coproc.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Authors: Rusty Russell <rusty@rustcorp.com.au>
  4. * Christoffer Dall <c.dall@virtualopensystems.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License, version 2, as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  18. */
  19. #include <linux/bsearch.h>
  20. #include <linux/mm.h>
  21. #include <linux/kvm_host.h>
  22. #include <linux/uaccess.h>
  23. #include <asm/kvm_arm.h>
  24. #include <asm/kvm_host.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <asm/kvm_coproc.h>
  27. #include <asm/kvm_mmu.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/cputype.h>
  30. #include <trace/events/kvm.h>
  31. #include <asm/vfp.h>
  32. #include "../vfp/vfpinstr.h"
  33. #define CREATE_TRACE_POINTS
  34. #include "trace.h"
  35. #include "coproc.h"
  36. /******************************************************************************
  37. * Co-processor emulation
  38. *****************************************************************************/
  39. static bool write_to_read_only(struct kvm_vcpu *vcpu,
  40. const struct coproc_params *params)
  41. {
  42. WARN_ONCE(1, "CP15 write to read-only register\n");
  43. print_cp_instr(params);
  44. kvm_inject_undefined(vcpu);
  45. return false;
  46. }
  47. static bool read_from_write_only(struct kvm_vcpu *vcpu,
  48. const struct coproc_params *params)
  49. {
  50. WARN_ONCE(1, "CP15 read to write-only register\n");
  51. print_cp_instr(params);
  52. kvm_inject_undefined(vcpu);
  53. return false;
  54. }
  55. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  56. static u32 cache_levels;
  57. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  58. #define CSSELR_MAX 12
  59. /*
  60. * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
  61. * of cp15 registers can be viewed either as couple of two u32 registers
  62. * or one u64 register. Current u64 register encoding is that least
  63. * significant u32 word is followed by most significant u32 word.
  64. */
  65. static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
  66. const struct coproc_reg *r,
  67. u64 val)
  68. {
  69. vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
  70. vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
  71. }
  72. static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
  73. const struct coproc_reg *r)
  74. {
  75. u64 val;
  76. val = vcpu_cp15(vcpu, r->reg + 1);
  77. val = val << 32;
  78. val = val | vcpu_cp15(vcpu, r->reg);
  79. return val;
  80. }
  81. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
  82. {
  83. kvm_inject_undefined(vcpu);
  84. return 1;
  85. }
  86. int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
  87. {
  88. /*
  89. * We can get here, if the host has been built without VFPv3 support,
  90. * but the guest attempted a floating point operation.
  91. */
  92. kvm_inject_undefined(vcpu);
  93. return 1;
  94. }
  95. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
  96. {
  97. kvm_inject_undefined(vcpu);
  98. return 1;
  99. }
  100. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  101. {
  102. /*
  103. * Compute guest MPIDR. We build a virtual cluster out of the
  104. * vcpu_id, but we read the 'U' bit from the underlying
  105. * hardware directly.
  106. */
  107. vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
  108. ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
  109. (vcpu->vcpu_id & 3));
  110. }
  111. /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
  112. static bool access_actlr(struct kvm_vcpu *vcpu,
  113. const struct coproc_params *p,
  114. const struct coproc_reg *r)
  115. {
  116. if (p->is_write)
  117. return ignore_write(vcpu, p);
  118. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
  119. return true;
  120. }
  121. /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
  122. static bool access_cbar(struct kvm_vcpu *vcpu,
  123. const struct coproc_params *p,
  124. const struct coproc_reg *r)
  125. {
  126. if (p->is_write)
  127. return write_to_read_only(vcpu, p);
  128. return read_zero(vcpu, p);
  129. }
  130. /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
  131. static bool access_l2ctlr(struct kvm_vcpu *vcpu,
  132. const struct coproc_params *p,
  133. const struct coproc_reg *r)
  134. {
  135. if (p->is_write)
  136. return ignore_write(vcpu, p);
  137. *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
  138. return true;
  139. }
  140. static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  141. {
  142. u32 l2ctlr, ncores;
  143. asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
  144. l2ctlr &= ~(3 << 24);
  145. ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
  146. /* How many cores in the current cluster and the next ones */
  147. ncores -= (vcpu->vcpu_id & ~3);
  148. /* Cap it to the maximum number of cores in a single cluster */
  149. ncores = min(ncores, 3U);
  150. l2ctlr |= (ncores & 3) << 24;
  151. vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
  152. }
  153. static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
  154. {
  155. u32 actlr;
  156. /* ACTLR contains SMP bit: make sure you create all cpus first! */
  157. asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
  158. /* Make the SMP bit consistent with the guest configuration */
  159. if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
  160. actlr |= 1U << 6;
  161. else
  162. actlr &= ~(1U << 6);
  163. vcpu_cp15(vcpu, c1_ACTLR) = actlr;
  164. }
  165. /*
  166. * TRM entries: A7:4.3.50, A15:4.3.49
  167. * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
  168. */
  169. static bool access_l2ectlr(struct kvm_vcpu *vcpu,
  170. const struct coproc_params *p,
  171. const struct coproc_reg *r)
  172. {
  173. if (p->is_write)
  174. return ignore_write(vcpu, p);
  175. *vcpu_reg(vcpu, p->Rt1) = 0;
  176. return true;
  177. }
  178. /*
  179. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  180. */
  181. static bool access_dcsw(struct kvm_vcpu *vcpu,
  182. const struct coproc_params *p,
  183. const struct coproc_reg *r)
  184. {
  185. if (!p->is_write)
  186. return read_from_write_only(vcpu, p);
  187. kvm_set_way_flush(vcpu);
  188. return true;
  189. }
  190. /*
  191. * Generic accessor for VM registers. Only called as long as HCR_TVM
  192. * is set. If the guest enables the MMU, we stop trapping the VM
  193. * sys_regs and leave it in complete control of the caches.
  194. *
  195. * Used by the cpu-specific code.
  196. */
  197. bool access_vm_reg(struct kvm_vcpu *vcpu,
  198. const struct coproc_params *p,
  199. const struct coproc_reg *r)
  200. {
  201. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  202. BUG_ON(!p->is_write);
  203. vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
  204. if (p->is_64bit)
  205. vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
  206. kvm_toggle_cache(vcpu, was_enabled);
  207. return true;
  208. }
  209. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  210. const struct coproc_params *p,
  211. const struct coproc_reg *r)
  212. {
  213. u64 reg;
  214. if (!p->is_write)
  215. return read_from_write_only(vcpu, p);
  216. reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  217. reg |= *vcpu_reg(vcpu, p->Rt1) ;
  218. vgic_v3_dispatch_sgi(vcpu, reg, true);
  219. return true;
  220. }
  221. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  222. const struct coproc_params *p,
  223. const struct coproc_reg *r)
  224. {
  225. if (p->is_write)
  226. return ignore_write(vcpu, p);
  227. *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  228. return true;
  229. }
  230. static bool access_cntp_tval(struct kvm_vcpu *vcpu,
  231. const struct coproc_params *p,
  232. const struct coproc_reg *r)
  233. {
  234. u64 now = kvm_phys_timer_read();
  235. u64 val;
  236. if (p->is_write) {
  237. val = *vcpu_reg(vcpu, p->Rt1);
  238. kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val + now);
  239. } else {
  240. val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
  241. *vcpu_reg(vcpu, p->Rt1) = val - now;
  242. }
  243. return true;
  244. }
  245. static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
  246. const struct coproc_params *p,
  247. const struct coproc_reg *r)
  248. {
  249. u32 val;
  250. if (p->is_write) {
  251. val = *vcpu_reg(vcpu, p->Rt1);
  252. kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, val);
  253. } else {
  254. val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
  255. *vcpu_reg(vcpu, p->Rt1) = val;
  256. }
  257. return true;
  258. }
  259. static bool access_cntp_cval(struct kvm_vcpu *vcpu,
  260. const struct coproc_params *p,
  261. const struct coproc_reg *r)
  262. {
  263. u64 val;
  264. if (p->is_write) {
  265. val = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
  266. val |= *vcpu_reg(vcpu, p->Rt1);
  267. kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, val);
  268. } else {
  269. val = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
  270. *vcpu_reg(vcpu, p->Rt1) = val;
  271. *vcpu_reg(vcpu, p->Rt2) = val >> 32;
  272. }
  273. return true;
  274. }
  275. /*
  276. * We could trap ID_DFR0 and tell the guest we don't support performance
  277. * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
  278. * NAKed, so it will read the PMCR anyway.
  279. *
  280. * Therefore we tell the guest we have 0 counters. Unfortunately, we
  281. * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
  282. * all PM registers, which doesn't crash the guest kernel at least.
  283. */
  284. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  285. const struct coproc_params *p,
  286. const struct coproc_reg *r)
  287. {
  288. if (p->is_write)
  289. return ignore_write(vcpu, p);
  290. else
  291. return read_zero(vcpu, p);
  292. }
  293. #define access_pmcr trap_raz_wi
  294. #define access_pmcntenset trap_raz_wi
  295. #define access_pmcntenclr trap_raz_wi
  296. #define access_pmovsr trap_raz_wi
  297. #define access_pmselr trap_raz_wi
  298. #define access_pmceid0 trap_raz_wi
  299. #define access_pmceid1 trap_raz_wi
  300. #define access_pmccntr trap_raz_wi
  301. #define access_pmxevtyper trap_raz_wi
  302. #define access_pmxevcntr trap_raz_wi
  303. #define access_pmuserenr trap_raz_wi
  304. #define access_pmintenset trap_raz_wi
  305. #define access_pmintenclr trap_raz_wi
  306. /* Architected CP15 registers.
  307. * CRn denotes the primary register number, but is copied to the CRm in the
  308. * user space API for 64-bit register access in line with the terminology used
  309. * in the ARM ARM.
  310. * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
  311. * registers preceding 32-bit ones.
  312. */
  313. static const struct coproc_reg cp15_regs[] = {
  314. /* MPIDR: we use VMPIDR for guest access. */
  315. { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
  316. NULL, reset_mpidr, c0_MPIDR },
  317. /* CSSELR: swapped by interrupt.S. */
  318. { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
  319. NULL, reset_unknown, c0_CSSELR },
  320. /* ACTLR: trapped by HCR.TAC bit. */
  321. { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
  322. access_actlr, reset_actlr, c1_ACTLR },
  323. /* CPACR: swapped by interrupt.S. */
  324. { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
  325. NULL, reset_val, c1_CPACR, 0x00000000 },
  326. /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
  327. { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
  328. { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
  329. access_vm_reg, reset_unknown, c2_TTBR0 },
  330. { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
  331. access_vm_reg, reset_unknown, c2_TTBR1 },
  332. { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
  333. access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
  334. { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
  335. /* DACR: swapped by interrupt.S. */
  336. { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
  337. access_vm_reg, reset_unknown, c3_DACR },
  338. /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
  339. { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
  340. access_vm_reg, reset_unknown, c5_DFSR },
  341. { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
  342. access_vm_reg, reset_unknown, c5_IFSR },
  343. { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
  344. access_vm_reg, reset_unknown, c5_ADFSR },
  345. { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
  346. access_vm_reg, reset_unknown, c5_AIFSR },
  347. /* DFAR/IFAR: swapped by interrupt.S. */
  348. { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
  349. access_vm_reg, reset_unknown, c6_DFAR },
  350. { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
  351. access_vm_reg, reset_unknown, c6_IFAR },
  352. /* PAR swapped by interrupt.S */
  353. { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
  354. /*
  355. * DC{C,I,CI}SW operations:
  356. */
  357. { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
  358. { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
  359. { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
  360. /*
  361. * L2CTLR access (guest wants to know #CPUs).
  362. */
  363. { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
  364. access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
  365. { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
  366. /*
  367. * Dummy performance monitor implementation.
  368. */
  369. { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
  370. { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
  371. { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
  372. { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
  373. { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
  374. { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
  375. { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
  376. { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
  377. { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
  378. { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
  379. { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
  380. { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
  381. { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
  382. /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
  383. { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
  384. access_vm_reg, reset_unknown, c10_PRRR},
  385. { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
  386. access_vm_reg, reset_unknown, c10_NMRR},
  387. /* AMAIR0/AMAIR1: swapped by interrupt.S. */
  388. { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
  389. access_vm_reg, reset_unknown, c10_AMAIR0},
  390. { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
  391. access_vm_reg, reset_unknown, c10_AMAIR1},
  392. /* ICC_SGI1R */
  393. { CRm64(12), Op1( 0), is64, access_gic_sgi},
  394. /* VBAR: swapped by interrupt.S. */
  395. { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
  396. NULL, reset_val, c12_VBAR, 0x00000000 },
  397. /* ICC_SRE */
  398. { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
  399. /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
  400. { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
  401. access_vm_reg, reset_val, c13_CID, 0x00000000 },
  402. { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
  403. NULL, reset_unknown, c13_TID_URW },
  404. { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
  405. NULL, reset_unknown, c13_TID_URO },
  406. { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
  407. NULL, reset_unknown, c13_TID_PRIV },
  408. /* CNTP */
  409. { CRm64(14), Op1( 2), is64, access_cntp_cval},
  410. /* CNTKCTL: swapped by interrupt.S. */
  411. { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
  412. NULL, reset_val, c14_CNTKCTL, 0x00000000 },
  413. /* CNTP */
  414. { CRn(14), CRm( 2), Op1( 0), Op2( 0), is32, access_cntp_tval },
  415. { CRn(14), CRm( 2), Op1( 0), Op2( 1), is32, access_cntp_ctl },
  416. /* The Configuration Base Address Register. */
  417. { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
  418. };
  419. static int check_reg_table(const struct coproc_reg *table, unsigned int n)
  420. {
  421. unsigned int i;
  422. for (i = 1; i < n; i++) {
  423. if (cmp_reg(&table[i-1], &table[i]) >= 0) {
  424. kvm_err("reg table %p out of order (%d)\n", table, i - 1);
  425. return 1;
  426. }
  427. }
  428. return 0;
  429. }
  430. /* Target specific emulation tables */
  431. static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
  432. void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
  433. {
  434. BUG_ON(check_reg_table(table->table, table->num));
  435. target_tables[table->target] = table;
  436. }
  437. /* Get specific register table for this target. */
  438. static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
  439. {
  440. struct kvm_coproc_target_table *table;
  441. table = target_tables[target];
  442. *num = table->num;
  443. return table->table;
  444. }
  445. #define reg_to_match_value(x) \
  446. ({ \
  447. unsigned long val; \
  448. val = (x)->CRn << 11; \
  449. val |= (x)->CRm << 7; \
  450. val |= (x)->Op1 << 4; \
  451. val |= (x)->Op2 << 1; \
  452. val |= !(x)->is_64bit; \
  453. val; \
  454. })
  455. static int match_reg(const void *key, const void *elt)
  456. {
  457. const unsigned long pval = (unsigned long)key;
  458. const struct coproc_reg *r = elt;
  459. return pval - reg_to_match_value(r);
  460. }
  461. static const struct coproc_reg *find_reg(const struct coproc_params *params,
  462. const struct coproc_reg table[],
  463. unsigned int num)
  464. {
  465. unsigned long pval = reg_to_match_value(params);
  466. return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
  467. }
  468. static int emulate_cp15(struct kvm_vcpu *vcpu,
  469. const struct coproc_params *params)
  470. {
  471. size_t num;
  472. const struct coproc_reg *table, *r;
  473. trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
  474. params->CRm, params->Op2, params->is_write);
  475. table = get_target_table(vcpu->arch.target, &num);
  476. /* Search target-specific then generic table. */
  477. r = find_reg(params, table, num);
  478. if (!r)
  479. r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
  480. if (likely(r)) {
  481. /* If we don't have an accessor, we should never get here! */
  482. BUG_ON(!r->access);
  483. if (likely(r->access(vcpu, params, r))) {
  484. /* Skip instruction, since it was emulated */
  485. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  486. }
  487. } else {
  488. /* If access function fails, it should complain. */
  489. kvm_err("Unsupported guest CP15 access at: %08lx\n",
  490. *vcpu_pc(vcpu));
  491. print_cp_instr(params);
  492. kvm_inject_undefined(vcpu);
  493. }
  494. return 1;
  495. }
  496. static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
  497. {
  498. struct coproc_params params;
  499. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  500. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  501. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  502. params.is_64bit = true;
  503. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
  504. params.Op2 = 0;
  505. params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  506. params.CRm = 0;
  507. return params;
  508. }
  509. /**
  510. * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
  511. * @vcpu: The VCPU pointer
  512. * @run: The kvm_run struct
  513. */
  514. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  515. {
  516. struct coproc_params params = decode_64bit_hsr(vcpu);
  517. return emulate_cp15(vcpu, &params);
  518. }
  519. /**
  520. * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
  521. * @vcpu: The VCPU pointer
  522. * @run: The kvm_run struct
  523. */
  524. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
  525. {
  526. struct coproc_params params = decode_64bit_hsr(vcpu);
  527. /* raz_wi cp14 */
  528. trap_raz_wi(vcpu, &params, NULL);
  529. /* handled */
  530. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  531. return 1;
  532. }
  533. static void reset_coproc_regs(struct kvm_vcpu *vcpu,
  534. const struct coproc_reg *table, size_t num)
  535. {
  536. unsigned long i;
  537. for (i = 0; i < num; i++)
  538. if (table[i].reset)
  539. table[i].reset(vcpu, &table[i]);
  540. }
  541. static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
  542. {
  543. struct coproc_params params;
  544. params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
  545. params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
  546. params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
  547. params.is_64bit = false;
  548. params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
  549. params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
  550. params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
  551. params.Rt2 = 0;
  552. return params;
  553. }
  554. /**
  555. * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
  556. * @vcpu: The VCPU pointer
  557. * @run: The kvm_run struct
  558. */
  559. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  560. {
  561. struct coproc_params params = decode_32bit_hsr(vcpu);
  562. return emulate_cp15(vcpu, &params);
  563. }
  564. /**
  565. * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
  566. * @vcpu: The VCPU pointer
  567. * @run: The kvm_run struct
  568. */
  569. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
  570. {
  571. struct coproc_params params = decode_32bit_hsr(vcpu);
  572. /* raz_wi cp14 */
  573. trap_raz_wi(vcpu, &params, NULL);
  574. /* handled */
  575. kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
  576. return 1;
  577. }
  578. /******************************************************************************
  579. * Userspace API
  580. *****************************************************************************/
  581. static bool index_to_params(u64 id, struct coproc_params *params)
  582. {
  583. switch (id & KVM_REG_SIZE_MASK) {
  584. case KVM_REG_SIZE_U32:
  585. /* Any unused index bits means it's not valid. */
  586. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  587. | KVM_REG_ARM_COPROC_MASK
  588. | KVM_REG_ARM_32_CRN_MASK
  589. | KVM_REG_ARM_CRM_MASK
  590. | KVM_REG_ARM_OPC1_MASK
  591. | KVM_REG_ARM_32_OPC2_MASK))
  592. return false;
  593. params->is_64bit = false;
  594. params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
  595. >> KVM_REG_ARM_32_CRN_SHIFT);
  596. params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
  597. >> KVM_REG_ARM_CRM_SHIFT);
  598. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  599. >> KVM_REG_ARM_OPC1_SHIFT);
  600. params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
  601. >> KVM_REG_ARM_32_OPC2_SHIFT);
  602. return true;
  603. case KVM_REG_SIZE_U64:
  604. /* Any unused index bits means it's not valid. */
  605. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  606. | KVM_REG_ARM_COPROC_MASK
  607. | KVM_REG_ARM_CRM_MASK
  608. | KVM_REG_ARM_OPC1_MASK))
  609. return false;
  610. params->is_64bit = true;
  611. /* CRm to CRn: see cp15_to_index for details */
  612. params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
  613. >> KVM_REG_ARM_CRM_SHIFT);
  614. params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
  615. >> KVM_REG_ARM_OPC1_SHIFT);
  616. params->Op2 = 0;
  617. params->CRm = 0;
  618. return true;
  619. default:
  620. return false;
  621. }
  622. }
  623. /* Decode an index value, and find the cp15 coproc_reg entry. */
  624. static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
  625. u64 id)
  626. {
  627. size_t num;
  628. const struct coproc_reg *table, *r;
  629. struct coproc_params params;
  630. /* We only do cp15 for now. */
  631. if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
  632. return NULL;
  633. if (!index_to_params(id, &params))
  634. return NULL;
  635. table = get_target_table(vcpu->arch.target, &num);
  636. r = find_reg(&params, table, num);
  637. if (!r)
  638. r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
  639. /* Not saved in the cp15 array? */
  640. if (r && !r->reg)
  641. r = NULL;
  642. return r;
  643. }
  644. /*
  645. * These are the invariant cp15 registers: we let the guest see the host
  646. * versions of these, so they're part of the guest state.
  647. *
  648. * A future CPU may provide a mechanism to present different values to
  649. * the guest, or a future kvm may trap them.
  650. */
  651. /* Unfortunately, there's no register-argument for mrc, so generate. */
  652. #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
  653. static void get_##name(struct kvm_vcpu *v, \
  654. const struct coproc_reg *r) \
  655. { \
  656. u32 val; \
  657. \
  658. asm volatile("mrc p15, " __stringify(op1) \
  659. ", %0, c" __stringify(crn) \
  660. ", c" __stringify(crm) \
  661. ", " __stringify(op2) "\n" : "=r" (val)); \
  662. ((struct coproc_reg *)r)->val = val; \
  663. }
  664. FUNCTION_FOR32(0, 0, 0, 0, MIDR)
  665. FUNCTION_FOR32(0, 0, 0, 1, CTR)
  666. FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
  667. FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
  668. FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
  669. FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
  670. FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
  671. FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
  672. FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
  673. FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
  674. FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
  675. FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
  676. FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
  677. FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
  678. FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
  679. FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
  680. FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
  681. FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
  682. FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
  683. FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
  684. FUNCTION_FOR32(0, 0, 1, 7, AIDR)
  685. /* ->val is filled in by kvm_invariant_coproc_table_init() */
  686. static struct coproc_reg invariant_cp15[] = {
  687. { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
  688. { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
  689. { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
  690. { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
  691. { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
  692. { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
  693. { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
  694. { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
  695. { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
  696. { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
  697. { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
  698. { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
  699. { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
  700. { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
  701. { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
  702. { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
  703. { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
  704. { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
  705. { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
  706. { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
  707. { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
  708. };
  709. /*
  710. * Reads a register value from a userspace address to a kernel
  711. * variable. Make sure that register size matches sizeof(*__val).
  712. */
  713. static int reg_from_user(void *val, const void __user *uaddr, u64 id)
  714. {
  715. if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
  716. return -EFAULT;
  717. return 0;
  718. }
  719. /*
  720. * Writes a register value to a userspace address from a kernel variable.
  721. * Make sure that register size matches sizeof(*__val).
  722. */
  723. static int reg_to_user(void __user *uaddr, const void *val, u64 id)
  724. {
  725. if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
  726. return -EFAULT;
  727. return 0;
  728. }
  729. static int get_invariant_cp15(u64 id, void __user *uaddr)
  730. {
  731. struct coproc_params params;
  732. const struct coproc_reg *r;
  733. int ret;
  734. if (!index_to_params(id, &params))
  735. return -ENOENT;
  736. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  737. if (!r)
  738. return -ENOENT;
  739. ret = -ENOENT;
  740. if (KVM_REG_SIZE(id) == 4) {
  741. u32 val = r->val;
  742. ret = reg_to_user(uaddr, &val, id);
  743. } else if (KVM_REG_SIZE(id) == 8) {
  744. ret = reg_to_user(uaddr, &r->val, id);
  745. }
  746. return ret;
  747. }
  748. static int set_invariant_cp15(u64 id, void __user *uaddr)
  749. {
  750. struct coproc_params params;
  751. const struct coproc_reg *r;
  752. int err;
  753. u64 val;
  754. if (!index_to_params(id, &params))
  755. return -ENOENT;
  756. r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
  757. if (!r)
  758. return -ENOENT;
  759. err = -ENOENT;
  760. if (KVM_REG_SIZE(id) == 4) {
  761. u32 val32;
  762. err = reg_from_user(&val32, uaddr, id);
  763. if (!err)
  764. val = val32;
  765. } else if (KVM_REG_SIZE(id) == 8) {
  766. err = reg_from_user(&val, uaddr, id);
  767. }
  768. if (err)
  769. return err;
  770. /* This is what we mean by invariant: you can't change it. */
  771. if (r->val != val)
  772. return -EINVAL;
  773. return 0;
  774. }
  775. static bool is_valid_cache(u32 val)
  776. {
  777. u32 level, ctype;
  778. if (val >= CSSELR_MAX)
  779. return false;
  780. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  781. level = (val >> 1);
  782. ctype = (cache_levels >> (level * 3)) & 7;
  783. switch (ctype) {
  784. case 0: /* No cache */
  785. return false;
  786. case 1: /* Instruction cache only */
  787. return (val & 1);
  788. case 2: /* Data cache only */
  789. case 4: /* Unified cache */
  790. return !(val & 1);
  791. case 3: /* Separate instruction and data caches */
  792. return true;
  793. default: /* Reserved: we can't know instruction or data. */
  794. return false;
  795. }
  796. }
  797. /* Which cache CCSIDR represents depends on CSSELR value. */
  798. static u32 get_ccsidr(u32 csselr)
  799. {
  800. u32 ccsidr;
  801. /* Make sure noone else changes CSSELR during this! */
  802. local_irq_disable();
  803. /* Put value into CSSELR */
  804. asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
  805. isb();
  806. /* Read result out of CCSIDR */
  807. asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
  808. local_irq_enable();
  809. return ccsidr;
  810. }
  811. static int demux_c15_get(u64 id, void __user *uaddr)
  812. {
  813. u32 val;
  814. u32 __user *uval = uaddr;
  815. /* Fail if we have unknown bits set. */
  816. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  817. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  818. return -ENOENT;
  819. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  820. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  821. if (KVM_REG_SIZE(id) != 4)
  822. return -ENOENT;
  823. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  824. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  825. if (!is_valid_cache(val))
  826. return -ENOENT;
  827. return put_user(get_ccsidr(val), uval);
  828. default:
  829. return -ENOENT;
  830. }
  831. }
  832. static int demux_c15_set(u64 id, void __user *uaddr)
  833. {
  834. u32 val, newval;
  835. u32 __user *uval = uaddr;
  836. /* Fail if we have unknown bits set. */
  837. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  838. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  839. return -ENOENT;
  840. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  841. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  842. if (KVM_REG_SIZE(id) != 4)
  843. return -ENOENT;
  844. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  845. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  846. if (!is_valid_cache(val))
  847. return -ENOENT;
  848. if (get_user(newval, uval))
  849. return -EFAULT;
  850. /* This is also invariant: you can't change it. */
  851. if (newval != get_ccsidr(val))
  852. return -EINVAL;
  853. return 0;
  854. default:
  855. return -ENOENT;
  856. }
  857. }
  858. #ifdef CONFIG_VFPv3
  859. static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
  860. KVM_REG_ARM_VFP_FPSCR,
  861. KVM_REG_ARM_VFP_FPINST,
  862. KVM_REG_ARM_VFP_FPINST2,
  863. KVM_REG_ARM_VFP_MVFR0,
  864. KVM_REG_ARM_VFP_MVFR1,
  865. KVM_REG_ARM_VFP_FPSID };
  866. static unsigned int num_fp_regs(void)
  867. {
  868. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
  869. return 32;
  870. else
  871. return 16;
  872. }
  873. static unsigned int num_vfp_regs(void)
  874. {
  875. /* Normal FP regs + control regs. */
  876. return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
  877. }
  878. static int copy_vfp_regids(u64 __user *uindices)
  879. {
  880. unsigned int i;
  881. const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
  882. const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
  883. for (i = 0; i < num_fp_regs(); i++) {
  884. if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
  885. uindices))
  886. return -EFAULT;
  887. uindices++;
  888. }
  889. for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
  890. if (put_user(u32reg | vfp_sysregs[i], uindices))
  891. return -EFAULT;
  892. uindices++;
  893. }
  894. return num_vfp_regs();
  895. }
  896. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  897. {
  898. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  899. u32 val;
  900. /* Fail if we have unknown bits set. */
  901. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  902. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  903. return -ENOENT;
  904. if (vfpid < num_fp_regs()) {
  905. if (KVM_REG_SIZE(id) != 8)
  906. return -ENOENT;
  907. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
  908. id);
  909. }
  910. /* FP control registers are all 32 bit. */
  911. if (KVM_REG_SIZE(id) != 4)
  912. return -ENOENT;
  913. switch (vfpid) {
  914. case KVM_REG_ARM_VFP_FPEXC:
  915. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
  916. case KVM_REG_ARM_VFP_FPSCR:
  917. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
  918. case KVM_REG_ARM_VFP_FPINST:
  919. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
  920. case KVM_REG_ARM_VFP_FPINST2:
  921. return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
  922. case KVM_REG_ARM_VFP_MVFR0:
  923. val = fmrx(MVFR0);
  924. return reg_to_user(uaddr, &val, id);
  925. case KVM_REG_ARM_VFP_MVFR1:
  926. val = fmrx(MVFR1);
  927. return reg_to_user(uaddr, &val, id);
  928. case KVM_REG_ARM_VFP_FPSID:
  929. val = fmrx(FPSID);
  930. return reg_to_user(uaddr, &val, id);
  931. default:
  932. return -ENOENT;
  933. }
  934. }
  935. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  936. {
  937. u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
  938. u32 val;
  939. /* Fail if we have unknown bits set. */
  940. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  941. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  942. return -ENOENT;
  943. if (vfpid < num_fp_regs()) {
  944. if (KVM_REG_SIZE(id) != 8)
  945. return -ENOENT;
  946. return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
  947. uaddr, id);
  948. }
  949. /* FP control registers are all 32 bit. */
  950. if (KVM_REG_SIZE(id) != 4)
  951. return -ENOENT;
  952. switch (vfpid) {
  953. case KVM_REG_ARM_VFP_FPEXC:
  954. return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
  955. case KVM_REG_ARM_VFP_FPSCR:
  956. return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
  957. case KVM_REG_ARM_VFP_FPINST:
  958. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
  959. case KVM_REG_ARM_VFP_FPINST2:
  960. return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
  961. /* These are invariant. */
  962. case KVM_REG_ARM_VFP_MVFR0:
  963. if (reg_from_user(&val, uaddr, id))
  964. return -EFAULT;
  965. if (val != fmrx(MVFR0))
  966. return -EINVAL;
  967. return 0;
  968. case KVM_REG_ARM_VFP_MVFR1:
  969. if (reg_from_user(&val, uaddr, id))
  970. return -EFAULT;
  971. if (val != fmrx(MVFR1))
  972. return -EINVAL;
  973. return 0;
  974. case KVM_REG_ARM_VFP_FPSID:
  975. if (reg_from_user(&val, uaddr, id))
  976. return -EFAULT;
  977. if (val != fmrx(FPSID))
  978. return -EINVAL;
  979. return 0;
  980. default:
  981. return -ENOENT;
  982. }
  983. }
  984. #else /* !CONFIG_VFPv3 */
  985. static unsigned int num_vfp_regs(void)
  986. {
  987. return 0;
  988. }
  989. static int copy_vfp_regids(u64 __user *uindices)
  990. {
  991. return 0;
  992. }
  993. static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
  994. {
  995. return -ENOENT;
  996. }
  997. static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
  998. {
  999. return -ENOENT;
  1000. }
  1001. #endif /* !CONFIG_VFPv3 */
  1002. int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1003. {
  1004. const struct coproc_reg *r;
  1005. void __user *uaddr = (void __user *)(long)reg->addr;
  1006. int ret;
  1007. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1008. return demux_c15_get(reg->id, uaddr);
  1009. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  1010. return vfp_get_reg(vcpu, reg->id, uaddr);
  1011. r = index_to_coproc_reg(vcpu, reg->id);
  1012. if (!r)
  1013. return get_invariant_cp15(reg->id, uaddr);
  1014. ret = -ENOENT;
  1015. if (KVM_REG_SIZE(reg->id) == 8) {
  1016. u64 val;
  1017. val = vcpu_cp15_reg64_get(vcpu, r);
  1018. ret = reg_to_user(uaddr, &val, reg->id);
  1019. } else if (KVM_REG_SIZE(reg->id) == 4) {
  1020. ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
  1021. }
  1022. return ret;
  1023. }
  1024. int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  1025. {
  1026. const struct coproc_reg *r;
  1027. void __user *uaddr = (void __user *)(long)reg->addr;
  1028. int ret;
  1029. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  1030. return demux_c15_set(reg->id, uaddr);
  1031. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
  1032. return vfp_set_reg(vcpu, reg->id, uaddr);
  1033. r = index_to_coproc_reg(vcpu, reg->id);
  1034. if (!r)
  1035. return set_invariant_cp15(reg->id, uaddr);
  1036. ret = -ENOENT;
  1037. if (KVM_REG_SIZE(reg->id) == 8) {
  1038. u64 val;
  1039. ret = reg_from_user(&val, uaddr, reg->id);
  1040. if (!ret)
  1041. vcpu_cp15_reg64_set(vcpu, r, val);
  1042. } else if (KVM_REG_SIZE(reg->id) == 4) {
  1043. ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
  1044. }
  1045. return ret;
  1046. }
  1047. static unsigned int num_demux_regs(void)
  1048. {
  1049. unsigned int i, count = 0;
  1050. for (i = 0; i < CSSELR_MAX; i++)
  1051. if (is_valid_cache(i))
  1052. count++;
  1053. return count;
  1054. }
  1055. static int write_demux_regids(u64 __user *uindices)
  1056. {
  1057. u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  1058. unsigned int i;
  1059. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  1060. for (i = 0; i < CSSELR_MAX; i++) {
  1061. if (!is_valid_cache(i))
  1062. continue;
  1063. if (put_user(val | i, uindices))
  1064. return -EFAULT;
  1065. uindices++;
  1066. }
  1067. return 0;
  1068. }
  1069. static u64 cp15_to_index(const struct coproc_reg *reg)
  1070. {
  1071. u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
  1072. if (reg->is_64bit) {
  1073. val |= KVM_REG_SIZE_U64;
  1074. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1075. /*
  1076. * CRn always denotes the primary coproc. reg. nr. for the
  1077. * in-kernel representation, but the user space API uses the
  1078. * CRm for the encoding, because it is modelled after the
  1079. * MRRC/MCRR instructions: see the ARM ARM rev. c page
  1080. * B3-1445
  1081. */
  1082. val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
  1083. } else {
  1084. val |= KVM_REG_SIZE_U32;
  1085. val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
  1086. val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
  1087. val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
  1088. val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
  1089. }
  1090. return val;
  1091. }
  1092. static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
  1093. {
  1094. if (!*uind)
  1095. return true;
  1096. if (put_user(cp15_to_index(reg), *uind))
  1097. return false;
  1098. (*uind)++;
  1099. return true;
  1100. }
  1101. /* Assumed ordered tables, see kvm_coproc_table_init. */
  1102. static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
  1103. {
  1104. const struct coproc_reg *i1, *i2, *end1, *end2;
  1105. unsigned int total = 0;
  1106. size_t num;
  1107. /* We check for duplicates here, to allow arch-specific overrides. */
  1108. i1 = get_target_table(vcpu->arch.target, &num);
  1109. end1 = i1 + num;
  1110. i2 = cp15_regs;
  1111. end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
  1112. BUG_ON(i1 == end1 || i2 == end2);
  1113. /* Walk carefully, as both tables may refer to the same register. */
  1114. while (i1 || i2) {
  1115. int cmp = cmp_reg(i1, i2);
  1116. /* target-specific overrides generic entry. */
  1117. if (cmp <= 0) {
  1118. /* Ignore registers we trap but don't save. */
  1119. if (i1->reg) {
  1120. if (!copy_reg_to_user(i1, &uind))
  1121. return -EFAULT;
  1122. total++;
  1123. }
  1124. } else {
  1125. /* Ignore registers we trap but don't save. */
  1126. if (i2->reg) {
  1127. if (!copy_reg_to_user(i2, &uind))
  1128. return -EFAULT;
  1129. total++;
  1130. }
  1131. }
  1132. if (cmp <= 0 && ++i1 == end1)
  1133. i1 = NULL;
  1134. if (cmp >= 0 && ++i2 == end2)
  1135. i2 = NULL;
  1136. }
  1137. return total;
  1138. }
  1139. unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
  1140. {
  1141. return ARRAY_SIZE(invariant_cp15)
  1142. + num_demux_regs()
  1143. + num_vfp_regs()
  1144. + walk_cp15(vcpu, (u64 __user *)NULL);
  1145. }
  1146. int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  1147. {
  1148. unsigned int i;
  1149. int err;
  1150. /* Then give them all the invariant registers' indices. */
  1151. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
  1152. if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
  1153. return -EFAULT;
  1154. uindices++;
  1155. }
  1156. err = walk_cp15(vcpu, uindices);
  1157. if (err < 0)
  1158. return err;
  1159. uindices += err;
  1160. err = copy_vfp_regids(uindices);
  1161. if (err < 0)
  1162. return err;
  1163. uindices += err;
  1164. return write_demux_regids(uindices);
  1165. }
  1166. void kvm_coproc_table_init(void)
  1167. {
  1168. unsigned int i;
  1169. /* Make sure tables are unique and in order. */
  1170. BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
  1171. BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
  1172. /* We abuse the reset function to overwrite the table itself. */
  1173. for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
  1174. invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
  1175. /*
  1176. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  1177. *
  1178. * If software reads the Cache Type fields from Ctype1
  1179. * upwards, once it has seen a value of 0b000, no caches
  1180. * exist at further-out levels of the hierarchy. So, for
  1181. * example, if Ctype3 is the first Cache Type field with a
  1182. * value of 0b000, the values of Ctype4 to Ctype7 must be
  1183. * ignored.
  1184. */
  1185. asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
  1186. for (i = 0; i < 7; i++)
  1187. if (((cache_levels >> (i*3)) & 7) == 0)
  1188. break;
  1189. /* Clear all higher bits. */
  1190. cache_levels &= (1 << (i*3))-1;
  1191. }
  1192. /**
  1193. * kvm_reset_coprocs - sets cp15 registers to reset value
  1194. * @vcpu: The VCPU pointer
  1195. *
  1196. * This function finds the right table above and sets the registers on the
  1197. * virtual CPU struct to their architecturally defined reset values.
  1198. */
  1199. void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
  1200. {
  1201. size_t num;
  1202. const struct coproc_reg *table;
  1203. /* Catch someone adding a register without putting in reset entry. */
  1204. memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
  1205. /* Generic chip reset first (so target could override). */
  1206. reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
  1207. table = get_target_table(vcpu->arch.target, &num);
  1208. reset_coproc_regs(vcpu, table, num);
  1209. for (num = 1; num < NR_CP15_REGS; num++)
  1210. if (vcpu_cp15(vcpu, num) == 0x42424242)
  1211. panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
  1212. }