intel_ringbuffer.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  329. /*
  330. * TLB invalidate requires a post-sync write.
  331. */
  332. flags |= PIPE_CONTROL_QW_WRITE;
  333. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  334. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  335. /* Workaround: we must issue a pipe_control with CS-stall bit
  336. * set before a pipe_control command that has the state cache
  337. * invalidate bit set. */
  338. gen7_render_ring_cs_stall_wa(ring);
  339. }
  340. ret = intel_ring_begin(ring, 4);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_advance(ring);
  348. if (!invalidate_domains && flush_domains)
  349. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  350. return 0;
  351. }
  352. static int
  353. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  354. u32 flags, u32 scratch_addr)
  355. {
  356. int ret;
  357. ret = intel_ring_begin(ring, 6);
  358. if (ret)
  359. return ret;
  360. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  361. intel_ring_emit(ring, flags);
  362. intel_ring_emit(ring, scratch_addr);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_emit(ring, 0);
  365. intel_ring_emit(ring, 0);
  366. intel_ring_advance(ring);
  367. return 0;
  368. }
  369. static int
  370. gen8_render_ring_flush(struct intel_engine_cs *ring,
  371. u32 invalidate_domains, u32 flush_domains)
  372. {
  373. u32 flags = 0;
  374. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  375. int ret;
  376. flags |= PIPE_CONTROL_CS_STALL;
  377. if (flush_domains) {
  378. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  379. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  380. }
  381. if (invalidate_domains) {
  382. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  383. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  387. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  388. flags |= PIPE_CONTROL_QW_WRITE;
  389. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  390. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  391. ret = gen8_emit_pipe_control(ring,
  392. PIPE_CONTROL_CS_STALL |
  393. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  394. 0);
  395. if (ret)
  396. return ret;
  397. }
  398. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  399. if (ret)
  400. return ret;
  401. if (!invalidate_domains && flush_domains)
  402. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  403. return 0;
  404. }
  405. static void ring_write_tail(struct intel_engine_cs *ring,
  406. u32 value)
  407. {
  408. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  409. I915_WRITE_TAIL(ring, value);
  410. }
  411. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  412. {
  413. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  414. u64 acthd;
  415. if (INTEL_INFO(ring->dev)->gen >= 8)
  416. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  417. RING_ACTHD_UDW(ring->mmio_base));
  418. else if (INTEL_INFO(ring->dev)->gen >= 4)
  419. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  420. else
  421. acthd = I915_READ(ACTHD);
  422. return acthd;
  423. }
  424. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  425. {
  426. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  427. u32 addr;
  428. addr = dev_priv->status_page_dmah->busaddr;
  429. if (INTEL_INFO(ring->dev)->gen >= 4)
  430. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  431. I915_WRITE(HWS_PGA, addr);
  432. }
  433. static bool stop_ring(struct intel_engine_cs *ring)
  434. {
  435. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  436. if (!IS_GEN2(ring->dev)) {
  437. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  438. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  439. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  440. /* Sometimes we observe that the idle flag is not
  441. * set even though the ring is empty. So double
  442. * check before giving up.
  443. */
  444. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  445. return false;
  446. }
  447. }
  448. I915_WRITE_CTL(ring, 0);
  449. I915_WRITE_HEAD(ring, 0);
  450. ring->write_tail(ring, 0);
  451. if (!IS_GEN2(ring->dev)) {
  452. (void)I915_READ_CTL(ring);
  453. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  454. }
  455. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  456. }
  457. static int init_ring_common(struct intel_engine_cs *ring)
  458. {
  459. struct drm_device *dev = ring->dev;
  460. struct drm_i915_private *dev_priv = dev->dev_private;
  461. struct intel_ringbuffer *ringbuf = ring->buffer;
  462. struct drm_i915_gem_object *obj = ringbuf->obj;
  463. int ret = 0;
  464. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  465. if (!stop_ring(ring)) {
  466. /* G45 ring initialization often fails to reset head to zero */
  467. DRM_DEBUG_KMS("%s head not reset to zero "
  468. "ctl %08x head %08x tail %08x start %08x\n",
  469. ring->name,
  470. I915_READ_CTL(ring),
  471. I915_READ_HEAD(ring),
  472. I915_READ_TAIL(ring),
  473. I915_READ_START(ring));
  474. if (!stop_ring(ring)) {
  475. DRM_ERROR("failed to set %s head to zero "
  476. "ctl %08x head %08x tail %08x start %08x\n",
  477. ring->name,
  478. I915_READ_CTL(ring),
  479. I915_READ_HEAD(ring),
  480. I915_READ_TAIL(ring),
  481. I915_READ_START(ring));
  482. ret = -EIO;
  483. goto out;
  484. }
  485. }
  486. if (I915_NEED_GFX_HWS(dev))
  487. intel_ring_setup_status_page(ring);
  488. else
  489. ring_setup_phys_status_page(ring);
  490. /* Enforce ordering by reading HEAD register back */
  491. I915_READ_HEAD(ring);
  492. /* Initialize the ring. This must happen _after_ we've cleared the ring
  493. * registers with the above sequence (the readback of the HEAD registers
  494. * also enforces ordering), otherwise the hw might lose the new ring
  495. * register values. */
  496. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  497. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  498. if (I915_READ_HEAD(ring))
  499. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  500. ring->name, I915_READ_HEAD(ring));
  501. I915_WRITE_HEAD(ring, 0);
  502. (void)I915_READ_HEAD(ring);
  503. I915_WRITE_CTL(ring,
  504. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  505. | RING_VALID);
  506. /* If the head is still not zero, the ring is dead */
  507. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  508. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  509. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  510. DRM_ERROR("%s initialization failed "
  511. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  512. ring->name,
  513. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  514. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  515. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  516. ret = -EIO;
  517. goto out;
  518. }
  519. ringbuf->last_retired_head = -1;
  520. ringbuf->head = I915_READ_HEAD(ring);
  521. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  522. intel_ring_update_space(ringbuf);
  523. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  524. out:
  525. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  526. return ret;
  527. }
  528. void
  529. intel_fini_pipe_control(struct intel_engine_cs *ring)
  530. {
  531. struct drm_device *dev = ring->dev;
  532. if (ring->scratch.obj == NULL)
  533. return;
  534. if (INTEL_INFO(dev)->gen >= 5) {
  535. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  536. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  537. }
  538. drm_gem_object_unreference(&ring->scratch.obj->base);
  539. ring->scratch.obj = NULL;
  540. }
  541. int
  542. intel_init_pipe_control(struct intel_engine_cs *ring)
  543. {
  544. int ret;
  545. WARN_ON(ring->scratch.obj);
  546. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  547. if (ring->scratch.obj == NULL) {
  548. DRM_ERROR("Failed to allocate seqno page\n");
  549. ret = -ENOMEM;
  550. goto err;
  551. }
  552. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  553. if (ret)
  554. goto err_unref;
  555. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  556. if (ret)
  557. goto err_unref;
  558. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  559. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  560. if (ring->scratch.cpu_page == NULL) {
  561. ret = -ENOMEM;
  562. goto err_unpin;
  563. }
  564. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  565. ring->name, ring->scratch.gtt_offset);
  566. return 0;
  567. err_unpin:
  568. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  569. err_unref:
  570. drm_gem_object_unreference(&ring->scratch.obj->base);
  571. err:
  572. return ret;
  573. }
  574. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  575. struct intel_context *ctx)
  576. {
  577. int ret, i;
  578. struct drm_device *dev = ring->dev;
  579. struct drm_i915_private *dev_priv = dev->dev_private;
  580. struct i915_workarounds *w = &dev_priv->workarounds;
  581. if (WARN_ON_ONCE(w->count == 0))
  582. return 0;
  583. ring->gpu_caches_dirty = true;
  584. ret = intel_ring_flush_all_caches(ring);
  585. if (ret)
  586. return ret;
  587. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  588. if (ret)
  589. return ret;
  590. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  591. for (i = 0; i < w->count; i++) {
  592. intel_ring_emit(ring, w->reg[i].addr);
  593. intel_ring_emit(ring, w->reg[i].value);
  594. }
  595. intel_ring_emit(ring, MI_NOOP);
  596. intel_ring_advance(ring);
  597. ring->gpu_caches_dirty = true;
  598. ret = intel_ring_flush_all_caches(ring);
  599. if (ret)
  600. return ret;
  601. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  602. return 0;
  603. }
  604. static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
  605. struct intel_context *ctx)
  606. {
  607. int ret;
  608. ret = intel_ring_workarounds_emit(ring, ctx);
  609. if (ret != 0)
  610. return ret;
  611. ret = i915_gem_render_state_init(ring);
  612. if (ret)
  613. DRM_ERROR("init render state: %d\n", ret);
  614. return ret;
  615. }
  616. static int wa_add(struct drm_i915_private *dev_priv,
  617. const u32 addr, const u32 mask, const u32 val)
  618. {
  619. const u32 idx = dev_priv->workarounds.count;
  620. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  621. return -ENOSPC;
  622. dev_priv->workarounds.reg[idx].addr = addr;
  623. dev_priv->workarounds.reg[idx].value = val;
  624. dev_priv->workarounds.reg[idx].mask = mask;
  625. dev_priv->workarounds.count++;
  626. return 0;
  627. }
  628. #define WA_REG(addr, mask, val) { \
  629. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  630. if (r) \
  631. return r; \
  632. }
  633. #define WA_SET_BIT_MASKED(addr, mask) \
  634. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  635. #define WA_CLR_BIT_MASKED(addr, mask) \
  636. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  637. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  638. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  639. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  640. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  641. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  642. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  643. {
  644. struct drm_device *dev = ring->dev;
  645. struct drm_i915_private *dev_priv = dev->dev_private;
  646. /* WaDisablePartialInstShootdown:bdw */
  647. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  648. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  649. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  650. STALL_DOP_GATING_DISABLE);
  651. /* WaDisableDopClockGating:bdw */
  652. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  653. DOP_CLOCK_GATING_DISABLE);
  654. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  655. GEN8_SAMPLER_POWER_BYPASS_DIS);
  656. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  657. * workaround for for a possible hang in the unlikely event a TLB
  658. * invalidation occurs during a PSD flush.
  659. */
  660. /* WaForceEnableNonCoherent:bdw */
  661. /* WaHdcDisableFetchWhenMasked:bdw */
  662. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  663. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  664. HDC_FORCE_NON_COHERENT |
  665. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  666. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  667. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  668. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  669. * polygons in the same 8x4 pixel/sample area to be processed without
  670. * stalling waiting for the earlier ones to write to Hierarchical Z
  671. * buffer."
  672. *
  673. * This optimization is off by default for Broadwell; turn it on.
  674. */
  675. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  676. /* Wa4x4STCOptimizationDisable:bdw */
  677. WA_SET_BIT_MASKED(CACHE_MODE_1,
  678. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  679. /*
  680. * BSpec recommends 8x4 when MSAA is used,
  681. * however in practice 16x4 seems fastest.
  682. *
  683. * Note that PS/WM thread counts depend on the WIZ hashing
  684. * disable bit, which we don't touch here, but it's good
  685. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  686. */
  687. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  688. GEN6_WIZ_HASHING_MASK,
  689. GEN6_WIZ_HASHING_16x4);
  690. return 0;
  691. }
  692. static int chv_init_workarounds(struct intel_engine_cs *ring)
  693. {
  694. struct drm_device *dev = ring->dev;
  695. struct drm_i915_private *dev_priv = dev->dev_private;
  696. /* WaDisablePartialInstShootdown:chv */
  697. /* WaDisableThreadStallDopClockGating:chv */
  698. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  699. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  700. STALL_DOP_GATING_DISABLE);
  701. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  702. * workaround for a possible hang in the unlikely event a TLB
  703. * invalidation occurs during a PSD flush.
  704. */
  705. /* WaForceEnableNonCoherent:chv */
  706. /* WaHdcDisableFetchWhenMasked:chv */
  707. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  708. HDC_FORCE_NON_COHERENT |
  709. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  710. /* According to the CACHE_MODE_0 default value documentation, some
  711. * CHV platforms disable this optimization by default. Turn it on.
  712. */
  713. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  714. /* Wa4x4STCOptimizationDisable:chv */
  715. WA_SET_BIT_MASKED(CACHE_MODE_1,
  716. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  717. /* Improve HiZ throughput on CHV. */
  718. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  719. /*
  720. * BSpec recommends 8x4 when MSAA is used,
  721. * however in practice 16x4 seems fastest.
  722. *
  723. * Note that PS/WM thread counts depend on the WIZ hashing
  724. * disable bit, which we don't touch here, but it's good
  725. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  726. */
  727. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  728. GEN6_WIZ_HASHING_MASK,
  729. GEN6_WIZ_HASHING_16x4);
  730. return 0;
  731. }
  732. int init_workarounds_ring(struct intel_engine_cs *ring)
  733. {
  734. struct drm_device *dev = ring->dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. WARN_ON(ring->id != RCS);
  737. dev_priv->workarounds.count = 0;
  738. if (IS_BROADWELL(dev))
  739. return bdw_init_workarounds(ring);
  740. if (IS_CHERRYVIEW(dev))
  741. return chv_init_workarounds(ring);
  742. return 0;
  743. }
  744. static int init_render_ring(struct intel_engine_cs *ring)
  745. {
  746. struct drm_device *dev = ring->dev;
  747. struct drm_i915_private *dev_priv = dev->dev_private;
  748. int ret = init_ring_common(ring);
  749. if (ret)
  750. return ret;
  751. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  752. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  753. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  754. /* We need to disable the AsyncFlip performance optimisations in order
  755. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  756. * programmed to '1' on all products.
  757. *
  758. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  759. */
  760. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  761. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  762. /* Required for the hardware to program scanline values for waiting */
  763. /* WaEnableFlushTlbInvalidationMode:snb */
  764. if (INTEL_INFO(dev)->gen == 6)
  765. I915_WRITE(GFX_MODE,
  766. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  767. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  768. if (IS_GEN7(dev))
  769. I915_WRITE(GFX_MODE_GEN7,
  770. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  771. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  772. if (IS_GEN6(dev)) {
  773. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  774. * "If this bit is set, STCunit will have LRA as replacement
  775. * policy. [...] This bit must be reset. LRA replacement
  776. * policy is not supported."
  777. */
  778. I915_WRITE(CACHE_MODE_0,
  779. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  780. }
  781. if (INTEL_INFO(dev)->gen >= 6)
  782. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  783. if (HAS_L3_DPF(dev))
  784. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  785. return init_workarounds_ring(ring);
  786. }
  787. static void render_ring_cleanup(struct intel_engine_cs *ring)
  788. {
  789. struct drm_device *dev = ring->dev;
  790. struct drm_i915_private *dev_priv = dev->dev_private;
  791. if (dev_priv->semaphore_obj) {
  792. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  793. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  794. dev_priv->semaphore_obj = NULL;
  795. }
  796. intel_fini_pipe_control(ring);
  797. }
  798. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  799. unsigned int num_dwords)
  800. {
  801. #define MBOX_UPDATE_DWORDS 8
  802. struct drm_device *dev = signaller->dev;
  803. struct drm_i915_private *dev_priv = dev->dev_private;
  804. struct intel_engine_cs *waiter;
  805. int i, ret, num_rings;
  806. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  807. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  808. #undef MBOX_UPDATE_DWORDS
  809. ret = intel_ring_begin(signaller, num_dwords);
  810. if (ret)
  811. return ret;
  812. for_each_ring(waiter, dev_priv, i) {
  813. u32 seqno;
  814. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  815. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  816. continue;
  817. seqno = i915_gem_request_get_seqno(
  818. signaller->outstanding_lazy_request);
  819. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  820. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  821. PIPE_CONTROL_QW_WRITE |
  822. PIPE_CONTROL_FLUSH_ENABLE);
  823. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  824. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  825. intel_ring_emit(signaller, seqno);
  826. intel_ring_emit(signaller, 0);
  827. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  828. MI_SEMAPHORE_TARGET(waiter->id));
  829. intel_ring_emit(signaller, 0);
  830. }
  831. return 0;
  832. }
  833. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  834. unsigned int num_dwords)
  835. {
  836. #define MBOX_UPDATE_DWORDS 6
  837. struct drm_device *dev = signaller->dev;
  838. struct drm_i915_private *dev_priv = dev->dev_private;
  839. struct intel_engine_cs *waiter;
  840. int i, ret, num_rings;
  841. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  842. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  843. #undef MBOX_UPDATE_DWORDS
  844. ret = intel_ring_begin(signaller, num_dwords);
  845. if (ret)
  846. return ret;
  847. for_each_ring(waiter, dev_priv, i) {
  848. u32 seqno;
  849. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  850. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  851. continue;
  852. seqno = i915_gem_request_get_seqno(
  853. signaller->outstanding_lazy_request);
  854. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  855. MI_FLUSH_DW_OP_STOREDW);
  856. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  857. MI_FLUSH_DW_USE_GTT);
  858. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  859. intel_ring_emit(signaller, seqno);
  860. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  861. MI_SEMAPHORE_TARGET(waiter->id));
  862. intel_ring_emit(signaller, 0);
  863. }
  864. return 0;
  865. }
  866. static int gen6_signal(struct intel_engine_cs *signaller,
  867. unsigned int num_dwords)
  868. {
  869. struct drm_device *dev = signaller->dev;
  870. struct drm_i915_private *dev_priv = dev->dev_private;
  871. struct intel_engine_cs *useless;
  872. int i, ret, num_rings;
  873. #define MBOX_UPDATE_DWORDS 3
  874. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  875. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  876. #undef MBOX_UPDATE_DWORDS
  877. ret = intel_ring_begin(signaller, num_dwords);
  878. if (ret)
  879. return ret;
  880. for_each_ring(useless, dev_priv, i) {
  881. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  882. if (mbox_reg != GEN6_NOSYNC) {
  883. u32 seqno = i915_gem_request_get_seqno(
  884. signaller->outstanding_lazy_request);
  885. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  886. intel_ring_emit(signaller, mbox_reg);
  887. intel_ring_emit(signaller, seqno);
  888. }
  889. }
  890. /* If num_dwords was rounded, make sure the tail pointer is correct */
  891. if (num_rings % 2 == 0)
  892. intel_ring_emit(signaller, MI_NOOP);
  893. return 0;
  894. }
  895. /**
  896. * gen6_add_request - Update the semaphore mailbox registers
  897. *
  898. * @ring - ring that is adding a request
  899. * @seqno - return seqno stuck into the ring
  900. *
  901. * Update the mailbox registers in the *other* rings with the current seqno.
  902. * This acts like a signal in the canonical semaphore.
  903. */
  904. static int
  905. gen6_add_request(struct intel_engine_cs *ring)
  906. {
  907. int ret;
  908. if (ring->semaphore.signal)
  909. ret = ring->semaphore.signal(ring, 4);
  910. else
  911. ret = intel_ring_begin(ring, 4);
  912. if (ret)
  913. return ret;
  914. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  915. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  916. intel_ring_emit(ring,
  917. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  918. intel_ring_emit(ring, MI_USER_INTERRUPT);
  919. __intel_ring_advance(ring);
  920. return 0;
  921. }
  922. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  923. u32 seqno)
  924. {
  925. struct drm_i915_private *dev_priv = dev->dev_private;
  926. return dev_priv->last_seqno < seqno;
  927. }
  928. /**
  929. * intel_ring_sync - sync the waiter to the signaller on seqno
  930. *
  931. * @waiter - ring that is waiting
  932. * @signaller - ring which has, or will signal
  933. * @seqno - seqno which the waiter will block on
  934. */
  935. static int
  936. gen8_ring_sync(struct intel_engine_cs *waiter,
  937. struct intel_engine_cs *signaller,
  938. u32 seqno)
  939. {
  940. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  941. int ret;
  942. ret = intel_ring_begin(waiter, 4);
  943. if (ret)
  944. return ret;
  945. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  946. MI_SEMAPHORE_GLOBAL_GTT |
  947. MI_SEMAPHORE_POLL |
  948. MI_SEMAPHORE_SAD_GTE_SDD);
  949. intel_ring_emit(waiter, seqno);
  950. intel_ring_emit(waiter,
  951. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  952. intel_ring_emit(waiter,
  953. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  954. intel_ring_advance(waiter);
  955. return 0;
  956. }
  957. static int
  958. gen6_ring_sync(struct intel_engine_cs *waiter,
  959. struct intel_engine_cs *signaller,
  960. u32 seqno)
  961. {
  962. u32 dw1 = MI_SEMAPHORE_MBOX |
  963. MI_SEMAPHORE_COMPARE |
  964. MI_SEMAPHORE_REGISTER;
  965. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  966. int ret;
  967. /* Throughout all of the GEM code, seqno passed implies our current
  968. * seqno is >= the last seqno executed. However for hardware the
  969. * comparison is strictly greater than.
  970. */
  971. seqno -= 1;
  972. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  973. ret = intel_ring_begin(waiter, 4);
  974. if (ret)
  975. return ret;
  976. /* If seqno wrap happened, omit the wait with no-ops */
  977. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  978. intel_ring_emit(waiter, dw1 | wait_mbox);
  979. intel_ring_emit(waiter, seqno);
  980. intel_ring_emit(waiter, 0);
  981. intel_ring_emit(waiter, MI_NOOP);
  982. } else {
  983. intel_ring_emit(waiter, MI_NOOP);
  984. intel_ring_emit(waiter, MI_NOOP);
  985. intel_ring_emit(waiter, MI_NOOP);
  986. intel_ring_emit(waiter, MI_NOOP);
  987. }
  988. intel_ring_advance(waiter);
  989. return 0;
  990. }
  991. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  992. do { \
  993. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  994. PIPE_CONTROL_DEPTH_STALL); \
  995. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  996. intel_ring_emit(ring__, 0); \
  997. intel_ring_emit(ring__, 0); \
  998. } while (0)
  999. static int
  1000. pc_render_add_request(struct intel_engine_cs *ring)
  1001. {
  1002. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1003. int ret;
  1004. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1005. * incoherent with writes to memory, i.e. completely fubar,
  1006. * so we need to use PIPE_NOTIFY instead.
  1007. *
  1008. * However, we also need to workaround the qword write
  1009. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1010. * memory before requesting an interrupt.
  1011. */
  1012. ret = intel_ring_begin(ring, 32);
  1013. if (ret)
  1014. return ret;
  1015. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1016. PIPE_CONTROL_WRITE_FLUSH |
  1017. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1018. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1019. intel_ring_emit(ring,
  1020. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1021. intel_ring_emit(ring, 0);
  1022. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1023. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1024. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1025. scratch_addr += 2 * CACHELINE_BYTES;
  1026. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1027. scratch_addr += 2 * CACHELINE_BYTES;
  1028. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1029. scratch_addr += 2 * CACHELINE_BYTES;
  1030. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1031. scratch_addr += 2 * CACHELINE_BYTES;
  1032. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1033. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1034. PIPE_CONTROL_WRITE_FLUSH |
  1035. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1036. PIPE_CONTROL_NOTIFY);
  1037. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1038. intel_ring_emit(ring,
  1039. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1040. intel_ring_emit(ring, 0);
  1041. __intel_ring_advance(ring);
  1042. return 0;
  1043. }
  1044. static u32
  1045. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1046. {
  1047. /* Workaround to force correct ordering between irq and seqno writes on
  1048. * ivb (and maybe also on snb) by reading from a CS register (like
  1049. * ACTHD) before reading the status page. */
  1050. if (!lazy_coherency) {
  1051. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1052. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1053. }
  1054. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1055. }
  1056. static u32
  1057. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1058. {
  1059. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1060. }
  1061. static void
  1062. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1063. {
  1064. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1065. }
  1066. static u32
  1067. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1068. {
  1069. return ring->scratch.cpu_page[0];
  1070. }
  1071. static void
  1072. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1073. {
  1074. ring->scratch.cpu_page[0] = seqno;
  1075. }
  1076. static bool
  1077. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1078. {
  1079. struct drm_device *dev = ring->dev;
  1080. struct drm_i915_private *dev_priv = dev->dev_private;
  1081. unsigned long flags;
  1082. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1083. return false;
  1084. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1085. if (ring->irq_refcount++ == 0)
  1086. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1087. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1088. return true;
  1089. }
  1090. static void
  1091. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1092. {
  1093. struct drm_device *dev = ring->dev;
  1094. struct drm_i915_private *dev_priv = dev->dev_private;
  1095. unsigned long flags;
  1096. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1097. if (--ring->irq_refcount == 0)
  1098. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1099. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1100. }
  1101. static bool
  1102. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1103. {
  1104. struct drm_device *dev = ring->dev;
  1105. struct drm_i915_private *dev_priv = dev->dev_private;
  1106. unsigned long flags;
  1107. if (!intel_irqs_enabled(dev_priv))
  1108. return false;
  1109. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1110. if (ring->irq_refcount++ == 0) {
  1111. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1112. I915_WRITE(IMR, dev_priv->irq_mask);
  1113. POSTING_READ(IMR);
  1114. }
  1115. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1116. return true;
  1117. }
  1118. static void
  1119. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1120. {
  1121. struct drm_device *dev = ring->dev;
  1122. struct drm_i915_private *dev_priv = dev->dev_private;
  1123. unsigned long flags;
  1124. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1125. if (--ring->irq_refcount == 0) {
  1126. dev_priv->irq_mask |= ring->irq_enable_mask;
  1127. I915_WRITE(IMR, dev_priv->irq_mask);
  1128. POSTING_READ(IMR);
  1129. }
  1130. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1131. }
  1132. static bool
  1133. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1134. {
  1135. struct drm_device *dev = ring->dev;
  1136. struct drm_i915_private *dev_priv = dev->dev_private;
  1137. unsigned long flags;
  1138. if (!intel_irqs_enabled(dev_priv))
  1139. return false;
  1140. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1141. if (ring->irq_refcount++ == 0) {
  1142. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1143. I915_WRITE16(IMR, dev_priv->irq_mask);
  1144. POSTING_READ16(IMR);
  1145. }
  1146. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1147. return true;
  1148. }
  1149. static void
  1150. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1151. {
  1152. struct drm_device *dev = ring->dev;
  1153. struct drm_i915_private *dev_priv = dev->dev_private;
  1154. unsigned long flags;
  1155. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1156. if (--ring->irq_refcount == 0) {
  1157. dev_priv->irq_mask |= ring->irq_enable_mask;
  1158. I915_WRITE16(IMR, dev_priv->irq_mask);
  1159. POSTING_READ16(IMR);
  1160. }
  1161. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1162. }
  1163. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1164. {
  1165. struct drm_device *dev = ring->dev;
  1166. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1167. u32 mmio = 0;
  1168. /* The ring status page addresses are no longer next to the rest of
  1169. * the ring registers as of gen7.
  1170. */
  1171. if (IS_GEN7(dev)) {
  1172. switch (ring->id) {
  1173. case RCS:
  1174. mmio = RENDER_HWS_PGA_GEN7;
  1175. break;
  1176. case BCS:
  1177. mmio = BLT_HWS_PGA_GEN7;
  1178. break;
  1179. /*
  1180. * VCS2 actually doesn't exist on Gen7. Only shut up
  1181. * gcc switch check warning
  1182. */
  1183. case VCS2:
  1184. case VCS:
  1185. mmio = BSD_HWS_PGA_GEN7;
  1186. break;
  1187. case VECS:
  1188. mmio = VEBOX_HWS_PGA_GEN7;
  1189. break;
  1190. }
  1191. } else if (IS_GEN6(ring->dev)) {
  1192. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1193. } else {
  1194. /* XXX: gen8 returns to sanity */
  1195. mmio = RING_HWS_PGA(ring->mmio_base);
  1196. }
  1197. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1198. POSTING_READ(mmio);
  1199. /*
  1200. * Flush the TLB for this page
  1201. *
  1202. * FIXME: These two bits have disappeared on gen8, so a question
  1203. * arises: do we still need this and if so how should we go about
  1204. * invalidating the TLB?
  1205. */
  1206. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1207. u32 reg = RING_INSTPM(ring->mmio_base);
  1208. /* ring should be idle before issuing a sync flush*/
  1209. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1210. I915_WRITE(reg,
  1211. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1212. INSTPM_SYNC_FLUSH));
  1213. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1214. 1000))
  1215. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1216. ring->name);
  1217. }
  1218. }
  1219. static int
  1220. bsd_ring_flush(struct intel_engine_cs *ring,
  1221. u32 invalidate_domains,
  1222. u32 flush_domains)
  1223. {
  1224. int ret;
  1225. ret = intel_ring_begin(ring, 2);
  1226. if (ret)
  1227. return ret;
  1228. intel_ring_emit(ring, MI_FLUSH);
  1229. intel_ring_emit(ring, MI_NOOP);
  1230. intel_ring_advance(ring);
  1231. return 0;
  1232. }
  1233. static int
  1234. i9xx_add_request(struct intel_engine_cs *ring)
  1235. {
  1236. int ret;
  1237. ret = intel_ring_begin(ring, 4);
  1238. if (ret)
  1239. return ret;
  1240. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1241. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1242. intel_ring_emit(ring,
  1243. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1244. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1245. __intel_ring_advance(ring);
  1246. return 0;
  1247. }
  1248. static bool
  1249. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1250. {
  1251. struct drm_device *dev = ring->dev;
  1252. struct drm_i915_private *dev_priv = dev->dev_private;
  1253. unsigned long flags;
  1254. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1255. return false;
  1256. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1257. if (ring->irq_refcount++ == 0) {
  1258. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1259. I915_WRITE_IMR(ring,
  1260. ~(ring->irq_enable_mask |
  1261. GT_PARITY_ERROR(dev)));
  1262. else
  1263. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1264. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1265. }
  1266. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1267. return true;
  1268. }
  1269. static void
  1270. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1271. {
  1272. struct drm_device *dev = ring->dev;
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. unsigned long flags;
  1275. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1276. if (--ring->irq_refcount == 0) {
  1277. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1278. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1279. else
  1280. I915_WRITE_IMR(ring, ~0);
  1281. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1282. }
  1283. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1284. }
  1285. static bool
  1286. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1287. {
  1288. struct drm_device *dev = ring->dev;
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. unsigned long flags;
  1291. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1292. return false;
  1293. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1294. if (ring->irq_refcount++ == 0) {
  1295. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1296. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1297. }
  1298. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1299. return true;
  1300. }
  1301. static void
  1302. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1303. {
  1304. struct drm_device *dev = ring->dev;
  1305. struct drm_i915_private *dev_priv = dev->dev_private;
  1306. unsigned long flags;
  1307. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1308. if (--ring->irq_refcount == 0) {
  1309. I915_WRITE_IMR(ring, ~0);
  1310. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1311. }
  1312. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1313. }
  1314. static bool
  1315. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1316. {
  1317. struct drm_device *dev = ring->dev;
  1318. struct drm_i915_private *dev_priv = dev->dev_private;
  1319. unsigned long flags;
  1320. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1321. return false;
  1322. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1323. if (ring->irq_refcount++ == 0) {
  1324. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1325. I915_WRITE_IMR(ring,
  1326. ~(ring->irq_enable_mask |
  1327. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1328. } else {
  1329. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1330. }
  1331. POSTING_READ(RING_IMR(ring->mmio_base));
  1332. }
  1333. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1334. return true;
  1335. }
  1336. static void
  1337. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1338. {
  1339. struct drm_device *dev = ring->dev;
  1340. struct drm_i915_private *dev_priv = dev->dev_private;
  1341. unsigned long flags;
  1342. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1343. if (--ring->irq_refcount == 0) {
  1344. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1345. I915_WRITE_IMR(ring,
  1346. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1347. } else {
  1348. I915_WRITE_IMR(ring, ~0);
  1349. }
  1350. POSTING_READ(RING_IMR(ring->mmio_base));
  1351. }
  1352. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1353. }
  1354. static int
  1355. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1356. u64 offset, u32 length,
  1357. unsigned flags)
  1358. {
  1359. int ret;
  1360. ret = intel_ring_begin(ring, 2);
  1361. if (ret)
  1362. return ret;
  1363. intel_ring_emit(ring,
  1364. MI_BATCH_BUFFER_START |
  1365. MI_BATCH_GTT |
  1366. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1367. intel_ring_emit(ring, offset);
  1368. intel_ring_advance(ring);
  1369. return 0;
  1370. }
  1371. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1372. #define I830_BATCH_LIMIT (256*1024)
  1373. #define I830_TLB_ENTRIES (2)
  1374. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1375. static int
  1376. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1377. u64 offset, u32 len,
  1378. unsigned flags)
  1379. {
  1380. u32 cs_offset = ring->scratch.gtt_offset;
  1381. int ret;
  1382. ret = intel_ring_begin(ring, 6);
  1383. if (ret)
  1384. return ret;
  1385. /* Evict the invalid PTE TLBs */
  1386. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1387. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1388. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1389. intel_ring_emit(ring, cs_offset);
  1390. intel_ring_emit(ring, 0xdeadbeef);
  1391. intel_ring_emit(ring, MI_NOOP);
  1392. intel_ring_advance(ring);
  1393. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1394. if (len > I830_BATCH_LIMIT)
  1395. return -ENOSPC;
  1396. ret = intel_ring_begin(ring, 6 + 2);
  1397. if (ret)
  1398. return ret;
  1399. /* Blit the batch (which has now all relocs applied) to the
  1400. * stable batch scratch bo area (so that the CS never
  1401. * stumbles over its tlb invalidation bug) ...
  1402. */
  1403. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1404. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1405. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1406. intel_ring_emit(ring, cs_offset);
  1407. intel_ring_emit(ring, 4096);
  1408. intel_ring_emit(ring, offset);
  1409. intel_ring_emit(ring, MI_FLUSH);
  1410. intel_ring_emit(ring, MI_NOOP);
  1411. intel_ring_advance(ring);
  1412. /* ... and execute it. */
  1413. offset = cs_offset;
  1414. }
  1415. ret = intel_ring_begin(ring, 4);
  1416. if (ret)
  1417. return ret;
  1418. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1419. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1420. intel_ring_emit(ring, offset + len - 8);
  1421. intel_ring_emit(ring, MI_NOOP);
  1422. intel_ring_advance(ring);
  1423. return 0;
  1424. }
  1425. static int
  1426. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1427. u64 offset, u32 len,
  1428. unsigned flags)
  1429. {
  1430. int ret;
  1431. ret = intel_ring_begin(ring, 2);
  1432. if (ret)
  1433. return ret;
  1434. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1435. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1436. intel_ring_advance(ring);
  1437. return 0;
  1438. }
  1439. static void cleanup_status_page(struct intel_engine_cs *ring)
  1440. {
  1441. struct drm_i915_gem_object *obj;
  1442. obj = ring->status_page.obj;
  1443. if (obj == NULL)
  1444. return;
  1445. kunmap(sg_page(obj->pages->sgl));
  1446. i915_gem_object_ggtt_unpin(obj);
  1447. drm_gem_object_unreference(&obj->base);
  1448. ring->status_page.obj = NULL;
  1449. }
  1450. static int init_status_page(struct intel_engine_cs *ring)
  1451. {
  1452. struct drm_i915_gem_object *obj;
  1453. if ((obj = ring->status_page.obj) == NULL) {
  1454. unsigned flags;
  1455. int ret;
  1456. obj = i915_gem_alloc_object(ring->dev, 4096);
  1457. if (obj == NULL) {
  1458. DRM_ERROR("Failed to allocate status page\n");
  1459. return -ENOMEM;
  1460. }
  1461. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1462. if (ret)
  1463. goto err_unref;
  1464. flags = 0;
  1465. if (!HAS_LLC(ring->dev))
  1466. /* On g33, we cannot place HWS above 256MiB, so
  1467. * restrict its pinning to the low mappable arena.
  1468. * Though this restriction is not documented for
  1469. * gen4, gen5, or byt, they also behave similarly
  1470. * and hang if the HWS is placed at the top of the
  1471. * GTT. To generalise, it appears that all !llc
  1472. * platforms have issues with us placing the HWS
  1473. * above the mappable region (even though we never
  1474. * actualy map it).
  1475. */
  1476. flags |= PIN_MAPPABLE;
  1477. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1478. if (ret) {
  1479. err_unref:
  1480. drm_gem_object_unreference(&obj->base);
  1481. return ret;
  1482. }
  1483. ring->status_page.obj = obj;
  1484. }
  1485. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1486. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1487. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1488. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1489. ring->name, ring->status_page.gfx_addr);
  1490. return 0;
  1491. }
  1492. static int init_phys_status_page(struct intel_engine_cs *ring)
  1493. {
  1494. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1495. if (!dev_priv->status_page_dmah) {
  1496. dev_priv->status_page_dmah =
  1497. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1498. if (!dev_priv->status_page_dmah)
  1499. return -ENOMEM;
  1500. }
  1501. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1502. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1503. return 0;
  1504. }
  1505. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1506. {
  1507. iounmap(ringbuf->virtual_start);
  1508. ringbuf->virtual_start = NULL;
  1509. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1510. }
  1511. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1512. struct intel_ringbuffer *ringbuf)
  1513. {
  1514. struct drm_i915_private *dev_priv = to_i915(dev);
  1515. struct drm_i915_gem_object *obj = ringbuf->obj;
  1516. int ret;
  1517. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1518. if (ret)
  1519. return ret;
  1520. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1521. if (ret) {
  1522. i915_gem_object_ggtt_unpin(obj);
  1523. return ret;
  1524. }
  1525. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1526. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1527. if (ringbuf->virtual_start == NULL) {
  1528. i915_gem_object_ggtt_unpin(obj);
  1529. return -EINVAL;
  1530. }
  1531. return 0;
  1532. }
  1533. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1534. {
  1535. drm_gem_object_unreference(&ringbuf->obj->base);
  1536. ringbuf->obj = NULL;
  1537. }
  1538. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1539. struct intel_ringbuffer *ringbuf)
  1540. {
  1541. struct drm_i915_gem_object *obj;
  1542. obj = NULL;
  1543. if (!HAS_LLC(dev))
  1544. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1545. if (obj == NULL)
  1546. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1547. if (obj == NULL)
  1548. return -ENOMEM;
  1549. /* mark ring buffers as read-only from GPU side by default */
  1550. obj->gt_ro = 1;
  1551. ringbuf->obj = obj;
  1552. return 0;
  1553. }
  1554. static int intel_init_ring_buffer(struct drm_device *dev,
  1555. struct intel_engine_cs *ring)
  1556. {
  1557. struct intel_ringbuffer *ringbuf;
  1558. int ret;
  1559. WARN_ON(ring->buffer);
  1560. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1561. if (!ringbuf)
  1562. return -ENOMEM;
  1563. ring->buffer = ringbuf;
  1564. ring->dev = dev;
  1565. INIT_LIST_HEAD(&ring->active_list);
  1566. INIT_LIST_HEAD(&ring->request_list);
  1567. INIT_LIST_HEAD(&ring->execlist_queue);
  1568. ringbuf->size = 32 * PAGE_SIZE;
  1569. ringbuf->ring = ring;
  1570. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1571. init_waitqueue_head(&ring->irq_queue);
  1572. if (I915_NEED_GFX_HWS(dev)) {
  1573. ret = init_status_page(ring);
  1574. if (ret)
  1575. goto error;
  1576. } else {
  1577. BUG_ON(ring->id != RCS);
  1578. ret = init_phys_status_page(ring);
  1579. if (ret)
  1580. goto error;
  1581. }
  1582. WARN_ON(ringbuf->obj);
  1583. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1584. if (ret) {
  1585. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1586. ring->name, ret);
  1587. goto error;
  1588. }
  1589. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1590. if (ret) {
  1591. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1592. ring->name, ret);
  1593. intel_destroy_ringbuffer_obj(ringbuf);
  1594. goto error;
  1595. }
  1596. /* Workaround an erratum on the i830 which causes a hang if
  1597. * the TAIL pointer points to within the last 2 cachelines
  1598. * of the buffer.
  1599. */
  1600. ringbuf->effective_size = ringbuf->size;
  1601. if (IS_I830(dev) || IS_845G(dev))
  1602. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1603. ret = i915_cmd_parser_init_ring(ring);
  1604. if (ret)
  1605. goto error;
  1606. return 0;
  1607. error:
  1608. kfree(ringbuf);
  1609. ring->buffer = NULL;
  1610. return ret;
  1611. }
  1612. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1613. {
  1614. struct drm_i915_private *dev_priv;
  1615. struct intel_ringbuffer *ringbuf;
  1616. if (!intel_ring_initialized(ring))
  1617. return;
  1618. dev_priv = to_i915(ring->dev);
  1619. ringbuf = ring->buffer;
  1620. intel_stop_ring_buffer(ring);
  1621. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1622. intel_unpin_ringbuffer_obj(ringbuf);
  1623. intel_destroy_ringbuffer_obj(ringbuf);
  1624. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1625. if (ring->cleanup)
  1626. ring->cleanup(ring);
  1627. cleanup_status_page(ring);
  1628. i915_cmd_parser_fini_ring(ring);
  1629. kfree(ringbuf);
  1630. ring->buffer = NULL;
  1631. }
  1632. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1633. {
  1634. struct intel_ringbuffer *ringbuf = ring->buffer;
  1635. struct drm_i915_gem_request *request;
  1636. int ret;
  1637. if (intel_ring_space(ringbuf) >= n)
  1638. return 0;
  1639. list_for_each_entry(request, &ring->request_list, list) {
  1640. if (__intel_ring_space(request->postfix, ringbuf->tail,
  1641. ringbuf->size) >= n) {
  1642. break;
  1643. }
  1644. }
  1645. if (&request->list == &ring->request_list)
  1646. return -ENOSPC;
  1647. ret = i915_wait_request(request);
  1648. if (ret)
  1649. return ret;
  1650. i915_gem_retire_requests_ring(ring);
  1651. return 0;
  1652. }
  1653. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1654. {
  1655. struct drm_device *dev = ring->dev;
  1656. struct drm_i915_private *dev_priv = dev->dev_private;
  1657. struct intel_ringbuffer *ringbuf = ring->buffer;
  1658. unsigned long end;
  1659. int ret;
  1660. ret = intel_ring_wait_request(ring, n);
  1661. if (ret != -ENOSPC)
  1662. return ret;
  1663. /* force the tail write in case we have been skipping them */
  1664. __intel_ring_advance(ring);
  1665. /* With GEM the hangcheck timer should kick us out of the loop,
  1666. * leaving it early runs the risk of corrupting GEM state (due
  1667. * to running on almost untested codepaths). But on resume
  1668. * timers don't work yet, so prevent a complete hang in that
  1669. * case by choosing an insanely large timeout. */
  1670. end = jiffies + 60 * HZ;
  1671. ret = 0;
  1672. trace_i915_ring_wait_begin(ring);
  1673. do {
  1674. if (intel_ring_space(ringbuf) >= n)
  1675. break;
  1676. ringbuf->head = I915_READ_HEAD(ring);
  1677. if (intel_ring_space(ringbuf) >= n)
  1678. break;
  1679. msleep(1);
  1680. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1681. ret = -ERESTARTSYS;
  1682. break;
  1683. }
  1684. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1685. dev_priv->mm.interruptible);
  1686. if (ret)
  1687. break;
  1688. if (time_after(jiffies, end)) {
  1689. ret = -EBUSY;
  1690. break;
  1691. }
  1692. } while (1);
  1693. trace_i915_ring_wait_end(ring);
  1694. return ret;
  1695. }
  1696. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1697. {
  1698. uint32_t __iomem *virt;
  1699. struct intel_ringbuffer *ringbuf = ring->buffer;
  1700. int rem = ringbuf->size - ringbuf->tail;
  1701. if (ringbuf->space < rem) {
  1702. int ret = ring_wait_for_space(ring, rem);
  1703. if (ret)
  1704. return ret;
  1705. }
  1706. virt = ringbuf->virtual_start + ringbuf->tail;
  1707. rem /= 4;
  1708. while (rem--)
  1709. iowrite32(MI_NOOP, virt++);
  1710. ringbuf->tail = 0;
  1711. intel_ring_update_space(ringbuf);
  1712. return 0;
  1713. }
  1714. int intel_ring_idle(struct intel_engine_cs *ring)
  1715. {
  1716. struct drm_i915_gem_request *req;
  1717. int ret;
  1718. /* We need to add any requests required to flush the objects and ring */
  1719. if (ring->outstanding_lazy_request) {
  1720. ret = i915_add_request(ring);
  1721. if (ret)
  1722. return ret;
  1723. }
  1724. /* Wait upon the last request to be completed */
  1725. if (list_empty(&ring->request_list))
  1726. return 0;
  1727. req = list_entry(ring->request_list.prev,
  1728. struct drm_i915_gem_request,
  1729. list);
  1730. return i915_wait_request(req);
  1731. }
  1732. static int
  1733. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1734. {
  1735. int ret;
  1736. struct drm_i915_gem_request *request;
  1737. struct drm_i915_private *dev_private = ring->dev->dev_private;
  1738. if (ring->outstanding_lazy_request)
  1739. return 0;
  1740. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1741. if (request == NULL)
  1742. return -ENOMEM;
  1743. kref_init(&request->ref);
  1744. request->ring = ring;
  1745. request->uniq = dev_private->request_uniq++;
  1746. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1747. if (ret) {
  1748. kfree(request);
  1749. return ret;
  1750. }
  1751. ring->outstanding_lazy_request = request;
  1752. return 0;
  1753. }
  1754. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1755. int bytes)
  1756. {
  1757. struct intel_ringbuffer *ringbuf = ring->buffer;
  1758. int ret;
  1759. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1760. ret = intel_wrap_ring_buffer(ring);
  1761. if (unlikely(ret))
  1762. return ret;
  1763. }
  1764. if (unlikely(ringbuf->space < bytes)) {
  1765. ret = ring_wait_for_space(ring, bytes);
  1766. if (unlikely(ret))
  1767. return ret;
  1768. }
  1769. return 0;
  1770. }
  1771. int intel_ring_begin(struct intel_engine_cs *ring,
  1772. int num_dwords)
  1773. {
  1774. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1775. int ret;
  1776. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1777. dev_priv->mm.interruptible);
  1778. if (ret)
  1779. return ret;
  1780. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1781. if (ret)
  1782. return ret;
  1783. /* Preallocate the olr before touching the ring */
  1784. ret = intel_ring_alloc_request(ring);
  1785. if (ret)
  1786. return ret;
  1787. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1788. return 0;
  1789. }
  1790. /* Align the ring tail to a cacheline boundary */
  1791. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1792. {
  1793. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1794. int ret;
  1795. if (num_dwords == 0)
  1796. return 0;
  1797. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1798. ret = intel_ring_begin(ring, num_dwords);
  1799. if (ret)
  1800. return ret;
  1801. while (num_dwords--)
  1802. intel_ring_emit(ring, MI_NOOP);
  1803. intel_ring_advance(ring);
  1804. return 0;
  1805. }
  1806. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1807. {
  1808. struct drm_device *dev = ring->dev;
  1809. struct drm_i915_private *dev_priv = dev->dev_private;
  1810. BUG_ON(ring->outstanding_lazy_request);
  1811. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1812. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1813. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1814. if (HAS_VEBOX(dev))
  1815. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1816. }
  1817. ring->set_seqno(ring, seqno);
  1818. ring->hangcheck.seqno = seqno;
  1819. }
  1820. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1821. u32 value)
  1822. {
  1823. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1824. /* Every tail move must follow the sequence below */
  1825. /* Disable notification that the ring is IDLE. The GT
  1826. * will then assume that it is busy and bring it out of rc6.
  1827. */
  1828. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1829. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1830. /* Clear the context id. Here be magic! */
  1831. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1832. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1833. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1834. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1835. 50))
  1836. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1837. /* Now that the ring is fully powered up, update the tail */
  1838. I915_WRITE_TAIL(ring, value);
  1839. POSTING_READ(RING_TAIL(ring->mmio_base));
  1840. /* Let the ring send IDLE messages to the GT again,
  1841. * and so let it sleep to conserve power when idle.
  1842. */
  1843. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1844. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1845. }
  1846. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1847. u32 invalidate, u32 flush)
  1848. {
  1849. uint32_t cmd;
  1850. int ret;
  1851. ret = intel_ring_begin(ring, 4);
  1852. if (ret)
  1853. return ret;
  1854. cmd = MI_FLUSH_DW;
  1855. if (INTEL_INFO(ring->dev)->gen >= 8)
  1856. cmd += 1;
  1857. /*
  1858. * Bspec vol 1c.5 - video engine command streamer:
  1859. * "If ENABLED, all TLBs will be invalidated once the flush
  1860. * operation is complete. This bit is only valid when the
  1861. * Post-Sync Operation field is a value of 1h or 3h."
  1862. */
  1863. if (invalidate & I915_GEM_GPU_DOMAINS)
  1864. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1865. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1866. intel_ring_emit(ring, cmd);
  1867. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1868. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1869. intel_ring_emit(ring, 0); /* upper addr */
  1870. intel_ring_emit(ring, 0); /* value */
  1871. } else {
  1872. intel_ring_emit(ring, 0);
  1873. intel_ring_emit(ring, MI_NOOP);
  1874. }
  1875. intel_ring_advance(ring);
  1876. return 0;
  1877. }
  1878. static int
  1879. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1880. u64 offset, u32 len,
  1881. unsigned flags)
  1882. {
  1883. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1884. int ret;
  1885. ret = intel_ring_begin(ring, 4);
  1886. if (ret)
  1887. return ret;
  1888. /* FIXME(BDW): Address space and security selectors. */
  1889. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1890. intel_ring_emit(ring, lower_32_bits(offset));
  1891. intel_ring_emit(ring, upper_32_bits(offset));
  1892. intel_ring_emit(ring, MI_NOOP);
  1893. intel_ring_advance(ring);
  1894. return 0;
  1895. }
  1896. static int
  1897. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1898. u64 offset, u32 len,
  1899. unsigned flags)
  1900. {
  1901. int ret;
  1902. ret = intel_ring_begin(ring, 2);
  1903. if (ret)
  1904. return ret;
  1905. intel_ring_emit(ring,
  1906. MI_BATCH_BUFFER_START |
  1907. (flags & I915_DISPATCH_SECURE ?
  1908. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1909. /* bit0-7 is the length on GEN6+ */
  1910. intel_ring_emit(ring, offset);
  1911. intel_ring_advance(ring);
  1912. return 0;
  1913. }
  1914. static int
  1915. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1916. u64 offset, u32 len,
  1917. unsigned flags)
  1918. {
  1919. int ret;
  1920. ret = intel_ring_begin(ring, 2);
  1921. if (ret)
  1922. return ret;
  1923. intel_ring_emit(ring,
  1924. MI_BATCH_BUFFER_START |
  1925. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1926. /* bit0-7 is the length on GEN6+ */
  1927. intel_ring_emit(ring, offset);
  1928. intel_ring_advance(ring);
  1929. return 0;
  1930. }
  1931. /* Blitter support (SandyBridge+) */
  1932. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1933. u32 invalidate, u32 flush)
  1934. {
  1935. struct drm_device *dev = ring->dev;
  1936. struct drm_i915_private *dev_priv = dev->dev_private;
  1937. uint32_t cmd;
  1938. int ret;
  1939. ret = intel_ring_begin(ring, 4);
  1940. if (ret)
  1941. return ret;
  1942. cmd = MI_FLUSH_DW;
  1943. if (INTEL_INFO(ring->dev)->gen >= 8)
  1944. cmd += 1;
  1945. /*
  1946. * Bspec vol 1c.3 - blitter engine command streamer:
  1947. * "If ENABLED, all TLBs will be invalidated once the flush
  1948. * operation is complete. This bit is only valid when the
  1949. * Post-Sync Operation field is a value of 1h or 3h."
  1950. */
  1951. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1952. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1953. MI_FLUSH_DW_OP_STOREDW;
  1954. intel_ring_emit(ring, cmd);
  1955. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1956. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1957. intel_ring_emit(ring, 0); /* upper addr */
  1958. intel_ring_emit(ring, 0); /* value */
  1959. } else {
  1960. intel_ring_emit(ring, 0);
  1961. intel_ring_emit(ring, MI_NOOP);
  1962. }
  1963. intel_ring_advance(ring);
  1964. if (!invalidate && flush) {
  1965. if (IS_GEN7(dev))
  1966. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1967. else if (IS_BROADWELL(dev))
  1968. dev_priv->fbc.need_sw_cache_clean = true;
  1969. }
  1970. return 0;
  1971. }
  1972. int intel_init_render_ring_buffer(struct drm_device *dev)
  1973. {
  1974. struct drm_i915_private *dev_priv = dev->dev_private;
  1975. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1976. struct drm_i915_gem_object *obj;
  1977. int ret;
  1978. ring->name = "render ring";
  1979. ring->id = RCS;
  1980. ring->mmio_base = RENDER_RING_BASE;
  1981. if (INTEL_INFO(dev)->gen >= 8) {
  1982. if (i915_semaphore_is_enabled(dev)) {
  1983. obj = i915_gem_alloc_object(dev, 4096);
  1984. if (obj == NULL) {
  1985. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1986. i915.semaphores = 0;
  1987. } else {
  1988. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1989. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1990. if (ret != 0) {
  1991. drm_gem_object_unreference(&obj->base);
  1992. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1993. i915.semaphores = 0;
  1994. } else
  1995. dev_priv->semaphore_obj = obj;
  1996. }
  1997. }
  1998. ring->init_context = intel_rcs_ctx_init;
  1999. ring->add_request = gen6_add_request;
  2000. ring->flush = gen8_render_ring_flush;
  2001. ring->irq_get = gen8_ring_get_irq;
  2002. ring->irq_put = gen8_ring_put_irq;
  2003. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2004. ring->get_seqno = gen6_ring_get_seqno;
  2005. ring->set_seqno = ring_set_seqno;
  2006. if (i915_semaphore_is_enabled(dev)) {
  2007. WARN_ON(!dev_priv->semaphore_obj);
  2008. ring->semaphore.sync_to = gen8_ring_sync;
  2009. ring->semaphore.signal = gen8_rcs_signal;
  2010. GEN8_RING_SEMAPHORE_INIT;
  2011. }
  2012. } else if (INTEL_INFO(dev)->gen >= 6) {
  2013. ring->add_request = gen6_add_request;
  2014. ring->flush = gen7_render_ring_flush;
  2015. if (INTEL_INFO(dev)->gen == 6)
  2016. ring->flush = gen6_render_ring_flush;
  2017. ring->irq_get = gen6_ring_get_irq;
  2018. ring->irq_put = gen6_ring_put_irq;
  2019. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2020. ring->get_seqno = gen6_ring_get_seqno;
  2021. ring->set_seqno = ring_set_seqno;
  2022. if (i915_semaphore_is_enabled(dev)) {
  2023. ring->semaphore.sync_to = gen6_ring_sync;
  2024. ring->semaphore.signal = gen6_signal;
  2025. /*
  2026. * The current semaphore is only applied on pre-gen8
  2027. * platform. And there is no VCS2 ring on the pre-gen8
  2028. * platform. So the semaphore between RCS and VCS2 is
  2029. * initialized as INVALID. Gen8 will initialize the
  2030. * sema between VCS2 and RCS later.
  2031. */
  2032. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2033. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2034. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2035. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2036. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2037. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2038. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2039. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2040. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2041. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2042. }
  2043. } else if (IS_GEN5(dev)) {
  2044. ring->add_request = pc_render_add_request;
  2045. ring->flush = gen4_render_ring_flush;
  2046. ring->get_seqno = pc_render_get_seqno;
  2047. ring->set_seqno = pc_render_set_seqno;
  2048. ring->irq_get = gen5_ring_get_irq;
  2049. ring->irq_put = gen5_ring_put_irq;
  2050. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2051. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2052. } else {
  2053. ring->add_request = i9xx_add_request;
  2054. if (INTEL_INFO(dev)->gen < 4)
  2055. ring->flush = gen2_render_ring_flush;
  2056. else
  2057. ring->flush = gen4_render_ring_flush;
  2058. ring->get_seqno = ring_get_seqno;
  2059. ring->set_seqno = ring_set_seqno;
  2060. if (IS_GEN2(dev)) {
  2061. ring->irq_get = i8xx_ring_get_irq;
  2062. ring->irq_put = i8xx_ring_put_irq;
  2063. } else {
  2064. ring->irq_get = i9xx_ring_get_irq;
  2065. ring->irq_put = i9xx_ring_put_irq;
  2066. }
  2067. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2068. }
  2069. ring->write_tail = ring_write_tail;
  2070. if (IS_HASWELL(dev))
  2071. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2072. else if (IS_GEN8(dev))
  2073. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2074. else if (INTEL_INFO(dev)->gen >= 6)
  2075. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2076. else if (INTEL_INFO(dev)->gen >= 4)
  2077. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2078. else if (IS_I830(dev) || IS_845G(dev))
  2079. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2080. else
  2081. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2082. ring->init_hw = init_render_ring;
  2083. ring->cleanup = render_ring_cleanup;
  2084. /* Workaround batchbuffer to combat CS tlb bug. */
  2085. if (HAS_BROKEN_CS_TLB(dev)) {
  2086. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2087. if (obj == NULL) {
  2088. DRM_ERROR("Failed to allocate batch bo\n");
  2089. return -ENOMEM;
  2090. }
  2091. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2092. if (ret != 0) {
  2093. drm_gem_object_unreference(&obj->base);
  2094. DRM_ERROR("Failed to ping batch bo\n");
  2095. return ret;
  2096. }
  2097. ring->scratch.obj = obj;
  2098. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2099. }
  2100. ret = intel_init_ring_buffer(dev, ring);
  2101. if (ret)
  2102. return ret;
  2103. if (INTEL_INFO(dev)->gen >= 5) {
  2104. ret = intel_init_pipe_control(ring);
  2105. if (ret)
  2106. return ret;
  2107. }
  2108. return 0;
  2109. }
  2110. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2111. {
  2112. struct drm_i915_private *dev_priv = dev->dev_private;
  2113. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2114. ring->name = "bsd ring";
  2115. ring->id = VCS;
  2116. ring->write_tail = ring_write_tail;
  2117. if (INTEL_INFO(dev)->gen >= 6) {
  2118. ring->mmio_base = GEN6_BSD_RING_BASE;
  2119. /* gen6 bsd needs a special wa for tail updates */
  2120. if (IS_GEN6(dev))
  2121. ring->write_tail = gen6_bsd_ring_write_tail;
  2122. ring->flush = gen6_bsd_ring_flush;
  2123. ring->add_request = gen6_add_request;
  2124. ring->get_seqno = gen6_ring_get_seqno;
  2125. ring->set_seqno = ring_set_seqno;
  2126. if (INTEL_INFO(dev)->gen >= 8) {
  2127. ring->irq_enable_mask =
  2128. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2129. ring->irq_get = gen8_ring_get_irq;
  2130. ring->irq_put = gen8_ring_put_irq;
  2131. ring->dispatch_execbuffer =
  2132. gen8_ring_dispatch_execbuffer;
  2133. if (i915_semaphore_is_enabled(dev)) {
  2134. ring->semaphore.sync_to = gen8_ring_sync;
  2135. ring->semaphore.signal = gen8_xcs_signal;
  2136. GEN8_RING_SEMAPHORE_INIT;
  2137. }
  2138. } else {
  2139. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2140. ring->irq_get = gen6_ring_get_irq;
  2141. ring->irq_put = gen6_ring_put_irq;
  2142. ring->dispatch_execbuffer =
  2143. gen6_ring_dispatch_execbuffer;
  2144. if (i915_semaphore_is_enabled(dev)) {
  2145. ring->semaphore.sync_to = gen6_ring_sync;
  2146. ring->semaphore.signal = gen6_signal;
  2147. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2148. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2149. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2150. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2151. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2152. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2153. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2154. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2155. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2156. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2157. }
  2158. }
  2159. } else {
  2160. ring->mmio_base = BSD_RING_BASE;
  2161. ring->flush = bsd_ring_flush;
  2162. ring->add_request = i9xx_add_request;
  2163. ring->get_seqno = ring_get_seqno;
  2164. ring->set_seqno = ring_set_seqno;
  2165. if (IS_GEN5(dev)) {
  2166. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2167. ring->irq_get = gen5_ring_get_irq;
  2168. ring->irq_put = gen5_ring_put_irq;
  2169. } else {
  2170. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2171. ring->irq_get = i9xx_ring_get_irq;
  2172. ring->irq_put = i9xx_ring_put_irq;
  2173. }
  2174. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2175. }
  2176. ring->init_hw = init_ring_common;
  2177. return intel_init_ring_buffer(dev, ring);
  2178. }
  2179. /**
  2180. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2181. */
  2182. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2183. {
  2184. struct drm_i915_private *dev_priv = dev->dev_private;
  2185. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2186. ring->name = "bsd2 ring";
  2187. ring->id = VCS2;
  2188. ring->write_tail = ring_write_tail;
  2189. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2190. ring->flush = gen6_bsd_ring_flush;
  2191. ring->add_request = gen6_add_request;
  2192. ring->get_seqno = gen6_ring_get_seqno;
  2193. ring->set_seqno = ring_set_seqno;
  2194. ring->irq_enable_mask =
  2195. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2196. ring->irq_get = gen8_ring_get_irq;
  2197. ring->irq_put = gen8_ring_put_irq;
  2198. ring->dispatch_execbuffer =
  2199. gen8_ring_dispatch_execbuffer;
  2200. if (i915_semaphore_is_enabled(dev)) {
  2201. ring->semaphore.sync_to = gen8_ring_sync;
  2202. ring->semaphore.signal = gen8_xcs_signal;
  2203. GEN8_RING_SEMAPHORE_INIT;
  2204. }
  2205. ring->init_hw = init_ring_common;
  2206. return intel_init_ring_buffer(dev, ring);
  2207. }
  2208. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2209. {
  2210. struct drm_i915_private *dev_priv = dev->dev_private;
  2211. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2212. ring->name = "blitter ring";
  2213. ring->id = BCS;
  2214. ring->mmio_base = BLT_RING_BASE;
  2215. ring->write_tail = ring_write_tail;
  2216. ring->flush = gen6_ring_flush;
  2217. ring->add_request = gen6_add_request;
  2218. ring->get_seqno = gen6_ring_get_seqno;
  2219. ring->set_seqno = ring_set_seqno;
  2220. if (INTEL_INFO(dev)->gen >= 8) {
  2221. ring->irq_enable_mask =
  2222. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2223. ring->irq_get = gen8_ring_get_irq;
  2224. ring->irq_put = gen8_ring_put_irq;
  2225. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2226. if (i915_semaphore_is_enabled(dev)) {
  2227. ring->semaphore.sync_to = gen8_ring_sync;
  2228. ring->semaphore.signal = gen8_xcs_signal;
  2229. GEN8_RING_SEMAPHORE_INIT;
  2230. }
  2231. } else {
  2232. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2233. ring->irq_get = gen6_ring_get_irq;
  2234. ring->irq_put = gen6_ring_put_irq;
  2235. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2236. if (i915_semaphore_is_enabled(dev)) {
  2237. ring->semaphore.signal = gen6_signal;
  2238. ring->semaphore.sync_to = gen6_ring_sync;
  2239. /*
  2240. * The current semaphore is only applied on pre-gen8
  2241. * platform. And there is no VCS2 ring on the pre-gen8
  2242. * platform. So the semaphore between BCS and VCS2 is
  2243. * initialized as INVALID. Gen8 will initialize the
  2244. * sema between BCS and VCS2 later.
  2245. */
  2246. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2247. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2248. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2249. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2250. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2251. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2252. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2253. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2254. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2255. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2256. }
  2257. }
  2258. ring->init_hw = init_ring_common;
  2259. return intel_init_ring_buffer(dev, ring);
  2260. }
  2261. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2262. {
  2263. struct drm_i915_private *dev_priv = dev->dev_private;
  2264. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2265. ring->name = "video enhancement ring";
  2266. ring->id = VECS;
  2267. ring->mmio_base = VEBOX_RING_BASE;
  2268. ring->write_tail = ring_write_tail;
  2269. ring->flush = gen6_ring_flush;
  2270. ring->add_request = gen6_add_request;
  2271. ring->get_seqno = gen6_ring_get_seqno;
  2272. ring->set_seqno = ring_set_seqno;
  2273. if (INTEL_INFO(dev)->gen >= 8) {
  2274. ring->irq_enable_mask =
  2275. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2276. ring->irq_get = gen8_ring_get_irq;
  2277. ring->irq_put = gen8_ring_put_irq;
  2278. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2279. if (i915_semaphore_is_enabled(dev)) {
  2280. ring->semaphore.sync_to = gen8_ring_sync;
  2281. ring->semaphore.signal = gen8_xcs_signal;
  2282. GEN8_RING_SEMAPHORE_INIT;
  2283. }
  2284. } else {
  2285. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2286. ring->irq_get = hsw_vebox_get_irq;
  2287. ring->irq_put = hsw_vebox_put_irq;
  2288. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2289. if (i915_semaphore_is_enabled(dev)) {
  2290. ring->semaphore.sync_to = gen6_ring_sync;
  2291. ring->semaphore.signal = gen6_signal;
  2292. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2293. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2294. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2295. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2296. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2297. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2298. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2299. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2300. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2301. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2302. }
  2303. }
  2304. ring->init_hw = init_ring_common;
  2305. return intel_init_ring_buffer(dev, ring);
  2306. }
  2307. int
  2308. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2309. {
  2310. int ret;
  2311. if (!ring->gpu_caches_dirty)
  2312. return 0;
  2313. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2314. if (ret)
  2315. return ret;
  2316. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2317. ring->gpu_caches_dirty = false;
  2318. return 0;
  2319. }
  2320. int
  2321. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2322. {
  2323. uint32_t flush_domains;
  2324. int ret;
  2325. flush_domains = 0;
  2326. if (ring->gpu_caches_dirty)
  2327. flush_domains = I915_GEM_GPU_DOMAINS;
  2328. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2329. if (ret)
  2330. return ret;
  2331. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2332. ring->gpu_caches_dirty = false;
  2333. return 0;
  2334. }
  2335. void
  2336. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2337. {
  2338. int ret;
  2339. if (!intel_ring_initialized(ring))
  2340. return;
  2341. ret = intel_ring_idle(ring);
  2342. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2343. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2344. ring->name, ret);
  2345. stop_ring(ring);
  2346. }