ccp-dev-v5.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101
  1. /*
  2. * AMD Cryptographic Coprocessor (CCP) driver
  3. *
  4. * Copyright (C) 2016 Advanced Micro Devices, Inc.
  5. *
  6. * Author: Gary R Hook <gary.hook@amd.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/pci.h>
  15. #include <linux/kthread.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/compiler.h>
  19. #include <linux/ccp.h>
  20. #include "ccp-dev.h"
  21. /* Allocate the requested number of contiguous LSB slots
  22. * from the LSB bitmap. Look in the private range for this
  23. * queue first; failing that, check the public area.
  24. * If no space is available, wait around.
  25. * Return: first slot number
  26. */
  27. static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
  28. {
  29. struct ccp_device *ccp;
  30. int start;
  31. /* First look at the map for the queue */
  32. if (cmd_q->lsb >= 0) {
  33. start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
  34. LSB_SIZE,
  35. 0, count, 0);
  36. if (start < LSB_SIZE) {
  37. bitmap_set(cmd_q->lsbmap, start, count);
  38. return start + cmd_q->lsb * LSB_SIZE;
  39. }
  40. }
  41. /* No joy; try to get an entry from the shared blocks */
  42. ccp = cmd_q->ccp;
  43. for (;;) {
  44. mutex_lock(&ccp->sb_mutex);
  45. start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
  46. MAX_LSB_CNT * LSB_SIZE,
  47. 0,
  48. count, 0);
  49. if (start <= MAX_LSB_CNT * LSB_SIZE) {
  50. bitmap_set(ccp->lsbmap, start, count);
  51. mutex_unlock(&ccp->sb_mutex);
  52. return start;
  53. }
  54. ccp->sb_avail = 0;
  55. mutex_unlock(&ccp->sb_mutex);
  56. /* Wait for KSB entries to become available */
  57. if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
  58. return 0;
  59. }
  60. }
  61. /* Free a number of LSB slots from the bitmap, starting at
  62. * the indicated starting slot number.
  63. */
  64. static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
  65. unsigned int count)
  66. {
  67. if (!start)
  68. return;
  69. if (cmd_q->lsb == start) {
  70. /* An entry from the private LSB */
  71. bitmap_clear(cmd_q->lsbmap, start, count);
  72. } else {
  73. /* From the shared LSBs */
  74. struct ccp_device *ccp = cmd_q->ccp;
  75. mutex_lock(&ccp->sb_mutex);
  76. bitmap_clear(ccp->lsbmap, start, count);
  77. ccp->sb_avail = 1;
  78. mutex_unlock(&ccp->sb_mutex);
  79. wake_up_interruptible_all(&ccp->sb_queue);
  80. }
  81. }
  82. /* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
  83. union ccp_function {
  84. struct {
  85. u16 size:7;
  86. u16 encrypt:1;
  87. u16 mode:5;
  88. u16 type:2;
  89. } aes;
  90. struct {
  91. u16 size:7;
  92. u16 encrypt:1;
  93. u16 rsvd:5;
  94. u16 type:2;
  95. } aes_xts;
  96. struct {
  97. u16 size:7;
  98. u16 encrypt:1;
  99. u16 mode:5;
  100. u16 type:2;
  101. } des3;
  102. struct {
  103. u16 rsvd1:10;
  104. u16 type:4;
  105. u16 rsvd2:1;
  106. } sha;
  107. struct {
  108. u16 mode:3;
  109. u16 size:12;
  110. } rsa;
  111. struct {
  112. u16 byteswap:2;
  113. u16 bitwise:3;
  114. u16 reflect:2;
  115. u16 rsvd:8;
  116. } pt;
  117. struct {
  118. u16 rsvd:13;
  119. } zlib;
  120. struct {
  121. u16 size:10;
  122. u16 type:2;
  123. u16 mode:3;
  124. } ecc;
  125. u16 raw;
  126. };
  127. #define CCP_AES_SIZE(p) ((p)->aes.size)
  128. #define CCP_AES_ENCRYPT(p) ((p)->aes.encrypt)
  129. #define CCP_AES_MODE(p) ((p)->aes.mode)
  130. #define CCP_AES_TYPE(p) ((p)->aes.type)
  131. #define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
  132. #define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
  133. #define CCP_DES3_SIZE(p) ((p)->des3.size)
  134. #define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt)
  135. #define CCP_DES3_MODE(p) ((p)->des3.mode)
  136. #define CCP_DES3_TYPE(p) ((p)->des3.type)
  137. #define CCP_SHA_TYPE(p) ((p)->sha.type)
  138. #define CCP_RSA_SIZE(p) ((p)->rsa.size)
  139. #define CCP_PT_BYTESWAP(p) ((p)->pt.byteswap)
  140. #define CCP_PT_BITWISE(p) ((p)->pt.bitwise)
  141. #define CCP_ECC_MODE(p) ((p)->ecc.mode)
  142. #define CCP_ECC_AFFINE(p) ((p)->ecc.one)
  143. /* Word 0 */
  144. #define CCP5_CMD_DW0(p) ((p)->dw0)
  145. #define CCP5_CMD_SOC(p) (CCP5_CMD_DW0(p).soc)
  146. #define CCP5_CMD_IOC(p) (CCP5_CMD_DW0(p).ioc)
  147. #define CCP5_CMD_INIT(p) (CCP5_CMD_DW0(p).init)
  148. #define CCP5_CMD_EOM(p) (CCP5_CMD_DW0(p).eom)
  149. #define CCP5_CMD_FUNCTION(p) (CCP5_CMD_DW0(p).function)
  150. #define CCP5_CMD_ENGINE(p) (CCP5_CMD_DW0(p).engine)
  151. #define CCP5_CMD_PROT(p) (CCP5_CMD_DW0(p).prot)
  152. /* Word 1 */
  153. #define CCP5_CMD_DW1(p) ((p)->length)
  154. #define CCP5_CMD_LEN(p) (CCP5_CMD_DW1(p))
  155. /* Word 2 */
  156. #define CCP5_CMD_DW2(p) ((p)->src_lo)
  157. #define CCP5_CMD_SRC_LO(p) (CCP5_CMD_DW2(p))
  158. /* Word 3 */
  159. #define CCP5_CMD_DW3(p) ((p)->dw3)
  160. #define CCP5_CMD_SRC_MEM(p) ((p)->dw3.src_mem)
  161. #define CCP5_CMD_SRC_HI(p) ((p)->dw3.src_hi)
  162. #define CCP5_CMD_LSB_ID(p) ((p)->dw3.lsb_cxt_id)
  163. #define CCP5_CMD_FIX_SRC(p) ((p)->dw3.fixed)
  164. /* Words 4/5 */
  165. #define CCP5_CMD_DW4(p) ((p)->dw4)
  166. #define CCP5_CMD_DST_LO(p) (CCP5_CMD_DW4(p).dst_lo)
  167. #define CCP5_CMD_DW5(p) ((p)->dw5.fields.dst_hi)
  168. #define CCP5_CMD_DST_HI(p) (CCP5_CMD_DW5(p))
  169. #define CCP5_CMD_DST_MEM(p) ((p)->dw5.fields.dst_mem)
  170. #define CCP5_CMD_FIX_DST(p) ((p)->dw5.fields.fixed)
  171. #define CCP5_CMD_SHA_LO(p) ((p)->dw4.sha_len_lo)
  172. #define CCP5_CMD_SHA_HI(p) ((p)->dw5.sha_len_hi)
  173. /* Word 6/7 */
  174. #define CCP5_CMD_DW6(p) ((p)->key_lo)
  175. #define CCP5_CMD_KEY_LO(p) (CCP5_CMD_DW6(p))
  176. #define CCP5_CMD_DW7(p) ((p)->dw7)
  177. #define CCP5_CMD_KEY_HI(p) ((p)->dw7.key_hi)
  178. #define CCP5_CMD_KEY_MEM(p) ((p)->dw7.key_mem)
  179. static inline u32 low_address(unsigned long addr)
  180. {
  181. return (u64)addr & 0x0ffffffff;
  182. }
  183. static inline u32 high_address(unsigned long addr)
  184. {
  185. return ((u64)addr >> 32) & 0x00000ffff;
  186. }
  187. static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
  188. {
  189. unsigned int head_idx, n;
  190. u32 head_lo, queue_start;
  191. queue_start = low_address(cmd_q->qdma_tail);
  192. head_lo = ioread32(cmd_q->reg_head_lo);
  193. head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
  194. n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
  195. return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
  196. }
  197. static int ccp5_do_cmd(struct ccp5_desc *desc,
  198. struct ccp_cmd_queue *cmd_q)
  199. {
  200. u32 *mP;
  201. __le32 *dP;
  202. u32 tail;
  203. int i;
  204. int ret = 0;
  205. if (CCP5_CMD_SOC(desc)) {
  206. CCP5_CMD_IOC(desc) = 1;
  207. CCP5_CMD_SOC(desc) = 0;
  208. }
  209. mutex_lock(&cmd_q->q_mutex);
  210. mP = (u32 *) &cmd_q->qbase[cmd_q->qidx];
  211. dP = (__le32 *) desc;
  212. for (i = 0; i < 8; i++)
  213. mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
  214. cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
  215. /* The data used by this command must be flushed to memory */
  216. wmb();
  217. /* Write the new tail address back to the queue register */
  218. tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
  219. iowrite32(tail, cmd_q->reg_tail_lo);
  220. /* Turn the queue back on using our cached control register */
  221. iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
  222. mutex_unlock(&cmd_q->q_mutex);
  223. if (CCP5_CMD_IOC(desc)) {
  224. /* Wait for the job to complete */
  225. ret = wait_event_interruptible(cmd_q->int_queue,
  226. cmd_q->int_rcvd);
  227. if (ret || cmd_q->cmd_error) {
  228. /* Log the error and flush the queue by
  229. * moving the head pointer
  230. */
  231. if (cmd_q->cmd_error)
  232. ccp_log_error(cmd_q->ccp,
  233. cmd_q->cmd_error);
  234. iowrite32(tail, cmd_q->reg_head_lo);
  235. if (!ret)
  236. ret = -EIO;
  237. }
  238. cmd_q->int_rcvd = 0;
  239. }
  240. return ret;
  241. }
  242. static int ccp5_perform_aes(struct ccp_op *op)
  243. {
  244. struct ccp5_desc desc;
  245. union ccp_function function;
  246. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  247. /* Zero out all the fields of the command desc */
  248. memset(&desc, 0, Q_DESC_SIZE);
  249. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
  250. CCP5_CMD_SOC(&desc) = op->soc;
  251. CCP5_CMD_IOC(&desc) = 1;
  252. CCP5_CMD_INIT(&desc) = op->init;
  253. CCP5_CMD_EOM(&desc) = op->eom;
  254. CCP5_CMD_PROT(&desc) = 0;
  255. function.raw = 0;
  256. CCP_AES_ENCRYPT(&function) = op->u.aes.action;
  257. CCP_AES_MODE(&function) = op->u.aes.mode;
  258. CCP_AES_TYPE(&function) = op->u.aes.type;
  259. CCP_AES_SIZE(&function) = op->u.aes.size;
  260. CCP5_CMD_FUNCTION(&desc) = function.raw;
  261. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  262. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  263. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  264. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  265. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  266. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  267. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  268. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  269. CCP5_CMD_KEY_HI(&desc) = 0;
  270. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  271. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  272. return ccp5_do_cmd(&desc, op->cmd_q);
  273. }
  274. static int ccp5_perform_xts_aes(struct ccp_op *op)
  275. {
  276. struct ccp5_desc desc;
  277. union ccp_function function;
  278. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  279. /* Zero out all the fields of the command desc */
  280. memset(&desc, 0, Q_DESC_SIZE);
  281. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
  282. CCP5_CMD_SOC(&desc) = op->soc;
  283. CCP5_CMD_IOC(&desc) = 1;
  284. CCP5_CMD_INIT(&desc) = op->init;
  285. CCP5_CMD_EOM(&desc) = op->eom;
  286. CCP5_CMD_PROT(&desc) = 0;
  287. function.raw = 0;
  288. CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
  289. CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
  290. CCP5_CMD_FUNCTION(&desc) = function.raw;
  291. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  292. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  293. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  294. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  295. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  296. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  297. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  298. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  299. CCP5_CMD_KEY_HI(&desc) = 0;
  300. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  301. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  302. return ccp5_do_cmd(&desc, op->cmd_q);
  303. }
  304. static int ccp5_perform_sha(struct ccp_op *op)
  305. {
  306. struct ccp5_desc desc;
  307. union ccp_function function;
  308. /* Zero out all the fields of the command desc */
  309. memset(&desc, 0, Q_DESC_SIZE);
  310. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
  311. CCP5_CMD_SOC(&desc) = op->soc;
  312. CCP5_CMD_IOC(&desc) = 1;
  313. CCP5_CMD_INIT(&desc) = 1;
  314. CCP5_CMD_EOM(&desc) = op->eom;
  315. CCP5_CMD_PROT(&desc) = 0;
  316. function.raw = 0;
  317. CCP_SHA_TYPE(&function) = op->u.sha.type;
  318. CCP5_CMD_FUNCTION(&desc) = function.raw;
  319. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  320. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  321. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  322. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  323. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  324. if (op->eom) {
  325. CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
  326. CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
  327. } else {
  328. CCP5_CMD_SHA_LO(&desc) = 0;
  329. CCP5_CMD_SHA_HI(&desc) = 0;
  330. }
  331. return ccp5_do_cmd(&desc, op->cmd_q);
  332. }
  333. static int ccp5_perform_des3(struct ccp_op *op)
  334. {
  335. struct ccp5_desc desc;
  336. union ccp_function function;
  337. u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
  338. /* Zero out all the fields of the command desc */
  339. memset(&desc, 0, sizeof(struct ccp5_desc));
  340. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
  341. CCP5_CMD_SOC(&desc) = op->soc;
  342. CCP5_CMD_IOC(&desc) = 1;
  343. CCP5_CMD_INIT(&desc) = op->init;
  344. CCP5_CMD_EOM(&desc) = op->eom;
  345. CCP5_CMD_PROT(&desc) = 0;
  346. function.raw = 0;
  347. CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
  348. CCP_DES3_MODE(&function) = op->u.des3.mode;
  349. CCP_DES3_TYPE(&function) = op->u.des3.type;
  350. CCP5_CMD_FUNCTION(&desc) = function.raw;
  351. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  352. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  353. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  354. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  355. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  356. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  357. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  358. CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
  359. CCP5_CMD_KEY_HI(&desc) = 0;
  360. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  361. CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
  362. return ccp5_do_cmd(&desc, op->cmd_q);
  363. }
  364. static int ccp5_perform_rsa(struct ccp_op *op)
  365. {
  366. struct ccp5_desc desc;
  367. union ccp_function function;
  368. /* Zero out all the fields of the command desc */
  369. memset(&desc, 0, Q_DESC_SIZE);
  370. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
  371. CCP5_CMD_SOC(&desc) = op->soc;
  372. CCP5_CMD_IOC(&desc) = 1;
  373. CCP5_CMD_INIT(&desc) = 0;
  374. CCP5_CMD_EOM(&desc) = 1;
  375. CCP5_CMD_PROT(&desc) = 0;
  376. function.raw = 0;
  377. CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
  378. CCP5_CMD_FUNCTION(&desc) = function.raw;
  379. CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
  380. /* Source is from external memory */
  381. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  382. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  383. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  384. /* Destination is in external memory */
  385. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  386. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  387. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  388. /* Exponent is in LSB memory */
  389. CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
  390. CCP5_CMD_KEY_HI(&desc) = 0;
  391. CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
  392. return ccp5_do_cmd(&desc, op->cmd_q);
  393. }
  394. static int ccp5_perform_passthru(struct ccp_op *op)
  395. {
  396. struct ccp5_desc desc;
  397. union ccp_function function;
  398. struct ccp_dma_info *saddr = &op->src.u.dma;
  399. struct ccp_dma_info *daddr = &op->dst.u.dma;
  400. memset(&desc, 0, Q_DESC_SIZE);
  401. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
  402. CCP5_CMD_SOC(&desc) = 0;
  403. CCP5_CMD_IOC(&desc) = 1;
  404. CCP5_CMD_INIT(&desc) = 0;
  405. CCP5_CMD_EOM(&desc) = op->eom;
  406. CCP5_CMD_PROT(&desc) = 0;
  407. function.raw = 0;
  408. CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
  409. CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
  410. CCP5_CMD_FUNCTION(&desc) = function.raw;
  411. /* Length of source data is always 256 bytes */
  412. if (op->src.type == CCP_MEMTYPE_SYSTEM)
  413. CCP5_CMD_LEN(&desc) = saddr->length;
  414. else
  415. CCP5_CMD_LEN(&desc) = daddr->length;
  416. if (op->src.type == CCP_MEMTYPE_SYSTEM) {
  417. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  418. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  419. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  420. if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
  421. CCP5_CMD_LSB_ID(&desc) = op->sb_key;
  422. } else {
  423. u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
  424. CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
  425. CCP5_CMD_SRC_HI(&desc) = 0;
  426. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
  427. }
  428. if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
  429. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  430. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  431. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  432. } else {
  433. u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
  434. CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
  435. CCP5_CMD_DST_HI(&desc) = 0;
  436. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
  437. }
  438. return ccp5_do_cmd(&desc, op->cmd_q);
  439. }
  440. static int ccp5_perform_ecc(struct ccp_op *op)
  441. {
  442. struct ccp5_desc desc;
  443. union ccp_function function;
  444. /* Zero out all the fields of the command desc */
  445. memset(&desc, 0, Q_DESC_SIZE);
  446. CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
  447. CCP5_CMD_SOC(&desc) = 0;
  448. CCP5_CMD_IOC(&desc) = 1;
  449. CCP5_CMD_INIT(&desc) = 0;
  450. CCP5_CMD_EOM(&desc) = 1;
  451. CCP5_CMD_PROT(&desc) = 0;
  452. function.raw = 0;
  453. function.ecc.mode = op->u.ecc.function;
  454. CCP5_CMD_FUNCTION(&desc) = function.raw;
  455. CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
  456. CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
  457. CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
  458. CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  459. CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
  460. CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
  461. CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
  462. return ccp5_do_cmd(&desc, op->cmd_q);
  463. }
  464. static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
  465. {
  466. int q_mask = 1 << cmd_q->id;
  467. int queues = 0;
  468. int j;
  469. /* Build a bit mask to know which LSBs this queue has access to.
  470. * Don't bother with segment 0 as it has special privileges.
  471. */
  472. for (j = 1; j < MAX_LSB_CNT; j++) {
  473. if (status & q_mask)
  474. bitmap_set(cmd_q->lsbmask, j, 1);
  475. status >>= LSB_REGION_WIDTH;
  476. }
  477. queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  478. dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
  479. cmd_q->id, queues);
  480. return queues ? 0 : -EINVAL;
  481. }
  482. static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
  483. int lsb_cnt, int n_lsbs,
  484. unsigned long *lsb_pub)
  485. {
  486. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  487. int bitno;
  488. int qlsb_wgt;
  489. int i;
  490. /* For each queue:
  491. * If the count of potential LSBs available to a queue matches the
  492. * ordinal given to us in lsb_cnt:
  493. * Copy the mask of possible LSBs for this queue into "qlsb";
  494. * For each bit in qlsb, see if the corresponding bit in the
  495. * aggregation mask is set; if so, we have a match.
  496. * If we have a match, clear the bit in the aggregation to
  497. * mark it as no longer available.
  498. * If there is no match, clear the bit in qlsb and keep looking.
  499. */
  500. for (i = 0; i < ccp->cmd_q_count; i++) {
  501. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  502. qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
  503. if (qlsb_wgt == lsb_cnt) {
  504. bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
  505. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  506. while (bitno < MAX_LSB_CNT) {
  507. if (test_bit(bitno, lsb_pub)) {
  508. /* We found an available LSB
  509. * that this queue can access
  510. */
  511. cmd_q->lsb = bitno;
  512. bitmap_clear(lsb_pub, bitno, 1);
  513. dev_dbg(ccp->dev,
  514. "Queue %d gets LSB %d\n",
  515. i, bitno);
  516. break;
  517. }
  518. bitmap_clear(qlsb, bitno, 1);
  519. bitno = find_first_bit(qlsb, MAX_LSB_CNT);
  520. }
  521. if (bitno >= MAX_LSB_CNT)
  522. return -EINVAL;
  523. n_lsbs--;
  524. }
  525. }
  526. return n_lsbs;
  527. }
  528. /* For each queue, from the most- to least-constrained:
  529. * find an LSB that can be assigned to the queue. If there are N queues that
  530. * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
  531. * dedicated LSB. Remaining LSB regions become a shared resource.
  532. * If we have fewer LSBs than queues, all LSB regions become shared resources.
  533. */
  534. static int ccp_assign_lsbs(struct ccp_device *ccp)
  535. {
  536. DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
  537. DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
  538. int n_lsbs = 0;
  539. int bitno;
  540. int i, lsb_cnt;
  541. int rc = 0;
  542. bitmap_zero(lsb_pub, MAX_LSB_CNT);
  543. /* Create an aggregate bitmap to get a total count of available LSBs */
  544. for (i = 0; i < ccp->cmd_q_count; i++)
  545. bitmap_or(lsb_pub,
  546. lsb_pub, ccp->cmd_q[i].lsbmask,
  547. MAX_LSB_CNT);
  548. n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
  549. if (n_lsbs >= ccp->cmd_q_count) {
  550. /* We have enough LSBS to give every queue a private LSB.
  551. * Brute force search to start with the queues that are more
  552. * constrained in LSB choice. When an LSB is privately
  553. * assigned, it is removed from the public mask.
  554. * This is an ugly N squared algorithm with some optimization.
  555. */
  556. for (lsb_cnt = 1;
  557. n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
  558. lsb_cnt++) {
  559. rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
  560. lsb_pub);
  561. if (rc < 0)
  562. return -EINVAL;
  563. n_lsbs = rc;
  564. }
  565. }
  566. rc = 0;
  567. /* What's left of the LSBs, according to the public mask, now become
  568. * shared. Any zero bits in the lsb_pub mask represent an LSB region
  569. * that can't be used as a shared resource, so mark the LSB slots for
  570. * them as "in use".
  571. */
  572. bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
  573. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  574. while (bitno < MAX_LSB_CNT) {
  575. bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
  576. bitmap_set(qlsb, bitno, 1);
  577. bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
  578. }
  579. return rc;
  580. }
  581. static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
  582. {
  583. unsigned int i;
  584. for (i = 0; i < ccp->cmd_q_count; i++)
  585. iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
  586. }
  587. static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
  588. {
  589. unsigned int i;
  590. for (i = 0; i < ccp->cmd_q_count; i++)
  591. iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
  592. }
  593. static void ccp5_irq_bh(unsigned long data)
  594. {
  595. struct ccp_device *ccp = (struct ccp_device *)data;
  596. u32 status;
  597. unsigned int i;
  598. for (i = 0; i < ccp->cmd_q_count; i++) {
  599. struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
  600. status = ioread32(cmd_q->reg_interrupt_status);
  601. if (status) {
  602. cmd_q->int_status = status;
  603. cmd_q->q_status = ioread32(cmd_q->reg_status);
  604. cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
  605. /* On error, only save the first error value */
  606. if ((status & INT_ERROR) && !cmd_q->cmd_error)
  607. cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
  608. cmd_q->int_rcvd = 1;
  609. /* Acknowledge the interrupt and wake the kthread */
  610. iowrite32(status, cmd_q->reg_interrupt_status);
  611. wake_up_interruptible(&cmd_q->int_queue);
  612. }
  613. }
  614. ccp5_enable_queue_interrupts(ccp);
  615. }
  616. static irqreturn_t ccp5_irq_handler(int irq, void *data)
  617. {
  618. struct device *dev = data;
  619. struct ccp_device *ccp = dev_get_drvdata(dev);
  620. ccp5_disable_queue_interrupts(ccp);
  621. if (ccp->use_tasklet)
  622. tasklet_schedule(&ccp->irq_tasklet);
  623. else
  624. ccp5_irq_bh((unsigned long)ccp);
  625. return IRQ_HANDLED;
  626. }
  627. static int ccp5_init(struct ccp_device *ccp)
  628. {
  629. struct device *dev = ccp->dev;
  630. struct ccp_cmd_queue *cmd_q;
  631. struct dma_pool *dma_pool;
  632. char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
  633. unsigned int qmr, qim, i;
  634. u64 status;
  635. u32 status_lo, status_hi;
  636. int ret;
  637. /* Find available queues */
  638. qim = 0;
  639. qmr = ioread32(ccp->io_regs + Q_MASK_REG);
  640. for (i = 0; i < MAX_HW_QUEUES; i++) {
  641. if (!(qmr & (1 << i)))
  642. continue;
  643. /* Allocate a dma pool for this queue */
  644. snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
  645. ccp->name, i);
  646. dma_pool = dma_pool_create(dma_pool_name, dev,
  647. CCP_DMAPOOL_MAX_SIZE,
  648. CCP_DMAPOOL_ALIGN, 0);
  649. if (!dma_pool) {
  650. dev_err(dev, "unable to allocate dma pool\n");
  651. ret = -ENOMEM;
  652. }
  653. cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
  654. ccp->cmd_q_count++;
  655. cmd_q->ccp = ccp;
  656. cmd_q->id = i;
  657. cmd_q->dma_pool = dma_pool;
  658. mutex_init(&cmd_q->q_mutex);
  659. /* Page alignment satisfies our needs for N <= 128 */
  660. BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
  661. cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
  662. cmd_q->qbase = dma_zalloc_coherent(dev, cmd_q->qsize,
  663. &cmd_q->qbase_dma,
  664. GFP_KERNEL);
  665. if (!cmd_q->qbase) {
  666. dev_err(dev, "unable to allocate command queue\n");
  667. ret = -ENOMEM;
  668. goto e_pool;
  669. }
  670. cmd_q->qidx = 0;
  671. /* Preset some register values and masks that are queue
  672. * number dependent
  673. */
  674. cmd_q->reg_control = ccp->io_regs +
  675. CMD5_Q_STATUS_INCR * (i + 1);
  676. cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
  677. cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
  678. cmd_q->reg_int_enable = cmd_q->reg_control +
  679. CMD5_Q_INT_ENABLE_BASE;
  680. cmd_q->reg_interrupt_status = cmd_q->reg_control +
  681. CMD5_Q_INTERRUPT_STATUS_BASE;
  682. cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
  683. cmd_q->reg_int_status = cmd_q->reg_control +
  684. CMD5_Q_INT_STATUS_BASE;
  685. cmd_q->reg_dma_status = cmd_q->reg_control +
  686. CMD5_Q_DMA_STATUS_BASE;
  687. cmd_q->reg_dma_read_status = cmd_q->reg_control +
  688. CMD5_Q_DMA_READ_STATUS_BASE;
  689. cmd_q->reg_dma_write_status = cmd_q->reg_control +
  690. CMD5_Q_DMA_WRITE_STATUS_BASE;
  691. init_waitqueue_head(&cmd_q->int_queue);
  692. dev_dbg(dev, "queue #%u available\n", i);
  693. }
  694. if (ccp->cmd_q_count == 0) {
  695. dev_notice(dev, "no command queues available\n");
  696. ret = -EIO;
  697. goto e_pool;
  698. }
  699. /* Turn off the queues and disable interrupts until ready */
  700. ccp5_disable_queue_interrupts(ccp);
  701. for (i = 0; i < ccp->cmd_q_count; i++) {
  702. cmd_q = &ccp->cmd_q[i];
  703. cmd_q->qcontrol = 0; /* Start with nothing */
  704. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  705. ioread32(cmd_q->reg_int_status);
  706. ioread32(cmd_q->reg_status);
  707. /* Clear the interrupt status */
  708. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
  709. }
  710. dev_dbg(dev, "Requesting an IRQ...\n");
  711. /* Request an irq */
  712. ret = ccp->get_irq(ccp);
  713. if (ret) {
  714. dev_err(dev, "unable to allocate an IRQ\n");
  715. goto e_pool;
  716. }
  717. /* Initialize the ISR tasklet */
  718. if (ccp->use_tasklet)
  719. tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
  720. (unsigned long)ccp);
  721. dev_dbg(dev, "Loading LSB map...\n");
  722. /* Copy the private LSB mask to the public registers */
  723. status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  724. status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  725. iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
  726. iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
  727. status = ((u64)status_hi<<30) | (u64)status_lo;
  728. dev_dbg(dev, "Configuring virtual queues...\n");
  729. /* Configure size of each virtual queue accessible to host */
  730. for (i = 0; i < ccp->cmd_q_count; i++) {
  731. u32 dma_addr_lo;
  732. u32 dma_addr_hi;
  733. cmd_q = &ccp->cmd_q[i];
  734. cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
  735. cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
  736. cmd_q->qdma_tail = cmd_q->qbase_dma;
  737. dma_addr_lo = low_address(cmd_q->qdma_tail);
  738. iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
  739. iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
  740. dma_addr_hi = high_address(cmd_q->qdma_tail);
  741. cmd_q->qcontrol |= (dma_addr_hi << 16);
  742. iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
  743. /* Find the LSB regions accessible to the queue */
  744. ccp_find_lsb_regions(cmd_q, status);
  745. cmd_q->lsb = -1; /* Unassigned value */
  746. }
  747. dev_dbg(dev, "Assigning LSBs...\n");
  748. ret = ccp_assign_lsbs(ccp);
  749. if (ret) {
  750. dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
  751. goto e_irq;
  752. }
  753. /* Optimization: pre-allocate LSB slots for each queue */
  754. for (i = 0; i < ccp->cmd_q_count; i++) {
  755. ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  756. ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
  757. }
  758. dev_dbg(dev, "Starting threads...\n");
  759. /* Create a kthread for each queue */
  760. for (i = 0; i < ccp->cmd_q_count; i++) {
  761. struct task_struct *kthread;
  762. cmd_q = &ccp->cmd_q[i];
  763. kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
  764. "%s-q%u", ccp->name, cmd_q->id);
  765. if (IS_ERR(kthread)) {
  766. dev_err(dev, "error creating queue thread (%ld)\n",
  767. PTR_ERR(kthread));
  768. ret = PTR_ERR(kthread);
  769. goto e_kthread;
  770. }
  771. cmd_q->kthread = kthread;
  772. wake_up_process(kthread);
  773. }
  774. dev_dbg(dev, "Enabling interrupts...\n");
  775. ccp5_enable_queue_interrupts(ccp);
  776. dev_dbg(dev, "Registering device...\n");
  777. /* Put this on the unit list to make it available */
  778. ccp_add_device(ccp);
  779. ret = ccp_register_rng(ccp);
  780. if (ret)
  781. goto e_kthread;
  782. /* Register the DMA engine support */
  783. ret = ccp_dmaengine_register(ccp);
  784. if (ret)
  785. goto e_hwrng;
  786. return 0;
  787. e_hwrng:
  788. ccp_unregister_rng(ccp);
  789. e_kthread:
  790. for (i = 0; i < ccp->cmd_q_count; i++)
  791. if (ccp->cmd_q[i].kthread)
  792. kthread_stop(ccp->cmd_q[i].kthread);
  793. e_irq:
  794. ccp->free_irq(ccp);
  795. e_pool:
  796. for (i = 0; i < ccp->cmd_q_count; i++)
  797. dma_pool_destroy(ccp->cmd_q[i].dma_pool);
  798. return ret;
  799. }
  800. static void ccp5_destroy(struct ccp_device *ccp)
  801. {
  802. struct device *dev = ccp->dev;
  803. struct ccp_cmd_queue *cmd_q;
  804. struct ccp_cmd *cmd;
  805. unsigned int i;
  806. /* Unregister the DMA engine */
  807. ccp_dmaengine_unregister(ccp);
  808. /* Unregister the RNG */
  809. ccp_unregister_rng(ccp);
  810. /* Remove this device from the list of available units first */
  811. ccp_del_device(ccp);
  812. /* Disable and clear interrupts */
  813. ccp5_disable_queue_interrupts(ccp);
  814. for (i = 0; i < ccp->cmd_q_count; i++) {
  815. cmd_q = &ccp->cmd_q[i];
  816. /* Turn off the run bit */
  817. iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
  818. /* Clear the interrupt status */
  819. iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
  820. ioread32(cmd_q->reg_int_status);
  821. ioread32(cmd_q->reg_status);
  822. }
  823. /* Stop the queue kthreads */
  824. for (i = 0; i < ccp->cmd_q_count; i++)
  825. if (ccp->cmd_q[i].kthread)
  826. kthread_stop(ccp->cmd_q[i].kthread);
  827. ccp->free_irq(ccp);
  828. for (i = 0; i < ccp->cmd_q_count; i++) {
  829. cmd_q = &ccp->cmd_q[i];
  830. dma_free_coherent(dev, cmd_q->qsize, cmd_q->qbase,
  831. cmd_q->qbase_dma);
  832. }
  833. /* Flush the cmd and backlog queue */
  834. while (!list_empty(&ccp->cmd)) {
  835. /* Invoke the callback directly with an error code */
  836. cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
  837. list_del(&cmd->entry);
  838. cmd->callback(cmd->data, -ENODEV);
  839. }
  840. while (!list_empty(&ccp->backlog)) {
  841. /* Invoke the callback directly with an error code */
  842. cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
  843. list_del(&cmd->entry);
  844. cmd->callback(cmd->data, -ENODEV);
  845. }
  846. }
  847. static void ccp5_config(struct ccp_device *ccp)
  848. {
  849. /* Public side */
  850. iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
  851. }
  852. static void ccp5other_config(struct ccp_device *ccp)
  853. {
  854. int i;
  855. u32 rnd;
  856. /* We own all of the queues on the NTB CCP */
  857. iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
  858. iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
  859. for (i = 0; i < 12; i++) {
  860. rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
  861. iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
  862. }
  863. iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
  864. iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
  865. iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
  866. iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
  867. iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
  868. iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
  869. ccp5_config(ccp);
  870. }
  871. /* Version 5 adds some function, but is essentially the same as v5 */
  872. static const struct ccp_actions ccp5_actions = {
  873. .aes = ccp5_perform_aes,
  874. .xts_aes = ccp5_perform_xts_aes,
  875. .sha = ccp5_perform_sha,
  876. .des3 = ccp5_perform_des3,
  877. .rsa = ccp5_perform_rsa,
  878. .passthru = ccp5_perform_passthru,
  879. .ecc = ccp5_perform_ecc,
  880. .sballoc = ccp_lsb_alloc,
  881. .sbfree = ccp_lsb_free,
  882. .init = ccp5_init,
  883. .destroy = ccp5_destroy,
  884. .get_free_slots = ccp5_get_free_slots,
  885. .irqhandler = ccp5_irq_handler,
  886. };
  887. const struct ccp_vdata ccpv5a = {
  888. .version = CCP_VERSION(5, 0),
  889. .setup = ccp5_config,
  890. .perform = &ccp5_actions,
  891. .bar = 2,
  892. .offset = 0x0,
  893. };
  894. const struct ccp_vdata ccpv5b = {
  895. .version = CCP_VERSION(5, 0),
  896. .dma_chan_attr = DMA_PRIVATE,
  897. .setup = ccp5other_config,
  898. .perform = &ccp5_actions,
  899. .bar = 2,
  900. .offset = 0x0,
  901. };