mm.h 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef _LINUX_MM_H
  3. #define _LINUX_MM_H
  4. #include <linux/errno.h>
  5. #ifdef __KERNEL__
  6. #include <linux/mmdebug.h>
  7. #include <linux/gfp.h>
  8. #include <linux/bug.h>
  9. #include <linux/list.h>
  10. #include <linux/mmzone.h>
  11. #include <linux/rbtree.h>
  12. #include <linux/atomic.h>
  13. #include <linux/debug_locks.h>
  14. #include <linux/mm_types.h>
  15. #include <linux/range.h>
  16. #include <linux/pfn.h>
  17. #include <linux/percpu-refcount.h>
  18. #include <linux/bit_spinlock.h>
  19. #include <linux/shrinker.h>
  20. #include <linux/resource.h>
  21. #include <linux/page_ext.h>
  22. #include <linux/err.h>
  23. #include <linux/page_ref.h>
  24. #include <linux/memremap.h>
  25. #include <linux/overflow.h>
  26. struct mempolicy;
  27. struct anon_vma;
  28. struct anon_vma_chain;
  29. struct file_ra_state;
  30. struct user_struct;
  31. struct writeback_control;
  32. struct bdi_writeback;
  33. void init_mm_internals(void);
  34. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  35. extern unsigned long max_mapnr;
  36. static inline void set_max_mapnr(unsigned long limit)
  37. {
  38. max_mapnr = limit;
  39. }
  40. #else
  41. static inline void set_max_mapnr(unsigned long limit) { }
  42. #endif
  43. extern unsigned long totalram_pages;
  44. extern void * high_memory;
  45. extern int page_cluster;
  46. #ifdef CONFIG_SYSCTL
  47. extern int sysctl_legacy_va_layout;
  48. #else
  49. #define sysctl_legacy_va_layout 0
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  52. extern const int mmap_rnd_bits_min;
  53. extern const int mmap_rnd_bits_max;
  54. extern int mmap_rnd_bits __read_mostly;
  55. #endif
  56. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  57. extern const int mmap_rnd_compat_bits_min;
  58. extern const int mmap_rnd_compat_bits_max;
  59. extern int mmap_rnd_compat_bits __read_mostly;
  60. #endif
  61. #include <asm/page.h>
  62. #include <asm/pgtable.h>
  63. #include <asm/processor.h>
  64. #ifndef __pa_symbol
  65. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  66. #endif
  67. #ifndef page_to_virt
  68. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  69. #endif
  70. #ifndef lm_alias
  71. #define lm_alias(x) __va(__pa_symbol(x))
  72. #endif
  73. /*
  74. * To prevent common memory management code establishing
  75. * a zero page mapping on a read fault.
  76. * This macro should be defined within <asm/pgtable.h>.
  77. * s390 does this to prevent multiplexing of hardware bits
  78. * related to the physical page in case of virtualization.
  79. */
  80. #ifndef mm_forbids_zeropage
  81. #define mm_forbids_zeropage(X) (0)
  82. #endif
  83. /*
  84. * On some architectures it is expensive to call memset() for small sizes.
  85. * Those architectures should provide their own implementation of "struct page"
  86. * zeroing by defining this macro in <asm/pgtable.h>.
  87. */
  88. #ifndef mm_zero_struct_page
  89. #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
  90. #endif
  91. /*
  92. * Default maximum number of active map areas, this limits the number of vmas
  93. * per mm struct. Users can overwrite this number by sysctl but there is a
  94. * problem.
  95. *
  96. * When a program's coredump is generated as ELF format, a section is created
  97. * per a vma. In ELF, the number of sections is represented in unsigned short.
  98. * This means the number of sections should be smaller than 65535 at coredump.
  99. * Because the kernel adds some informative sections to a image of program at
  100. * generating coredump, we need some margin. The number of extra sections is
  101. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  102. *
  103. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  104. * not a hard limit any more. Although some userspace tools can be surprised by
  105. * that.
  106. */
  107. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  108. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  109. extern int sysctl_max_map_count;
  110. extern unsigned long sysctl_user_reserve_kbytes;
  111. extern unsigned long sysctl_admin_reserve_kbytes;
  112. extern int sysctl_overcommit_memory;
  113. extern int sysctl_overcommit_ratio;
  114. extern unsigned long sysctl_overcommit_kbytes;
  115. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  116. size_t *, loff_t *);
  117. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  118. size_t *, loff_t *);
  119. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  120. /* to align the pointer to the (next) page boundary */
  121. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  122. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  123. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  124. /*
  125. * Linux kernel virtual memory manager primitives.
  126. * The idea being to have a "virtual" mm in the same way
  127. * we have a virtual fs - giving a cleaner interface to the
  128. * mm details, and allowing different kinds of memory mappings
  129. * (from shared memory to executable loading to arbitrary
  130. * mmap() functions).
  131. */
  132. extern struct kmem_cache *vm_area_cachep;
  133. #ifndef CONFIG_MMU
  134. extern struct rb_root nommu_region_tree;
  135. extern struct rw_semaphore nommu_region_sem;
  136. extern unsigned int kobjsize(const void *objp);
  137. #endif
  138. /*
  139. * vm_flags in vm_area_struct, see mm_types.h.
  140. * When changing, update also include/trace/events/mmflags.h
  141. */
  142. #define VM_NONE 0x00000000
  143. #define VM_READ 0x00000001 /* currently active flags */
  144. #define VM_WRITE 0x00000002
  145. #define VM_EXEC 0x00000004
  146. #define VM_SHARED 0x00000008
  147. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  148. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  149. #define VM_MAYWRITE 0x00000020
  150. #define VM_MAYEXEC 0x00000040
  151. #define VM_MAYSHARE 0x00000080
  152. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  153. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  154. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  155. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  156. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  157. #define VM_LOCKED 0x00002000
  158. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  159. /* Used by sys_madvise() */
  160. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  161. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  162. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  163. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  164. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  165. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  166. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  167. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  168. #define VM_SYNC 0x00800000 /* Synchronous page faults */
  169. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  170. #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
  171. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  172. #ifdef CONFIG_MEM_SOFT_DIRTY
  173. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  174. #else
  175. # define VM_SOFTDIRTY 0
  176. #endif
  177. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  178. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  179. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  180. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  181. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  182. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  183. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  184. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  185. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  186. #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
  187. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  188. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  189. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  190. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  191. #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
  192. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  193. #ifdef CONFIG_ARCH_HAS_PKEYS
  194. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  195. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  196. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
  197. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  198. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  199. #ifdef CONFIG_PPC
  200. # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
  201. #else
  202. # define VM_PKEY_BIT4 0
  203. #endif
  204. #endif /* CONFIG_ARCH_HAS_PKEYS */
  205. #if defined(CONFIG_X86)
  206. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  207. #elif defined(CONFIG_PPC)
  208. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  209. #elif defined(CONFIG_PARISC)
  210. # define VM_GROWSUP VM_ARCH_1
  211. #elif defined(CONFIG_IA64)
  212. # define VM_GROWSUP VM_ARCH_1
  213. #elif defined(CONFIG_SPARC64)
  214. # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
  215. # define VM_ARCH_CLEAR VM_SPARC_ADI
  216. #elif !defined(CONFIG_MMU)
  217. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  218. #endif
  219. #if defined(CONFIG_X86_INTEL_MPX)
  220. /* MPX specific bounds table or bounds directory */
  221. # define VM_MPX VM_HIGH_ARCH_4
  222. #else
  223. # define VM_MPX VM_NONE
  224. #endif
  225. #ifndef VM_GROWSUP
  226. # define VM_GROWSUP VM_NONE
  227. #endif
  228. /* Bits set in the VMA until the stack is in its final location */
  229. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  230. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  231. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  232. #endif
  233. #ifdef CONFIG_STACK_GROWSUP
  234. #define VM_STACK VM_GROWSUP
  235. #else
  236. #define VM_STACK VM_GROWSDOWN
  237. #endif
  238. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  239. /*
  240. * Special vmas that are non-mergable, non-mlock()able.
  241. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  242. */
  243. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  244. /* This mask defines which mm->def_flags a process can inherit its parent */
  245. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  246. /* This mask is used to clear all the VMA flags used by mlock */
  247. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  248. /* Arch-specific flags to clear when updating VM flags on protection change */
  249. #ifndef VM_ARCH_CLEAR
  250. # define VM_ARCH_CLEAR VM_NONE
  251. #endif
  252. #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
  253. /*
  254. * mapping from the currently active vm_flags protection bits (the
  255. * low four bits) to a page protection mask..
  256. */
  257. extern pgprot_t protection_map[16];
  258. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  259. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  260. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  261. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  262. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  263. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  264. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  265. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  266. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  267. #define FAULT_FLAG_TRACE \
  268. { FAULT_FLAG_WRITE, "WRITE" }, \
  269. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  270. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  271. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  272. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  273. { FAULT_FLAG_TRIED, "TRIED" }, \
  274. { FAULT_FLAG_USER, "USER" }, \
  275. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  276. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  277. /*
  278. * vm_fault is filled by the the pagefault handler and passed to the vma's
  279. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  280. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  281. *
  282. * MM layer fills up gfp_mask for page allocations but fault handler might
  283. * alter it if its implementation requires a different allocation context.
  284. *
  285. * pgoff should be used in favour of virtual_address, if possible.
  286. */
  287. struct vm_fault {
  288. struct vm_area_struct *vma; /* Target VMA */
  289. unsigned int flags; /* FAULT_FLAG_xxx flags */
  290. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  291. pgoff_t pgoff; /* Logical page offset based on vma */
  292. unsigned long address; /* Faulting virtual address */
  293. pmd_t *pmd; /* Pointer to pmd entry matching
  294. * the 'address' */
  295. pud_t *pud; /* Pointer to pud entry matching
  296. * the 'address'
  297. */
  298. pte_t orig_pte; /* Value of PTE at the time of fault */
  299. struct page *cow_page; /* Page handler may use for COW fault */
  300. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  301. struct page *page; /* ->fault handlers should return a
  302. * page here, unless VM_FAULT_NOPAGE
  303. * is set (which is also implied by
  304. * VM_FAULT_ERROR).
  305. */
  306. /* These three entries are valid only while holding ptl lock */
  307. pte_t *pte; /* Pointer to pte entry matching
  308. * the 'address'. NULL if the page
  309. * table hasn't been allocated.
  310. */
  311. spinlock_t *ptl; /* Page table lock.
  312. * Protects pte page table if 'pte'
  313. * is not NULL, otherwise pmd.
  314. */
  315. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  316. * vm_ops->map_pages() calls
  317. * alloc_set_pte() from atomic context.
  318. * do_fault_around() pre-allocates
  319. * page table to avoid allocation from
  320. * atomic context.
  321. */
  322. };
  323. /* page entry size for vm->huge_fault() */
  324. enum page_entry_size {
  325. PE_SIZE_PTE = 0,
  326. PE_SIZE_PMD,
  327. PE_SIZE_PUD,
  328. };
  329. /*
  330. * These are the virtual MM functions - opening of an area, closing and
  331. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  332. * to the functions called when a no-page or a wp-page exception occurs.
  333. */
  334. struct vm_operations_struct {
  335. void (*open)(struct vm_area_struct * area);
  336. void (*close)(struct vm_area_struct * area);
  337. int (*split)(struct vm_area_struct * area, unsigned long addr);
  338. int (*mremap)(struct vm_area_struct * area);
  339. vm_fault_t (*fault)(struct vm_fault *vmf);
  340. vm_fault_t (*huge_fault)(struct vm_fault *vmf,
  341. enum page_entry_size pe_size);
  342. void (*map_pages)(struct vm_fault *vmf,
  343. pgoff_t start_pgoff, pgoff_t end_pgoff);
  344. unsigned long (*pagesize)(struct vm_area_struct * area);
  345. /* notification that a previously read-only page is about to become
  346. * writable, if an error is returned it will cause a SIGBUS */
  347. vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
  348. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  349. vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
  350. /* called by access_process_vm when get_user_pages() fails, typically
  351. * for use by special VMAs that can switch between memory and hardware
  352. */
  353. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  354. void *buf, int len, int write);
  355. /* Called by the /proc/PID/maps code to ask the vma whether it
  356. * has a special name. Returning non-NULL will also cause this
  357. * vma to be dumped unconditionally. */
  358. const char *(*name)(struct vm_area_struct *vma);
  359. #ifdef CONFIG_NUMA
  360. /*
  361. * set_policy() op must add a reference to any non-NULL @new mempolicy
  362. * to hold the policy upon return. Caller should pass NULL @new to
  363. * remove a policy and fall back to surrounding context--i.e. do not
  364. * install a MPOL_DEFAULT policy, nor the task or system default
  365. * mempolicy.
  366. */
  367. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  368. /*
  369. * get_policy() op must add reference [mpol_get()] to any policy at
  370. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  371. * in mm/mempolicy.c will do this automatically.
  372. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  373. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  374. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  375. * must return NULL--i.e., do not "fallback" to task or system default
  376. * policy.
  377. */
  378. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  379. unsigned long addr);
  380. #endif
  381. /*
  382. * Called by vm_normal_page() for special PTEs to find the
  383. * page for @addr. This is useful if the default behavior
  384. * (using pte_page()) would not find the correct page.
  385. */
  386. struct page *(*find_special_page)(struct vm_area_struct *vma,
  387. unsigned long addr);
  388. };
  389. struct mmu_gather;
  390. struct inode;
  391. #define page_private(page) ((page)->private)
  392. #define set_page_private(page, v) ((page)->private = (v))
  393. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  394. static inline int pmd_devmap(pmd_t pmd)
  395. {
  396. return 0;
  397. }
  398. static inline int pud_devmap(pud_t pud)
  399. {
  400. return 0;
  401. }
  402. static inline int pgd_devmap(pgd_t pgd)
  403. {
  404. return 0;
  405. }
  406. #endif
  407. /*
  408. * FIXME: take this include out, include page-flags.h in
  409. * files which need it (119 of them)
  410. */
  411. #include <linux/page-flags.h>
  412. #include <linux/huge_mm.h>
  413. /*
  414. * Methods to modify the page usage count.
  415. *
  416. * What counts for a page usage:
  417. * - cache mapping (page->mapping)
  418. * - private data (page->private)
  419. * - page mapped in a task's page tables, each mapping
  420. * is counted separately
  421. *
  422. * Also, many kernel routines increase the page count before a critical
  423. * routine so they can be sure the page doesn't go away from under them.
  424. */
  425. /*
  426. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  427. */
  428. static inline int put_page_testzero(struct page *page)
  429. {
  430. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  431. return page_ref_dec_and_test(page);
  432. }
  433. /*
  434. * Try to grab a ref unless the page has a refcount of zero, return false if
  435. * that is the case.
  436. * This can be called when MMU is off so it must not access
  437. * any of the virtual mappings.
  438. */
  439. static inline int get_page_unless_zero(struct page *page)
  440. {
  441. return page_ref_add_unless(page, 1, 0);
  442. }
  443. extern int page_is_ram(unsigned long pfn);
  444. enum {
  445. REGION_INTERSECTS,
  446. REGION_DISJOINT,
  447. REGION_MIXED,
  448. };
  449. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  450. unsigned long desc);
  451. /* Support for virtually mapped pages */
  452. struct page *vmalloc_to_page(const void *addr);
  453. unsigned long vmalloc_to_pfn(const void *addr);
  454. /*
  455. * Determine if an address is within the vmalloc range
  456. *
  457. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  458. * is no special casing required.
  459. */
  460. static inline bool is_vmalloc_addr(const void *x)
  461. {
  462. #ifdef CONFIG_MMU
  463. unsigned long addr = (unsigned long)x;
  464. return addr >= VMALLOC_START && addr < VMALLOC_END;
  465. #else
  466. return false;
  467. #endif
  468. }
  469. #ifdef CONFIG_MMU
  470. extern int is_vmalloc_or_module_addr(const void *x);
  471. #else
  472. static inline int is_vmalloc_or_module_addr(const void *x)
  473. {
  474. return 0;
  475. }
  476. #endif
  477. extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
  478. static inline void *kvmalloc(size_t size, gfp_t flags)
  479. {
  480. return kvmalloc_node(size, flags, NUMA_NO_NODE);
  481. }
  482. static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
  483. {
  484. return kvmalloc_node(size, flags | __GFP_ZERO, node);
  485. }
  486. static inline void *kvzalloc(size_t size, gfp_t flags)
  487. {
  488. return kvmalloc(size, flags | __GFP_ZERO);
  489. }
  490. static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
  491. {
  492. size_t bytes;
  493. if (unlikely(check_mul_overflow(n, size, &bytes)))
  494. return NULL;
  495. return kvmalloc(bytes, flags);
  496. }
  497. static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
  498. {
  499. return kvmalloc_array(n, size, flags | __GFP_ZERO);
  500. }
  501. extern void kvfree(const void *addr);
  502. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  503. {
  504. return &page[1].compound_mapcount;
  505. }
  506. static inline int compound_mapcount(struct page *page)
  507. {
  508. VM_BUG_ON_PAGE(!PageCompound(page), page);
  509. page = compound_head(page);
  510. return atomic_read(compound_mapcount_ptr(page)) + 1;
  511. }
  512. /*
  513. * The atomic page->_mapcount, starts from -1: so that transitions
  514. * both from it and to it can be tracked, using atomic_inc_and_test
  515. * and atomic_add_negative(-1).
  516. */
  517. static inline void page_mapcount_reset(struct page *page)
  518. {
  519. atomic_set(&(page)->_mapcount, -1);
  520. }
  521. int __page_mapcount(struct page *page);
  522. static inline int page_mapcount(struct page *page)
  523. {
  524. VM_BUG_ON_PAGE(PageSlab(page), page);
  525. if (unlikely(PageCompound(page)))
  526. return __page_mapcount(page);
  527. return atomic_read(&page->_mapcount) + 1;
  528. }
  529. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  530. int total_mapcount(struct page *page);
  531. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  532. #else
  533. static inline int total_mapcount(struct page *page)
  534. {
  535. return page_mapcount(page);
  536. }
  537. static inline int page_trans_huge_mapcount(struct page *page,
  538. int *total_mapcount)
  539. {
  540. int mapcount = page_mapcount(page);
  541. if (total_mapcount)
  542. *total_mapcount = mapcount;
  543. return mapcount;
  544. }
  545. #endif
  546. static inline struct page *virt_to_head_page(const void *x)
  547. {
  548. struct page *page = virt_to_page(x);
  549. return compound_head(page);
  550. }
  551. void __put_page(struct page *page);
  552. void put_pages_list(struct list_head *pages);
  553. void split_page(struct page *page, unsigned int order);
  554. /*
  555. * Compound pages have a destructor function. Provide a
  556. * prototype for that function and accessor functions.
  557. * These are _only_ valid on the head of a compound page.
  558. */
  559. typedef void compound_page_dtor(struct page *);
  560. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  561. enum compound_dtor_id {
  562. NULL_COMPOUND_DTOR,
  563. COMPOUND_PAGE_DTOR,
  564. #ifdef CONFIG_HUGETLB_PAGE
  565. HUGETLB_PAGE_DTOR,
  566. #endif
  567. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  568. TRANSHUGE_PAGE_DTOR,
  569. #endif
  570. NR_COMPOUND_DTORS,
  571. };
  572. extern compound_page_dtor * const compound_page_dtors[];
  573. static inline void set_compound_page_dtor(struct page *page,
  574. enum compound_dtor_id compound_dtor)
  575. {
  576. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  577. page[1].compound_dtor = compound_dtor;
  578. }
  579. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  580. {
  581. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  582. return compound_page_dtors[page[1].compound_dtor];
  583. }
  584. static inline unsigned int compound_order(struct page *page)
  585. {
  586. if (!PageHead(page))
  587. return 0;
  588. return page[1].compound_order;
  589. }
  590. static inline void set_compound_order(struct page *page, unsigned int order)
  591. {
  592. page[1].compound_order = order;
  593. }
  594. void free_compound_page(struct page *page);
  595. #ifdef CONFIG_MMU
  596. /*
  597. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  598. * servicing faults for write access. In the normal case, do always want
  599. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  600. * that do not have writing enabled, when used by access_process_vm.
  601. */
  602. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  603. {
  604. if (likely(vma->vm_flags & VM_WRITE))
  605. pte = pte_mkwrite(pte);
  606. return pte;
  607. }
  608. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  609. struct page *page);
  610. int finish_fault(struct vm_fault *vmf);
  611. int finish_mkwrite_fault(struct vm_fault *vmf);
  612. #endif
  613. /*
  614. * Multiple processes may "see" the same page. E.g. for untouched
  615. * mappings of /dev/null, all processes see the same page full of
  616. * zeroes, and text pages of executables and shared libraries have
  617. * only one copy in memory, at most, normally.
  618. *
  619. * For the non-reserved pages, page_count(page) denotes a reference count.
  620. * page_count() == 0 means the page is free. page->lru is then used for
  621. * freelist management in the buddy allocator.
  622. * page_count() > 0 means the page has been allocated.
  623. *
  624. * Pages are allocated by the slab allocator in order to provide memory
  625. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  626. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  627. * unless a particular usage is carefully commented. (the responsibility of
  628. * freeing the kmalloc memory is the caller's, of course).
  629. *
  630. * A page may be used by anyone else who does a __get_free_page().
  631. * In this case, page_count still tracks the references, and should only
  632. * be used through the normal accessor functions. The top bits of page->flags
  633. * and page->virtual store page management information, but all other fields
  634. * are unused and could be used privately, carefully. The management of this
  635. * page is the responsibility of the one who allocated it, and those who have
  636. * subsequently been given references to it.
  637. *
  638. * The other pages (we may call them "pagecache pages") are completely
  639. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  640. * The following discussion applies only to them.
  641. *
  642. * A pagecache page contains an opaque `private' member, which belongs to the
  643. * page's address_space. Usually, this is the address of a circular list of
  644. * the page's disk buffers. PG_private must be set to tell the VM to call
  645. * into the filesystem to release these pages.
  646. *
  647. * A page may belong to an inode's memory mapping. In this case, page->mapping
  648. * is the pointer to the inode, and page->index is the file offset of the page,
  649. * in units of PAGE_SIZE.
  650. *
  651. * If pagecache pages are not associated with an inode, they are said to be
  652. * anonymous pages. These may become associated with the swapcache, and in that
  653. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  654. *
  655. * In either case (swapcache or inode backed), the pagecache itself holds one
  656. * reference to the page. Setting PG_private should also increment the
  657. * refcount. The each user mapping also has a reference to the page.
  658. *
  659. * The pagecache pages are stored in a per-mapping radix tree, which is
  660. * rooted at mapping->i_pages, and indexed by offset.
  661. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  662. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  663. *
  664. * All pagecache pages may be subject to I/O:
  665. * - inode pages may need to be read from disk,
  666. * - inode pages which have been modified and are MAP_SHARED may need
  667. * to be written back to the inode on disk,
  668. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  669. * modified may need to be swapped out to swap space and (later) to be read
  670. * back into memory.
  671. */
  672. /*
  673. * The zone field is never updated after free_area_init_core()
  674. * sets it, so none of the operations on it need to be atomic.
  675. */
  676. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  677. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  678. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  679. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  680. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  681. /*
  682. * Define the bit shifts to access each section. For non-existent
  683. * sections we define the shift as 0; that plus a 0 mask ensures
  684. * the compiler will optimise away reference to them.
  685. */
  686. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  687. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  688. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  689. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  690. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  691. #ifdef NODE_NOT_IN_PAGE_FLAGS
  692. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  693. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  694. SECTIONS_PGOFF : ZONES_PGOFF)
  695. #else
  696. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  697. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  698. NODES_PGOFF : ZONES_PGOFF)
  699. #endif
  700. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  701. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  702. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  703. #endif
  704. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  705. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  706. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  707. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  708. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  709. static inline enum zone_type page_zonenum(const struct page *page)
  710. {
  711. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  712. }
  713. #ifdef CONFIG_ZONE_DEVICE
  714. static inline bool is_zone_device_page(const struct page *page)
  715. {
  716. return page_zonenum(page) == ZONE_DEVICE;
  717. }
  718. #else
  719. static inline bool is_zone_device_page(const struct page *page)
  720. {
  721. return false;
  722. }
  723. #endif
  724. #ifdef CONFIG_DEV_PAGEMAP_OPS
  725. void dev_pagemap_get_ops(void);
  726. void dev_pagemap_put_ops(void);
  727. void __put_devmap_managed_page(struct page *page);
  728. DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
  729. static inline bool put_devmap_managed_page(struct page *page)
  730. {
  731. if (!static_branch_unlikely(&devmap_managed_key))
  732. return false;
  733. if (!is_zone_device_page(page))
  734. return false;
  735. switch (page->pgmap->type) {
  736. case MEMORY_DEVICE_PRIVATE:
  737. case MEMORY_DEVICE_PUBLIC:
  738. case MEMORY_DEVICE_FS_DAX:
  739. __put_devmap_managed_page(page);
  740. return true;
  741. default:
  742. break;
  743. }
  744. return false;
  745. }
  746. static inline bool is_device_private_page(const struct page *page)
  747. {
  748. return is_zone_device_page(page) &&
  749. page->pgmap->type == MEMORY_DEVICE_PRIVATE;
  750. }
  751. static inline bool is_device_public_page(const struct page *page)
  752. {
  753. return is_zone_device_page(page) &&
  754. page->pgmap->type == MEMORY_DEVICE_PUBLIC;
  755. }
  756. #else /* CONFIG_DEV_PAGEMAP_OPS */
  757. static inline void dev_pagemap_get_ops(void)
  758. {
  759. }
  760. static inline void dev_pagemap_put_ops(void)
  761. {
  762. }
  763. static inline bool put_devmap_managed_page(struct page *page)
  764. {
  765. return false;
  766. }
  767. static inline bool is_device_private_page(const struct page *page)
  768. {
  769. return false;
  770. }
  771. static inline bool is_device_public_page(const struct page *page)
  772. {
  773. return false;
  774. }
  775. #endif /* CONFIG_DEV_PAGEMAP_OPS */
  776. static inline void get_page(struct page *page)
  777. {
  778. page = compound_head(page);
  779. /*
  780. * Getting a normal page or the head of a compound page
  781. * requires to already have an elevated page->_refcount.
  782. */
  783. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  784. page_ref_inc(page);
  785. }
  786. static inline void put_page(struct page *page)
  787. {
  788. page = compound_head(page);
  789. /*
  790. * For devmap managed pages we need to catch refcount transition from
  791. * 2 to 1, when refcount reach one it means the page is free and we
  792. * need to inform the device driver through callback. See
  793. * include/linux/memremap.h and HMM for details.
  794. */
  795. if (put_devmap_managed_page(page))
  796. return;
  797. if (put_page_testzero(page))
  798. __put_page(page);
  799. }
  800. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  801. #define SECTION_IN_PAGE_FLAGS
  802. #endif
  803. /*
  804. * The identification function is mainly used by the buddy allocator for
  805. * determining if two pages could be buddies. We are not really identifying
  806. * the zone since we could be using the section number id if we do not have
  807. * node id available in page flags.
  808. * We only guarantee that it will return the same value for two combinable
  809. * pages in a zone.
  810. */
  811. static inline int page_zone_id(struct page *page)
  812. {
  813. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  814. }
  815. static inline int zone_to_nid(struct zone *zone)
  816. {
  817. #ifdef CONFIG_NUMA
  818. return zone->node;
  819. #else
  820. return 0;
  821. #endif
  822. }
  823. #ifdef NODE_NOT_IN_PAGE_FLAGS
  824. extern int page_to_nid(const struct page *page);
  825. #else
  826. static inline int page_to_nid(const struct page *page)
  827. {
  828. struct page *p = (struct page *)page;
  829. return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
  830. }
  831. #endif
  832. #ifdef CONFIG_NUMA_BALANCING
  833. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  834. {
  835. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  836. }
  837. static inline int cpupid_to_pid(int cpupid)
  838. {
  839. return cpupid & LAST__PID_MASK;
  840. }
  841. static inline int cpupid_to_cpu(int cpupid)
  842. {
  843. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  844. }
  845. static inline int cpupid_to_nid(int cpupid)
  846. {
  847. return cpu_to_node(cpupid_to_cpu(cpupid));
  848. }
  849. static inline bool cpupid_pid_unset(int cpupid)
  850. {
  851. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  852. }
  853. static inline bool cpupid_cpu_unset(int cpupid)
  854. {
  855. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  856. }
  857. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  858. {
  859. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  860. }
  861. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  862. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  863. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  864. {
  865. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  866. }
  867. static inline int page_cpupid_last(struct page *page)
  868. {
  869. return page->_last_cpupid;
  870. }
  871. static inline void page_cpupid_reset_last(struct page *page)
  872. {
  873. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  874. }
  875. #else
  876. static inline int page_cpupid_last(struct page *page)
  877. {
  878. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  879. }
  880. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  881. static inline void page_cpupid_reset_last(struct page *page)
  882. {
  883. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  884. }
  885. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  886. #else /* !CONFIG_NUMA_BALANCING */
  887. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  888. {
  889. return page_to_nid(page); /* XXX */
  890. }
  891. static inline int page_cpupid_last(struct page *page)
  892. {
  893. return page_to_nid(page); /* XXX */
  894. }
  895. static inline int cpupid_to_nid(int cpupid)
  896. {
  897. return -1;
  898. }
  899. static inline int cpupid_to_pid(int cpupid)
  900. {
  901. return -1;
  902. }
  903. static inline int cpupid_to_cpu(int cpupid)
  904. {
  905. return -1;
  906. }
  907. static inline int cpu_pid_to_cpupid(int nid, int pid)
  908. {
  909. return -1;
  910. }
  911. static inline bool cpupid_pid_unset(int cpupid)
  912. {
  913. return 1;
  914. }
  915. static inline void page_cpupid_reset_last(struct page *page)
  916. {
  917. }
  918. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  919. {
  920. return false;
  921. }
  922. #endif /* CONFIG_NUMA_BALANCING */
  923. static inline struct zone *page_zone(const struct page *page)
  924. {
  925. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  926. }
  927. static inline pg_data_t *page_pgdat(const struct page *page)
  928. {
  929. return NODE_DATA(page_to_nid(page));
  930. }
  931. #ifdef SECTION_IN_PAGE_FLAGS
  932. static inline void set_page_section(struct page *page, unsigned long section)
  933. {
  934. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  935. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  936. }
  937. static inline unsigned long page_to_section(const struct page *page)
  938. {
  939. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  940. }
  941. #endif
  942. static inline void set_page_zone(struct page *page, enum zone_type zone)
  943. {
  944. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  945. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  946. }
  947. static inline void set_page_node(struct page *page, unsigned long node)
  948. {
  949. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  950. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  951. }
  952. static inline void set_page_links(struct page *page, enum zone_type zone,
  953. unsigned long node, unsigned long pfn)
  954. {
  955. set_page_zone(page, zone);
  956. set_page_node(page, node);
  957. #ifdef SECTION_IN_PAGE_FLAGS
  958. set_page_section(page, pfn_to_section_nr(pfn));
  959. #endif
  960. }
  961. #ifdef CONFIG_MEMCG
  962. static inline struct mem_cgroup *page_memcg(struct page *page)
  963. {
  964. return page->mem_cgroup;
  965. }
  966. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  967. {
  968. WARN_ON_ONCE(!rcu_read_lock_held());
  969. return READ_ONCE(page->mem_cgroup);
  970. }
  971. #else
  972. static inline struct mem_cgroup *page_memcg(struct page *page)
  973. {
  974. return NULL;
  975. }
  976. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  977. {
  978. WARN_ON_ONCE(!rcu_read_lock_held());
  979. return NULL;
  980. }
  981. #endif
  982. /*
  983. * Some inline functions in vmstat.h depend on page_zone()
  984. */
  985. #include <linux/vmstat.h>
  986. static __always_inline void *lowmem_page_address(const struct page *page)
  987. {
  988. return page_to_virt(page);
  989. }
  990. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  991. #define HASHED_PAGE_VIRTUAL
  992. #endif
  993. #if defined(WANT_PAGE_VIRTUAL)
  994. static inline void *page_address(const struct page *page)
  995. {
  996. return page->virtual;
  997. }
  998. static inline void set_page_address(struct page *page, void *address)
  999. {
  1000. page->virtual = address;
  1001. }
  1002. #define page_address_init() do { } while(0)
  1003. #endif
  1004. #if defined(HASHED_PAGE_VIRTUAL)
  1005. void *page_address(const struct page *page);
  1006. void set_page_address(struct page *page, void *virtual);
  1007. void page_address_init(void);
  1008. #endif
  1009. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  1010. #define page_address(page) lowmem_page_address(page)
  1011. #define set_page_address(page, address) do { } while(0)
  1012. #define page_address_init() do { } while(0)
  1013. #endif
  1014. extern void *page_rmapping(struct page *page);
  1015. extern struct anon_vma *page_anon_vma(struct page *page);
  1016. extern struct address_space *page_mapping(struct page *page);
  1017. extern struct address_space *__page_file_mapping(struct page *);
  1018. static inline
  1019. struct address_space *page_file_mapping(struct page *page)
  1020. {
  1021. if (unlikely(PageSwapCache(page)))
  1022. return __page_file_mapping(page);
  1023. return page->mapping;
  1024. }
  1025. extern pgoff_t __page_file_index(struct page *page);
  1026. /*
  1027. * Return the pagecache index of the passed page. Regular pagecache pages
  1028. * use ->index whereas swapcache pages use swp_offset(->private)
  1029. */
  1030. static inline pgoff_t page_index(struct page *page)
  1031. {
  1032. if (unlikely(PageSwapCache(page)))
  1033. return __page_file_index(page);
  1034. return page->index;
  1035. }
  1036. bool page_mapped(struct page *page);
  1037. struct address_space *page_mapping(struct page *page);
  1038. struct address_space *page_mapping_file(struct page *page);
  1039. /*
  1040. * Return true only if the page has been allocated with
  1041. * ALLOC_NO_WATERMARKS and the low watermark was not
  1042. * met implying that the system is under some pressure.
  1043. */
  1044. static inline bool page_is_pfmemalloc(struct page *page)
  1045. {
  1046. /*
  1047. * Page index cannot be this large so this must be
  1048. * a pfmemalloc page.
  1049. */
  1050. return page->index == -1UL;
  1051. }
  1052. /*
  1053. * Only to be called by the page allocator on a freshly allocated
  1054. * page.
  1055. */
  1056. static inline void set_page_pfmemalloc(struct page *page)
  1057. {
  1058. page->index = -1UL;
  1059. }
  1060. static inline void clear_page_pfmemalloc(struct page *page)
  1061. {
  1062. page->index = 0;
  1063. }
  1064. /*
  1065. * Different kinds of faults, as returned by handle_mm_fault().
  1066. * Used to decide whether a process gets delivered SIGBUS or
  1067. * just gets major/minor fault counters bumped up.
  1068. */
  1069. #define VM_FAULT_OOM 0x0001
  1070. #define VM_FAULT_SIGBUS 0x0002
  1071. #define VM_FAULT_MAJOR 0x0004
  1072. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  1073. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  1074. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  1075. #define VM_FAULT_SIGSEGV 0x0040
  1076. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  1077. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  1078. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  1079. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  1080. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  1081. #define VM_FAULT_NEEDDSYNC 0x2000 /* ->fault did not modify page tables
  1082. * and needs fsync() to complete (for
  1083. * synchronous page faults in DAX) */
  1084. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  1085. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  1086. VM_FAULT_FALLBACK)
  1087. #define VM_FAULT_RESULT_TRACE \
  1088. { VM_FAULT_OOM, "OOM" }, \
  1089. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  1090. { VM_FAULT_MAJOR, "MAJOR" }, \
  1091. { VM_FAULT_WRITE, "WRITE" }, \
  1092. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  1093. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  1094. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  1095. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  1096. { VM_FAULT_LOCKED, "LOCKED" }, \
  1097. { VM_FAULT_RETRY, "RETRY" }, \
  1098. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  1099. { VM_FAULT_DONE_COW, "DONE_COW" }, \
  1100. { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
  1101. /* Encode hstate index for a hwpoisoned large page */
  1102. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  1103. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  1104. /*
  1105. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  1106. */
  1107. extern void pagefault_out_of_memory(void);
  1108. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  1109. /*
  1110. * Flags passed to show_mem() and show_free_areas() to suppress output in
  1111. * various contexts.
  1112. */
  1113. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1114. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1115. extern bool can_do_mlock(void);
  1116. extern int user_shm_lock(size_t, struct user_struct *);
  1117. extern void user_shm_unlock(size_t, struct user_struct *);
  1118. /*
  1119. * Parameter block passed down to zap_pte_range in exceptional cases.
  1120. */
  1121. struct zap_details {
  1122. struct address_space *check_mapping; /* Check page->mapping if set */
  1123. pgoff_t first_index; /* Lowest page->index to unmap */
  1124. pgoff_t last_index; /* Highest page->index to unmap */
  1125. };
  1126. struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1127. pte_t pte, bool with_public_device);
  1128. #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
  1129. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1130. pmd_t pmd);
  1131. void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1132. unsigned long size);
  1133. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1134. unsigned long size);
  1135. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1136. unsigned long start, unsigned long end);
  1137. /**
  1138. * mm_walk - callbacks for walk_page_range
  1139. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1140. * this handler should only handle pud_trans_huge() puds.
  1141. * the pmd_entry or pte_entry callbacks will be used for
  1142. * regular PUDs.
  1143. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1144. * this handler is required to be able to handle
  1145. * pmd_trans_huge() pmds. They may simply choose to
  1146. * split_huge_page() instead of handling it explicitly.
  1147. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1148. * @pte_hole: if set, called for each hole at all levels
  1149. * @hugetlb_entry: if set, called for each hugetlb entry
  1150. * @test_walk: caller specific callback function to determine whether
  1151. * we walk over the current vma or not. Returning 0
  1152. * value means "do page table walk over the current vma,"
  1153. * and a negative one means "abort current page table walk
  1154. * right now." 1 means "skip the current vma."
  1155. * @mm: mm_struct representing the target process of page table walk
  1156. * @vma: vma currently walked (NULL if walking outside vmas)
  1157. * @private: private data for callbacks' usage
  1158. *
  1159. * (see the comment on walk_page_range() for more details)
  1160. */
  1161. struct mm_walk {
  1162. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1163. unsigned long next, struct mm_walk *walk);
  1164. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1165. unsigned long next, struct mm_walk *walk);
  1166. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1167. unsigned long next, struct mm_walk *walk);
  1168. int (*pte_hole)(unsigned long addr, unsigned long next,
  1169. struct mm_walk *walk);
  1170. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1171. unsigned long addr, unsigned long next,
  1172. struct mm_walk *walk);
  1173. int (*test_walk)(unsigned long addr, unsigned long next,
  1174. struct mm_walk *walk);
  1175. struct mm_struct *mm;
  1176. struct vm_area_struct *vma;
  1177. void *private;
  1178. };
  1179. int walk_page_range(unsigned long addr, unsigned long end,
  1180. struct mm_walk *walk);
  1181. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1182. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1183. unsigned long end, unsigned long floor, unsigned long ceiling);
  1184. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1185. struct vm_area_struct *vma);
  1186. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1187. unsigned long *start, unsigned long *end,
  1188. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1189. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1190. unsigned long *pfn);
  1191. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1192. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1193. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1194. void *buf, int len, int write);
  1195. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1196. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1197. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1198. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1199. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1200. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1201. int invalidate_inode_page(struct page *page);
  1202. #ifdef CONFIG_MMU
  1203. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1204. unsigned int flags);
  1205. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1206. unsigned long address, unsigned int fault_flags,
  1207. bool *unlocked);
  1208. void unmap_mapping_pages(struct address_space *mapping,
  1209. pgoff_t start, pgoff_t nr, bool even_cows);
  1210. void unmap_mapping_range(struct address_space *mapping,
  1211. loff_t const holebegin, loff_t const holelen, int even_cows);
  1212. #else
  1213. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1214. unsigned long address, unsigned int flags)
  1215. {
  1216. /* should never happen if there's no MMU */
  1217. BUG();
  1218. return VM_FAULT_SIGBUS;
  1219. }
  1220. static inline int fixup_user_fault(struct task_struct *tsk,
  1221. struct mm_struct *mm, unsigned long address,
  1222. unsigned int fault_flags, bool *unlocked)
  1223. {
  1224. /* should never happen if there's no MMU */
  1225. BUG();
  1226. return -EFAULT;
  1227. }
  1228. static inline void unmap_mapping_pages(struct address_space *mapping,
  1229. pgoff_t start, pgoff_t nr, bool even_cows) { }
  1230. static inline void unmap_mapping_range(struct address_space *mapping,
  1231. loff_t const holebegin, loff_t const holelen, int even_cows) { }
  1232. #endif
  1233. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1234. loff_t const holebegin, loff_t const holelen)
  1235. {
  1236. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1237. }
  1238. extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
  1239. void *buf, int len, unsigned int gup_flags);
  1240. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1241. void *buf, int len, unsigned int gup_flags);
  1242. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1243. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1244. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1245. unsigned long start, unsigned long nr_pages,
  1246. unsigned int gup_flags, struct page **pages,
  1247. struct vm_area_struct **vmas, int *locked);
  1248. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1249. unsigned int gup_flags, struct page **pages,
  1250. struct vm_area_struct **vmas);
  1251. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1252. unsigned int gup_flags, struct page **pages, int *locked);
  1253. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1254. struct page **pages, unsigned int gup_flags);
  1255. #ifdef CONFIG_FS_DAX
  1256. long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
  1257. unsigned int gup_flags, struct page **pages,
  1258. struct vm_area_struct **vmas);
  1259. #else
  1260. static inline long get_user_pages_longterm(unsigned long start,
  1261. unsigned long nr_pages, unsigned int gup_flags,
  1262. struct page **pages, struct vm_area_struct **vmas)
  1263. {
  1264. return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
  1265. }
  1266. #endif /* CONFIG_FS_DAX */
  1267. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1268. struct page **pages);
  1269. /* Container for pinned pfns / pages */
  1270. struct frame_vector {
  1271. unsigned int nr_allocated; /* Number of frames we have space for */
  1272. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1273. bool got_ref; /* Did we pin pages by getting page ref? */
  1274. bool is_pfns; /* Does array contain pages or pfns? */
  1275. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1276. * pfns_vector_pages() or pfns_vector_pfns()
  1277. * for access */
  1278. };
  1279. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1280. void frame_vector_destroy(struct frame_vector *vec);
  1281. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1282. unsigned int gup_flags, struct frame_vector *vec);
  1283. void put_vaddr_frames(struct frame_vector *vec);
  1284. int frame_vector_to_pages(struct frame_vector *vec);
  1285. void frame_vector_to_pfns(struct frame_vector *vec);
  1286. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1287. {
  1288. return vec->nr_frames;
  1289. }
  1290. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1291. {
  1292. if (vec->is_pfns) {
  1293. int err = frame_vector_to_pages(vec);
  1294. if (err)
  1295. return ERR_PTR(err);
  1296. }
  1297. return (struct page **)(vec->ptrs);
  1298. }
  1299. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1300. {
  1301. if (!vec->is_pfns)
  1302. frame_vector_to_pfns(vec);
  1303. return (unsigned long *)(vec->ptrs);
  1304. }
  1305. struct kvec;
  1306. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1307. struct page **pages);
  1308. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1309. struct page *get_dump_page(unsigned long addr);
  1310. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1311. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1312. unsigned int length);
  1313. void __set_page_dirty(struct page *, struct address_space *, int warn);
  1314. int __set_page_dirty_nobuffers(struct page *page);
  1315. int __set_page_dirty_no_writeback(struct page *page);
  1316. int redirty_page_for_writepage(struct writeback_control *wbc,
  1317. struct page *page);
  1318. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1319. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1320. struct bdi_writeback *wb);
  1321. int set_page_dirty(struct page *page);
  1322. int set_page_dirty_lock(struct page *page);
  1323. void __cancel_dirty_page(struct page *page);
  1324. static inline void cancel_dirty_page(struct page *page)
  1325. {
  1326. /* Avoid atomic ops, locking, etc. when not actually needed. */
  1327. if (PageDirty(page))
  1328. __cancel_dirty_page(page);
  1329. }
  1330. int clear_page_dirty_for_io(struct page *page);
  1331. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1332. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1333. {
  1334. return !vma->vm_ops;
  1335. }
  1336. #ifdef CONFIG_SHMEM
  1337. /*
  1338. * The vma_is_shmem is not inline because it is used only by slow
  1339. * paths in userfault.
  1340. */
  1341. bool vma_is_shmem(struct vm_area_struct *vma);
  1342. #else
  1343. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1344. #endif
  1345. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1346. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1347. unsigned long old_addr, struct vm_area_struct *new_vma,
  1348. unsigned long new_addr, unsigned long len,
  1349. bool need_rmap_locks);
  1350. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1351. unsigned long end, pgprot_t newprot,
  1352. int dirty_accountable, int prot_numa);
  1353. extern int mprotect_fixup(struct vm_area_struct *vma,
  1354. struct vm_area_struct **pprev, unsigned long start,
  1355. unsigned long end, unsigned long newflags);
  1356. /*
  1357. * doesn't attempt to fault and will return short.
  1358. */
  1359. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1360. struct page **pages);
  1361. /*
  1362. * per-process(per-mm_struct) statistics.
  1363. */
  1364. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1365. {
  1366. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1367. #ifdef SPLIT_RSS_COUNTING
  1368. /*
  1369. * counter is updated in asynchronous manner and may go to minus.
  1370. * But it's never be expected number for users.
  1371. */
  1372. if (val < 0)
  1373. val = 0;
  1374. #endif
  1375. return (unsigned long)val;
  1376. }
  1377. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1378. {
  1379. atomic_long_add(value, &mm->rss_stat.count[member]);
  1380. }
  1381. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1382. {
  1383. atomic_long_inc(&mm->rss_stat.count[member]);
  1384. }
  1385. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1386. {
  1387. atomic_long_dec(&mm->rss_stat.count[member]);
  1388. }
  1389. /* Optimized variant when page is already known not to be PageAnon */
  1390. static inline int mm_counter_file(struct page *page)
  1391. {
  1392. if (PageSwapBacked(page))
  1393. return MM_SHMEMPAGES;
  1394. return MM_FILEPAGES;
  1395. }
  1396. static inline int mm_counter(struct page *page)
  1397. {
  1398. if (PageAnon(page))
  1399. return MM_ANONPAGES;
  1400. return mm_counter_file(page);
  1401. }
  1402. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1403. {
  1404. return get_mm_counter(mm, MM_FILEPAGES) +
  1405. get_mm_counter(mm, MM_ANONPAGES) +
  1406. get_mm_counter(mm, MM_SHMEMPAGES);
  1407. }
  1408. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1409. {
  1410. return max(mm->hiwater_rss, get_mm_rss(mm));
  1411. }
  1412. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1413. {
  1414. return max(mm->hiwater_vm, mm->total_vm);
  1415. }
  1416. static inline void update_hiwater_rss(struct mm_struct *mm)
  1417. {
  1418. unsigned long _rss = get_mm_rss(mm);
  1419. if ((mm)->hiwater_rss < _rss)
  1420. (mm)->hiwater_rss = _rss;
  1421. }
  1422. static inline void update_hiwater_vm(struct mm_struct *mm)
  1423. {
  1424. if (mm->hiwater_vm < mm->total_vm)
  1425. mm->hiwater_vm = mm->total_vm;
  1426. }
  1427. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1428. {
  1429. mm->hiwater_rss = get_mm_rss(mm);
  1430. }
  1431. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1432. struct mm_struct *mm)
  1433. {
  1434. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1435. if (*maxrss < hiwater_rss)
  1436. *maxrss = hiwater_rss;
  1437. }
  1438. #if defined(SPLIT_RSS_COUNTING)
  1439. void sync_mm_rss(struct mm_struct *mm);
  1440. #else
  1441. static inline void sync_mm_rss(struct mm_struct *mm)
  1442. {
  1443. }
  1444. #endif
  1445. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1446. static inline int pte_devmap(pte_t pte)
  1447. {
  1448. return 0;
  1449. }
  1450. #endif
  1451. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1452. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1453. spinlock_t **ptl);
  1454. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1455. spinlock_t **ptl)
  1456. {
  1457. pte_t *ptep;
  1458. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1459. return ptep;
  1460. }
  1461. #ifdef __PAGETABLE_P4D_FOLDED
  1462. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1463. unsigned long address)
  1464. {
  1465. return 0;
  1466. }
  1467. #else
  1468. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1469. #endif
  1470. #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
  1471. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1472. unsigned long address)
  1473. {
  1474. return 0;
  1475. }
  1476. static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
  1477. static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
  1478. #else
  1479. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1480. static inline void mm_inc_nr_puds(struct mm_struct *mm)
  1481. {
  1482. atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1483. }
  1484. static inline void mm_dec_nr_puds(struct mm_struct *mm)
  1485. {
  1486. atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
  1487. }
  1488. #endif
  1489. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1490. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1491. unsigned long address)
  1492. {
  1493. return 0;
  1494. }
  1495. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1496. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1497. #else
  1498. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1499. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1500. {
  1501. atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1502. }
  1503. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1504. {
  1505. atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
  1506. }
  1507. #endif
  1508. #ifdef CONFIG_MMU
  1509. static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
  1510. {
  1511. atomic_long_set(&mm->pgtables_bytes, 0);
  1512. }
  1513. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1514. {
  1515. return atomic_long_read(&mm->pgtables_bytes);
  1516. }
  1517. static inline void mm_inc_nr_ptes(struct mm_struct *mm)
  1518. {
  1519. atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1520. }
  1521. static inline void mm_dec_nr_ptes(struct mm_struct *mm)
  1522. {
  1523. atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
  1524. }
  1525. #else
  1526. static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
  1527. static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
  1528. {
  1529. return 0;
  1530. }
  1531. static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
  1532. static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
  1533. #endif
  1534. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1535. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1536. /*
  1537. * The following ifdef needed to get the 4level-fixup.h header to work.
  1538. * Remove it when 4level-fixup.h has been removed.
  1539. */
  1540. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1541. #ifndef __ARCH_HAS_5LEVEL_HACK
  1542. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1543. unsigned long address)
  1544. {
  1545. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1546. NULL : p4d_offset(pgd, address);
  1547. }
  1548. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1549. unsigned long address)
  1550. {
  1551. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1552. NULL : pud_offset(p4d, address);
  1553. }
  1554. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1555. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1556. {
  1557. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1558. NULL: pmd_offset(pud, address);
  1559. }
  1560. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1561. #if USE_SPLIT_PTE_PTLOCKS
  1562. #if ALLOC_SPLIT_PTLOCKS
  1563. void __init ptlock_cache_init(void);
  1564. extern bool ptlock_alloc(struct page *page);
  1565. extern void ptlock_free(struct page *page);
  1566. static inline spinlock_t *ptlock_ptr(struct page *page)
  1567. {
  1568. return page->ptl;
  1569. }
  1570. #else /* ALLOC_SPLIT_PTLOCKS */
  1571. static inline void ptlock_cache_init(void)
  1572. {
  1573. }
  1574. static inline bool ptlock_alloc(struct page *page)
  1575. {
  1576. return true;
  1577. }
  1578. static inline void ptlock_free(struct page *page)
  1579. {
  1580. }
  1581. static inline spinlock_t *ptlock_ptr(struct page *page)
  1582. {
  1583. return &page->ptl;
  1584. }
  1585. #endif /* ALLOC_SPLIT_PTLOCKS */
  1586. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1587. {
  1588. return ptlock_ptr(pmd_page(*pmd));
  1589. }
  1590. static inline bool ptlock_init(struct page *page)
  1591. {
  1592. /*
  1593. * prep_new_page() initialize page->private (and therefore page->ptl)
  1594. * with 0. Make sure nobody took it in use in between.
  1595. *
  1596. * It can happen if arch try to use slab for page table allocation:
  1597. * slab code uses page->slab_cache, which share storage with page->ptl.
  1598. */
  1599. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1600. if (!ptlock_alloc(page))
  1601. return false;
  1602. spin_lock_init(ptlock_ptr(page));
  1603. return true;
  1604. }
  1605. /* Reset page->mapping so free_pages_check won't complain. */
  1606. static inline void pte_lock_deinit(struct page *page)
  1607. {
  1608. page->mapping = NULL;
  1609. ptlock_free(page);
  1610. }
  1611. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1612. /*
  1613. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1614. */
  1615. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1616. {
  1617. return &mm->page_table_lock;
  1618. }
  1619. static inline void ptlock_cache_init(void) {}
  1620. static inline bool ptlock_init(struct page *page) { return true; }
  1621. static inline void pte_lock_deinit(struct page *page) {}
  1622. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1623. static inline void pgtable_init(void)
  1624. {
  1625. ptlock_cache_init();
  1626. pgtable_cache_init();
  1627. }
  1628. static inline bool pgtable_page_ctor(struct page *page)
  1629. {
  1630. if (!ptlock_init(page))
  1631. return false;
  1632. __SetPageTable(page);
  1633. inc_zone_page_state(page, NR_PAGETABLE);
  1634. return true;
  1635. }
  1636. static inline void pgtable_page_dtor(struct page *page)
  1637. {
  1638. pte_lock_deinit(page);
  1639. __ClearPageTable(page);
  1640. dec_zone_page_state(page, NR_PAGETABLE);
  1641. }
  1642. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1643. ({ \
  1644. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1645. pte_t *__pte = pte_offset_map(pmd, address); \
  1646. *(ptlp) = __ptl; \
  1647. spin_lock(__ptl); \
  1648. __pte; \
  1649. })
  1650. #define pte_unmap_unlock(pte, ptl) do { \
  1651. spin_unlock(ptl); \
  1652. pte_unmap(pte); \
  1653. } while (0)
  1654. #define pte_alloc(mm, pmd, address) \
  1655. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1656. #define pte_alloc_map(mm, pmd, address) \
  1657. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1658. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1659. (pte_alloc(mm, pmd, address) ? \
  1660. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1661. #define pte_alloc_kernel(pmd, address) \
  1662. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1663. NULL: pte_offset_kernel(pmd, address))
  1664. #if USE_SPLIT_PMD_PTLOCKS
  1665. static struct page *pmd_to_page(pmd_t *pmd)
  1666. {
  1667. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1668. return virt_to_page((void *)((unsigned long) pmd & mask));
  1669. }
  1670. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1671. {
  1672. return ptlock_ptr(pmd_to_page(pmd));
  1673. }
  1674. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1675. {
  1676. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1677. page->pmd_huge_pte = NULL;
  1678. #endif
  1679. return ptlock_init(page);
  1680. }
  1681. static inline void pgtable_pmd_page_dtor(struct page *page)
  1682. {
  1683. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1684. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1685. #endif
  1686. ptlock_free(page);
  1687. }
  1688. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1689. #else
  1690. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1691. {
  1692. return &mm->page_table_lock;
  1693. }
  1694. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1695. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1696. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1697. #endif
  1698. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1699. {
  1700. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1701. spin_lock(ptl);
  1702. return ptl;
  1703. }
  1704. /*
  1705. * No scalability reason to split PUD locks yet, but follow the same pattern
  1706. * as the PMD locks to make it easier if we decide to. The VM should not be
  1707. * considered ready to switch to split PUD locks yet; there may be places
  1708. * which need to be converted from page_table_lock.
  1709. */
  1710. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1711. {
  1712. return &mm->page_table_lock;
  1713. }
  1714. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1715. {
  1716. spinlock_t *ptl = pud_lockptr(mm, pud);
  1717. spin_lock(ptl);
  1718. return ptl;
  1719. }
  1720. extern void __init pagecache_init(void);
  1721. extern void free_area_init(unsigned long * zones_size);
  1722. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1723. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1724. extern void free_initmem(void);
  1725. /*
  1726. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1727. * into the buddy system. The freed pages will be poisoned with pattern
  1728. * "poison" if it's within range [0, UCHAR_MAX].
  1729. * Return pages freed into the buddy system.
  1730. */
  1731. extern unsigned long free_reserved_area(void *start, void *end,
  1732. int poison, char *s);
  1733. #ifdef CONFIG_HIGHMEM
  1734. /*
  1735. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1736. * and totalram_pages.
  1737. */
  1738. extern void free_highmem_page(struct page *page);
  1739. #endif
  1740. extern void adjust_managed_page_count(struct page *page, long count);
  1741. extern void mem_init_print_info(const char *str);
  1742. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1743. /* Free the reserved page into the buddy system, so it gets managed. */
  1744. static inline void __free_reserved_page(struct page *page)
  1745. {
  1746. ClearPageReserved(page);
  1747. init_page_count(page);
  1748. __free_page(page);
  1749. }
  1750. static inline void free_reserved_page(struct page *page)
  1751. {
  1752. __free_reserved_page(page);
  1753. adjust_managed_page_count(page, 1);
  1754. }
  1755. static inline void mark_page_reserved(struct page *page)
  1756. {
  1757. SetPageReserved(page);
  1758. adjust_managed_page_count(page, -1);
  1759. }
  1760. /*
  1761. * Default method to free all the __init memory into the buddy system.
  1762. * The freed pages will be poisoned with pattern "poison" if it's within
  1763. * range [0, UCHAR_MAX].
  1764. * Return pages freed into the buddy system.
  1765. */
  1766. static inline unsigned long free_initmem_default(int poison)
  1767. {
  1768. extern char __init_begin[], __init_end[];
  1769. return free_reserved_area(&__init_begin, &__init_end,
  1770. poison, "unused kernel");
  1771. }
  1772. static inline unsigned long get_num_physpages(void)
  1773. {
  1774. int nid;
  1775. unsigned long phys_pages = 0;
  1776. for_each_online_node(nid)
  1777. phys_pages += node_present_pages(nid);
  1778. return phys_pages;
  1779. }
  1780. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1781. /*
  1782. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1783. * zones, allocate the backing mem_map and account for memory holes in a more
  1784. * architecture independent manner. This is a substitute for creating the
  1785. * zone_sizes[] and zholes_size[] arrays and passing them to
  1786. * free_area_init_node()
  1787. *
  1788. * An architecture is expected to register range of page frames backed by
  1789. * physical memory with memblock_add[_node]() before calling
  1790. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1791. * usage, an architecture is expected to do something like
  1792. *
  1793. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1794. * max_highmem_pfn};
  1795. * for_each_valid_physical_page_range()
  1796. * memblock_add_node(base, size, nid)
  1797. * free_area_init_nodes(max_zone_pfns);
  1798. *
  1799. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1800. * registered physical page range. Similarly
  1801. * sparse_memory_present_with_active_regions() calls memory_present() for
  1802. * each range when SPARSEMEM is enabled.
  1803. *
  1804. * See mm/page_alloc.c for more information on each function exposed by
  1805. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1806. */
  1807. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1808. unsigned long node_map_pfn_alignment(void);
  1809. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1810. unsigned long end_pfn);
  1811. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1812. unsigned long end_pfn);
  1813. extern void get_pfn_range_for_nid(unsigned int nid,
  1814. unsigned long *start_pfn, unsigned long *end_pfn);
  1815. extern unsigned long find_min_pfn_with_active_regions(void);
  1816. extern void free_bootmem_with_active_regions(int nid,
  1817. unsigned long max_low_pfn);
  1818. extern void sparse_memory_present_with_active_regions(int nid);
  1819. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1820. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1821. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1822. static inline int __early_pfn_to_nid(unsigned long pfn,
  1823. struct mminit_pfnnid_cache *state)
  1824. {
  1825. return 0;
  1826. }
  1827. #else
  1828. /* please see mm/page_alloc.c */
  1829. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1830. /* there is a per-arch backend function. */
  1831. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1832. struct mminit_pfnnid_cache *state);
  1833. #endif
  1834. #ifdef CONFIG_HAVE_MEMBLOCK
  1835. void zero_resv_unavail(void);
  1836. #else
  1837. static inline void zero_resv_unavail(void) {}
  1838. #endif
  1839. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1840. extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
  1841. enum memmap_context, struct vmem_altmap *);
  1842. extern void setup_per_zone_wmarks(void);
  1843. extern int __meminit init_per_zone_wmark_min(void);
  1844. extern void mem_init(void);
  1845. extern void __init mmap_init(void);
  1846. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1847. extern long si_mem_available(void);
  1848. extern void si_meminfo(struct sysinfo * val);
  1849. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1850. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1851. extern unsigned long arch_reserved_kernel_pages(void);
  1852. #endif
  1853. extern __printf(3, 4)
  1854. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1855. extern void setup_per_cpu_pageset(void);
  1856. extern void zone_pcp_update(struct zone *zone);
  1857. extern void zone_pcp_reset(struct zone *zone);
  1858. /* page_alloc.c */
  1859. extern int min_free_kbytes;
  1860. extern int watermark_scale_factor;
  1861. /* nommu.c */
  1862. extern atomic_long_t mmap_pages_allocated;
  1863. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1864. /* interval_tree.c */
  1865. void vma_interval_tree_insert(struct vm_area_struct *node,
  1866. struct rb_root_cached *root);
  1867. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1868. struct vm_area_struct *prev,
  1869. struct rb_root_cached *root);
  1870. void vma_interval_tree_remove(struct vm_area_struct *node,
  1871. struct rb_root_cached *root);
  1872. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
  1873. unsigned long start, unsigned long last);
  1874. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1875. unsigned long start, unsigned long last);
  1876. #define vma_interval_tree_foreach(vma, root, start, last) \
  1877. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1878. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1879. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1880. struct rb_root_cached *root);
  1881. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1882. struct rb_root_cached *root);
  1883. struct anon_vma_chain *
  1884. anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
  1885. unsigned long start, unsigned long last);
  1886. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1887. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1888. #ifdef CONFIG_DEBUG_VM_RB
  1889. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1890. #endif
  1891. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1892. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1893. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1894. /* mmap.c */
  1895. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1896. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1897. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1898. struct vm_area_struct *expand);
  1899. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1900. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1901. {
  1902. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1903. }
  1904. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1905. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1906. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1907. struct mempolicy *, struct vm_userfaultfd_ctx);
  1908. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1909. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1910. unsigned long addr, int new_below);
  1911. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1912. unsigned long addr, int new_below);
  1913. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1914. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1915. struct rb_node **, struct rb_node *);
  1916. extern void unlink_file_vma(struct vm_area_struct *);
  1917. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1918. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1919. bool *need_rmap_locks);
  1920. extern void exit_mmap(struct mm_struct *);
  1921. static inline int check_data_rlimit(unsigned long rlim,
  1922. unsigned long new,
  1923. unsigned long start,
  1924. unsigned long end_data,
  1925. unsigned long start_data)
  1926. {
  1927. if (rlim < RLIM_INFINITY) {
  1928. if (((new - start) + (end_data - start_data)) > rlim)
  1929. return -ENOSPC;
  1930. }
  1931. return 0;
  1932. }
  1933. extern int mm_take_all_locks(struct mm_struct *mm);
  1934. extern void mm_drop_all_locks(struct mm_struct *mm);
  1935. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1936. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1937. extern struct file *get_task_exe_file(struct task_struct *task);
  1938. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1939. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1940. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1941. const struct vm_special_mapping *sm);
  1942. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1943. unsigned long addr, unsigned long len,
  1944. unsigned long flags,
  1945. const struct vm_special_mapping *spec);
  1946. /* This is an obsolete alternative to _install_special_mapping. */
  1947. extern int install_special_mapping(struct mm_struct *mm,
  1948. unsigned long addr, unsigned long len,
  1949. unsigned long flags, struct page **pages);
  1950. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1951. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1952. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1953. struct list_head *uf);
  1954. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1955. unsigned long len, unsigned long prot, unsigned long flags,
  1956. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1957. struct list_head *uf);
  1958. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1959. struct list_head *uf);
  1960. static inline unsigned long
  1961. do_mmap_pgoff(struct file *file, unsigned long addr,
  1962. unsigned long len, unsigned long prot, unsigned long flags,
  1963. unsigned long pgoff, unsigned long *populate,
  1964. struct list_head *uf)
  1965. {
  1966. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1967. }
  1968. #ifdef CONFIG_MMU
  1969. extern int __mm_populate(unsigned long addr, unsigned long len,
  1970. int ignore_errors);
  1971. static inline void mm_populate(unsigned long addr, unsigned long len)
  1972. {
  1973. /* Ignore errors */
  1974. (void) __mm_populate(addr, len, 1);
  1975. }
  1976. #else
  1977. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1978. #endif
  1979. /* These take the mm semaphore themselves */
  1980. extern int __must_check vm_brk(unsigned long, unsigned long);
  1981. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1982. extern int vm_munmap(unsigned long, size_t);
  1983. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1984. unsigned long, unsigned long,
  1985. unsigned long, unsigned long);
  1986. struct vm_unmapped_area_info {
  1987. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1988. unsigned long flags;
  1989. unsigned long length;
  1990. unsigned long low_limit;
  1991. unsigned long high_limit;
  1992. unsigned long align_mask;
  1993. unsigned long align_offset;
  1994. };
  1995. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1996. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1997. /*
  1998. * Search for an unmapped address range.
  1999. *
  2000. * We are looking for a range that:
  2001. * - does not intersect with any VMA;
  2002. * - is contained within the [low_limit, high_limit) interval;
  2003. * - is at least the desired size.
  2004. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  2005. */
  2006. static inline unsigned long
  2007. vm_unmapped_area(struct vm_unmapped_area_info *info)
  2008. {
  2009. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  2010. return unmapped_area_topdown(info);
  2011. else
  2012. return unmapped_area(info);
  2013. }
  2014. /* truncate.c */
  2015. extern void truncate_inode_pages(struct address_space *, loff_t);
  2016. extern void truncate_inode_pages_range(struct address_space *,
  2017. loff_t lstart, loff_t lend);
  2018. extern void truncate_inode_pages_final(struct address_space *);
  2019. /* generic vm_area_ops exported for stackable file systems */
  2020. extern vm_fault_t filemap_fault(struct vm_fault *vmf);
  2021. extern void filemap_map_pages(struct vm_fault *vmf,
  2022. pgoff_t start_pgoff, pgoff_t end_pgoff);
  2023. extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
  2024. /* mm/page-writeback.c */
  2025. int __must_check write_one_page(struct page *page);
  2026. void task_dirty_inc(struct task_struct *tsk);
  2027. /* readahead.c */
  2028. #define VM_MAX_READAHEAD 128 /* kbytes */
  2029. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  2030. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  2031. pgoff_t offset, unsigned long nr_to_read);
  2032. void page_cache_sync_readahead(struct address_space *mapping,
  2033. struct file_ra_state *ra,
  2034. struct file *filp,
  2035. pgoff_t offset,
  2036. unsigned long size);
  2037. void page_cache_async_readahead(struct address_space *mapping,
  2038. struct file_ra_state *ra,
  2039. struct file *filp,
  2040. struct page *pg,
  2041. pgoff_t offset,
  2042. unsigned long size);
  2043. extern unsigned long stack_guard_gap;
  2044. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  2045. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  2046. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  2047. extern int expand_downwards(struct vm_area_struct *vma,
  2048. unsigned long address);
  2049. #if VM_GROWSUP
  2050. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  2051. #else
  2052. #define expand_upwards(vma, address) (0)
  2053. #endif
  2054. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  2055. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  2056. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  2057. struct vm_area_struct **pprev);
  2058. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  2059. NULL if none. Assume start_addr < end_addr. */
  2060. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  2061. {
  2062. struct vm_area_struct * vma = find_vma(mm,start_addr);
  2063. if (vma && end_addr <= vma->vm_start)
  2064. vma = NULL;
  2065. return vma;
  2066. }
  2067. static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
  2068. {
  2069. unsigned long vm_start = vma->vm_start;
  2070. if (vma->vm_flags & VM_GROWSDOWN) {
  2071. vm_start -= stack_guard_gap;
  2072. if (vm_start > vma->vm_start)
  2073. vm_start = 0;
  2074. }
  2075. return vm_start;
  2076. }
  2077. static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
  2078. {
  2079. unsigned long vm_end = vma->vm_end;
  2080. if (vma->vm_flags & VM_GROWSUP) {
  2081. vm_end += stack_guard_gap;
  2082. if (vm_end < vma->vm_end)
  2083. vm_end = -PAGE_SIZE;
  2084. }
  2085. return vm_end;
  2086. }
  2087. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  2088. {
  2089. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  2090. }
  2091. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  2092. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  2093. unsigned long vm_start, unsigned long vm_end)
  2094. {
  2095. struct vm_area_struct *vma = find_vma(mm, vm_start);
  2096. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  2097. vma = NULL;
  2098. return vma;
  2099. }
  2100. #ifdef CONFIG_MMU
  2101. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  2102. void vma_set_page_prot(struct vm_area_struct *vma);
  2103. #else
  2104. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  2105. {
  2106. return __pgprot(0);
  2107. }
  2108. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  2109. {
  2110. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2111. }
  2112. #endif
  2113. #ifdef CONFIG_NUMA_BALANCING
  2114. unsigned long change_prot_numa(struct vm_area_struct *vma,
  2115. unsigned long start, unsigned long end);
  2116. #endif
  2117. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  2118. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  2119. unsigned long pfn, unsigned long size, pgprot_t);
  2120. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  2121. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  2122. unsigned long pfn);
  2123. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  2124. unsigned long pfn, pgprot_t pgprot);
  2125. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  2126. pfn_t pfn);
  2127. vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
  2128. unsigned long addr, pfn_t pfn);
  2129. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  2130. static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
  2131. unsigned long addr, struct page *page)
  2132. {
  2133. int err = vm_insert_page(vma, addr, page);
  2134. if (err == -ENOMEM)
  2135. return VM_FAULT_OOM;
  2136. if (err < 0 && err != -EBUSY)
  2137. return VM_FAULT_SIGBUS;
  2138. return VM_FAULT_NOPAGE;
  2139. }
  2140. static inline vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma,
  2141. unsigned long addr, pfn_t pfn)
  2142. {
  2143. int err = vm_insert_mixed(vma, addr, pfn);
  2144. if (err == -ENOMEM)
  2145. return VM_FAULT_OOM;
  2146. if (err < 0 && err != -EBUSY)
  2147. return VM_FAULT_SIGBUS;
  2148. return VM_FAULT_NOPAGE;
  2149. }
  2150. static inline vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma,
  2151. unsigned long addr, unsigned long pfn)
  2152. {
  2153. int err = vm_insert_pfn(vma, addr, pfn);
  2154. if (err == -ENOMEM)
  2155. return VM_FAULT_OOM;
  2156. if (err < 0 && err != -EBUSY)
  2157. return VM_FAULT_SIGBUS;
  2158. return VM_FAULT_NOPAGE;
  2159. }
  2160. static inline vm_fault_t vmf_error(int err)
  2161. {
  2162. if (err == -ENOMEM)
  2163. return VM_FAULT_OOM;
  2164. return VM_FAULT_SIGBUS;
  2165. }
  2166. struct page *follow_page_mask(struct vm_area_struct *vma,
  2167. unsigned long address, unsigned int foll_flags,
  2168. unsigned int *page_mask);
  2169. static inline struct page *follow_page(struct vm_area_struct *vma,
  2170. unsigned long address, unsigned int foll_flags)
  2171. {
  2172. unsigned int unused_page_mask;
  2173. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  2174. }
  2175. #define FOLL_WRITE 0x01 /* check pte is writable */
  2176. #define FOLL_TOUCH 0x02 /* mark page accessed */
  2177. #define FOLL_GET 0x04 /* do get_page on page */
  2178. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  2179. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  2180. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  2181. * and return without waiting upon it */
  2182. #define FOLL_POPULATE 0x40 /* fault in page */
  2183. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  2184. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  2185. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  2186. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  2187. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  2188. #define FOLL_MLOCK 0x1000 /* lock present pages */
  2189. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  2190. #define FOLL_COW 0x4000 /* internal GUP flag */
  2191. #define FOLL_ANON 0x8000 /* don't do file mappings */
  2192. static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
  2193. {
  2194. if (vm_fault & VM_FAULT_OOM)
  2195. return -ENOMEM;
  2196. if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  2197. return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
  2198. if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
  2199. return -EFAULT;
  2200. return 0;
  2201. }
  2202. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  2203. void *data);
  2204. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  2205. unsigned long size, pte_fn_t fn, void *data);
  2206. #ifdef CONFIG_PAGE_POISONING
  2207. extern bool page_poisoning_enabled(void);
  2208. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  2209. #else
  2210. static inline bool page_poisoning_enabled(void) { return false; }
  2211. static inline void kernel_poison_pages(struct page *page, int numpages,
  2212. int enable) { }
  2213. #endif
  2214. #ifdef CONFIG_DEBUG_PAGEALLOC
  2215. extern bool _debug_pagealloc_enabled;
  2216. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2217. static inline bool debug_pagealloc_enabled(void)
  2218. {
  2219. return _debug_pagealloc_enabled;
  2220. }
  2221. static inline void
  2222. kernel_map_pages(struct page *page, int numpages, int enable)
  2223. {
  2224. if (!debug_pagealloc_enabled())
  2225. return;
  2226. __kernel_map_pages(page, numpages, enable);
  2227. }
  2228. #ifdef CONFIG_HIBERNATION
  2229. extern bool kernel_page_present(struct page *page);
  2230. #endif /* CONFIG_HIBERNATION */
  2231. #else /* CONFIG_DEBUG_PAGEALLOC */
  2232. static inline void
  2233. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2234. #ifdef CONFIG_HIBERNATION
  2235. static inline bool kernel_page_present(struct page *page) { return true; }
  2236. #endif /* CONFIG_HIBERNATION */
  2237. static inline bool debug_pagealloc_enabled(void)
  2238. {
  2239. return false;
  2240. }
  2241. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2242. #ifdef __HAVE_ARCH_GATE_AREA
  2243. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2244. extern int in_gate_area_no_mm(unsigned long addr);
  2245. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2246. #else
  2247. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2248. {
  2249. return NULL;
  2250. }
  2251. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2252. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2253. {
  2254. return 0;
  2255. }
  2256. #endif /* __HAVE_ARCH_GATE_AREA */
  2257. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2258. #ifdef CONFIG_SYSCTL
  2259. extern int sysctl_drop_caches;
  2260. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2261. void __user *, size_t *, loff_t *);
  2262. #endif
  2263. void drop_slab(void);
  2264. void drop_slab_node(int nid);
  2265. #ifndef CONFIG_MMU
  2266. #define randomize_va_space 0
  2267. #else
  2268. extern int randomize_va_space;
  2269. #endif
  2270. const char * arch_vma_name(struct vm_area_struct *vma);
  2271. void print_vma_addr(char *prefix, unsigned long rip);
  2272. void sparse_mem_maps_populate_node(struct page **map_map,
  2273. unsigned long pnum_begin,
  2274. unsigned long pnum_end,
  2275. unsigned long map_count,
  2276. int nodeid);
  2277. struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
  2278. struct vmem_altmap *altmap);
  2279. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2280. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2281. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2282. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2283. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2284. void *vmemmap_alloc_block(unsigned long size, int node);
  2285. struct vmem_altmap;
  2286. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  2287. void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
  2288. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2289. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2290. int node);
  2291. int vmemmap_populate(unsigned long start, unsigned long end, int node,
  2292. struct vmem_altmap *altmap);
  2293. void vmemmap_populate_print_last(void);
  2294. #ifdef CONFIG_MEMORY_HOTPLUG
  2295. void vmemmap_free(unsigned long start, unsigned long end,
  2296. struct vmem_altmap *altmap);
  2297. #endif
  2298. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2299. unsigned long nr_pages);
  2300. enum mf_flags {
  2301. MF_COUNT_INCREASED = 1 << 0,
  2302. MF_ACTION_REQUIRED = 1 << 1,
  2303. MF_MUST_KILL = 1 << 2,
  2304. MF_SOFT_OFFLINE = 1 << 3,
  2305. };
  2306. extern int memory_failure(unsigned long pfn, int flags);
  2307. extern void memory_failure_queue(unsigned long pfn, int flags);
  2308. extern int unpoison_memory(unsigned long pfn);
  2309. extern int get_hwpoison_page(struct page *page);
  2310. #define put_hwpoison_page(page) put_page(page)
  2311. extern int sysctl_memory_failure_early_kill;
  2312. extern int sysctl_memory_failure_recovery;
  2313. extern void shake_page(struct page *p, int access);
  2314. extern atomic_long_t num_poisoned_pages __read_mostly;
  2315. extern int soft_offline_page(struct page *page, int flags);
  2316. /*
  2317. * Error handlers for various types of pages.
  2318. */
  2319. enum mf_result {
  2320. MF_IGNORED, /* Error: cannot be handled */
  2321. MF_FAILED, /* Error: handling failed */
  2322. MF_DELAYED, /* Will be handled later */
  2323. MF_RECOVERED, /* Successfully recovered */
  2324. };
  2325. enum mf_action_page_type {
  2326. MF_MSG_KERNEL,
  2327. MF_MSG_KERNEL_HIGH_ORDER,
  2328. MF_MSG_SLAB,
  2329. MF_MSG_DIFFERENT_COMPOUND,
  2330. MF_MSG_POISONED_HUGE,
  2331. MF_MSG_HUGE,
  2332. MF_MSG_FREE_HUGE,
  2333. MF_MSG_NON_PMD_HUGE,
  2334. MF_MSG_UNMAP_FAILED,
  2335. MF_MSG_DIRTY_SWAPCACHE,
  2336. MF_MSG_CLEAN_SWAPCACHE,
  2337. MF_MSG_DIRTY_MLOCKED_LRU,
  2338. MF_MSG_CLEAN_MLOCKED_LRU,
  2339. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2340. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2341. MF_MSG_DIRTY_LRU,
  2342. MF_MSG_CLEAN_LRU,
  2343. MF_MSG_TRUNCATED_LRU,
  2344. MF_MSG_BUDDY,
  2345. MF_MSG_BUDDY_2ND,
  2346. MF_MSG_DAX,
  2347. MF_MSG_UNKNOWN,
  2348. };
  2349. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2350. extern void clear_huge_page(struct page *page,
  2351. unsigned long addr_hint,
  2352. unsigned int pages_per_huge_page);
  2353. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2354. unsigned long addr, struct vm_area_struct *vma,
  2355. unsigned int pages_per_huge_page);
  2356. extern long copy_huge_page_from_user(struct page *dst_page,
  2357. const void __user *usr_src,
  2358. unsigned int pages_per_huge_page,
  2359. bool allow_pagefault);
  2360. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2361. extern struct page_ext_operations debug_guardpage_ops;
  2362. #ifdef CONFIG_DEBUG_PAGEALLOC
  2363. extern unsigned int _debug_guardpage_minorder;
  2364. extern bool _debug_guardpage_enabled;
  2365. static inline unsigned int debug_guardpage_minorder(void)
  2366. {
  2367. return _debug_guardpage_minorder;
  2368. }
  2369. static inline bool debug_guardpage_enabled(void)
  2370. {
  2371. return _debug_guardpage_enabled;
  2372. }
  2373. static inline bool page_is_guard(struct page *page)
  2374. {
  2375. struct page_ext *page_ext;
  2376. if (!debug_guardpage_enabled())
  2377. return false;
  2378. page_ext = lookup_page_ext(page);
  2379. if (unlikely(!page_ext))
  2380. return false;
  2381. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2382. }
  2383. #else
  2384. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2385. static inline bool debug_guardpage_enabled(void) { return false; }
  2386. static inline bool page_is_guard(struct page *page) { return false; }
  2387. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2388. #if MAX_NUMNODES > 1
  2389. void __init setup_nr_node_ids(void);
  2390. #else
  2391. static inline void setup_nr_node_ids(void) {}
  2392. #endif
  2393. #endif /* __KERNEL__ */
  2394. #endif /* _LINUX_MM_H */