
  492. {
  493. struct ti_qspi *qspi = spi_master_get_devdata(master);
  494. struct spi_device *spi = m->spi;
  495. struct spi_transfer *t;
  496. int status = 0, ret;
  497. unsigned int frame_len_words, transfer_len_words;
  498. int wlen;
  499. /* setup device control reg */
  500. qspi->dc = 0;
  501. if (spi->mode & SPI_CPHA)
  502. qspi->dc |= QSPI_CKPHA(spi->chip_select);
  503. if (spi->mode & SPI_CPOL)
  504. qspi->dc |= QSPI_CKPOL(spi->chip_select);
  505. if (spi->mode & SPI_CS_HIGH)
  506. qspi->dc |= QSPI_CSPOL(spi->chip_select);
  507. frame_len_words = 0;
  508. list_for_each_entry(t, &m->transfers, transfer_list)
  509. frame_len_words += t->len / (t->bits_per_word >> 3);
  510. frame_len_words = min_t(unsigned int, frame_len_words, QSPI_FRAME);
  511. /* setup command reg */
  512. qspi->cmd = 0;
  513. qspi->cmd |= QSPI_EN_CS(spi->chip_select);
  514. qspi->cmd |= QSPI_FLEN(frame_len_words);
  515. ti_qspi_write(qspi, qspi->dc, QSPI_SPI_DC_REG);
  516. mutex_lock(&qspi->list_lock);
  517. if (qspi->mmap_enabled)
  518. ti_qspi_disable_memory_map(spi);
  519. list_for_each_entry(t, &m->transfers, transfer_list) {
  520. qspi->cmd = ((qspi->cmd & ~QSPI_WLEN_MASK) |
  521. QSPI_WLEN(t->bits_per_word));
  522. wlen = t->bits_per_word >> 3;
  523. transfer_len_words = min(t->len / wlen, frame_len_words);
  524. ret = qspi_transfer_msg(qspi, t, transfer_len_words * wlen);
  525. if (ret) {
  526. dev_dbg(qspi->dev, "transfer message failed\n");
  527. mutex_unlock(&qspi->list_lock);
  528. return -EINVAL;
  529. }
  530. m->actual_length += transfer_len_words * wlen;
  531. frame_len_words -= transfer_len_words;
  532. if (frame_len_words == 0)
  533. break;
  534. }
  535. mutex_unlock(&qspi->list_lock);
  536. ti_qspi_write(qspi, qspi->cmd | QSPI_INVAL, QSPI_SPI_CMD_REG);
  537. m->status = status;
  538. spi_finalize_current_message(master);
  539. return status;
  540. }
  541. static int ti_qspi_runtime_resume(struct device *dev)
  542. {
  543. struct ti_qspi *qspi;
  544. qspi = dev_get_drvdata(dev);
  545. ti_qspi_restore_ctx(qspi);
  546. return 0;
  547. }
  548. static const struct of_device_id ti_qspi_match[] = {
  549. {.compatible = "ti,dra7xxx-qspi" },
  550. {.compatible = "ti,am4372-qspi" },
  551. {},
  552. };
  553. MODULE_DEVICE_TABLE(of, ti_qspi_match);
  554. static int ti_qspi_probe(struct platform_device *pdev)
  555. {
  556. struct ti_qspi *qspi;
  557. struct spi_master *master;
  558. struct resource *r, *res_mmap;
  559. struct device_node *np = pdev->dev.of_node;
  560. u32 max_freq;
  561. int ret = 0, num_cs, irq;
  562. dma_cap_mask_t mask;
  563. master = spi_alloc_master(&pdev->dev, sizeof(*qspi));
  564. if (!master)
  565. return -ENOMEM;
  566. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_RX_DUAL | SPI_RX_QUAD;
  567. master->flags = SPI_MASTER_HALF_DUPLEX;
  568. master->setup = ti_qspi_setup;
  569. master->auto_runtime_pm = true;
  570. master->transfer_one_message = ti_qspi_start_transfer_one;
  571. master->dev.of_node = pdev->dev.of_node;
  572. master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
  573. SPI_BPW_MASK(8);
  574. master->mem_ops = &ti_qspi_mem_ops;
  575. if (!of_property_read_u32(np, "num-cs", &num_cs))
  576. master->num_chipselect = num_cs;
  577. qspi = spi_master_get_devdata(master);
  578. qspi->master = master;
  579. qspi->dev = &pdev->dev;
  580. platform_set_drvdata(pdev, qspi);
  581. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
  582. if (r == NULL) {
  583. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  584. if (r == NULL) {
  585. dev_err(&pdev->dev, "missing platform data\n");
  586. ret = -ENODEV;
  587. goto free_master;
  588. }
  589. }
  590. res_mmap = platform_get_resource_byname(pdev,
  591. IORESOURCE_MEM, "qspi_mmap");
  592. if (res_mmap == NULL) {
  593. res_mmap = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  594. if (res_mmap == NULL) {
  595. dev_err(&pdev->dev,
  596. "memory mapped resource not required\n");
  597. }
  598. }
  599. if (res_mmap)
  600. qspi->mmap_size = resource_size(res_mmap);
  601. irq = platform_get_irq(pdev, 0);
  602. if (irq < 0) {
  603. dev_err(&pdev->dev, "no irq resource?\n");
  604. ret = irq;
  605. goto free_master;
  606. }
  607. mutex_init(&qspi->list_lock);
  608. qspi->base = devm_ioremap_resource(&pdev->dev, r);
  609. if (IS_ERR(qspi->base)) {
  610. ret = PTR_ERR(qspi->base);
  611. goto free_master;
  612. }
  613. if (of_property_read_bool(np, "syscon-chipselects")) {
  614. qspi->ctrl_base =
  615. syscon_regmap_lookup_by_phandle(np,
  616. "syscon-chipselects");
  617. if (IS_ERR(qspi->ctrl_base)) {
  618. ret = PTR_ERR(qspi->ctrl_base);
  619. goto free_master;
  620. }
  621. ret = of_property_read_u32_index(np,
  622. "syscon-chipselects",
  623. 1, &qspi->ctrl_reg);
  624. if (ret) {
  625. dev_err(&pdev->dev,
  626. "couldn't get ctrl_mod reg index\n");
  627. goto free_master;
  628. }
  629. }
  630. qspi->fclk = devm_clk_get(&pdev->dev, "fck");
  631. if (IS_ERR(qspi->fclk)) {
  632. ret = PTR_ERR(qspi->fclk);
  633. dev_err(&pdev->dev, "could not get clk: %d\n", ret);
  634. }
  635. pm_runtime_use_autosuspend(&pdev->dev);
  636. pm_runtime_set_autosuspend_delay(&pdev->dev, QSPI_AUTOSUSPEND_TIMEOUT);
  637. pm_runtime_enable(&pdev->dev);
  638. if (!of_property_read_u32(np, "spi-max-frequency", &max_freq))
  639. qspi->spi_max_frequency = max_freq;
  640. dma_cap_zero(mask);
  641. dma_cap_set(DMA_MEMCPY, mask);
  642. qspi->rx_chan = dma_request_chan_by_mask(&mask);
  643. if (IS_ERR(qspi->rx_chan)) {
  644. dev_err(qspi->dev,
  645. "No Rx DMA available, trying mmap mode\n");
  646. qspi->rx_chan = NULL;
  647. ret = 0;
  648. goto no_dma;
  649. }
  650. qspi->rx_bb_addr = dma_alloc_coherent(qspi->dev,
  651. QSPI_DMA_BUFFER_SIZE,
  652. &qspi->rx_bb_dma_addr,
  653. GFP_KERNEL | GFP_DMA);
  654. if (!qspi->rx_bb_addr) {
  655. dev_err(qspi->dev,
  656. "dma_alloc_coherent failed, using PIO mode\n");
  657. dma_release_channel(qspi->rx_chan);
  658. goto no_dma;
  659. }
  660. master->dma_rx = qspi->rx_chan;
  661. init_completion(&qspi->transfer_complete);
  662. if (res_mmap)
  663. qspi->mmap_phys_base = (dma_addr_t)res_mmap->start;
  664. no_dma:
  665. if (!qspi->rx_chan && res_mmap) {
  666. qspi->mmap_base = devm_ioremap_resource(&pdev->dev, res_mmap);
  667. if (IS_ERR(qspi->mmap_base)) {
  668. dev_info(&pdev->dev,
  669. "mmap failed with error %ld using PIO mode\n",
  670. PTR_ERR(qspi->mmap_base));
  671. qspi->mmap_base = NULL;
  672. master->mem_ops = NULL;
  673. }
  674. }
  675. qspi->mmap_enabled = false;
  676. ret = devm_spi_register_master(&pdev->dev, master);
  677. if (!ret)
  678. return 0;
  679. pm_runtime_disable(&pdev->dev);
  680. free_master:
  681. spi_master_put(master);
  682. return ret;
  683. }
  684. static int ti_qspi_remove(struct platform_device *pdev)
  685. {
  686. struct ti_qspi *qspi = platform_get_drvdata(pdev);
  687. int rc;
  688. rc = spi_master_suspend(qspi->master);
  689. if (rc)
  690. return rc;
  691. pm_runtime_put_sync(&pdev->dev);
  692. pm_runtime_disable(&pdev->dev);
  693. if (qspi->rx_bb_addr)
  694. dma_free_coherent(qspi->dev, QSPI_DMA_BUFFER_SIZE,
  695. qspi->rx_bb_addr,
  696. qspi->rx_bb_dma_addr);
  697. if (qspi->rx_chan)
  698. dma_release_channel(qspi->rx_chan);
  699. return 0;
  700. }
  701. static const struct dev_pm_ops ti_qspi_pm_ops = {
  702. .runtime_resume = ti_qspi_runtime_resume,
  703. };
  704. static struct platform_driver ti_qspi_driver = {
  705. .probe = ti_qspi_probe,
  706. .remove = ti_qspi_remove,
  707. .driver = {
  708. .name = "ti-qspi",
  709. .pm = &ti_qspi_pm_ops,
  710. .of_match_table = ti_qspi_match,
  711. }
  712. };
  713. module_platform_driver(ti_qspi_driver);
  714. MODULE_AUTHOR("Sourav Poddar <sourav.poddar@ti.com>");
  715. MODULE_LICENSE("GPL v2");
  716. MODULE_DESCRIPTION("TI QSPI controller driver");
  717. MODULE_ALIAS("platform:ti-qspi");