intel_ringbuffer.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. static inline int ring_space(struct intel_ring_buffer *ring)
  35. {
  36. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  37. if (space < 0)
  38. space += ring->size;
  39. return space;
  40. }
  41. void __intel_ring_advance(struct intel_ring_buffer *ring)
  42. {
  43. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  44. ring->tail &= ring->size - 1;
  45. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  46. return;
  47. ring->write_tail(ring, ring->tail);
  48. }
  49. static int
  50. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  51. u32 invalidate_domains,
  52. u32 flush_domains)
  53. {
  54. u32 cmd;
  55. int ret;
  56. cmd = MI_FLUSH;
  57. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  58. cmd |= MI_NO_WRITE_FLUSH;
  59. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  60. cmd |= MI_READ_FLUSH;
  61. ret = intel_ring_begin(ring, 2);
  62. if (ret)
  63. return ret;
  64. intel_ring_emit(ring, cmd);
  65. intel_ring_emit(ring, MI_NOOP);
  66. intel_ring_advance(ring);
  67. return 0;
  68. }
  69. static int
  70. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  71. u32 invalidate_domains,
  72. u32 flush_domains)
  73. {
  74. struct drm_device *dev = ring->dev;
  75. u32 cmd;
  76. int ret;
  77. /*
  78. * read/write caches:
  79. *
  80. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  81. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  82. * also flushed at 2d versus 3d pipeline switches.
  83. *
  84. * read-only caches:
  85. *
  86. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  87. * MI_READ_FLUSH is set, and is always flushed on 965.
  88. *
  89. * I915_GEM_DOMAIN_COMMAND may not exist?
  90. *
  91. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  92. * invalidated when MI_EXE_FLUSH is set.
  93. *
  94. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  95. * invalidated with every MI_FLUSH.
  96. *
  97. * TLBs:
  98. *
  99. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  100. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  101. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  102. * are flushed at any MI_FLUSH.
  103. */
  104. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  105. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  106. cmd &= ~MI_NO_WRITE_FLUSH;
  107. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  108. cmd |= MI_EXE_FLUSH;
  109. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  110. (IS_G4X(dev) || IS_GEN5(dev)))
  111. cmd |= MI_INVALIDATE_ISP;
  112. ret = intel_ring_begin(ring, 2);
  113. if (ret)
  114. return ret;
  115. intel_ring_emit(ring, cmd);
  116. intel_ring_emit(ring, MI_NOOP);
  117. intel_ring_advance(ring);
  118. return 0;
  119. }
  120. /**
  121. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  122. * implementing two workarounds on gen6. From section 1.4.7.1
  123. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  124. *
  125. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  126. * produced by non-pipelined state commands), software needs to first
  127. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  128. * 0.
  129. *
  130. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  131. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  132. *
  133. * And the workaround for these two requires this workaround first:
  134. *
  135. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  136. * BEFORE the pipe-control with a post-sync op and no write-cache
  137. * flushes.
  138. *
  139. * And this last workaround is tricky because of the requirements on
  140. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  141. * volume 2 part 1:
  142. *
  143. * "1 of the following must also be set:
  144. * - Render Target Cache Flush Enable ([12] of DW1)
  145. * - Depth Cache Flush Enable ([0] of DW1)
  146. * - Stall at Pixel Scoreboard ([1] of DW1)
  147. * - Depth Stall ([13] of DW1)
  148. * - Post-Sync Operation ([13] of DW1)
  149. * - Notify Enable ([8] of DW1)"
  150. *
  151. * The cache flushes require the workaround flush that triggered this
  152. * one, so we can't use it. Depth stall would trigger the same.
  153. * Post-sync nonzero is what triggered this second workaround, so we
  154. * can't use that one either. Notify enable is IRQs, which aren't
  155. * really our business. That leaves only stall at scoreboard.
  156. */
  157. static int
  158. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  159. {
  160. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  161. int ret;
  162. ret = intel_ring_begin(ring, 6);
  163. if (ret)
  164. return ret;
  165. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  166. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  167. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  168. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  169. intel_ring_emit(ring, 0); /* low dword */
  170. intel_ring_emit(ring, 0); /* high dword */
  171. intel_ring_emit(ring, MI_NOOP);
  172. intel_ring_advance(ring);
  173. ret = intel_ring_begin(ring, 6);
  174. if (ret)
  175. return ret;
  176. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  177. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  178. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  179. intel_ring_emit(ring, 0);
  180. intel_ring_emit(ring, 0);
  181. intel_ring_emit(ring, MI_NOOP);
  182. intel_ring_advance(ring);
  183. return 0;
  184. }
  185. static int
  186. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  187. u32 invalidate_domains, u32 flush_domains)
  188. {
  189. u32 flags = 0;
  190. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  191. int ret;
  192. /* Force SNB workarounds for PIPE_CONTROL flushes */
  193. ret = intel_emit_post_sync_nonzero_flush(ring);
  194. if (ret)
  195. return ret;
  196. /* Just flush everything. Experiments have shown that reducing the
  197. * number of bits based on the write domains has little performance
  198. * impact.
  199. */
  200. if (flush_domains) {
  201. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  202. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  203. /*
  204. * Ensure that any following seqno writes only happen
  205. * when the render cache is indeed flushed.
  206. */
  207. flags |= PIPE_CONTROL_CS_STALL;
  208. }
  209. if (invalidate_domains) {
  210. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  211. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  212. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  213. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  214. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  215. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  216. /*
  217. * TLB invalidate requires a post-sync write.
  218. */
  219. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  220. }
  221. ret = intel_ring_begin(ring, 4);
  222. if (ret)
  223. return ret;
  224. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  225. intel_ring_emit(ring, flags);
  226. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  227. intel_ring_emit(ring, 0);
  228. intel_ring_advance(ring);
  229. return 0;
  230. }
  231. static int
  232. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  233. {
  234. int ret;
  235. ret = intel_ring_begin(ring, 4);
  236. if (ret)
  237. return ret;
  238. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  239. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  240. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  241. intel_ring_emit(ring, 0);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  247. {
  248. int ret;
  249. if (!ring->fbc_dirty)
  250. return 0;
  251. ret = intel_ring_begin(ring, 6);
  252. if (ret)
  253. return ret;
  254. /* WaFbcNukeOn3DBlt:ivb/hsw */
  255. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  256. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  257. intel_ring_emit(ring, value);
  258. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  259. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  260. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  261. intel_ring_advance(ring);
  262. ring->fbc_dirty = false;
  263. return 0;
  264. }
  265. static int
  266. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  267. u32 invalidate_domains, u32 flush_domains)
  268. {
  269. u32 flags = 0;
  270. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  271. int ret;
  272. /*
  273. * Ensure that any following seqno writes only happen when the render
  274. * cache is indeed flushed.
  275. *
  276. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  277. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  278. * don't try to be clever and just set it unconditionally.
  279. */
  280. flags |= PIPE_CONTROL_CS_STALL;
  281. /* Just flush everything. Experiments have shown that reducing the
  282. * number of bits based on the write domains has little performance
  283. * impact.
  284. */
  285. if (flush_domains) {
  286. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  287. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  288. }
  289. if (invalidate_domains) {
  290. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  291. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  292. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  293. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  296. /*
  297. * TLB invalidate requires a post-sync write.
  298. */
  299. flags |= PIPE_CONTROL_QW_WRITE;
  300. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  301. /* Workaround: we must issue a pipe_control with CS-stall bit
  302. * set before a pipe_control command that has the state cache
  303. * invalidate bit set. */
  304. gen7_render_ring_cs_stall_wa(ring);
  305. }
  306. ret = intel_ring_begin(ring, 4);
  307. if (ret)
  308. return ret;
  309. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  310. intel_ring_emit(ring, flags);
  311. intel_ring_emit(ring, scratch_addr);
  312. intel_ring_emit(ring, 0);
  313. intel_ring_advance(ring);
  314. if (!invalidate_domains && flush_domains)
  315. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  316. return 0;
  317. }
  318. static int
  319. gen8_render_ring_flush(struct intel_ring_buffer *ring,
  320. u32 invalidate_domains, u32 flush_domains)
  321. {
  322. u32 flags = 0;
  323. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  324. int ret;
  325. flags |= PIPE_CONTROL_CS_STALL;
  326. if (flush_domains) {
  327. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  328. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  329. }
  330. if (invalidate_domains) {
  331. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  332. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  333. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  334. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  335. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  336. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  337. flags |= PIPE_CONTROL_QW_WRITE;
  338. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  339. }
  340. ret = intel_ring_begin(ring, 6);
  341. if (ret)
  342. return ret;
  343. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  344. intel_ring_emit(ring, flags);
  345. intel_ring_emit(ring, scratch_addr);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_emit(ring, 0);
  348. intel_ring_emit(ring, 0);
  349. intel_ring_advance(ring);
  350. return 0;
  351. }
  352. static void ring_write_tail(struct intel_ring_buffer *ring,
  353. u32 value)
  354. {
  355. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  356. I915_WRITE_TAIL(ring, value);
  357. }
  358. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  359. {
  360. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  361. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  362. RING_ACTHD(ring->mmio_base) : ACTHD;
  363. return I915_READ(acthd_reg);
  364. }
  365. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  366. {
  367. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  368. u32 addr;
  369. addr = dev_priv->status_page_dmah->busaddr;
  370. if (INTEL_INFO(ring->dev)->gen >= 4)
  371. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  372. I915_WRITE(HWS_PGA, addr);
  373. }
  374. static int init_ring_common(struct intel_ring_buffer *ring)
  375. {
  376. struct drm_device *dev = ring->dev;
  377. drm_i915_private_t *dev_priv = dev->dev_private;
  378. struct drm_i915_gem_object *obj = ring->obj;
  379. int ret = 0;
  380. u32 head;
  381. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  382. /* Stop the ring if it's running. */
  383. I915_WRITE_CTL(ring, 0);
  384. I915_WRITE_HEAD(ring, 0);
  385. ring->write_tail(ring, 0);
  386. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000))
  387. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  388. if (I915_NEED_GFX_HWS(dev))
  389. intel_ring_setup_status_page(ring);
  390. else
  391. ring_setup_phys_status_page(ring);
  392. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  393. /* G45 ring initialization fails to reset head to zero */
  394. if (head != 0) {
  395. DRM_DEBUG_KMS("%s head not reset to zero "
  396. "ctl %08x head %08x tail %08x start %08x\n",
  397. ring->name,
  398. I915_READ_CTL(ring),
  399. I915_READ_HEAD(ring),
  400. I915_READ_TAIL(ring),
  401. I915_READ_START(ring));
  402. I915_WRITE_HEAD(ring, 0);
  403. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  404. DRM_ERROR("failed to set %s head to zero "
  405. "ctl %08x head %08x tail %08x start %08x\n",
  406. ring->name,
  407. I915_READ_CTL(ring),
  408. I915_READ_HEAD(ring),
  409. I915_READ_TAIL(ring),
  410. I915_READ_START(ring));
  411. }
  412. }
  413. /* Initialize the ring. This must happen _after_ we've cleared the ring
  414. * registers with the above sequence (the readback of the HEAD registers
  415. * also enforces ordering), otherwise the hw might lose the new ring
  416. * register values. */
  417. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  418. I915_WRITE_CTL(ring,
  419. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  420. | RING_VALID);
  421. /* If the head is still not zero, the ring is dead */
  422. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  423. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  424. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  425. DRM_ERROR("%s initialization failed "
  426. "ctl %08x head %08x tail %08x start %08x\n",
  427. ring->name,
  428. I915_READ_CTL(ring),
  429. I915_READ_HEAD(ring),
  430. I915_READ_TAIL(ring),
  431. I915_READ_START(ring));
  432. ret = -EIO;
  433. goto out;
  434. }
  435. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  436. i915_kernel_lost_context(ring->dev);
  437. else {
  438. ring->head = I915_READ_HEAD(ring);
  439. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  440. ring->space = ring_space(ring);
  441. ring->last_retired_head = -1;
  442. }
  443. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  444. out:
  445. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  446. return ret;
  447. }
  448. static int
  449. init_pipe_control(struct intel_ring_buffer *ring)
  450. {
  451. int ret;
  452. if (ring->scratch.obj)
  453. return 0;
  454. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  455. if (ring->scratch.obj == NULL) {
  456. DRM_ERROR("Failed to allocate seqno page\n");
  457. ret = -ENOMEM;
  458. goto err;
  459. }
  460. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  461. if (ret)
  462. goto err_unref;
  463. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  464. if (ret)
  465. goto err_unref;
  466. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  467. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  468. if (ring->scratch.cpu_page == NULL) {
  469. ret = -ENOMEM;
  470. goto err_unpin;
  471. }
  472. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  473. ring->name, ring->scratch.gtt_offset);
  474. return 0;
  475. err_unpin:
  476. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  477. err_unref:
  478. drm_gem_object_unreference(&ring->scratch.obj->base);
  479. err:
  480. return ret;
  481. }
  482. static int init_render_ring(struct intel_ring_buffer *ring)
  483. {
  484. struct drm_device *dev = ring->dev;
  485. struct drm_i915_private *dev_priv = dev->dev_private;
  486. int ret = init_ring_common(ring);
  487. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  488. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  489. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  490. /* We need to disable the AsyncFlip performance optimisations in order
  491. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  492. * programmed to '1' on all products.
  493. *
  494. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw
  495. */
  496. if (INTEL_INFO(dev)->gen >= 6)
  497. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  498. /* Required for the hardware to program scanline values for waiting */
  499. if (INTEL_INFO(dev)->gen == 6)
  500. I915_WRITE(GFX_MODE,
  501. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
  502. if (IS_GEN7(dev))
  503. I915_WRITE(GFX_MODE_GEN7,
  504. _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  505. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  506. if (INTEL_INFO(dev)->gen >= 5) {
  507. ret = init_pipe_control(ring);
  508. if (ret)
  509. return ret;
  510. }
  511. if (IS_GEN6(dev)) {
  512. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  513. * "If this bit is set, STCunit will have LRA as replacement
  514. * policy. [...] This bit must be reset. LRA replacement
  515. * policy is not supported."
  516. */
  517. I915_WRITE(CACHE_MODE_0,
  518. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  519. /* This is not explicitly set for GEN6, so read the register.
  520. * see intel_ring_mi_set_context() for why we care.
  521. * TODO: consider explicitly setting the bit for GEN5
  522. */
  523. ring->itlb_before_ctx_switch =
  524. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
  525. }
  526. if (INTEL_INFO(dev)->gen >= 6)
  527. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  528. if (HAS_L3_DPF(dev))
  529. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  530. return ret;
  531. }
  532. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  533. {
  534. struct drm_device *dev = ring->dev;
  535. if (ring->scratch.obj == NULL)
  536. return;
  537. if (INTEL_INFO(dev)->gen >= 5) {
  538. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  539. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  540. }
  541. drm_gem_object_unreference(&ring->scratch.obj->base);
  542. ring->scratch.obj = NULL;
  543. }
  544. static void
  545. update_mboxes(struct intel_ring_buffer *ring,
  546. u32 mmio_offset)
  547. {
  548. /* NB: In order to be able to do semaphore MBOX updates for varying number
  549. * of rings, it's easiest if we round up each individual update to a
  550. * multiple of 2 (since ring updates must always be a multiple of 2)
  551. * even though the actual update only requires 3 dwords.
  552. */
  553. #define MBOX_UPDATE_DWORDS 4
  554. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  555. intel_ring_emit(ring, mmio_offset);
  556. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  557. intel_ring_emit(ring, MI_NOOP);
  558. }
  559. /**
  560. * gen6_add_request - Update the semaphore mailbox registers
  561. *
  562. * @ring - ring that is adding a request
  563. * @seqno - return seqno stuck into the ring
  564. *
  565. * Update the mailbox registers in the *other* rings with the current seqno.
  566. * This acts like a signal in the canonical semaphore.
  567. */
  568. static int
  569. gen6_add_request(struct intel_ring_buffer *ring)
  570. {
  571. struct drm_device *dev = ring->dev;
  572. struct drm_i915_private *dev_priv = dev->dev_private;
  573. struct intel_ring_buffer *useless;
  574. int i, ret, num_dwords = 4;
  575. if (i915_semaphore_is_enabled(dev))
  576. num_dwords += ((I915_NUM_RINGS-1) * MBOX_UPDATE_DWORDS);
  577. #undef MBOX_UPDATE_DWORDS
  578. ret = intel_ring_begin(ring, num_dwords);
  579. if (ret)
  580. return ret;
  581. if (i915_semaphore_is_enabled(dev)) {
  582. for_each_ring(useless, dev_priv, i) {
  583. u32 mbox_reg = ring->signal_mbox[i];
  584. if (mbox_reg != GEN6_NOSYNC)
  585. update_mboxes(ring, mbox_reg);
  586. }
  587. }
  588. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  589. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  590. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  591. intel_ring_emit(ring, MI_USER_INTERRUPT);
  592. __intel_ring_advance(ring);
  593. return 0;
  594. }
  595. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  596. u32 seqno)
  597. {
  598. struct drm_i915_private *dev_priv = dev->dev_private;
  599. return dev_priv->last_seqno < seqno;
  600. }
  601. /**
  602. * intel_ring_sync - sync the waiter to the signaller on seqno
  603. *
  604. * @waiter - ring that is waiting
  605. * @signaller - ring which has, or will signal
  606. * @seqno - seqno which the waiter will block on
  607. */
  608. static int
  609. gen6_ring_sync(struct intel_ring_buffer *waiter,
  610. struct intel_ring_buffer *signaller,
  611. u32 seqno)
  612. {
  613. int ret;
  614. u32 dw1 = MI_SEMAPHORE_MBOX |
  615. MI_SEMAPHORE_COMPARE |
  616. MI_SEMAPHORE_REGISTER;
  617. /* Throughout all of the GEM code, seqno passed implies our current
  618. * seqno is >= the last seqno executed. However for hardware the
  619. * comparison is strictly greater than.
  620. */
  621. seqno -= 1;
  622. WARN_ON(signaller->semaphore_register[waiter->id] ==
  623. MI_SEMAPHORE_SYNC_INVALID);
  624. ret = intel_ring_begin(waiter, 4);
  625. if (ret)
  626. return ret;
  627. /* If seqno wrap happened, omit the wait with no-ops */
  628. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  629. intel_ring_emit(waiter,
  630. dw1 |
  631. signaller->semaphore_register[waiter->id]);
  632. intel_ring_emit(waiter, seqno);
  633. intel_ring_emit(waiter, 0);
  634. intel_ring_emit(waiter, MI_NOOP);
  635. } else {
  636. intel_ring_emit(waiter, MI_NOOP);
  637. intel_ring_emit(waiter, MI_NOOP);
  638. intel_ring_emit(waiter, MI_NOOP);
  639. intel_ring_emit(waiter, MI_NOOP);
  640. }
  641. intel_ring_advance(waiter);
  642. return 0;
  643. }
  644. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  645. do { \
  646. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  647. PIPE_CONTROL_DEPTH_STALL); \
  648. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  649. intel_ring_emit(ring__, 0); \
  650. intel_ring_emit(ring__, 0); \
  651. } while (0)
  652. static int
  653. pc_render_add_request(struct intel_ring_buffer *ring)
  654. {
  655. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  656. int ret;
  657. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  658. * incoherent with writes to memory, i.e. completely fubar,
  659. * so we need to use PIPE_NOTIFY instead.
  660. *
  661. * However, we also need to workaround the qword write
  662. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  663. * memory before requesting an interrupt.
  664. */
  665. ret = intel_ring_begin(ring, 32);
  666. if (ret)
  667. return ret;
  668. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  669. PIPE_CONTROL_WRITE_FLUSH |
  670. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  671. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  672. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  673. intel_ring_emit(ring, 0);
  674. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  675. scratch_addr += 128; /* write to separate cachelines */
  676. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  677. scratch_addr += 128;
  678. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  679. scratch_addr += 128;
  680. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  681. scratch_addr += 128;
  682. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  683. scratch_addr += 128;
  684. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  685. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  686. PIPE_CONTROL_WRITE_FLUSH |
  687. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  688. PIPE_CONTROL_NOTIFY);
  689. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  690. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  691. intel_ring_emit(ring, 0);
  692. __intel_ring_advance(ring);
  693. return 0;
  694. }
  695. static u32
  696. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  697. {
  698. /* Workaround to force correct ordering between irq and seqno writes on
  699. * ivb (and maybe also on snb) by reading from a CS register (like
  700. * ACTHD) before reading the status page. */
  701. if (!lazy_coherency)
  702. intel_ring_get_active_head(ring);
  703. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  704. }
  705. static u32
  706. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  707. {
  708. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  709. }
  710. static void
  711. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  712. {
  713. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  714. }
  715. static u32
  716. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  717. {
  718. return ring->scratch.cpu_page[0];
  719. }
  720. static void
  721. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  722. {
  723. ring->scratch.cpu_page[0] = seqno;
  724. }
  725. static bool
  726. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  727. {
  728. struct drm_device *dev = ring->dev;
  729. drm_i915_private_t *dev_priv = dev->dev_private;
  730. unsigned long flags;
  731. if (!dev->irq_enabled)
  732. return false;
  733. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  734. if (ring->irq_refcount++ == 0)
  735. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  736. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  737. return true;
  738. }
  739. static void
  740. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  741. {
  742. struct drm_device *dev = ring->dev;
  743. drm_i915_private_t *dev_priv = dev->dev_private;
  744. unsigned long flags;
  745. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  746. if (--ring->irq_refcount == 0)
  747. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  748. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  749. }
  750. static bool
  751. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  752. {
  753. struct drm_device *dev = ring->dev;
  754. drm_i915_private_t *dev_priv = dev->dev_private;
  755. unsigned long flags;
  756. if (!dev->irq_enabled)
  757. return false;
  758. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  759. if (ring->irq_refcount++ == 0) {
  760. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  761. I915_WRITE(IMR, dev_priv->irq_mask);
  762. POSTING_READ(IMR);
  763. }
  764. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  765. return true;
  766. }
  767. static void
  768. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  769. {
  770. struct drm_device *dev = ring->dev;
  771. drm_i915_private_t *dev_priv = dev->dev_private;
  772. unsigned long flags;
  773. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  774. if (--ring->irq_refcount == 0) {
  775. dev_priv->irq_mask |= ring->irq_enable_mask;
  776. I915_WRITE(IMR, dev_priv->irq_mask);
  777. POSTING_READ(IMR);
  778. }
  779. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  780. }
  781. static bool
  782. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  783. {
  784. struct drm_device *dev = ring->dev;
  785. drm_i915_private_t *dev_priv = dev->dev_private;
  786. unsigned long flags;
  787. if (!dev->irq_enabled)
  788. return false;
  789. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  790. if (ring->irq_refcount++ == 0) {
  791. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  792. I915_WRITE16(IMR, dev_priv->irq_mask);
  793. POSTING_READ16(IMR);
  794. }
  795. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  796. return true;
  797. }
  798. static void
  799. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  800. {
  801. struct drm_device *dev = ring->dev;
  802. drm_i915_private_t *dev_priv = dev->dev_private;
  803. unsigned long flags;
  804. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  805. if (--ring->irq_refcount == 0) {
  806. dev_priv->irq_mask |= ring->irq_enable_mask;
  807. I915_WRITE16(IMR, dev_priv->irq_mask);
  808. POSTING_READ16(IMR);
  809. }
  810. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  811. }
  812. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  813. {
  814. struct drm_device *dev = ring->dev;
  815. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  816. u32 mmio = 0;
  817. /* The ring status page addresses are no longer next to the rest of
  818. * the ring registers as of gen7.
  819. */
  820. if (IS_GEN7(dev)) {
  821. switch (ring->id) {
  822. case RCS:
  823. mmio = RENDER_HWS_PGA_GEN7;
  824. break;
  825. case BCS:
  826. mmio = BLT_HWS_PGA_GEN7;
  827. break;
  828. case VCS:
  829. mmio = BSD_HWS_PGA_GEN7;
  830. break;
  831. case VECS:
  832. mmio = VEBOX_HWS_PGA_GEN7;
  833. break;
  834. }
  835. } else if (IS_GEN6(ring->dev)) {
  836. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  837. } else {
  838. /* XXX: gen8 returns to sanity */
  839. mmio = RING_HWS_PGA(ring->mmio_base);
  840. }
  841. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  842. POSTING_READ(mmio);
  843. /*
  844. * Flush the TLB for this page
  845. *
  846. * FIXME: These two bits have disappeared on gen8, so a question
  847. * arises: do we still need this and if so how should we go about
  848. * invalidating the TLB?
  849. */
  850. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  851. u32 reg = RING_INSTPM(ring->mmio_base);
  852. /* ring should be idle before issuing a sync flush*/
  853. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  854. I915_WRITE(reg,
  855. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  856. INSTPM_SYNC_FLUSH));
  857. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  858. 1000))
  859. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  860. ring->name);
  861. }
  862. }
  863. static int
  864. bsd_ring_flush(struct intel_ring_buffer *ring,
  865. u32 invalidate_domains,
  866. u32 flush_domains)
  867. {
  868. int ret;
  869. ret = intel_ring_begin(ring, 2);
  870. if (ret)
  871. return ret;
  872. intel_ring_emit(ring, MI_FLUSH);
  873. intel_ring_emit(ring, MI_NOOP);
  874. intel_ring_advance(ring);
  875. return 0;
  876. }
  877. static int
  878. i9xx_add_request(struct intel_ring_buffer *ring)
  879. {
  880. int ret;
  881. ret = intel_ring_begin(ring, 4);
  882. if (ret)
  883. return ret;
  884. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  885. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  886. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  887. intel_ring_emit(ring, MI_USER_INTERRUPT);
  888. __intel_ring_advance(ring);
  889. return 0;
  890. }
  891. static bool
  892. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  893. {
  894. struct drm_device *dev = ring->dev;
  895. drm_i915_private_t *dev_priv = dev->dev_private;
  896. unsigned long flags;
  897. if (!dev->irq_enabled)
  898. return false;
  899. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  900. if (ring->irq_refcount++ == 0) {
  901. if (HAS_L3_DPF(dev) && ring->id == RCS)
  902. I915_WRITE_IMR(ring,
  903. ~(ring->irq_enable_mask |
  904. GT_PARITY_ERROR(dev)));
  905. else
  906. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  907. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  908. }
  909. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  910. return true;
  911. }
  912. static void
  913. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  914. {
  915. struct drm_device *dev = ring->dev;
  916. drm_i915_private_t *dev_priv = dev->dev_private;
  917. unsigned long flags;
  918. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  919. if (--ring->irq_refcount == 0) {
  920. if (HAS_L3_DPF(dev) && ring->id == RCS)
  921. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  922. else
  923. I915_WRITE_IMR(ring, ~0);
  924. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  925. }
  926. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  927. }
  928. static bool
  929. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  930. {
  931. struct drm_device *dev = ring->dev;
  932. struct drm_i915_private *dev_priv = dev->dev_private;
  933. unsigned long flags;
  934. if (!dev->irq_enabled)
  935. return false;
  936. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  937. if (ring->irq_refcount++ == 0) {
  938. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  939. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  940. }
  941. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  942. return true;
  943. }
  944. static void
  945. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  946. {
  947. struct drm_device *dev = ring->dev;
  948. struct drm_i915_private *dev_priv = dev->dev_private;
  949. unsigned long flags;
  950. if (!dev->irq_enabled)
  951. return;
  952. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  953. if (--ring->irq_refcount == 0) {
  954. I915_WRITE_IMR(ring, ~0);
  955. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  956. }
  957. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  958. }
  959. static bool
  960. gen8_ring_get_irq(struct intel_ring_buffer *ring)
  961. {
  962. struct drm_device *dev = ring->dev;
  963. struct drm_i915_private *dev_priv = dev->dev_private;
  964. unsigned long flags;
  965. if (!dev->irq_enabled)
  966. return false;
  967. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  968. if (ring->irq_refcount++ == 0) {
  969. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  970. I915_WRITE_IMR(ring,
  971. ~(ring->irq_enable_mask |
  972. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  973. } else {
  974. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  975. }
  976. POSTING_READ(RING_IMR(ring->mmio_base));
  977. }
  978. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  979. return true;
  980. }
  981. static void
  982. gen8_ring_put_irq(struct intel_ring_buffer *ring)
  983. {
  984. struct drm_device *dev = ring->dev;
  985. struct drm_i915_private *dev_priv = dev->dev_private;
  986. unsigned long flags;
  987. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  988. if (--ring->irq_refcount == 0) {
  989. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  990. I915_WRITE_IMR(ring,
  991. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  992. } else {
  993. I915_WRITE_IMR(ring, ~0);
  994. }
  995. POSTING_READ(RING_IMR(ring->mmio_base));
  996. }
  997. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  998. }
  999. static int
  1000. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1001. u32 offset, u32 length,
  1002. unsigned flags)
  1003. {
  1004. int ret;
  1005. ret = intel_ring_begin(ring, 2);
  1006. if (ret)
  1007. return ret;
  1008. intel_ring_emit(ring,
  1009. MI_BATCH_BUFFER_START |
  1010. MI_BATCH_GTT |
  1011. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1012. intel_ring_emit(ring, offset);
  1013. intel_ring_advance(ring);
  1014. return 0;
  1015. }
  1016. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1017. #define I830_BATCH_LIMIT (256*1024)
  1018. static int
  1019. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1020. u32 offset, u32 len,
  1021. unsigned flags)
  1022. {
  1023. int ret;
  1024. if (flags & I915_DISPATCH_PINNED) {
  1025. ret = intel_ring_begin(ring, 4);
  1026. if (ret)
  1027. return ret;
  1028. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1029. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1030. intel_ring_emit(ring, offset + len - 8);
  1031. intel_ring_emit(ring, MI_NOOP);
  1032. intel_ring_advance(ring);
  1033. } else {
  1034. u32 cs_offset = ring->scratch.gtt_offset;
  1035. if (len > I830_BATCH_LIMIT)
  1036. return -ENOSPC;
  1037. ret = intel_ring_begin(ring, 9+3);
  1038. if (ret)
  1039. return ret;
  1040. /* Blit the batch (which has now all relocs applied) to the stable batch
  1041. * scratch bo area (so that the CS never stumbles over its tlb
  1042. * invalidation bug) ... */
  1043. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1044. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1045. XY_SRC_COPY_BLT_WRITE_RGB);
  1046. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1047. intel_ring_emit(ring, 0);
  1048. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1049. intel_ring_emit(ring, cs_offset);
  1050. intel_ring_emit(ring, 0);
  1051. intel_ring_emit(ring, 4096);
  1052. intel_ring_emit(ring, offset);
  1053. intel_ring_emit(ring, MI_FLUSH);
  1054. /* ... and execute it. */
  1055. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1056. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1057. intel_ring_emit(ring, cs_offset + len - 8);
  1058. intel_ring_advance(ring);
  1059. }
  1060. return 0;
  1061. }
  1062. static int
  1063. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1064. u32 offset, u32 len,
  1065. unsigned flags)
  1066. {
  1067. int ret;
  1068. ret = intel_ring_begin(ring, 2);
  1069. if (ret)
  1070. return ret;
  1071. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1072. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1073. intel_ring_advance(ring);
  1074. return 0;
  1075. }
  1076. static void cleanup_status_page(struct intel_ring_buffer *ring)
  1077. {
  1078. struct drm_i915_gem_object *obj;
  1079. obj = ring->status_page.obj;
  1080. if (obj == NULL)
  1081. return;
  1082. kunmap(sg_page(obj->pages->sgl));
  1083. i915_gem_object_ggtt_unpin(obj);
  1084. drm_gem_object_unreference(&obj->base);
  1085. ring->status_page.obj = NULL;
  1086. }
  1087. static int init_status_page(struct intel_ring_buffer *ring)
  1088. {
  1089. struct drm_device *dev = ring->dev;
  1090. struct drm_i915_gem_object *obj;
  1091. int ret;
  1092. obj = i915_gem_alloc_object(dev, 4096);
  1093. if (obj == NULL) {
  1094. DRM_ERROR("Failed to allocate status page\n");
  1095. ret = -ENOMEM;
  1096. goto err;
  1097. }
  1098. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1099. if (ret)
  1100. goto err_unref;
  1101. ret = i915_gem_obj_ggtt_pin(obj, 4096, 0);
  1102. if (ret)
  1103. goto err_unref;
  1104. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1105. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1106. if (ring->status_page.page_addr == NULL) {
  1107. ret = -ENOMEM;
  1108. goto err_unpin;
  1109. }
  1110. ring->status_page.obj = obj;
  1111. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1112. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1113. ring->name, ring->status_page.gfx_addr);
  1114. return 0;
  1115. err_unpin:
  1116. i915_gem_object_ggtt_unpin(obj);
  1117. err_unref:
  1118. drm_gem_object_unreference(&obj->base);
  1119. err:
  1120. return ret;
  1121. }
  1122. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1123. {
  1124. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1125. if (!dev_priv->status_page_dmah) {
  1126. dev_priv->status_page_dmah =
  1127. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1128. if (!dev_priv->status_page_dmah)
  1129. return -ENOMEM;
  1130. }
  1131. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1132. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1133. return 0;
  1134. }
  1135. static int intel_init_ring_buffer(struct drm_device *dev,
  1136. struct intel_ring_buffer *ring)
  1137. {
  1138. struct drm_i915_gem_object *obj;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. int ret;
  1141. ring->dev = dev;
  1142. INIT_LIST_HEAD(&ring->active_list);
  1143. INIT_LIST_HEAD(&ring->request_list);
  1144. ring->size = 32 * PAGE_SIZE;
  1145. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1146. init_waitqueue_head(&ring->irq_queue);
  1147. if (I915_NEED_GFX_HWS(dev)) {
  1148. ret = init_status_page(ring);
  1149. if (ret)
  1150. return ret;
  1151. } else {
  1152. BUG_ON(ring->id != RCS);
  1153. ret = init_phys_status_page(ring);
  1154. if (ret)
  1155. return ret;
  1156. }
  1157. obj = NULL;
  1158. if (!HAS_LLC(dev))
  1159. obj = i915_gem_object_create_stolen(dev, ring->size);
  1160. if (obj == NULL)
  1161. obj = i915_gem_alloc_object(dev, ring->size);
  1162. if (obj == NULL) {
  1163. DRM_ERROR("Failed to allocate ringbuffer\n");
  1164. ret = -ENOMEM;
  1165. goto err_hws;
  1166. }
  1167. ring->obj = obj;
  1168. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1169. if (ret)
  1170. goto err_unref;
  1171. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1172. if (ret)
  1173. goto err_unpin;
  1174. ring->virtual_start =
  1175. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1176. ring->size);
  1177. if (ring->virtual_start == NULL) {
  1178. DRM_ERROR("Failed to map ringbuffer.\n");
  1179. ret = -EINVAL;
  1180. goto err_unpin;
  1181. }
  1182. ret = ring->init(ring);
  1183. if (ret)
  1184. goto err_unmap;
  1185. /* Workaround an erratum on the i830 which causes a hang if
  1186. * the TAIL pointer points to within the last 2 cachelines
  1187. * of the buffer.
  1188. */
  1189. ring->effective_size = ring->size;
  1190. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1191. ring->effective_size -= 128;
  1192. i915_cmd_parser_init_ring(ring);
  1193. return 0;
  1194. err_unmap:
  1195. iounmap(ring->virtual_start);
  1196. err_unpin:
  1197. i915_gem_object_ggtt_unpin(obj);
  1198. err_unref:
  1199. drm_gem_object_unreference(&obj->base);
  1200. ring->obj = NULL;
  1201. err_hws:
  1202. cleanup_status_page(ring);
  1203. return ret;
  1204. }
  1205. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1206. {
  1207. struct drm_i915_private *dev_priv;
  1208. int ret;
  1209. if (ring->obj == NULL)
  1210. return;
  1211. /* Disable the ring buffer. The ring must be idle at this point */
  1212. dev_priv = ring->dev->dev_private;
  1213. ret = intel_ring_idle(ring);
  1214. if (ret && !i915_reset_in_progress(&dev_priv->gpu_error))
  1215. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1216. ring->name, ret);
  1217. I915_WRITE_CTL(ring, 0);
  1218. iounmap(ring->virtual_start);
  1219. i915_gem_object_ggtt_unpin(ring->obj);
  1220. drm_gem_object_unreference(&ring->obj->base);
  1221. ring->obj = NULL;
  1222. ring->preallocated_lazy_request = NULL;
  1223. ring->outstanding_lazy_seqno = 0;
  1224. if (ring->cleanup)
  1225. ring->cleanup(ring);
  1226. cleanup_status_page(ring);
  1227. }
  1228. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1229. {
  1230. struct drm_i915_gem_request *request;
  1231. u32 seqno = 0, tail;
  1232. int ret;
  1233. if (ring->last_retired_head != -1) {
  1234. ring->head = ring->last_retired_head;
  1235. ring->last_retired_head = -1;
  1236. ring->space = ring_space(ring);
  1237. if (ring->space >= n)
  1238. return 0;
  1239. }
  1240. list_for_each_entry(request, &ring->request_list, list) {
  1241. int space;
  1242. if (request->tail == -1)
  1243. continue;
  1244. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1245. if (space < 0)
  1246. space += ring->size;
  1247. if (space >= n) {
  1248. seqno = request->seqno;
  1249. tail = request->tail;
  1250. break;
  1251. }
  1252. /* Consume this request in case we need more space than
  1253. * is available and so need to prevent a race between
  1254. * updating last_retired_head and direct reads of
  1255. * I915_RING_HEAD. It also provides a nice sanity check.
  1256. */
  1257. request->tail = -1;
  1258. }
  1259. if (seqno == 0)
  1260. return -ENOSPC;
  1261. ret = i915_wait_seqno(ring, seqno);
  1262. if (ret)
  1263. return ret;
  1264. ring->head = tail;
  1265. ring->space = ring_space(ring);
  1266. if (WARN_ON(ring->space < n))
  1267. return -ENOSPC;
  1268. return 0;
  1269. }
  1270. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1271. {
  1272. struct drm_device *dev = ring->dev;
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. unsigned long end;
  1275. int ret;
  1276. ret = intel_ring_wait_request(ring, n);
  1277. if (ret != -ENOSPC)
  1278. return ret;
  1279. /* force the tail write in case we have been skipping them */
  1280. __intel_ring_advance(ring);
  1281. trace_i915_ring_wait_begin(ring);
  1282. /* With GEM the hangcheck timer should kick us out of the loop,
  1283. * leaving it early runs the risk of corrupting GEM state (due
  1284. * to running on almost untested codepaths). But on resume
  1285. * timers don't work yet, so prevent a complete hang in that
  1286. * case by choosing an insanely large timeout. */
  1287. end = jiffies + 60 * HZ;
  1288. do {
  1289. ring->head = I915_READ_HEAD(ring);
  1290. ring->space = ring_space(ring);
  1291. if (ring->space >= n) {
  1292. trace_i915_ring_wait_end(ring);
  1293. return 0;
  1294. }
  1295. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1296. dev->primary->master) {
  1297. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1298. if (master_priv->sarea_priv)
  1299. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1300. }
  1301. msleep(1);
  1302. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1303. dev_priv->mm.interruptible);
  1304. if (ret)
  1305. return ret;
  1306. } while (!time_after(jiffies, end));
  1307. trace_i915_ring_wait_end(ring);
  1308. return -EBUSY;
  1309. }
  1310. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1311. {
  1312. uint32_t __iomem *virt;
  1313. int rem = ring->size - ring->tail;
  1314. if (ring->space < rem) {
  1315. int ret = ring_wait_for_space(ring, rem);
  1316. if (ret)
  1317. return ret;
  1318. }
  1319. virt = ring->virtual_start + ring->tail;
  1320. rem /= 4;
  1321. while (rem--)
  1322. iowrite32(MI_NOOP, virt++);
  1323. ring->tail = 0;
  1324. ring->space = ring_space(ring);
  1325. return 0;
  1326. }
  1327. int intel_ring_idle(struct intel_ring_buffer *ring)
  1328. {
  1329. u32 seqno;
  1330. int ret;
  1331. /* We need to add any requests required to flush the objects and ring */
  1332. if (ring->outstanding_lazy_seqno) {
  1333. ret = i915_add_request(ring, NULL);
  1334. if (ret)
  1335. return ret;
  1336. }
  1337. /* Wait upon the last request to be completed */
  1338. if (list_empty(&ring->request_list))
  1339. return 0;
  1340. seqno = list_entry(ring->request_list.prev,
  1341. struct drm_i915_gem_request,
  1342. list)->seqno;
  1343. return i915_wait_seqno(ring, seqno);
  1344. }
  1345. static int
  1346. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1347. {
  1348. if (ring->outstanding_lazy_seqno)
  1349. return 0;
  1350. if (ring->preallocated_lazy_request == NULL) {
  1351. struct drm_i915_gem_request *request;
  1352. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1353. if (request == NULL)
  1354. return -ENOMEM;
  1355. ring->preallocated_lazy_request = request;
  1356. }
  1357. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1358. }
  1359. static int __intel_ring_prepare(struct intel_ring_buffer *ring,
  1360. int bytes)
  1361. {
  1362. int ret;
  1363. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1364. ret = intel_wrap_ring_buffer(ring);
  1365. if (unlikely(ret))
  1366. return ret;
  1367. }
  1368. if (unlikely(ring->space < bytes)) {
  1369. ret = ring_wait_for_space(ring, bytes);
  1370. if (unlikely(ret))
  1371. return ret;
  1372. }
  1373. return 0;
  1374. }
  1375. int intel_ring_begin(struct intel_ring_buffer *ring,
  1376. int num_dwords)
  1377. {
  1378. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1379. int ret;
  1380. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1381. dev_priv->mm.interruptible);
  1382. if (ret)
  1383. return ret;
  1384. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1385. if (ret)
  1386. return ret;
  1387. /* Preallocate the olr before touching the ring */
  1388. ret = intel_ring_alloc_seqno(ring);
  1389. if (ret)
  1390. return ret;
  1391. ring->space -= num_dwords * sizeof(uint32_t);
  1392. return 0;
  1393. }
  1394. /* Align the ring tail to a cacheline boundary */
  1395. int intel_ring_cacheline_align(struct intel_ring_buffer *ring)
  1396. {
  1397. int num_dwords = (64 - (ring->tail & 63)) / sizeof(uint32_t);
  1398. int ret;
  1399. if (num_dwords == 0)
  1400. return 0;
  1401. ret = intel_ring_begin(ring, num_dwords);
  1402. if (ret)
  1403. return ret;
  1404. while (num_dwords--)
  1405. intel_ring_emit(ring, MI_NOOP);
  1406. intel_ring_advance(ring);
  1407. return 0;
  1408. }
  1409. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1410. {
  1411. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1412. BUG_ON(ring->outstanding_lazy_seqno);
  1413. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1414. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1415. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1416. if (HAS_VEBOX(ring->dev))
  1417. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1418. }
  1419. ring->set_seqno(ring, seqno);
  1420. ring->hangcheck.seqno = seqno;
  1421. }
  1422. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1423. u32 value)
  1424. {
  1425. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1426. /* Every tail move must follow the sequence below */
  1427. /* Disable notification that the ring is IDLE. The GT
  1428. * will then assume that it is busy and bring it out of rc6.
  1429. */
  1430. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1431. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1432. /* Clear the context id. Here be magic! */
  1433. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1434. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1435. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1436. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1437. 50))
  1438. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1439. /* Now that the ring is fully powered up, update the tail */
  1440. I915_WRITE_TAIL(ring, value);
  1441. POSTING_READ(RING_TAIL(ring->mmio_base));
  1442. /* Let the ring send IDLE messages to the GT again,
  1443. * and so let it sleep to conserve power when idle.
  1444. */
  1445. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1446. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1447. }
  1448. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1449. u32 invalidate, u32 flush)
  1450. {
  1451. uint32_t cmd;
  1452. int ret;
  1453. ret = intel_ring_begin(ring, 4);
  1454. if (ret)
  1455. return ret;
  1456. cmd = MI_FLUSH_DW;
  1457. if (INTEL_INFO(ring->dev)->gen >= 8)
  1458. cmd += 1;
  1459. /*
  1460. * Bspec vol 1c.5 - video engine command streamer:
  1461. * "If ENABLED, all TLBs will be invalidated once the flush
  1462. * operation is complete. This bit is only valid when the
  1463. * Post-Sync Operation field is a value of 1h or 3h."
  1464. */
  1465. if (invalidate & I915_GEM_GPU_DOMAINS)
  1466. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1467. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1468. intel_ring_emit(ring, cmd);
  1469. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1470. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1471. intel_ring_emit(ring, 0); /* upper addr */
  1472. intel_ring_emit(ring, 0); /* value */
  1473. } else {
  1474. intel_ring_emit(ring, 0);
  1475. intel_ring_emit(ring, MI_NOOP);
  1476. }
  1477. intel_ring_advance(ring);
  1478. return 0;
  1479. }
  1480. static int
  1481. gen8_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1482. u32 offset, u32 len,
  1483. unsigned flags)
  1484. {
  1485. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1486. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1487. !(flags & I915_DISPATCH_SECURE);
  1488. int ret;
  1489. ret = intel_ring_begin(ring, 4);
  1490. if (ret)
  1491. return ret;
  1492. /* FIXME(BDW): Address space and security selectors. */
  1493. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1494. intel_ring_emit(ring, offset);
  1495. intel_ring_emit(ring, 0);
  1496. intel_ring_emit(ring, MI_NOOP);
  1497. intel_ring_advance(ring);
  1498. return 0;
  1499. }
  1500. static int
  1501. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1502. u32 offset, u32 len,
  1503. unsigned flags)
  1504. {
  1505. int ret;
  1506. ret = intel_ring_begin(ring, 2);
  1507. if (ret)
  1508. return ret;
  1509. intel_ring_emit(ring,
  1510. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1511. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1512. /* bit0-7 is the length on GEN6+ */
  1513. intel_ring_emit(ring, offset);
  1514. intel_ring_advance(ring);
  1515. return 0;
  1516. }
  1517. static int
  1518. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1519. u32 offset, u32 len,
  1520. unsigned flags)
  1521. {
  1522. int ret;
  1523. ret = intel_ring_begin(ring, 2);
  1524. if (ret)
  1525. return ret;
  1526. intel_ring_emit(ring,
  1527. MI_BATCH_BUFFER_START |
  1528. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1529. /* bit0-7 is the length on GEN6+ */
  1530. intel_ring_emit(ring, offset);
  1531. intel_ring_advance(ring);
  1532. return 0;
  1533. }
  1534. /* Blitter support (SandyBridge+) */
  1535. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1536. u32 invalidate, u32 flush)
  1537. {
  1538. struct drm_device *dev = ring->dev;
  1539. uint32_t cmd;
  1540. int ret;
  1541. ret = intel_ring_begin(ring, 4);
  1542. if (ret)
  1543. return ret;
  1544. cmd = MI_FLUSH_DW;
  1545. if (INTEL_INFO(ring->dev)->gen >= 8)
  1546. cmd += 1;
  1547. /*
  1548. * Bspec vol 1c.3 - blitter engine command streamer:
  1549. * "If ENABLED, all TLBs will be invalidated once the flush
  1550. * operation is complete. This bit is only valid when the
  1551. * Post-Sync Operation field is a value of 1h or 3h."
  1552. */
  1553. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1554. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1555. MI_FLUSH_DW_OP_STOREDW;
  1556. intel_ring_emit(ring, cmd);
  1557. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1558. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1559. intel_ring_emit(ring, 0); /* upper addr */
  1560. intel_ring_emit(ring, 0); /* value */
  1561. } else {
  1562. intel_ring_emit(ring, 0);
  1563. intel_ring_emit(ring, MI_NOOP);
  1564. }
  1565. intel_ring_advance(ring);
  1566. if (IS_GEN7(dev) && !invalidate && flush)
  1567. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1568. return 0;
  1569. }
  1570. int intel_init_render_ring_buffer(struct drm_device *dev)
  1571. {
  1572. drm_i915_private_t *dev_priv = dev->dev_private;
  1573. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1574. ring->name = "render ring";
  1575. ring->id = RCS;
  1576. ring->mmio_base = RENDER_RING_BASE;
  1577. if (INTEL_INFO(dev)->gen >= 6) {
  1578. ring->add_request = gen6_add_request;
  1579. ring->flush = gen7_render_ring_flush;
  1580. if (INTEL_INFO(dev)->gen == 6)
  1581. ring->flush = gen6_render_ring_flush;
  1582. if (INTEL_INFO(dev)->gen >= 8) {
  1583. ring->flush = gen8_render_ring_flush;
  1584. ring->irq_get = gen8_ring_get_irq;
  1585. ring->irq_put = gen8_ring_put_irq;
  1586. } else {
  1587. ring->irq_get = gen6_ring_get_irq;
  1588. ring->irq_put = gen6_ring_put_irq;
  1589. }
  1590. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1591. ring->get_seqno = gen6_ring_get_seqno;
  1592. ring->set_seqno = ring_set_seqno;
  1593. ring->sync_to = gen6_ring_sync;
  1594. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1595. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1596. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1597. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1598. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1599. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1600. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1601. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1602. } else if (IS_GEN5(dev)) {
  1603. ring->add_request = pc_render_add_request;
  1604. ring->flush = gen4_render_ring_flush;
  1605. ring->get_seqno = pc_render_get_seqno;
  1606. ring->set_seqno = pc_render_set_seqno;
  1607. ring->irq_get = gen5_ring_get_irq;
  1608. ring->irq_put = gen5_ring_put_irq;
  1609. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1610. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1611. } else {
  1612. ring->add_request = i9xx_add_request;
  1613. if (INTEL_INFO(dev)->gen < 4)
  1614. ring->flush = gen2_render_ring_flush;
  1615. else
  1616. ring->flush = gen4_render_ring_flush;
  1617. ring->get_seqno = ring_get_seqno;
  1618. ring->set_seqno = ring_set_seqno;
  1619. if (IS_GEN2(dev)) {
  1620. ring->irq_get = i8xx_ring_get_irq;
  1621. ring->irq_put = i8xx_ring_put_irq;
  1622. } else {
  1623. ring->irq_get = i9xx_ring_get_irq;
  1624. ring->irq_put = i9xx_ring_put_irq;
  1625. }
  1626. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1627. }
  1628. ring->write_tail = ring_write_tail;
  1629. if (IS_HASWELL(dev))
  1630. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1631. else if (IS_GEN8(dev))
  1632. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1633. else if (INTEL_INFO(dev)->gen >= 6)
  1634. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1635. else if (INTEL_INFO(dev)->gen >= 4)
  1636. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1637. else if (IS_I830(dev) || IS_845G(dev))
  1638. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1639. else
  1640. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1641. ring->init = init_render_ring;
  1642. ring->cleanup = render_ring_cleanup;
  1643. /* Workaround batchbuffer to combat CS tlb bug. */
  1644. if (HAS_BROKEN_CS_TLB(dev)) {
  1645. struct drm_i915_gem_object *obj;
  1646. int ret;
  1647. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1648. if (obj == NULL) {
  1649. DRM_ERROR("Failed to allocate batch bo\n");
  1650. return -ENOMEM;
  1651. }
  1652. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1653. if (ret != 0) {
  1654. drm_gem_object_unreference(&obj->base);
  1655. DRM_ERROR("Failed to ping batch bo\n");
  1656. return ret;
  1657. }
  1658. ring->scratch.obj = obj;
  1659. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1660. }
  1661. return intel_init_ring_buffer(dev, ring);
  1662. }
  1663. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1664. {
  1665. drm_i915_private_t *dev_priv = dev->dev_private;
  1666. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1667. int ret;
  1668. ring->name = "render ring";
  1669. ring->id = RCS;
  1670. ring->mmio_base = RENDER_RING_BASE;
  1671. if (INTEL_INFO(dev)->gen >= 6) {
  1672. /* non-kms not supported on gen6+ */
  1673. return -ENODEV;
  1674. }
  1675. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1676. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1677. * the special gen5 functions. */
  1678. ring->add_request = i9xx_add_request;
  1679. if (INTEL_INFO(dev)->gen < 4)
  1680. ring->flush = gen2_render_ring_flush;
  1681. else
  1682. ring->flush = gen4_render_ring_flush;
  1683. ring->get_seqno = ring_get_seqno;
  1684. ring->set_seqno = ring_set_seqno;
  1685. if (IS_GEN2(dev)) {
  1686. ring->irq_get = i8xx_ring_get_irq;
  1687. ring->irq_put = i8xx_ring_put_irq;
  1688. } else {
  1689. ring->irq_get = i9xx_ring_get_irq;
  1690. ring->irq_put = i9xx_ring_put_irq;
  1691. }
  1692. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1693. ring->write_tail = ring_write_tail;
  1694. if (INTEL_INFO(dev)->gen >= 4)
  1695. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1696. else if (IS_I830(dev) || IS_845G(dev))
  1697. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1698. else
  1699. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1700. ring->init = init_render_ring;
  1701. ring->cleanup = render_ring_cleanup;
  1702. ring->dev = dev;
  1703. INIT_LIST_HEAD(&ring->active_list);
  1704. INIT_LIST_HEAD(&ring->request_list);
  1705. ring->size = size;
  1706. ring->effective_size = ring->size;
  1707. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1708. ring->effective_size -= 128;
  1709. ring->virtual_start = ioremap_wc(start, size);
  1710. if (ring->virtual_start == NULL) {
  1711. DRM_ERROR("can not ioremap virtual address for"
  1712. " ring buffer\n");
  1713. return -ENOMEM;
  1714. }
  1715. if (!I915_NEED_GFX_HWS(dev)) {
  1716. ret = init_phys_status_page(ring);
  1717. if (ret)
  1718. return ret;
  1719. }
  1720. return 0;
  1721. }
  1722. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1723. {
  1724. drm_i915_private_t *dev_priv = dev->dev_private;
  1725. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1726. ring->name = "bsd ring";
  1727. ring->id = VCS;
  1728. ring->write_tail = ring_write_tail;
  1729. if (INTEL_INFO(dev)->gen >= 6) {
  1730. ring->mmio_base = GEN6_BSD_RING_BASE;
  1731. /* gen6 bsd needs a special wa for tail updates */
  1732. if (IS_GEN6(dev))
  1733. ring->write_tail = gen6_bsd_ring_write_tail;
  1734. ring->flush = gen6_bsd_ring_flush;
  1735. ring->add_request = gen6_add_request;
  1736. ring->get_seqno = gen6_ring_get_seqno;
  1737. ring->set_seqno = ring_set_seqno;
  1738. if (INTEL_INFO(dev)->gen >= 8) {
  1739. ring->irq_enable_mask =
  1740. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1741. ring->irq_get = gen8_ring_get_irq;
  1742. ring->irq_put = gen8_ring_put_irq;
  1743. ring->dispatch_execbuffer =
  1744. gen8_ring_dispatch_execbuffer;
  1745. } else {
  1746. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1747. ring->irq_get = gen6_ring_get_irq;
  1748. ring->irq_put = gen6_ring_put_irq;
  1749. ring->dispatch_execbuffer =
  1750. gen6_ring_dispatch_execbuffer;
  1751. }
  1752. ring->sync_to = gen6_ring_sync;
  1753. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1754. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1755. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1756. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1757. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1758. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1759. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1760. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1761. } else {
  1762. ring->mmio_base = BSD_RING_BASE;
  1763. ring->flush = bsd_ring_flush;
  1764. ring->add_request = i9xx_add_request;
  1765. ring->get_seqno = ring_get_seqno;
  1766. ring->set_seqno = ring_set_seqno;
  1767. if (IS_GEN5(dev)) {
  1768. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1769. ring->irq_get = gen5_ring_get_irq;
  1770. ring->irq_put = gen5_ring_put_irq;
  1771. } else {
  1772. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1773. ring->irq_get = i9xx_ring_get_irq;
  1774. ring->irq_put = i9xx_ring_put_irq;
  1775. }
  1776. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1777. }
  1778. ring->init = init_ring_common;
  1779. return intel_init_ring_buffer(dev, ring);
  1780. }
  1781. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1782. {
  1783. drm_i915_private_t *dev_priv = dev->dev_private;
  1784. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1785. ring->name = "blitter ring";
  1786. ring->id = BCS;
  1787. ring->mmio_base = BLT_RING_BASE;
  1788. ring->write_tail = ring_write_tail;
  1789. ring->flush = gen6_ring_flush;
  1790. ring->add_request = gen6_add_request;
  1791. ring->get_seqno = gen6_ring_get_seqno;
  1792. ring->set_seqno = ring_set_seqno;
  1793. if (INTEL_INFO(dev)->gen >= 8) {
  1794. ring->irq_enable_mask =
  1795. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  1796. ring->irq_get = gen8_ring_get_irq;
  1797. ring->irq_put = gen8_ring_put_irq;
  1798. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1799. } else {
  1800. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1801. ring->irq_get = gen6_ring_get_irq;
  1802. ring->irq_put = gen6_ring_put_irq;
  1803. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1804. }
  1805. ring->sync_to = gen6_ring_sync;
  1806. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1807. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1808. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1809. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1810. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1811. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1812. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1813. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1814. ring->init = init_ring_common;
  1815. return intel_init_ring_buffer(dev, ring);
  1816. }
  1817. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1818. {
  1819. drm_i915_private_t *dev_priv = dev->dev_private;
  1820. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1821. ring->name = "video enhancement ring";
  1822. ring->id = VECS;
  1823. ring->mmio_base = VEBOX_RING_BASE;
  1824. ring->write_tail = ring_write_tail;
  1825. ring->flush = gen6_ring_flush;
  1826. ring->add_request = gen6_add_request;
  1827. ring->get_seqno = gen6_ring_get_seqno;
  1828. ring->set_seqno = ring_set_seqno;
  1829. if (INTEL_INFO(dev)->gen >= 8) {
  1830. ring->irq_enable_mask =
  1831. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  1832. ring->irq_get = gen8_ring_get_irq;
  1833. ring->irq_put = gen8_ring_put_irq;
  1834. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1835. } else {
  1836. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1837. ring->irq_get = hsw_vebox_get_irq;
  1838. ring->irq_put = hsw_vebox_put_irq;
  1839. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1840. }
  1841. ring->sync_to = gen6_ring_sync;
  1842. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1843. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1844. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1845. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1846. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1847. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1848. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1849. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1850. ring->init = init_ring_common;
  1851. return intel_init_ring_buffer(dev, ring);
  1852. }
  1853. int
  1854. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1855. {
  1856. int ret;
  1857. if (!ring->gpu_caches_dirty)
  1858. return 0;
  1859. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1860. if (ret)
  1861. return ret;
  1862. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1863. ring->gpu_caches_dirty = false;
  1864. return 0;
  1865. }
  1866. int
  1867. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1868. {
  1869. uint32_t flush_domains;
  1870. int ret;
  1871. flush_domains = 0;
  1872. if (ring->gpu_caches_dirty)
  1873. flush_domains = I915_GEM_GPU_DOMAINS;
  1874. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1875. if (ret)
  1876. return ret;
  1877. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1878. ring->gpu_caches_dirty = false;
  1879. return 0;
  1880. }