tcp_input.c 182 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. #include <trace/events/tcp.h>
  76. #include <linux/unaligned/access_ok.h>
  77. #include <linux/static_key.h>
  78. int sysctl_tcp_fack __read_mostly;
  79. int sysctl_tcp_max_reordering __read_mostly = 300;
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 1000;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  109. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  115. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  116. #define REXMIT_NONE 0 /* no loss recovery to do */
  117. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  118. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  119. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  120. unsigned int len)
  121. {
  122. static bool __once __read_mostly;
  123. if (!__once) {
  124. struct net_device *dev;
  125. __once = true;
  126. rcu_read_lock();
  127. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  128. if (!dev || len >= dev->mtu)
  129. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  130. dev ? dev->name : "Unknown driver");
  131. rcu_read_unlock();
  132. }
  133. }
  134. /* Adapt the MSS value used to make delayed ack decision to the
  135. * real world.
  136. */
  137. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  138. {
  139. struct inet_connection_sock *icsk = inet_csk(sk);
  140. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  141. unsigned int len;
  142. icsk->icsk_ack.last_seg_size = 0;
  143. /* skb->len may jitter because of SACKs, even if peer
  144. * sends good full-sized frames.
  145. */
  146. len = skb_shinfo(skb)->gso_size ? : skb->len;
  147. if (len >= icsk->icsk_ack.rcv_mss) {
  148. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  149. tcp_sk(sk)->advmss);
  150. /* Account for possibly-removed options */
  151. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  152. MAX_TCP_OPTION_SPACE))
  153. tcp_gro_dev_warn(sk, skb, len);
  154. } else {
  155. /* Otherwise, we make more careful check taking into account,
  156. * that SACKs block is variable.
  157. *
  158. * "len" is invariant segment length, including TCP header.
  159. */
  160. len += skb->data - skb_transport_header(skb);
  161. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  162. /* If PSH is not set, packet should be
  163. * full sized, provided peer TCP is not badly broken.
  164. * This observation (if it is correct 8)) allows
  165. * to handle super-low mtu links fairly.
  166. */
  167. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  168. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  169. /* Subtract also invariant (if peer is RFC compliant),
  170. * tcp header plus fixed timestamp option length.
  171. * Resulting "len" is MSS free of SACK jitter.
  172. */
  173. len -= tcp_sk(sk)->tcp_header_len;
  174. icsk->icsk_ack.last_seg_size = len;
  175. if (len == lss) {
  176. icsk->icsk_ack.rcv_mss = len;
  177. return;
  178. }
  179. }
  180. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  181. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  182. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  183. }
  184. }
  185. static void tcp_incr_quickack(struct sock *sk)
  186. {
  187. struct inet_connection_sock *icsk = inet_csk(sk);
  188. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  189. if (quickacks == 0)
  190. quickacks = 2;
  191. if (quickacks > icsk->icsk_ack.quick)
  192. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  193. }
  194. static void tcp_enter_quickack_mode(struct sock *sk)
  195. {
  196. struct inet_connection_sock *icsk = inet_csk(sk);
  197. tcp_incr_quickack(sk);
  198. icsk->icsk_ack.pingpong = 0;
  199. icsk->icsk_ack.ato = TCP_ATO_MIN;
  200. }
  201. /* Send ACKs quickly, if "quick" count is not exhausted
  202. * and the session is not interactive.
  203. */
  204. static bool tcp_in_quickack_mode(struct sock *sk)
  205. {
  206. const struct inet_connection_sock *icsk = inet_csk(sk);
  207. const struct dst_entry *dst = __sk_dst_get(sk);
  208. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  209. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  210. }
  211. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  212. {
  213. if (tp->ecn_flags & TCP_ECN_OK)
  214. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  215. }
  216. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  217. {
  218. if (tcp_hdr(skb)->cwr)
  219. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  220. }
  221. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  222. {
  223. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  224. }
  225. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  226. {
  227. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  228. case INET_ECN_NOT_ECT:
  229. /* Funny extension: if ECT is not set on a segment,
  230. * and we already seen ECT on a previous segment,
  231. * it is probably a retransmit.
  232. */
  233. if (tp->ecn_flags & TCP_ECN_SEEN)
  234. tcp_enter_quickack_mode((struct sock *)tp);
  235. break;
  236. case INET_ECN_CE:
  237. if (tcp_ca_needs_ecn((struct sock *)tp))
  238. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  239. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  240. /* Better not delay acks, sender can have a very low cwnd */
  241. tcp_enter_quickack_mode((struct sock *)tp);
  242. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  243. }
  244. tp->ecn_flags |= TCP_ECN_SEEN;
  245. break;
  246. default:
  247. if (tcp_ca_needs_ecn((struct sock *)tp))
  248. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  249. tp->ecn_flags |= TCP_ECN_SEEN;
  250. break;
  251. }
  252. }
  253. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  254. {
  255. if (tp->ecn_flags & TCP_ECN_OK)
  256. __tcp_ecn_check_ce(tp, skb);
  257. }
  258. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  259. {
  260. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  261. tp->ecn_flags &= ~TCP_ECN_OK;
  262. }
  263. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  264. {
  265. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  266. tp->ecn_flags &= ~TCP_ECN_OK;
  267. }
  268. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  269. {
  270. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  271. return true;
  272. return false;
  273. }
  274. /* Buffer size and advertised window tuning.
  275. *
  276. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  277. */
  278. static void tcp_sndbuf_expand(struct sock *sk)
  279. {
  280. const struct tcp_sock *tp = tcp_sk(sk);
  281. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  282. int sndmem, per_mss;
  283. u32 nr_segs;
  284. /* Worst case is non GSO/TSO : each frame consumes one skb
  285. * and skb->head is kmalloced using power of two area of memory
  286. */
  287. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  288. MAX_TCP_HEADER +
  289. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  290. per_mss = roundup_pow_of_two(per_mss) +
  291. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  292. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  293. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  294. /* Fast Recovery (RFC 5681 3.2) :
  295. * Cubic needs 1.7 factor, rounded to 2 to include
  296. * extra cushion (application might react slowly to POLLOUT)
  297. */
  298. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  299. sndmem *= nr_segs * per_mss;
  300. if (sk->sk_sndbuf < sndmem)
  301. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  302. }
  303. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  304. *
  305. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  306. * forward and advertised in receiver window (tp->rcv_wnd) and
  307. * "application buffer", required to isolate scheduling/application
  308. * latencies from network.
  309. * window_clamp is maximal advertised window. It can be less than
  310. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  311. * is reserved for "application" buffer. The less window_clamp is
  312. * the smoother our behaviour from viewpoint of network, but the lower
  313. * throughput and the higher sensitivity of the connection to losses. 8)
  314. *
  315. * rcv_ssthresh is more strict window_clamp used at "slow start"
  316. * phase to predict further behaviour of this connection.
  317. * It is used for two goals:
  318. * - to enforce header prediction at sender, even when application
  319. * requires some significant "application buffer". It is check #1.
  320. * - to prevent pruning of receive queue because of misprediction
  321. * of receiver window. Check #2.
  322. *
  323. * The scheme does not work when sender sends good segments opening
  324. * window and then starts to feed us spaghetti. But it should work
  325. * in common situations. Otherwise, we have to rely on queue collapsing.
  326. */
  327. /* Slow part of check#2. */
  328. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  329. {
  330. struct tcp_sock *tp = tcp_sk(sk);
  331. /* Optimize this! */
  332. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  333. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  334. while (tp->rcv_ssthresh <= window) {
  335. if (truesize <= skb->len)
  336. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  337. truesize >>= 1;
  338. window >>= 1;
  339. }
  340. return 0;
  341. }
  342. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  343. {
  344. struct tcp_sock *tp = tcp_sk(sk);
  345. /* Check #1 */
  346. if (tp->rcv_ssthresh < tp->window_clamp &&
  347. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  348. !tcp_under_memory_pressure(sk)) {
  349. int incr;
  350. /* Check #2. Increase window, if skb with such overhead
  351. * will fit to rcvbuf in future.
  352. */
  353. if (tcp_win_from_space(skb->truesize) <= skb->len)
  354. incr = 2 * tp->advmss;
  355. else
  356. incr = __tcp_grow_window(sk, skb);
  357. if (incr) {
  358. incr = max_t(int, incr, 2 * skb->len);
  359. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  360. tp->window_clamp);
  361. inet_csk(sk)->icsk_ack.quick |= 1;
  362. }
  363. }
  364. }
  365. /* 3. Tuning rcvbuf, when connection enters established state. */
  366. static void tcp_fixup_rcvbuf(struct sock *sk)
  367. {
  368. u32 mss = tcp_sk(sk)->advmss;
  369. int rcvmem;
  370. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  371. tcp_default_init_rwnd(mss);
  372. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  373. * Allow enough cushion so that sender is not limited by our window
  374. */
  375. if (sysctl_tcp_moderate_rcvbuf)
  376. rcvmem <<= 2;
  377. if (sk->sk_rcvbuf < rcvmem)
  378. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  379. }
  380. /* 4. Try to fixup all. It is made immediately after connection enters
  381. * established state.
  382. */
  383. void tcp_init_buffer_space(struct sock *sk)
  384. {
  385. struct tcp_sock *tp = tcp_sk(sk);
  386. int maxwin;
  387. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  388. tcp_fixup_rcvbuf(sk);
  389. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  390. tcp_sndbuf_expand(sk);
  391. tp->rcvq_space.space = tp->rcv_wnd;
  392. tcp_mstamp_refresh(tp);
  393. tp->rcvq_space.time = tp->tcp_mstamp;
  394. tp->rcvq_space.seq = tp->copied_seq;
  395. maxwin = tcp_full_space(sk);
  396. if (tp->window_clamp >= maxwin) {
  397. tp->window_clamp = maxwin;
  398. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  399. tp->window_clamp = max(maxwin -
  400. (maxwin >> sysctl_tcp_app_win),
  401. 4 * tp->advmss);
  402. }
  403. /* Force reservation of one segment. */
  404. if (sysctl_tcp_app_win &&
  405. tp->window_clamp > 2 * tp->advmss &&
  406. tp->window_clamp + tp->advmss > maxwin)
  407. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  408. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  409. tp->snd_cwnd_stamp = tcp_jiffies32;
  410. }
  411. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  412. static void tcp_clamp_window(struct sock *sk)
  413. {
  414. struct tcp_sock *tp = tcp_sk(sk);
  415. struct inet_connection_sock *icsk = inet_csk(sk);
  416. icsk->icsk_ack.quick = 0;
  417. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  418. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  419. !tcp_under_memory_pressure(sk) &&
  420. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  421. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  422. sysctl_tcp_rmem[2]);
  423. }
  424. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  425. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  426. }
  427. /* Initialize RCV_MSS value.
  428. * RCV_MSS is an our guess about MSS used by the peer.
  429. * We haven't any direct information about the MSS.
  430. * It's better to underestimate the RCV_MSS rather than overestimate.
  431. * Overestimations make us ACKing less frequently than needed.
  432. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  433. */
  434. void tcp_initialize_rcv_mss(struct sock *sk)
  435. {
  436. const struct tcp_sock *tp = tcp_sk(sk);
  437. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  438. hint = min(hint, tp->rcv_wnd / 2);
  439. hint = min(hint, TCP_MSS_DEFAULT);
  440. hint = max(hint, TCP_MIN_MSS);
  441. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  442. }
  443. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  444. /* Receiver "autotuning" code.
  445. *
  446. * The algorithm for RTT estimation w/o timestamps is based on
  447. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  448. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  449. *
  450. * More detail on this code can be found at
  451. * <http://staff.psc.edu/jheffner/>,
  452. * though this reference is out of date. A new paper
  453. * is pending.
  454. */
  455. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  456. {
  457. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  458. long m = sample;
  459. if (m == 0)
  460. m = 1;
  461. if (new_sample != 0) {
  462. /* If we sample in larger samples in the non-timestamp
  463. * case, we could grossly overestimate the RTT especially
  464. * with chatty applications or bulk transfer apps which
  465. * are stalled on filesystem I/O.
  466. *
  467. * Also, since we are only going for a minimum in the
  468. * non-timestamp case, we do not smooth things out
  469. * else with timestamps disabled convergence takes too
  470. * long.
  471. */
  472. if (!win_dep) {
  473. m -= (new_sample >> 3);
  474. new_sample += m;
  475. } else {
  476. m <<= 3;
  477. if (m < new_sample)
  478. new_sample = m;
  479. }
  480. } else {
  481. /* No previous measure. */
  482. new_sample = m << 3;
  483. }
  484. tp->rcv_rtt_est.rtt_us = new_sample;
  485. }
  486. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  487. {
  488. u32 delta_us;
  489. if (tp->rcv_rtt_est.time == 0)
  490. goto new_measure;
  491. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  492. return;
  493. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  494. tcp_rcv_rtt_update(tp, delta_us, 1);
  495. new_measure:
  496. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  497. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  498. }
  499. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  500. const struct sk_buff *skb)
  501. {
  502. struct tcp_sock *tp = tcp_sk(sk);
  503. if (tp->rx_opt.rcv_tsecr &&
  504. (TCP_SKB_CB(skb)->end_seq -
  505. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  506. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  507. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  508. tcp_rcv_rtt_update(tp, delta_us, 0);
  509. }
  510. }
  511. /*
  512. * This function should be called every time data is copied to user space.
  513. * It calculates the appropriate TCP receive buffer space.
  514. */
  515. void tcp_rcv_space_adjust(struct sock *sk)
  516. {
  517. struct tcp_sock *tp = tcp_sk(sk);
  518. int time;
  519. int copied;
  520. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  521. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  522. return;
  523. /* Number of bytes copied to user in last RTT */
  524. copied = tp->copied_seq - tp->rcvq_space.seq;
  525. if (copied <= tp->rcvq_space.space)
  526. goto new_measure;
  527. /* A bit of theory :
  528. * copied = bytes received in previous RTT, our base window
  529. * To cope with packet losses, we need a 2x factor
  530. * To cope with slow start, and sender growing its cwin by 100 %
  531. * every RTT, we need a 4x factor, because the ACK we are sending
  532. * now is for the next RTT, not the current one :
  533. * <prev RTT . ><current RTT .. ><next RTT .... >
  534. */
  535. if (sysctl_tcp_moderate_rcvbuf &&
  536. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  537. int rcvwin, rcvmem, rcvbuf;
  538. /* minimal window to cope with packet losses, assuming
  539. * steady state. Add some cushion because of small variations.
  540. */
  541. rcvwin = (copied << 1) + 16 * tp->advmss;
  542. /* If rate increased by 25%,
  543. * assume slow start, rcvwin = 3 * copied
  544. * If rate increased by 50%,
  545. * assume sender can use 2x growth, rcvwin = 4 * copied
  546. */
  547. if (copied >=
  548. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  549. if (copied >=
  550. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  551. rcvwin <<= 1;
  552. else
  553. rcvwin += (rcvwin >> 1);
  554. }
  555. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  556. while (tcp_win_from_space(rcvmem) < tp->advmss)
  557. rcvmem += 128;
  558. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  559. if (rcvbuf > sk->sk_rcvbuf) {
  560. sk->sk_rcvbuf = rcvbuf;
  561. /* Make the window clamp follow along. */
  562. tp->window_clamp = rcvwin;
  563. }
  564. }
  565. tp->rcvq_space.space = copied;
  566. new_measure:
  567. tp->rcvq_space.seq = tp->copied_seq;
  568. tp->rcvq_space.time = tp->tcp_mstamp;
  569. }
  570. /* There is something which you must keep in mind when you analyze the
  571. * behavior of the tp->ato delayed ack timeout interval. When a
  572. * connection starts up, we want to ack as quickly as possible. The
  573. * problem is that "good" TCP's do slow start at the beginning of data
  574. * transmission. The means that until we send the first few ACK's the
  575. * sender will sit on his end and only queue most of his data, because
  576. * he can only send snd_cwnd unacked packets at any given time. For
  577. * each ACK we send, he increments snd_cwnd and transmits more of his
  578. * queue. -DaveM
  579. */
  580. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  581. {
  582. struct tcp_sock *tp = tcp_sk(sk);
  583. struct inet_connection_sock *icsk = inet_csk(sk);
  584. u32 now;
  585. inet_csk_schedule_ack(sk);
  586. tcp_measure_rcv_mss(sk, skb);
  587. tcp_rcv_rtt_measure(tp);
  588. now = tcp_jiffies32;
  589. if (!icsk->icsk_ack.ato) {
  590. /* The _first_ data packet received, initialize
  591. * delayed ACK engine.
  592. */
  593. tcp_incr_quickack(sk);
  594. icsk->icsk_ack.ato = TCP_ATO_MIN;
  595. } else {
  596. int m = now - icsk->icsk_ack.lrcvtime;
  597. if (m <= TCP_ATO_MIN / 2) {
  598. /* The fastest case is the first. */
  599. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  600. } else if (m < icsk->icsk_ack.ato) {
  601. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  602. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  603. icsk->icsk_ack.ato = icsk->icsk_rto;
  604. } else if (m > icsk->icsk_rto) {
  605. /* Too long gap. Apparently sender failed to
  606. * restart window, so that we send ACKs quickly.
  607. */
  608. tcp_incr_quickack(sk);
  609. sk_mem_reclaim(sk);
  610. }
  611. }
  612. icsk->icsk_ack.lrcvtime = now;
  613. tcp_ecn_check_ce(tp, skb);
  614. if (skb->len >= 128)
  615. tcp_grow_window(sk, skb);
  616. }
  617. /* Called to compute a smoothed rtt estimate. The data fed to this
  618. * routine either comes from timestamps, or from segments that were
  619. * known _not_ to have been retransmitted [see Karn/Partridge
  620. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  621. * piece by Van Jacobson.
  622. * NOTE: the next three routines used to be one big routine.
  623. * To save cycles in the RFC 1323 implementation it was better to break
  624. * it up into three procedures. -- erics
  625. */
  626. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  627. {
  628. struct tcp_sock *tp = tcp_sk(sk);
  629. long m = mrtt_us; /* RTT */
  630. u32 srtt = tp->srtt_us;
  631. /* The following amusing code comes from Jacobson's
  632. * article in SIGCOMM '88. Note that rtt and mdev
  633. * are scaled versions of rtt and mean deviation.
  634. * This is designed to be as fast as possible
  635. * m stands for "measurement".
  636. *
  637. * On a 1990 paper the rto value is changed to:
  638. * RTO = rtt + 4 * mdev
  639. *
  640. * Funny. This algorithm seems to be very broken.
  641. * These formulae increase RTO, when it should be decreased, increase
  642. * too slowly, when it should be increased quickly, decrease too quickly
  643. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  644. * does not matter how to _calculate_ it. Seems, it was trap
  645. * that VJ failed to avoid. 8)
  646. */
  647. if (srtt != 0) {
  648. m -= (srtt >> 3); /* m is now error in rtt est */
  649. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  650. if (m < 0) {
  651. m = -m; /* m is now abs(error) */
  652. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  653. /* This is similar to one of Eifel findings.
  654. * Eifel blocks mdev updates when rtt decreases.
  655. * This solution is a bit different: we use finer gain
  656. * for mdev in this case (alpha*beta).
  657. * Like Eifel it also prevents growth of rto,
  658. * but also it limits too fast rto decreases,
  659. * happening in pure Eifel.
  660. */
  661. if (m > 0)
  662. m >>= 3;
  663. } else {
  664. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  665. }
  666. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  667. if (tp->mdev_us > tp->mdev_max_us) {
  668. tp->mdev_max_us = tp->mdev_us;
  669. if (tp->mdev_max_us > tp->rttvar_us)
  670. tp->rttvar_us = tp->mdev_max_us;
  671. }
  672. if (after(tp->snd_una, tp->rtt_seq)) {
  673. if (tp->mdev_max_us < tp->rttvar_us)
  674. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  675. tp->rtt_seq = tp->snd_nxt;
  676. tp->mdev_max_us = tcp_rto_min_us(sk);
  677. }
  678. } else {
  679. /* no previous measure. */
  680. srtt = m << 3; /* take the measured time to be rtt */
  681. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  682. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  683. tp->mdev_max_us = tp->rttvar_us;
  684. tp->rtt_seq = tp->snd_nxt;
  685. }
  686. tp->srtt_us = max(1U, srtt);
  687. }
  688. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  689. * Note: TCP stack does not yet implement pacing.
  690. * FQ packet scheduler can be used to implement cheap but effective
  691. * TCP pacing, to smooth the burst on large writes when packets
  692. * in flight is significantly lower than cwnd (or rwin)
  693. */
  694. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  695. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  696. static void tcp_update_pacing_rate(struct sock *sk)
  697. {
  698. const struct tcp_sock *tp = tcp_sk(sk);
  699. u64 rate;
  700. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  701. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  702. /* current rate is (cwnd * mss) / srtt
  703. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  704. * In Congestion Avoidance phase, set it to 120 % the current rate.
  705. *
  706. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  707. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  708. * end of slow start and should slow down.
  709. */
  710. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  711. rate *= sysctl_tcp_pacing_ss_ratio;
  712. else
  713. rate *= sysctl_tcp_pacing_ca_ratio;
  714. rate *= max(tp->snd_cwnd, tp->packets_out);
  715. if (likely(tp->srtt_us))
  716. do_div(rate, tp->srtt_us);
  717. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  718. * without any lock. We want to make sure compiler wont store
  719. * intermediate values in this location.
  720. */
  721. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  722. sk->sk_max_pacing_rate);
  723. }
  724. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  725. * routine referred to above.
  726. */
  727. static void tcp_set_rto(struct sock *sk)
  728. {
  729. const struct tcp_sock *tp = tcp_sk(sk);
  730. /* Old crap is replaced with new one. 8)
  731. *
  732. * More seriously:
  733. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  734. * It cannot be less due to utterly erratic ACK generation made
  735. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  736. * to do with delayed acks, because at cwnd>2 true delack timeout
  737. * is invisible. Actually, Linux-2.4 also generates erratic
  738. * ACKs in some circumstances.
  739. */
  740. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  741. /* 2. Fixups made earlier cannot be right.
  742. * If we do not estimate RTO correctly without them,
  743. * all the algo is pure shit and should be replaced
  744. * with correct one. It is exactly, which we pretend to do.
  745. */
  746. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  747. * guarantees that rto is higher.
  748. */
  749. tcp_bound_rto(sk);
  750. }
  751. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  752. {
  753. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  754. if (!cwnd)
  755. cwnd = TCP_INIT_CWND;
  756. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  757. }
  758. /*
  759. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  760. * disables it when reordering is detected
  761. */
  762. void tcp_disable_fack(struct tcp_sock *tp)
  763. {
  764. /* RFC3517 uses different metric in lost marker => reset on change */
  765. if (tcp_is_fack(tp))
  766. tp->lost_skb_hint = NULL;
  767. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  768. }
  769. /* Take a notice that peer is sending D-SACKs */
  770. static void tcp_dsack_seen(struct tcp_sock *tp)
  771. {
  772. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  773. }
  774. static void tcp_update_reordering(struct sock *sk, const int metric,
  775. const int ts)
  776. {
  777. struct tcp_sock *tp = tcp_sk(sk);
  778. int mib_idx;
  779. if (WARN_ON_ONCE(metric < 0))
  780. return;
  781. if (metric > tp->reordering) {
  782. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  783. #if FASTRETRANS_DEBUG > 1
  784. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  785. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  786. tp->reordering,
  787. tp->fackets_out,
  788. tp->sacked_out,
  789. tp->undo_marker ? tp->undo_retrans : 0);
  790. #endif
  791. tcp_disable_fack(tp);
  792. }
  793. tp->rack.reord = 1;
  794. /* This exciting event is worth to be remembered. 8) */
  795. if (ts)
  796. mib_idx = LINUX_MIB_TCPTSREORDER;
  797. else if (tcp_is_reno(tp))
  798. mib_idx = LINUX_MIB_TCPRENOREORDER;
  799. else if (tcp_is_fack(tp))
  800. mib_idx = LINUX_MIB_TCPFACKREORDER;
  801. else
  802. mib_idx = LINUX_MIB_TCPSACKREORDER;
  803. NET_INC_STATS(sock_net(sk), mib_idx);
  804. }
  805. /* This must be called before lost_out is incremented */
  806. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  807. {
  808. if (!tp->retransmit_skb_hint ||
  809. before(TCP_SKB_CB(skb)->seq,
  810. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  811. tp->retransmit_skb_hint = skb;
  812. }
  813. /* Sum the number of packets on the wire we have marked as lost.
  814. * There are two cases we care about here:
  815. * a) Packet hasn't been marked lost (nor retransmitted),
  816. * and this is the first loss.
  817. * b) Packet has been marked both lost and retransmitted,
  818. * and this means we think it was lost again.
  819. */
  820. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  821. {
  822. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  823. if (!(sacked & TCPCB_LOST) ||
  824. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  825. tp->lost += tcp_skb_pcount(skb);
  826. }
  827. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  828. {
  829. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  830. tcp_verify_retransmit_hint(tp, skb);
  831. tp->lost_out += tcp_skb_pcount(skb);
  832. tcp_sum_lost(tp, skb);
  833. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  834. }
  835. }
  836. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  837. {
  838. tcp_verify_retransmit_hint(tp, skb);
  839. tcp_sum_lost(tp, skb);
  840. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  841. tp->lost_out += tcp_skb_pcount(skb);
  842. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  843. }
  844. }
  845. /* This procedure tags the retransmission queue when SACKs arrive.
  846. *
  847. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  848. * Packets in queue with these bits set are counted in variables
  849. * sacked_out, retrans_out and lost_out, correspondingly.
  850. *
  851. * Valid combinations are:
  852. * Tag InFlight Description
  853. * 0 1 - orig segment is in flight.
  854. * S 0 - nothing flies, orig reached receiver.
  855. * L 0 - nothing flies, orig lost by net.
  856. * R 2 - both orig and retransmit are in flight.
  857. * L|R 1 - orig is lost, retransmit is in flight.
  858. * S|R 1 - orig reached receiver, retrans is still in flight.
  859. * (L|S|R is logically valid, it could occur when L|R is sacked,
  860. * but it is equivalent to plain S and code short-curcuits it to S.
  861. * L|S is logically invalid, it would mean -1 packet in flight 8))
  862. *
  863. * These 6 states form finite state machine, controlled by the following events:
  864. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  865. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  866. * 3. Loss detection event of two flavors:
  867. * A. Scoreboard estimator decided the packet is lost.
  868. * A'. Reno "three dupacks" marks head of queue lost.
  869. * A''. Its FACK modification, head until snd.fack is lost.
  870. * B. SACK arrives sacking SND.NXT at the moment, when the
  871. * segment was retransmitted.
  872. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  873. *
  874. * It is pleasant to note, that state diagram turns out to be commutative,
  875. * so that we are allowed not to be bothered by order of our actions,
  876. * when multiple events arrive simultaneously. (see the function below).
  877. *
  878. * Reordering detection.
  879. * --------------------
  880. * Reordering metric is maximal distance, which a packet can be displaced
  881. * in packet stream. With SACKs we can estimate it:
  882. *
  883. * 1. SACK fills old hole and the corresponding segment was not
  884. * ever retransmitted -> reordering. Alas, we cannot use it
  885. * when segment was retransmitted.
  886. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  887. * for retransmitted and already SACKed segment -> reordering..
  888. * Both of these heuristics are not used in Loss state, when we cannot
  889. * account for retransmits accurately.
  890. *
  891. * SACK block validation.
  892. * ----------------------
  893. *
  894. * SACK block range validation checks that the received SACK block fits to
  895. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  896. * Note that SND.UNA is not included to the range though being valid because
  897. * it means that the receiver is rather inconsistent with itself reporting
  898. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  899. * perfectly valid, however, in light of RFC2018 which explicitly states
  900. * that "SACK block MUST reflect the newest segment. Even if the newest
  901. * segment is going to be discarded ...", not that it looks very clever
  902. * in case of head skb. Due to potentional receiver driven attacks, we
  903. * choose to avoid immediate execution of a walk in write queue due to
  904. * reneging and defer head skb's loss recovery to standard loss recovery
  905. * procedure that will eventually trigger (nothing forbids us doing this).
  906. *
  907. * Implements also blockage to start_seq wrap-around. Problem lies in the
  908. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  909. * there's no guarantee that it will be before snd_nxt (n). The problem
  910. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  911. * wrap (s_w):
  912. *
  913. * <- outs wnd -> <- wrapzone ->
  914. * u e n u_w e_w s n_w
  915. * | | | | | | |
  916. * |<------------+------+----- TCP seqno space --------------+---------->|
  917. * ...-- <2^31 ->| |<--------...
  918. * ...---- >2^31 ------>| |<--------...
  919. *
  920. * Current code wouldn't be vulnerable but it's better still to discard such
  921. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  922. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  923. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  924. * equal to the ideal case (infinite seqno space without wrap caused issues).
  925. *
  926. * With D-SACK the lower bound is extended to cover sequence space below
  927. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  928. * again, D-SACK block must not to go across snd_una (for the same reason as
  929. * for the normal SACK blocks, explained above). But there all simplicity
  930. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  931. * fully below undo_marker they do not affect behavior in anyway and can
  932. * therefore be safely ignored. In rare cases (which are more or less
  933. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  934. * fragmentation and packet reordering past skb's retransmission. To consider
  935. * them correctly, the acceptable range must be extended even more though
  936. * the exact amount is rather hard to quantify. However, tp->max_window can
  937. * be used as an exaggerated estimate.
  938. */
  939. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  940. u32 start_seq, u32 end_seq)
  941. {
  942. /* Too far in future, or reversed (interpretation is ambiguous) */
  943. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  944. return false;
  945. /* Nasty start_seq wrap-around check (see comments above) */
  946. if (!before(start_seq, tp->snd_nxt))
  947. return false;
  948. /* In outstanding window? ...This is valid exit for D-SACKs too.
  949. * start_seq == snd_una is non-sensical (see comments above)
  950. */
  951. if (after(start_seq, tp->snd_una))
  952. return true;
  953. if (!is_dsack || !tp->undo_marker)
  954. return false;
  955. /* ...Then it's D-SACK, and must reside below snd_una completely */
  956. if (after(end_seq, tp->snd_una))
  957. return false;
  958. if (!before(start_seq, tp->undo_marker))
  959. return true;
  960. /* Too old */
  961. if (!after(end_seq, tp->undo_marker))
  962. return false;
  963. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  964. * start_seq < undo_marker and end_seq >= undo_marker.
  965. */
  966. return !before(start_seq, end_seq - tp->max_window);
  967. }
  968. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  969. struct tcp_sack_block_wire *sp, int num_sacks,
  970. u32 prior_snd_una)
  971. {
  972. struct tcp_sock *tp = tcp_sk(sk);
  973. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  974. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  975. bool dup_sack = false;
  976. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  977. dup_sack = true;
  978. tcp_dsack_seen(tp);
  979. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  980. } else if (num_sacks > 1) {
  981. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  982. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  983. if (!after(end_seq_0, end_seq_1) &&
  984. !before(start_seq_0, start_seq_1)) {
  985. dup_sack = true;
  986. tcp_dsack_seen(tp);
  987. NET_INC_STATS(sock_net(sk),
  988. LINUX_MIB_TCPDSACKOFORECV);
  989. }
  990. }
  991. /* D-SACK for already forgotten data... Do dumb counting. */
  992. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  993. !after(end_seq_0, prior_snd_una) &&
  994. after(end_seq_0, tp->undo_marker))
  995. tp->undo_retrans--;
  996. return dup_sack;
  997. }
  998. struct tcp_sacktag_state {
  999. int reord;
  1000. int fack_count;
  1001. /* Timestamps for earliest and latest never-retransmitted segment
  1002. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1003. * but congestion control should still get an accurate delay signal.
  1004. */
  1005. u64 first_sackt;
  1006. u64 last_sackt;
  1007. struct rate_sample *rate;
  1008. int flag;
  1009. unsigned int mss_now;
  1010. };
  1011. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1012. * the incoming SACK may not exactly match but we can find smaller MSS
  1013. * aligned portion of it that matches. Therefore we might need to fragment
  1014. * which may fail and creates some hassle (caller must handle error case
  1015. * returns).
  1016. *
  1017. * FIXME: this could be merged to shift decision code
  1018. */
  1019. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1020. u32 start_seq, u32 end_seq)
  1021. {
  1022. int err;
  1023. bool in_sack;
  1024. unsigned int pkt_len;
  1025. unsigned int mss;
  1026. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1027. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1028. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1029. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1030. mss = tcp_skb_mss(skb);
  1031. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1032. if (!in_sack) {
  1033. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1034. if (pkt_len < mss)
  1035. pkt_len = mss;
  1036. } else {
  1037. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1038. if (pkt_len < mss)
  1039. return -EINVAL;
  1040. }
  1041. /* Round if necessary so that SACKs cover only full MSSes
  1042. * and/or the remaining small portion (if present)
  1043. */
  1044. if (pkt_len > mss) {
  1045. unsigned int new_len = (pkt_len / mss) * mss;
  1046. if (!in_sack && new_len < pkt_len)
  1047. new_len += mss;
  1048. pkt_len = new_len;
  1049. }
  1050. if (pkt_len >= skb->len && !in_sack)
  1051. return 0;
  1052. err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1053. pkt_len, mss, GFP_ATOMIC);
  1054. if (err < 0)
  1055. return err;
  1056. }
  1057. return in_sack;
  1058. }
  1059. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1060. static u8 tcp_sacktag_one(struct sock *sk,
  1061. struct tcp_sacktag_state *state, u8 sacked,
  1062. u32 start_seq, u32 end_seq,
  1063. int dup_sack, int pcount,
  1064. u64 xmit_time)
  1065. {
  1066. struct tcp_sock *tp = tcp_sk(sk);
  1067. int fack_count = state->fack_count;
  1068. /* Account D-SACK for retransmitted packet. */
  1069. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1070. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1071. after(end_seq, tp->undo_marker))
  1072. tp->undo_retrans--;
  1073. if (sacked & TCPCB_SACKED_ACKED)
  1074. state->reord = min(fack_count, state->reord);
  1075. }
  1076. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1077. if (!after(end_seq, tp->snd_una))
  1078. return sacked;
  1079. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1080. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1081. if (sacked & TCPCB_SACKED_RETRANS) {
  1082. /* If the segment is not tagged as lost,
  1083. * we do not clear RETRANS, believing
  1084. * that retransmission is still in flight.
  1085. */
  1086. if (sacked & TCPCB_LOST) {
  1087. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1088. tp->lost_out -= pcount;
  1089. tp->retrans_out -= pcount;
  1090. }
  1091. } else {
  1092. if (!(sacked & TCPCB_RETRANS)) {
  1093. /* New sack for not retransmitted frame,
  1094. * which was in hole. It is reordering.
  1095. */
  1096. if (before(start_seq,
  1097. tcp_highest_sack_seq(tp)))
  1098. state->reord = min(fack_count,
  1099. state->reord);
  1100. if (!after(end_seq, tp->high_seq))
  1101. state->flag |= FLAG_ORIG_SACK_ACKED;
  1102. if (state->first_sackt == 0)
  1103. state->first_sackt = xmit_time;
  1104. state->last_sackt = xmit_time;
  1105. }
  1106. if (sacked & TCPCB_LOST) {
  1107. sacked &= ~TCPCB_LOST;
  1108. tp->lost_out -= pcount;
  1109. }
  1110. }
  1111. sacked |= TCPCB_SACKED_ACKED;
  1112. state->flag |= FLAG_DATA_SACKED;
  1113. tp->sacked_out += pcount;
  1114. tp->delivered += pcount; /* Out-of-order packets delivered */
  1115. fack_count += pcount;
  1116. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1117. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1118. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1119. tp->lost_cnt_hint += pcount;
  1120. if (fack_count > tp->fackets_out)
  1121. tp->fackets_out = fack_count;
  1122. }
  1123. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1124. * frames and clear it. undo_retrans is decreased above, L|R frames
  1125. * are accounted above as well.
  1126. */
  1127. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1128. sacked &= ~TCPCB_SACKED_RETRANS;
  1129. tp->retrans_out -= pcount;
  1130. }
  1131. return sacked;
  1132. }
  1133. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1134. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1135. */
  1136. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
  1137. struct sk_buff *skb,
  1138. struct tcp_sacktag_state *state,
  1139. unsigned int pcount, int shifted, int mss,
  1140. bool dup_sack)
  1141. {
  1142. struct tcp_sock *tp = tcp_sk(sk);
  1143. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1144. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1145. BUG_ON(!pcount);
  1146. /* Adjust counters and hints for the newly sacked sequence
  1147. * range but discard the return value since prev is already
  1148. * marked. We must tag the range first because the seq
  1149. * advancement below implicitly advances
  1150. * tcp_highest_sack_seq() when skb is highest_sack.
  1151. */
  1152. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1153. start_seq, end_seq, dup_sack, pcount,
  1154. skb->skb_mstamp);
  1155. tcp_rate_skb_delivered(sk, skb, state->rate);
  1156. if (skb == tp->lost_skb_hint)
  1157. tp->lost_cnt_hint += pcount;
  1158. TCP_SKB_CB(prev)->end_seq += shifted;
  1159. TCP_SKB_CB(skb)->seq += shifted;
  1160. tcp_skb_pcount_add(prev, pcount);
  1161. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1162. tcp_skb_pcount_add(skb, -pcount);
  1163. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1164. * in theory this shouldn't be necessary but as long as DSACK
  1165. * code can come after this skb later on it's better to keep
  1166. * setting gso_size to something.
  1167. */
  1168. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1169. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1170. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1171. if (tcp_skb_pcount(skb) <= 1)
  1172. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1173. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1174. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1175. if (skb->len > 0) {
  1176. BUG_ON(!tcp_skb_pcount(skb));
  1177. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1178. return false;
  1179. }
  1180. /* Whole SKB was eaten :-) */
  1181. if (skb == tp->retransmit_skb_hint)
  1182. tp->retransmit_skb_hint = prev;
  1183. if (skb == tp->lost_skb_hint) {
  1184. tp->lost_skb_hint = prev;
  1185. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1186. }
  1187. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1188. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1189. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1190. TCP_SKB_CB(prev)->end_seq++;
  1191. if (skb == tcp_highest_sack(sk))
  1192. tcp_advance_highest_sack(sk, skb);
  1193. tcp_skb_collapse_tstamp(prev, skb);
  1194. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1195. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1196. tcp_rtx_queue_unlink_and_free(skb, sk);
  1197. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1198. return true;
  1199. }
  1200. /* I wish gso_size would have a bit more sane initialization than
  1201. * something-or-zero which complicates things
  1202. */
  1203. static int tcp_skb_seglen(const struct sk_buff *skb)
  1204. {
  1205. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1206. }
  1207. /* Shifting pages past head area doesn't work */
  1208. static int skb_can_shift(const struct sk_buff *skb)
  1209. {
  1210. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1211. }
  1212. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1213. * skb.
  1214. */
  1215. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1216. struct tcp_sacktag_state *state,
  1217. u32 start_seq, u32 end_seq,
  1218. bool dup_sack)
  1219. {
  1220. struct tcp_sock *tp = tcp_sk(sk);
  1221. struct sk_buff *prev;
  1222. int mss;
  1223. int pcount = 0;
  1224. int len;
  1225. int in_sack;
  1226. if (!sk_can_gso(sk))
  1227. goto fallback;
  1228. /* Normally R but no L won't result in plain S */
  1229. if (!dup_sack &&
  1230. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1231. goto fallback;
  1232. if (!skb_can_shift(skb))
  1233. goto fallback;
  1234. /* This frame is about to be dropped (was ACKed). */
  1235. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1236. goto fallback;
  1237. /* Can only happen with delayed DSACK + discard craziness */
  1238. prev = skb_rb_prev(skb);
  1239. if (!prev)
  1240. goto fallback;
  1241. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1242. goto fallback;
  1243. if (!tcp_skb_can_collapse_to(prev))
  1244. goto fallback;
  1245. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1246. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1247. if (in_sack) {
  1248. len = skb->len;
  1249. pcount = tcp_skb_pcount(skb);
  1250. mss = tcp_skb_seglen(skb);
  1251. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1252. * drop this restriction as unnecessary
  1253. */
  1254. if (mss != tcp_skb_seglen(prev))
  1255. goto fallback;
  1256. } else {
  1257. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1258. goto noop;
  1259. /* CHECKME: This is non-MSS split case only?, this will
  1260. * cause skipped skbs due to advancing loop btw, original
  1261. * has that feature too
  1262. */
  1263. if (tcp_skb_pcount(skb) <= 1)
  1264. goto noop;
  1265. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1266. if (!in_sack) {
  1267. /* TODO: head merge to next could be attempted here
  1268. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1269. * though it might not be worth of the additional hassle
  1270. *
  1271. * ...we can probably just fallback to what was done
  1272. * previously. We could try merging non-SACKed ones
  1273. * as well but it probably isn't going to buy off
  1274. * because later SACKs might again split them, and
  1275. * it would make skb timestamp tracking considerably
  1276. * harder problem.
  1277. */
  1278. goto fallback;
  1279. }
  1280. len = end_seq - TCP_SKB_CB(skb)->seq;
  1281. BUG_ON(len < 0);
  1282. BUG_ON(len > skb->len);
  1283. /* MSS boundaries should be honoured or else pcount will
  1284. * severely break even though it makes things bit trickier.
  1285. * Optimize common case to avoid most of the divides
  1286. */
  1287. mss = tcp_skb_mss(skb);
  1288. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1289. * drop this restriction as unnecessary
  1290. */
  1291. if (mss != tcp_skb_seglen(prev))
  1292. goto fallback;
  1293. if (len == mss) {
  1294. pcount = 1;
  1295. } else if (len < mss) {
  1296. goto noop;
  1297. } else {
  1298. pcount = len / mss;
  1299. len = pcount * mss;
  1300. }
  1301. }
  1302. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1303. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1304. goto fallback;
  1305. if (!skb_shift(prev, skb, len))
  1306. goto fallback;
  1307. if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
  1308. goto out;
  1309. /* Hole filled allows collapsing with the next as well, this is very
  1310. * useful when hole on every nth skb pattern happens
  1311. */
  1312. skb = skb_rb_next(prev);
  1313. if (!skb)
  1314. goto out;
  1315. if (!skb_can_shift(skb) ||
  1316. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1317. (mss != tcp_skb_seglen(skb)))
  1318. goto out;
  1319. len = skb->len;
  1320. if (skb_shift(prev, skb, len)) {
  1321. pcount += tcp_skb_pcount(skb);
  1322. tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
  1323. len, mss, 0);
  1324. }
  1325. out:
  1326. state->fack_count += pcount;
  1327. return prev;
  1328. noop:
  1329. return skb;
  1330. fallback:
  1331. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1332. return NULL;
  1333. }
  1334. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1335. struct tcp_sack_block *next_dup,
  1336. struct tcp_sacktag_state *state,
  1337. u32 start_seq, u32 end_seq,
  1338. bool dup_sack_in)
  1339. {
  1340. struct tcp_sock *tp = tcp_sk(sk);
  1341. struct sk_buff *tmp;
  1342. skb_rbtree_walk_from(skb) {
  1343. int in_sack = 0;
  1344. bool dup_sack = dup_sack_in;
  1345. /* queue is in-order => we can short-circuit the walk early */
  1346. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1347. break;
  1348. if (next_dup &&
  1349. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1350. in_sack = tcp_match_skb_to_sack(sk, skb,
  1351. next_dup->start_seq,
  1352. next_dup->end_seq);
  1353. if (in_sack > 0)
  1354. dup_sack = true;
  1355. }
  1356. /* skb reference here is a bit tricky to get right, since
  1357. * shifting can eat and free both this skb and the next,
  1358. * so not even _safe variant of the loop is enough.
  1359. */
  1360. if (in_sack <= 0) {
  1361. tmp = tcp_shift_skb_data(sk, skb, state,
  1362. start_seq, end_seq, dup_sack);
  1363. if (tmp) {
  1364. if (tmp != skb) {
  1365. skb = tmp;
  1366. continue;
  1367. }
  1368. in_sack = 0;
  1369. } else {
  1370. in_sack = tcp_match_skb_to_sack(sk, skb,
  1371. start_seq,
  1372. end_seq);
  1373. }
  1374. }
  1375. if (unlikely(in_sack < 0))
  1376. break;
  1377. if (in_sack) {
  1378. TCP_SKB_CB(skb)->sacked =
  1379. tcp_sacktag_one(sk,
  1380. state,
  1381. TCP_SKB_CB(skb)->sacked,
  1382. TCP_SKB_CB(skb)->seq,
  1383. TCP_SKB_CB(skb)->end_seq,
  1384. dup_sack,
  1385. tcp_skb_pcount(skb),
  1386. skb->skb_mstamp);
  1387. tcp_rate_skb_delivered(sk, skb, state->rate);
  1388. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1389. list_del_init(&skb->tcp_tsorted_anchor);
  1390. if (!before(TCP_SKB_CB(skb)->seq,
  1391. tcp_highest_sack_seq(tp)))
  1392. tcp_advance_highest_sack(sk, skb);
  1393. }
  1394. state->fack_count += tcp_skb_pcount(skb);
  1395. }
  1396. return skb;
  1397. }
  1398. static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
  1399. struct tcp_sacktag_state *state,
  1400. u32 seq)
  1401. {
  1402. struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
  1403. struct sk_buff *skb;
  1404. int unack_bytes;
  1405. while (*p) {
  1406. parent = *p;
  1407. skb = rb_to_skb(parent);
  1408. if (before(seq, TCP_SKB_CB(skb)->seq)) {
  1409. p = &parent->rb_left;
  1410. continue;
  1411. }
  1412. if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
  1413. p = &parent->rb_right;
  1414. continue;
  1415. }
  1416. state->fack_count = 0;
  1417. unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
  1418. if (state->mss_now && unack_bytes > 0)
  1419. state->fack_count = unack_bytes / state->mss_now;
  1420. return skb;
  1421. }
  1422. return NULL;
  1423. }
  1424. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1425. struct tcp_sacktag_state *state,
  1426. u32 skip_to_seq)
  1427. {
  1428. if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
  1429. return skb;
  1430. return tcp_sacktag_bsearch(sk, state, skip_to_seq);
  1431. }
  1432. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1433. struct sock *sk,
  1434. struct tcp_sack_block *next_dup,
  1435. struct tcp_sacktag_state *state,
  1436. u32 skip_to_seq)
  1437. {
  1438. if (!next_dup)
  1439. return skb;
  1440. if (before(next_dup->start_seq, skip_to_seq)) {
  1441. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1442. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1443. next_dup->start_seq, next_dup->end_seq,
  1444. 1);
  1445. }
  1446. return skb;
  1447. }
  1448. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1449. {
  1450. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1451. }
  1452. static int
  1453. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1454. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1455. {
  1456. struct tcp_sock *tp = tcp_sk(sk);
  1457. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1458. TCP_SKB_CB(ack_skb)->sacked);
  1459. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1460. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1461. struct tcp_sack_block *cache;
  1462. struct sk_buff *skb;
  1463. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1464. int used_sacks;
  1465. bool found_dup_sack = false;
  1466. int i, j;
  1467. int first_sack_index;
  1468. state->flag = 0;
  1469. state->reord = tp->packets_out;
  1470. if (!tp->sacked_out) {
  1471. if (WARN_ON(tp->fackets_out))
  1472. tp->fackets_out = 0;
  1473. tcp_highest_sack_reset(sk);
  1474. }
  1475. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1476. num_sacks, prior_snd_una);
  1477. if (found_dup_sack) {
  1478. state->flag |= FLAG_DSACKING_ACK;
  1479. tp->delivered++; /* A spurious retransmission is delivered */
  1480. }
  1481. /* Eliminate too old ACKs, but take into
  1482. * account more or less fresh ones, they can
  1483. * contain valid SACK info.
  1484. */
  1485. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1486. return 0;
  1487. if (!tp->packets_out)
  1488. goto out;
  1489. used_sacks = 0;
  1490. first_sack_index = 0;
  1491. for (i = 0; i < num_sacks; i++) {
  1492. bool dup_sack = !i && found_dup_sack;
  1493. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1494. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1495. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1496. sp[used_sacks].start_seq,
  1497. sp[used_sacks].end_seq)) {
  1498. int mib_idx;
  1499. if (dup_sack) {
  1500. if (!tp->undo_marker)
  1501. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1502. else
  1503. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1504. } else {
  1505. /* Don't count olds caused by ACK reordering */
  1506. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1507. !after(sp[used_sacks].end_seq, tp->snd_una))
  1508. continue;
  1509. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1510. }
  1511. NET_INC_STATS(sock_net(sk), mib_idx);
  1512. if (i == 0)
  1513. first_sack_index = -1;
  1514. continue;
  1515. }
  1516. /* Ignore very old stuff early */
  1517. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1518. continue;
  1519. used_sacks++;
  1520. }
  1521. /* order SACK blocks to allow in order walk of the retrans queue */
  1522. for (i = used_sacks - 1; i > 0; i--) {
  1523. for (j = 0; j < i; j++) {
  1524. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1525. swap(sp[j], sp[j + 1]);
  1526. /* Track where the first SACK block goes to */
  1527. if (j == first_sack_index)
  1528. first_sack_index = j + 1;
  1529. }
  1530. }
  1531. }
  1532. state->mss_now = tcp_current_mss(sk);
  1533. state->fack_count = 0;
  1534. skb = NULL;
  1535. i = 0;
  1536. if (!tp->sacked_out) {
  1537. /* It's already past, so skip checking against it */
  1538. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1539. } else {
  1540. cache = tp->recv_sack_cache;
  1541. /* Skip empty blocks in at head of the cache */
  1542. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1543. !cache->end_seq)
  1544. cache++;
  1545. }
  1546. while (i < used_sacks) {
  1547. u32 start_seq = sp[i].start_seq;
  1548. u32 end_seq = sp[i].end_seq;
  1549. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1550. struct tcp_sack_block *next_dup = NULL;
  1551. if (found_dup_sack && ((i + 1) == first_sack_index))
  1552. next_dup = &sp[i + 1];
  1553. /* Skip too early cached blocks */
  1554. while (tcp_sack_cache_ok(tp, cache) &&
  1555. !before(start_seq, cache->end_seq))
  1556. cache++;
  1557. /* Can skip some work by looking recv_sack_cache? */
  1558. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1559. after(end_seq, cache->start_seq)) {
  1560. /* Head todo? */
  1561. if (before(start_seq, cache->start_seq)) {
  1562. skb = tcp_sacktag_skip(skb, sk, state,
  1563. start_seq);
  1564. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1565. state,
  1566. start_seq,
  1567. cache->start_seq,
  1568. dup_sack);
  1569. }
  1570. /* Rest of the block already fully processed? */
  1571. if (!after(end_seq, cache->end_seq))
  1572. goto advance_sp;
  1573. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1574. state,
  1575. cache->end_seq);
  1576. /* ...tail remains todo... */
  1577. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1578. /* ...but better entrypoint exists! */
  1579. skb = tcp_highest_sack(sk);
  1580. if (!skb)
  1581. break;
  1582. state->fack_count = tp->fackets_out;
  1583. cache++;
  1584. goto walk;
  1585. }
  1586. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1587. /* Check overlap against next cached too (past this one already) */
  1588. cache++;
  1589. continue;
  1590. }
  1591. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1592. skb = tcp_highest_sack(sk);
  1593. if (!skb)
  1594. break;
  1595. state->fack_count = tp->fackets_out;
  1596. }
  1597. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1598. walk:
  1599. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1600. start_seq, end_seq, dup_sack);
  1601. advance_sp:
  1602. i++;
  1603. }
  1604. /* Clear the head of the cache sack blocks so we can skip it next time */
  1605. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1606. tp->recv_sack_cache[i].start_seq = 0;
  1607. tp->recv_sack_cache[i].end_seq = 0;
  1608. }
  1609. for (j = 0; j < used_sacks; j++)
  1610. tp->recv_sack_cache[i++] = sp[j];
  1611. if ((state->reord < tp->fackets_out) &&
  1612. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1613. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1614. tcp_verify_left_out(tp);
  1615. out:
  1616. #if FASTRETRANS_DEBUG > 0
  1617. WARN_ON((int)tp->sacked_out < 0);
  1618. WARN_ON((int)tp->lost_out < 0);
  1619. WARN_ON((int)tp->retrans_out < 0);
  1620. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1621. #endif
  1622. return state->flag;
  1623. }
  1624. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1625. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1626. */
  1627. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1628. {
  1629. u32 holes;
  1630. holes = max(tp->lost_out, 1U);
  1631. holes = min(holes, tp->packets_out);
  1632. if ((tp->sacked_out + holes) > tp->packets_out) {
  1633. tp->sacked_out = tp->packets_out - holes;
  1634. return true;
  1635. }
  1636. return false;
  1637. }
  1638. /* If we receive more dupacks than we expected counting segments
  1639. * in assumption of absent reordering, interpret this as reordering.
  1640. * The only another reason could be bug in receiver TCP.
  1641. */
  1642. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1643. {
  1644. struct tcp_sock *tp = tcp_sk(sk);
  1645. if (tcp_limit_reno_sacked(tp))
  1646. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1647. }
  1648. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1649. static void tcp_add_reno_sack(struct sock *sk)
  1650. {
  1651. struct tcp_sock *tp = tcp_sk(sk);
  1652. u32 prior_sacked = tp->sacked_out;
  1653. tp->sacked_out++;
  1654. tcp_check_reno_reordering(sk, 0);
  1655. if (tp->sacked_out > prior_sacked)
  1656. tp->delivered++; /* Some out-of-order packet is delivered */
  1657. tcp_verify_left_out(tp);
  1658. }
  1659. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1660. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1661. {
  1662. struct tcp_sock *tp = tcp_sk(sk);
  1663. if (acked > 0) {
  1664. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1665. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1666. if (acked - 1 >= tp->sacked_out)
  1667. tp->sacked_out = 0;
  1668. else
  1669. tp->sacked_out -= acked - 1;
  1670. }
  1671. tcp_check_reno_reordering(sk, acked);
  1672. tcp_verify_left_out(tp);
  1673. }
  1674. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1675. {
  1676. tp->sacked_out = 0;
  1677. }
  1678. void tcp_clear_retrans(struct tcp_sock *tp)
  1679. {
  1680. tp->retrans_out = 0;
  1681. tp->lost_out = 0;
  1682. tp->undo_marker = 0;
  1683. tp->undo_retrans = -1;
  1684. tp->fackets_out = 0;
  1685. tp->sacked_out = 0;
  1686. }
  1687. static inline void tcp_init_undo(struct tcp_sock *tp)
  1688. {
  1689. tp->undo_marker = tp->snd_una;
  1690. /* Retransmission still in flight may cause DSACKs later. */
  1691. tp->undo_retrans = tp->retrans_out ? : -1;
  1692. }
  1693. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1694. * and reset tags completely, otherwise preserve SACKs. If receiver
  1695. * dropped its ofo queue, we will know this due to reneging detection.
  1696. */
  1697. void tcp_enter_loss(struct sock *sk)
  1698. {
  1699. const struct inet_connection_sock *icsk = inet_csk(sk);
  1700. struct tcp_sock *tp = tcp_sk(sk);
  1701. struct net *net = sock_net(sk);
  1702. struct sk_buff *skb;
  1703. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1704. bool is_reneg; /* is receiver reneging on SACKs? */
  1705. bool mark_lost;
  1706. /* Reduce ssthresh if it has not yet been made inside this window. */
  1707. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1708. !after(tp->high_seq, tp->snd_una) ||
  1709. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1710. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1711. tp->prior_cwnd = tp->snd_cwnd;
  1712. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1713. tcp_ca_event(sk, CA_EVENT_LOSS);
  1714. tcp_init_undo(tp);
  1715. }
  1716. tp->snd_cwnd = 1;
  1717. tp->snd_cwnd_cnt = 0;
  1718. tp->snd_cwnd_stamp = tcp_jiffies32;
  1719. tp->retrans_out = 0;
  1720. tp->lost_out = 0;
  1721. if (tcp_is_reno(tp))
  1722. tcp_reset_reno_sack(tp);
  1723. skb = tcp_rtx_queue_head(sk);
  1724. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1725. if (is_reneg) {
  1726. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1727. tp->sacked_out = 0;
  1728. tp->fackets_out = 0;
  1729. }
  1730. tcp_clear_all_retrans_hints(tp);
  1731. skb_rbtree_walk_from(skb) {
  1732. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1733. is_reneg);
  1734. if (mark_lost)
  1735. tcp_sum_lost(tp, skb);
  1736. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1737. if (mark_lost) {
  1738. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1739. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1740. tp->lost_out += tcp_skb_pcount(skb);
  1741. }
  1742. }
  1743. tcp_verify_left_out(tp);
  1744. /* Timeout in disordered state after receiving substantial DUPACKs
  1745. * suggests that the degree of reordering is over-estimated.
  1746. */
  1747. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1748. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1749. tp->reordering = min_t(unsigned int, tp->reordering,
  1750. net->ipv4.sysctl_tcp_reordering);
  1751. tcp_set_ca_state(sk, TCP_CA_Loss);
  1752. tp->high_seq = tp->snd_nxt;
  1753. tcp_ecn_queue_cwr(tp);
  1754. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1755. * loss recovery is underway except recurring timeout(s) on
  1756. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1757. *
  1758. * In theory F-RTO can be used repeatedly during loss recovery.
  1759. * In practice this interacts badly with broken middle-boxes that
  1760. * falsely raise the receive window, which results in repeated
  1761. * timeouts and stop-and-go behavior.
  1762. */
  1763. tp->frto = sysctl_tcp_frto &&
  1764. (new_recovery || icsk->icsk_retransmits) &&
  1765. !inet_csk(sk)->icsk_mtup.probe_size;
  1766. }
  1767. /* If ACK arrived pointing to a remembered SACK, it means that our
  1768. * remembered SACKs do not reflect real state of receiver i.e.
  1769. * receiver _host_ is heavily congested (or buggy).
  1770. *
  1771. * To avoid big spurious retransmission bursts due to transient SACK
  1772. * scoreboard oddities that look like reneging, we give the receiver a
  1773. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1774. * restore sanity to the SACK scoreboard. If the apparent reneging
  1775. * persists until this RTO then we'll clear the SACK scoreboard.
  1776. */
  1777. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1778. {
  1779. if (flag & FLAG_SACK_RENEGING) {
  1780. struct tcp_sock *tp = tcp_sk(sk);
  1781. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1782. msecs_to_jiffies(10));
  1783. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1784. delay, TCP_RTO_MAX);
  1785. return true;
  1786. }
  1787. return false;
  1788. }
  1789. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1790. {
  1791. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1792. }
  1793. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1794. * counter when SACK is enabled (without SACK, sacked_out is used for
  1795. * that purpose).
  1796. *
  1797. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1798. * segments up to the highest received SACK block so far and holes in
  1799. * between them.
  1800. *
  1801. * With reordering, holes may still be in flight, so RFC3517 recovery
  1802. * uses pure sacked_out (total number of SACKed segments) even though
  1803. * it violates the RFC that uses duplicate ACKs, often these are equal
  1804. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1805. * they differ. Since neither occurs due to loss, TCP should really
  1806. * ignore them.
  1807. */
  1808. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1809. {
  1810. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1811. }
  1812. /* Linux NewReno/SACK/FACK/ECN state machine.
  1813. * --------------------------------------
  1814. *
  1815. * "Open" Normal state, no dubious events, fast path.
  1816. * "Disorder" In all the respects it is "Open",
  1817. * but requires a bit more attention. It is entered when
  1818. * we see some SACKs or dupacks. It is split of "Open"
  1819. * mainly to move some processing from fast path to slow one.
  1820. * "CWR" CWND was reduced due to some Congestion Notification event.
  1821. * It can be ECN, ICMP source quench, local device congestion.
  1822. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1823. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1824. *
  1825. * tcp_fastretrans_alert() is entered:
  1826. * - each incoming ACK, if state is not "Open"
  1827. * - when arrived ACK is unusual, namely:
  1828. * * SACK
  1829. * * Duplicate ACK.
  1830. * * ECN ECE.
  1831. *
  1832. * Counting packets in flight is pretty simple.
  1833. *
  1834. * in_flight = packets_out - left_out + retrans_out
  1835. *
  1836. * packets_out is SND.NXT-SND.UNA counted in packets.
  1837. *
  1838. * retrans_out is number of retransmitted segments.
  1839. *
  1840. * left_out is number of segments left network, but not ACKed yet.
  1841. *
  1842. * left_out = sacked_out + lost_out
  1843. *
  1844. * sacked_out: Packets, which arrived to receiver out of order
  1845. * and hence not ACKed. With SACKs this number is simply
  1846. * amount of SACKed data. Even without SACKs
  1847. * it is easy to give pretty reliable estimate of this number,
  1848. * counting duplicate ACKs.
  1849. *
  1850. * lost_out: Packets lost by network. TCP has no explicit
  1851. * "loss notification" feedback from network (for now).
  1852. * It means that this number can be only _guessed_.
  1853. * Actually, it is the heuristics to predict lossage that
  1854. * distinguishes different algorithms.
  1855. *
  1856. * F.e. after RTO, when all the queue is considered as lost,
  1857. * lost_out = packets_out and in_flight = retrans_out.
  1858. *
  1859. * Essentially, we have now a few algorithms detecting
  1860. * lost packets.
  1861. *
  1862. * If the receiver supports SACK:
  1863. *
  1864. * RFC6675/3517: It is the conventional algorithm. A packet is
  1865. * considered lost if the number of higher sequence packets
  1866. * SACKed is greater than or equal the DUPACK thoreshold
  1867. * (reordering). This is implemented in tcp_mark_head_lost and
  1868. * tcp_update_scoreboard.
  1869. *
  1870. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1871. * (2017-) that checks timing instead of counting DUPACKs.
  1872. * Essentially a packet is considered lost if it's not S/ACKed
  1873. * after RTT + reordering_window, where both metrics are
  1874. * dynamically measured and adjusted. This is implemented in
  1875. * tcp_rack_mark_lost.
  1876. *
  1877. * FACK (Disabled by default. Subsumbed by RACK):
  1878. * It is the simplest heuristics. As soon as we decided
  1879. * that something is lost, we decide that _all_ not SACKed
  1880. * packets until the most forward SACK are lost. I.e.
  1881. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1882. * It is absolutely correct estimate, if network does not reorder
  1883. * packets. And it loses any connection to reality when reordering
  1884. * takes place. We use FACK by default until reordering
  1885. * is suspected on the path to this destination.
  1886. *
  1887. * If the receiver does not support SACK:
  1888. *
  1889. * NewReno (RFC6582): in Recovery we assume that one segment
  1890. * is lost (classic Reno). While we are in Recovery and
  1891. * a partial ACK arrives, we assume that one more packet
  1892. * is lost (NewReno). This heuristics are the same in NewReno
  1893. * and SACK.
  1894. *
  1895. * Really tricky (and requiring careful tuning) part of algorithm
  1896. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1897. * The first determines the moment _when_ we should reduce CWND and,
  1898. * hence, slow down forward transmission. In fact, it determines the moment
  1899. * when we decide that hole is caused by loss, rather than by a reorder.
  1900. *
  1901. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1902. * holes, caused by lost packets.
  1903. *
  1904. * And the most logically complicated part of algorithm is undo
  1905. * heuristics. We detect false retransmits due to both too early
  1906. * fast retransmit (reordering) and underestimated RTO, analyzing
  1907. * timestamps and D-SACKs. When we detect that some segments were
  1908. * retransmitted by mistake and CWND reduction was wrong, we undo
  1909. * window reduction and abort recovery phase. This logic is hidden
  1910. * inside several functions named tcp_try_undo_<something>.
  1911. */
  1912. /* This function decides, when we should leave Disordered state
  1913. * and enter Recovery phase, reducing congestion window.
  1914. *
  1915. * Main question: may we further continue forward transmission
  1916. * with the same cwnd?
  1917. */
  1918. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1919. {
  1920. struct tcp_sock *tp = tcp_sk(sk);
  1921. /* Trick#1: The loss is proven. */
  1922. if (tp->lost_out)
  1923. return true;
  1924. /* Not-A-Trick#2 : Classic rule... */
  1925. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1926. return true;
  1927. return false;
  1928. }
  1929. /* Detect loss in event "A" above by marking head of queue up as lost.
  1930. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1931. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1932. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1933. * the maximum SACKed segments to pass before reaching this limit.
  1934. */
  1935. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1936. {
  1937. struct tcp_sock *tp = tcp_sk(sk);
  1938. struct sk_buff *skb;
  1939. int cnt, oldcnt, lost;
  1940. unsigned int mss;
  1941. /* Use SACK to deduce losses of new sequences sent during recovery */
  1942. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1943. WARN_ON(packets > tp->packets_out);
  1944. skb = tp->lost_skb_hint;
  1945. if (skb) {
  1946. /* Head already handled? */
  1947. if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
  1948. return;
  1949. cnt = tp->lost_cnt_hint;
  1950. } else {
  1951. skb = tcp_rtx_queue_head(sk);
  1952. cnt = 0;
  1953. }
  1954. skb_rbtree_walk_from(skb) {
  1955. /* TODO: do this better */
  1956. /* this is not the most efficient way to do this... */
  1957. tp->lost_skb_hint = skb;
  1958. tp->lost_cnt_hint = cnt;
  1959. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1960. break;
  1961. oldcnt = cnt;
  1962. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1963. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1964. cnt += tcp_skb_pcount(skb);
  1965. if (cnt > packets) {
  1966. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1967. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1968. (oldcnt >= packets))
  1969. break;
  1970. mss = tcp_skb_mss(skb);
  1971. /* If needed, chop off the prefix to mark as lost. */
  1972. lost = (packets - oldcnt) * mss;
  1973. if (lost < skb->len &&
  1974. tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
  1975. lost, mss, GFP_ATOMIC) < 0)
  1976. break;
  1977. cnt = packets;
  1978. }
  1979. tcp_skb_mark_lost(tp, skb);
  1980. if (mark_head)
  1981. break;
  1982. }
  1983. tcp_verify_left_out(tp);
  1984. }
  1985. /* Account newly detected lost packet(s) */
  1986. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1987. {
  1988. struct tcp_sock *tp = tcp_sk(sk);
  1989. if (tcp_is_reno(tp)) {
  1990. tcp_mark_head_lost(sk, 1, 1);
  1991. } else if (tcp_is_fack(tp)) {
  1992. int lost = tp->fackets_out - tp->reordering;
  1993. if (lost <= 0)
  1994. lost = 1;
  1995. tcp_mark_head_lost(sk, lost, 0);
  1996. } else {
  1997. int sacked_upto = tp->sacked_out - tp->reordering;
  1998. if (sacked_upto >= 0)
  1999. tcp_mark_head_lost(sk, sacked_upto, 0);
  2000. else if (fast_rexmit)
  2001. tcp_mark_head_lost(sk, 1, 1);
  2002. }
  2003. }
  2004. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  2005. {
  2006. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2007. before(tp->rx_opt.rcv_tsecr, when);
  2008. }
  2009. /* skb is spurious retransmitted if the returned timestamp echo
  2010. * reply is prior to the skb transmission time
  2011. */
  2012. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  2013. const struct sk_buff *skb)
  2014. {
  2015. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  2016. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  2017. }
  2018. /* Nothing was retransmitted or returned timestamp is less
  2019. * than timestamp of the first retransmission.
  2020. */
  2021. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2022. {
  2023. return !tp->retrans_stamp ||
  2024. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2025. }
  2026. /* Undo procedures. */
  2027. /* We can clear retrans_stamp when there are no retransmissions in the
  2028. * window. It would seem that it is trivially available for us in
  2029. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2030. * what will happen if errors occur when sending retransmission for the
  2031. * second time. ...It could the that such segment has only
  2032. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2033. * the head skb is enough except for some reneging corner cases that
  2034. * are not worth the effort.
  2035. *
  2036. * Main reason for all this complexity is the fact that connection dying
  2037. * time now depends on the validity of the retrans_stamp, in particular,
  2038. * that successive retransmissions of a segment must not advance
  2039. * retrans_stamp under any conditions.
  2040. */
  2041. static bool tcp_any_retrans_done(const struct sock *sk)
  2042. {
  2043. const struct tcp_sock *tp = tcp_sk(sk);
  2044. struct sk_buff *skb;
  2045. if (tp->retrans_out)
  2046. return true;
  2047. skb = tcp_rtx_queue_head(sk);
  2048. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2049. return true;
  2050. return false;
  2051. }
  2052. static void DBGUNDO(struct sock *sk, const char *msg)
  2053. {
  2054. #if FASTRETRANS_DEBUG > 1
  2055. struct tcp_sock *tp = tcp_sk(sk);
  2056. struct inet_sock *inet = inet_sk(sk);
  2057. if (sk->sk_family == AF_INET) {
  2058. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2059. msg,
  2060. &inet->inet_daddr, ntohs(inet->inet_dport),
  2061. tp->snd_cwnd, tcp_left_out(tp),
  2062. tp->snd_ssthresh, tp->prior_ssthresh,
  2063. tp->packets_out);
  2064. }
  2065. #if IS_ENABLED(CONFIG_IPV6)
  2066. else if (sk->sk_family == AF_INET6) {
  2067. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2068. msg,
  2069. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2070. tp->snd_cwnd, tcp_left_out(tp),
  2071. tp->snd_ssthresh, tp->prior_ssthresh,
  2072. tp->packets_out);
  2073. }
  2074. #endif
  2075. #endif
  2076. }
  2077. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2078. {
  2079. struct tcp_sock *tp = tcp_sk(sk);
  2080. if (unmark_loss) {
  2081. struct sk_buff *skb;
  2082. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2083. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2084. }
  2085. tp->lost_out = 0;
  2086. tcp_clear_all_retrans_hints(tp);
  2087. }
  2088. if (tp->prior_ssthresh) {
  2089. const struct inet_connection_sock *icsk = inet_csk(sk);
  2090. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2091. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2092. tp->snd_ssthresh = tp->prior_ssthresh;
  2093. tcp_ecn_withdraw_cwr(tp);
  2094. }
  2095. }
  2096. tp->snd_cwnd_stamp = tcp_jiffies32;
  2097. tp->undo_marker = 0;
  2098. }
  2099. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2100. {
  2101. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2102. }
  2103. /* People celebrate: "We love our President!" */
  2104. static bool tcp_try_undo_recovery(struct sock *sk)
  2105. {
  2106. struct tcp_sock *tp = tcp_sk(sk);
  2107. if (tcp_may_undo(tp)) {
  2108. int mib_idx;
  2109. /* Happy end! We did not retransmit anything
  2110. * or our original transmission succeeded.
  2111. */
  2112. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2113. tcp_undo_cwnd_reduction(sk, false);
  2114. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2115. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2116. else
  2117. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2118. NET_INC_STATS(sock_net(sk), mib_idx);
  2119. }
  2120. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2121. /* Hold old state until something *above* high_seq
  2122. * is ACKed. For Reno it is MUST to prevent false
  2123. * fast retransmits (RFC2582). SACK TCP is safe. */
  2124. if (!tcp_any_retrans_done(sk))
  2125. tp->retrans_stamp = 0;
  2126. return true;
  2127. }
  2128. tcp_set_ca_state(sk, TCP_CA_Open);
  2129. return false;
  2130. }
  2131. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2132. static bool tcp_try_undo_dsack(struct sock *sk)
  2133. {
  2134. struct tcp_sock *tp = tcp_sk(sk);
  2135. if (tp->undo_marker && !tp->undo_retrans) {
  2136. DBGUNDO(sk, "D-SACK");
  2137. tcp_undo_cwnd_reduction(sk, false);
  2138. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2139. return true;
  2140. }
  2141. return false;
  2142. }
  2143. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2144. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2145. {
  2146. struct tcp_sock *tp = tcp_sk(sk);
  2147. if (frto_undo || tcp_may_undo(tp)) {
  2148. tcp_undo_cwnd_reduction(sk, true);
  2149. DBGUNDO(sk, "partial loss");
  2150. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2151. if (frto_undo)
  2152. NET_INC_STATS(sock_net(sk),
  2153. LINUX_MIB_TCPSPURIOUSRTOS);
  2154. inet_csk(sk)->icsk_retransmits = 0;
  2155. if (frto_undo || tcp_is_sack(tp))
  2156. tcp_set_ca_state(sk, TCP_CA_Open);
  2157. return true;
  2158. }
  2159. return false;
  2160. }
  2161. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2162. * It computes the number of packets to send (sndcnt) based on packets newly
  2163. * delivered:
  2164. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2165. * cwnd reductions across a full RTT.
  2166. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2167. * But when the retransmits are acked without further losses, PRR
  2168. * slow starts cwnd up to ssthresh to speed up the recovery.
  2169. */
  2170. static void tcp_init_cwnd_reduction(struct sock *sk)
  2171. {
  2172. struct tcp_sock *tp = tcp_sk(sk);
  2173. tp->high_seq = tp->snd_nxt;
  2174. tp->tlp_high_seq = 0;
  2175. tp->snd_cwnd_cnt = 0;
  2176. tp->prior_cwnd = tp->snd_cwnd;
  2177. tp->prr_delivered = 0;
  2178. tp->prr_out = 0;
  2179. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2180. tcp_ecn_queue_cwr(tp);
  2181. }
  2182. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2183. {
  2184. struct tcp_sock *tp = tcp_sk(sk);
  2185. int sndcnt = 0;
  2186. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2187. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2188. return;
  2189. tp->prr_delivered += newly_acked_sacked;
  2190. if (delta < 0) {
  2191. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2192. tp->prior_cwnd - 1;
  2193. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2194. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2195. !(flag & FLAG_LOST_RETRANS)) {
  2196. sndcnt = min_t(int, delta,
  2197. max_t(int, tp->prr_delivered - tp->prr_out,
  2198. newly_acked_sacked) + 1);
  2199. } else {
  2200. sndcnt = min(delta, newly_acked_sacked);
  2201. }
  2202. /* Force a fast retransmit upon entering fast recovery */
  2203. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2204. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2205. }
  2206. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2207. {
  2208. struct tcp_sock *tp = tcp_sk(sk);
  2209. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2210. return;
  2211. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2212. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2213. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2214. tp->snd_cwnd = tp->snd_ssthresh;
  2215. tp->snd_cwnd_stamp = tcp_jiffies32;
  2216. }
  2217. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2218. }
  2219. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2220. void tcp_enter_cwr(struct sock *sk)
  2221. {
  2222. struct tcp_sock *tp = tcp_sk(sk);
  2223. tp->prior_ssthresh = 0;
  2224. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2225. tp->undo_marker = 0;
  2226. tcp_init_cwnd_reduction(sk);
  2227. tcp_set_ca_state(sk, TCP_CA_CWR);
  2228. }
  2229. }
  2230. EXPORT_SYMBOL(tcp_enter_cwr);
  2231. static void tcp_try_keep_open(struct sock *sk)
  2232. {
  2233. struct tcp_sock *tp = tcp_sk(sk);
  2234. int state = TCP_CA_Open;
  2235. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2236. state = TCP_CA_Disorder;
  2237. if (inet_csk(sk)->icsk_ca_state != state) {
  2238. tcp_set_ca_state(sk, state);
  2239. tp->high_seq = tp->snd_nxt;
  2240. }
  2241. }
  2242. static void tcp_try_to_open(struct sock *sk, int flag)
  2243. {
  2244. struct tcp_sock *tp = tcp_sk(sk);
  2245. tcp_verify_left_out(tp);
  2246. if (!tcp_any_retrans_done(sk))
  2247. tp->retrans_stamp = 0;
  2248. if (flag & FLAG_ECE)
  2249. tcp_enter_cwr(sk);
  2250. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2251. tcp_try_keep_open(sk);
  2252. }
  2253. }
  2254. static void tcp_mtup_probe_failed(struct sock *sk)
  2255. {
  2256. struct inet_connection_sock *icsk = inet_csk(sk);
  2257. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2258. icsk->icsk_mtup.probe_size = 0;
  2259. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2260. }
  2261. static void tcp_mtup_probe_success(struct sock *sk)
  2262. {
  2263. struct tcp_sock *tp = tcp_sk(sk);
  2264. struct inet_connection_sock *icsk = inet_csk(sk);
  2265. /* FIXME: breaks with very large cwnd */
  2266. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2267. tp->snd_cwnd = tp->snd_cwnd *
  2268. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2269. icsk->icsk_mtup.probe_size;
  2270. tp->snd_cwnd_cnt = 0;
  2271. tp->snd_cwnd_stamp = tcp_jiffies32;
  2272. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2273. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2274. icsk->icsk_mtup.probe_size = 0;
  2275. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2276. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2277. }
  2278. /* Do a simple retransmit without using the backoff mechanisms in
  2279. * tcp_timer. This is used for path mtu discovery.
  2280. * The socket is already locked here.
  2281. */
  2282. void tcp_simple_retransmit(struct sock *sk)
  2283. {
  2284. const struct inet_connection_sock *icsk = inet_csk(sk);
  2285. struct tcp_sock *tp = tcp_sk(sk);
  2286. struct sk_buff *skb;
  2287. unsigned int mss = tcp_current_mss(sk);
  2288. u32 prior_lost = tp->lost_out;
  2289. skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
  2290. if (tcp_skb_seglen(skb) > mss &&
  2291. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2292. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2293. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2294. tp->retrans_out -= tcp_skb_pcount(skb);
  2295. }
  2296. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2297. }
  2298. }
  2299. tcp_clear_retrans_hints_partial(tp);
  2300. if (prior_lost == tp->lost_out)
  2301. return;
  2302. if (tcp_is_reno(tp))
  2303. tcp_limit_reno_sacked(tp);
  2304. tcp_verify_left_out(tp);
  2305. /* Don't muck with the congestion window here.
  2306. * Reason is that we do not increase amount of _data_
  2307. * in network, but units changed and effective
  2308. * cwnd/ssthresh really reduced now.
  2309. */
  2310. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2311. tp->high_seq = tp->snd_nxt;
  2312. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2313. tp->prior_ssthresh = 0;
  2314. tp->undo_marker = 0;
  2315. tcp_set_ca_state(sk, TCP_CA_Loss);
  2316. }
  2317. tcp_xmit_retransmit_queue(sk);
  2318. }
  2319. EXPORT_SYMBOL(tcp_simple_retransmit);
  2320. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2321. {
  2322. struct tcp_sock *tp = tcp_sk(sk);
  2323. int mib_idx;
  2324. if (tcp_is_reno(tp))
  2325. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2326. else
  2327. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2328. NET_INC_STATS(sock_net(sk), mib_idx);
  2329. tp->prior_ssthresh = 0;
  2330. tcp_init_undo(tp);
  2331. if (!tcp_in_cwnd_reduction(sk)) {
  2332. if (!ece_ack)
  2333. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2334. tcp_init_cwnd_reduction(sk);
  2335. }
  2336. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2337. }
  2338. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2339. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2340. */
  2341. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2342. int *rexmit)
  2343. {
  2344. struct tcp_sock *tp = tcp_sk(sk);
  2345. bool recovered = !before(tp->snd_una, tp->high_seq);
  2346. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2347. tcp_try_undo_loss(sk, false))
  2348. return;
  2349. /* The ACK (s)acks some never-retransmitted data meaning not all
  2350. * the data packets before the timeout were lost. Therefore we
  2351. * undo the congestion window and state. This is essentially
  2352. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2353. * a retransmitted skb is permantly marked, we can apply such an
  2354. * operation even if F-RTO was not used.
  2355. */
  2356. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2357. tcp_try_undo_loss(sk, tp->undo_marker))
  2358. return;
  2359. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2360. if (after(tp->snd_nxt, tp->high_seq)) {
  2361. if (flag & FLAG_DATA_SACKED || is_dupack)
  2362. tp->frto = 0; /* Step 3.a. loss was real */
  2363. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2364. tp->high_seq = tp->snd_nxt;
  2365. /* Step 2.b. Try send new data (but deferred until cwnd
  2366. * is updated in tcp_ack()). Otherwise fall back to
  2367. * the conventional recovery.
  2368. */
  2369. if (!tcp_write_queue_empty(sk) &&
  2370. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2371. *rexmit = REXMIT_NEW;
  2372. return;
  2373. }
  2374. tp->frto = 0;
  2375. }
  2376. }
  2377. if (recovered) {
  2378. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2379. tcp_try_undo_recovery(sk);
  2380. return;
  2381. }
  2382. if (tcp_is_reno(tp)) {
  2383. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2384. * delivered. Lower inflight to clock out (re)tranmissions.
  2385. */
  2386. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2387. tcp_add_reno_sack(sk);
  2388. else if (flag & FLAG_SND_UNA_ADVANCED)
  2389. tcp_reset_reno_sack(tp);
  2390. }
  2391. *rexmit = REXMIT_LOST;
  2392. }
  2393. /* Undo during fast recovery after partial ACK. */
  2394. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2395. {
  2396. struct tcp_sock *tp = tcp_sk(sk);
  2397. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2398. /* Plain luck! Hole if filled with delayed
  2399. * packet, rather than with a retransmit.
  2400. */
  2401. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2402. /* We are getting evidence that the reordering degree is higher
  2403. * than we realized. If there are no retransmits out then we
  2404. * can undo. Otherwise we clock out new packets but do not
  2405. * mark more packets lost or retransmit more.
  2406. */
  2407. if (tp->retrans_out)
  2408. return true;
  2409. if (!tcp_any_retrans_done(sk))
  2410. tp->retrans_stamp = 0;
  2411. DBGUNDO(sk, "partial recovery");
  2412. tcp_undo_cwnd_reduction(sk, true);
  2413. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2414. tcp_try_keep_open(sk);
  2415. return true;
  2416. }
  2417. return false;
  2418. }
  2419. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2420. {
  2421. struct tcp_sock *tp = tcp_sk(sk);
  2422. /* Use RACK to detect loss */
  2423. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2424. u32 prior_retrans = tp->retrans_out;
  2425. tcp_rack_mark_lost(sk);
  2426. if (prior_retrans > tp->retrans_out)
  2427. *ack_flag |= FLAG_LOST_RETRANS;
  2428. }
  2429. }
  2430. /* Process an event, which can update packets-in-flight not trivially.
  2431. * Main goal of this function is to calculate new estimate for left_out,
  2432. * taking into account both packets sitting in receiver's buffer and
  2433. * packets lost by network.
  2434. *
  2435. * Besides that it updates the congestion state when packet loss or ECN
  2436. * is detected. But it does not reduce the cwnd, it is done by the
  2437. * congestion control later.
  2438. *
  2439. * It does _not_ decide what to send, it is made in function
  2440. * tcp_xmit_retransmit_queue().
  2441. */
  2442. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2443. bool is_dupack, int *ack_flag, int *rexmit)
  2444. {
  2445. struct inet_connection_sock *icsk = inet_csk(sk);
  2446. struct tcp_sock *tp = tcp_sk(sk);
  2447. int fast_rexmit = 0, flag = *ack_flag;
  2448. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2449. (tcp_fackets_out(tp) > tp->reordering));
  2450. if (!tp->packets_out && tp->sacked_out)
  2451. tp->sacked_out = 0;
  2452. if (!tp->sacked_out && tp->fackets_out)
  2453. tp->fackets_out = 0;
  2454. /* Now state machine starts.
  2455. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2456. if (flag & FLAG_ECE)
  2457. tp->prior_ssthresh = 0;
  2458. /* B. In all the states check for reneging SACKs. */
  2459. if (tcp_check_sack_reneging(sk, flag))
  2460. return;
  2461. /* C. Check consistency of the current state. */
  2462. tcp_verify_left_out(tp);
  2463. /* D. Check state exit conditions. State can be terminated
  2464. * when high_seq is ACKed. */
  2465. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2466. WARN_ON(tp->retrans_out != 0);
  2467. tp->retrans_stamp = 0;
  2468. } else if (!before(tp->snd_una, tp->high_seq)) {
  2469. switch (icsk->icsk_ca_state) {
  2470. case TCP_CA_CWR:
  2471. /* CWR is to be held something *above* high_seq
  2472. * is ACKed for CWR bit to reach receiver. */
  2473. if (tp->snd_una != tp->high_seq) {
  2474. tcp_end_cwnd_reduction(sk);
  2475. tcp_set_ca_state(sk, TCP_CA_Open);
  2476. }
  2477. break;
  2478. case TCP_CA_Recovery:
  2479. if (tcp_is_reno(tp))
  2480. tcp_reset_reno_sack(tp);
  2481. if (tcp_try_undo_recovery(sk))
  2482. return;
  2483. tcp_end_cwnd_reduction(sk);
  2484. break;
  2485. }
  2486. }
  2487. /* E. Process state. */
  2488. switch (icsk->icsk_ca_state) {
  2489. case TCP_CA_Recovery:
  2490. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2491. if (tcp_is_reno(tp) && is_dupack)
  2492. tcp_add_reno_sack(sk);
  2493. } else {
  2494. if (tcp_try_undo_partial(sk, acked))
  2495. return;
  2496. /* Partial ACK arrived. Force fast retransmit. */
  2497. do_lost = tcp_is_reno(tp) ||
  2498. tcp_fackets_out(tp) > tp->reordering;
  2499. }
  2500. if (tcp_try_undo_dsack(sk)) {
  2501. tcp_try_keep_open(sk);
  2502. return;
  2503. }
  2504. tcp_rack_identify_loss(sk, ack_flag);
  2505. break;
  2506. case TCP_CA_Loss:
  2507. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2508. tcp_rack_identify_loss(sk, ack_flag);
  2509. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2510. (*ack_flag & FLAG_LOST_RETRANS)))
  2511. return;
  2512. /* Change state if cwnd is undone or retransmits are lost */
  2513. /* fall through */
  2514. default:
  2515. if (tcp_is_reno(tp)) {
  2516. if (flag & FLAG_SND_UNA_ADVANCED)
  2517. tcp_reset_reno_sack(tp);
  2518. if (is_dupack)
  2519. tcp_add_reno_sack(sk);
  2520. }
  2521. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2522. tcp_try_undo_dsack(sk);
  2523. tcp_rack_identify_loss(sk, ack_flag);
  2524. if (!tcp_time_to_recover(sk, flag)) {
  2525. tcp_try_to_open(sk, flag);
  2526. return;
  2527. }
  2528. /* MTU probe failure: don't reduce cwnd */
  2529. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2530. icsk->icsk_mtup.probe_size &&
  2531. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2532. tcp_mtup_probe_failed(sk);
  2533. /* Restores the reduction we did in tcp_mtup_probe() */
  2534. tp->snd_cwnd++;
  2535. tcp_simple_retransmit(sk);
  2536. return;
  2537. }
  2538. /* Otherwise enter Recovery state */
  2539. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2540. fast_rexmit = 1;
  2541. }
  2542. if (do_lost)
  2543. tcp_update_scoreboard(sk, fast_rexmit);
  2544. *rexmit = REXMIT_LOST;
  2545. }
  2546. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2547. {
  2548. struct tcp_sock *tp = tcp_sk(sk);
  2549. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2550. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2551. rtt_us ? : jiffies_to_usecs(1));
  2552. }
  2553. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2554. long seq_rtt_us, long sack_rtt_us,
  2555. long ca_rtt_us, struct rate_sample *rs)
  2556. {
  2557. const struct tcp_sock *tp = tcp_sk(sk);
  2558. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2559. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2560. * Karn's algorithm forbids taking RTT if some retransmitted data
  2561. * is acked (RFC6298).
  2562. */
  2563. if (seq_rtt_us < 0)
  2564. seq_rtt_us = sack_rtt_us;
  2565. /* RTTM Rule: A TSecr value received in a segment is used to
  2566. * update the averaged RTT measurement only if the segment
  2567. * acknowledges some new data, i.e., only if it advances the
  2568. * left edge of the send window.
  2569. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2570. */
  2571. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2572. flag & FLAG_ACKED) {
  2573. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2574. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2575. seq_rtt_us = ca_rtt_us = delta_us;
  2576. }
  2577. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2578. if (seq_rtt_us < 0)
  2579. return false;
  2580. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2581. * always taken together with ACK, SACK, or TS-opts. Any negative
  2582. * values will be skipped with the seq_rtt_us < 0 check above.
  2583. */
  2584. tcp_update_rtt_min(sk, ca_rtt_us);
  2585. tcp_rtt_estimator(sk, seq_rtt_us);
  2586. tcp_set_rto(sk);
  2587. /* RFC6298: only reset backoff on valid RTT measurement. */
  2588. inet_csk(sk)->icsk_backoff = 0;
  2589. return true;
  2590. }
  2591. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2592. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2593. {
  2594. struct rate_sample rs;
  2595. long rtt_us = -1L;
  2596. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2597. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2598. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2599. }
  2600. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2601. {
  2602. const struct inet_connection_sock *icsk = inet_csk(sk);
  2603. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2604. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2605. }
  2606. /* Restart timer after forward progress on connection.
  2607. * RFC2988 recommends to restart timer to now+rto.
  2608. */
  2609. void tcp_rearm_rto(struct sock *sk)
  2610. {
  2611. const struct inet_connection_sock *icsk = inet_csk(sk);
  2612. struct tcp_sock *tp = tcp_sk(sk);
  2613. /* If the retrans timer is currently being used by Fast Open
  2614. * for SYN-ACK retrans purpose, stay put.
  2615. */
  2616. if (tp->fastopen_rsk)
  2617. return;
  2618. if (!tp->packets_out) {
  2619. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2620. } else {
  2621. u32 rto = inet_csk(sk)->icsk_rto;
  2622. /* Offset the time elapsed after installing regular RTO */
  2623. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2624. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2625. s64 delta_us = tcp_rto_delta_us(sk);
  2626. /* delta_us may not be positive if the socket is locked
  2627. * when the retrans timer fires and is rescheduled.
  2628. */
  2629. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2630. }
  2631. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2632. TCP_RTO_MAX);
  2633. }
  2634. }
  2635. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2636. static void tcp_set_xmit_timer(struct sock *sk)
  2637. {
  2638. if (!tcp_schedule_loss_probe(sk))
  2639. tcp_rearm_rto(sk);
  2640. }
  2641. /* If we get here, the whole TSO packet has not been acked. */
  2642. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2643. {
  2644. struct tcp_sock *tp = tcp_sk(sk);
  2645. u32 packets_acked;
  2646. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2647. packets_acked = tcp_skb_pcount(skb);
  2648. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2649. return 0;
  2650. packets_acked -= tcp_skb_pcount(skb);
  2651. if (packets_acked) {
  2652. BUG_ON(tcp_skb_pcount(skb) == 0);
  2653. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2654. }
  2655. return packets_acked;
  2656. }
  2657. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2658. u32 prior_snd_una)
  2659. {
  2660. const struct skb_shared_info *shinfo;
  2661. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2662. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2663. return;
  2664. shinfo = skb_shinfo(skb);
  2665. if (!before(shinfo->tskey, prior_snd_una) &&
  2666. before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
  2667. tcp_skb_tsorted_save(skb) {
  2668. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2669. } tcp_skb_tsorted_restore(skb);
  2670. }
  2671. }
  2672. /* Remove acknowledged frames from the retransmission queue. If our packet
  2673. * is before the ack sequence we can discard it as it's confirmed to have
  2674. * arrived at the other end.
  2675. */
  2676. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2677. u32 prior_snd_una, int *acked,
  2678. struct tcp_sacktag_state *sack)
  2679. {
  2680. const struct inet_connection_sock *icsk = inet_csk(sk);
  2681. u64 first_ackt, last_ackt;
  2682. struct tcp_sock *tp = tcp_sk(sk);
  2683. u32 prior_sacked = tp->sacked_out;
  2684. u32 reord = tp->packets_out;
  2685. struct sk_buff *skb, *next;
  2686. bool fully_acked = true;
  2687. long sack_rtt_us = -1L;
  2688. long seq_rtt_us = -1L;
  2689. long ca_rtt_us = -1L;
  2690. u32 pkts_acked = 0;
  2691. u32 last_in_flight = 0;
  2692. bool rtt_update;
  2693. int flag = 0;
  2694. first_ackt = 0;
  2695. for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
  2696. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2697. u8 sacked = scb->sacked;
  2698. u32 acked_pcount;
  2699. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2700. /* Determine how many packets and what bytes were acked, tso and else */
  2701. if (after(scb->end_seq, tp->snd_una)) {
  2702. if (tcp_skb_pcount(skb) == 1 ||
  2703. !after(tp->snd_una, scb->seq))
  2704. break;
  2705. acked_pcount = tcp_tso_acked(sk, skb);
  2706. if (!acked_pcount)
  2707. break;
  2708. fully_acked = false;
  2709. } else {
  2710. acked_pcount = tcp_skb_pcount(skb);
  2711. }
  2712. if (unlikely(sacked & TCPCB_RETRANS)) {
  2713. if (sacked & TCPCB_SACKED_RETRANS)
  2714. tp->retrans_out -= acked_pcount;
  2715. flag |= FLAG_RETRANS_DATA_ACKED;
  2716. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2717. last_ackt = skb->skb_mstamp;
  2718. WARN_ON_ONCE(last_ackt == 0);
  2719. if (!first_ackt)
  2720. first_ackt = last_ackt;
  2721. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2722. reord = min(pkts_acked, reord);
  2723. if (!after(scb->end_seq, tp->high_seq))
  2724. flag |= FLAG_ORIG_SACK_ACKED;
  2725. }
  2726. if (sacked & TCPCB_SACKED_ACKED) {
  2727. tp->sacked_out -= acked_pcount;
  2728. } else if (tcp_is_sack(tp)) {
  2729. tp->delivered += acked_pcount;
  2730. if (!tcp_skb_spurious_retrans(tp, skb))
  2731. tcp_rack_advance(tp, sacked, scb->end_seq,
  2732. skb->skb_mstamp);
  2733. }
  2734. if (sacked & TCPCB_LOST)
  2735. tp->lost_out -= acked_pcount;
  2736. tp->packets_out -= acked_pcount;
  2737. pkts_acked += acked_pcount;
  2738. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2739. /* Initial outgoing SYN's get put onto the write_queue
  2740. * just like anything else we transmit. It is not
  2741. * true data, and if we misinform our callers that
  2742. * this ACK acks real data, we will erroneously exit
  2743. * connection startup slow start one packet too
  2744. * quickly. This is severely frowned upon behavior.
  2745. */
  2746. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2747. flag |= FLAG_DATA_ACKED;
  2748. } else {
  2749. flag |= FLAG_SYN_ACKED;
  2750. tp->retrans_stamp = 0;
  2751. }
  2752. if (!fully_acked)
  2753. break;
  2754. next = skb_rb_next(skb);
  2755. if (unlikely(skb == tp->retransmit_skb_hint))
  2756. tp->retransmit_skb_hint = NULL;
  2757. if (unlikely(skb == tp->lost_skb_hint))
  2758. tp->lost_skb_hint = NULL;
  2759. tcp_rtx_queue_unlink_and_free(skb, sk);
  2760. }
  2761. if (!skb)
  2762. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2763. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2764. tp->snd_up = tp->snd_una;
  2765. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2766. flag |= FLAG_SACK_RENEGING;
  2767. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2768. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2769. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2770. }
  2771. if (sack->first_sackt) {
  2772. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2773. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2774. }
  2775. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2776. ca_rtt_us, sack->rate);
  2777. if (flag & FLAG_ACKED) {
  2778. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2779. if (unlikely(icsk->icsk_mtup.probe_size &&
  2780. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2781. tcp_mtup_probe_success(sk);
  2782. }
  2783. if (tcp_is_reno(tp)) {
  2784. tcp_remove_reno_sacks(sk, pkts_acked);
  2785. } else {
  2786. int delta;
  2787. /* Non-retransmitted hole got filled? That's reordering */
  2788. if (reord < prior_fackets && reord <= tp->fackets_out)
  2789. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2790. delta = tcp_is_fack(tp) ? pkts_acked :
  2791. prior_sacked - tp->sacked_out;
  2792. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2793. }
  2794. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2795. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2796. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2797. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2798. * after when the head was last (re)transmitted. Otherwise the
  2799. * timeout may continue to extend in loss recovery.
  2800. */
  2801. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2802. }
  2803. if (icsk->icsk_ca_ops->pkts_acked) {
  2804. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2805. .rtt_us = sack->rate->rtt_us,
  2806. .in_flight = last_in_flight };
  2807. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2808. }
  2809. #if FASTRETRANS_DEBUG > 0
  2810. WARN_ON((int)tp->sacked_out < 0);
  2811. WARN_ON((int)tp->lost_out < 0);
  2812. WARN_ON((int)tp->retrans_out < 0);
  2813. if (!tp->packets_out && tcp_is_sack(tp)) {
  2814. icsk = inet_csk(sk);
  2815. if (tp->lost_out) {
  2816. pr_debug("Leak l=%u %d\n",
  2817. tp->lost_out, icsk->icsk_ca_state);
  2818. tp->lost_out = 0;
  2819. }
  2820. if (tp->sacked_out) {
  2821. pr_debug("Leak s=%u %d\n",
  2822. tp->sacked_out, icsk->icsk_ca_state);
  2823. tp->sacked_out = 0;
  2824. }
  2825. if (tp->retrans_out) {
  2826. pr_debug("Leak r=%u %d\n",
  2827. tp->retrans_out, icsk->icsk_ca_state);
  2828. tp->retrans_out = 0;
  2829. }
  2830. }
  2831. #endif
  2832. *acked = pkts_acked;
  2833. return flag;
  2834. }
  2835. static void tcp_ack_probe(struct sock *sk)
  2836. {
  2837. struct inet_connection_sock *icsk = inet_csk(sk);
  2838. struct sk_buff *head = tcp_send_head(sk);
  2839. const struct tcp_sock *tp = tcp_sk(sk);
  2840. /* Was it a usable window open? */
  2841. if (!head)
  2842. return;
  2843. if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
  2844. icsk->icsk_backoff = 0;
  2845. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2846. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2847. * This function is not for random using!
  2848. */
  2849. } else {
  2850. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2851. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2852. when, TCP_RTO_MAX);
  2853. }
  2854. }
  2855. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2856. {
  2857. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2858. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2859. }
  2860. /* Decide wheather to run the increase function of congestion control. */
  2861. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2862. {
  2863. /* If reordering is high then always grow cwnd whenever data is
  2864. * delivered regardless of its ordering. Otherwise stay conservative
  2865. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2866. * new SACK or ECE mark may first advance cwnd here and later reduce
  2867. * cwnd in tcp_fastretrans_alert() based on more states.
  2868. */
  2869. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2870. return flag & FLAG_FORWARD_PROGRESS;
  2871. return flag & FLAG_DATA_ACKED;
  2872. }
  2873. /* The "ultimate" congestion control function that aims to replace the rigid
  2874. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2875. * It's called toward the end of processing an ACK with precise rate
  2876. * information. All transmission or retransmission are delayed afterwards.
  2877. */
  2878. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2879. int flag, const struct rate_sample *rs)
  2880. {
  2881. const struct inet_connection_sock *icsk = inet_csk(sk);
  2882. if (icsk->icsk_ca_ops->cong_control) {
  2883. icsk->icsk_ca_ops->cong_control(sk, rs);
  2884. return;
  2885. }
  2886. if (tcp_in_cwnd_reduction(sk)) {
  2887. /* Reduce cwnd if state mandates */
  2888. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2889. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2890. /* Advance cwnd if state allows */
  2891. tcp_cong_avoid(sk, ack, acked_sacked);
  2892. }
  2893. tcp_update_pacing_rate(sk);
  2894. }
  2895. /* Check that window update is acceptable.
  2896. * The function assumes that snd_una<=ack<=snd_next.
  2897. */
  2898. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2899. const u32 ack, const u32 ack_seq,
  2900. const u32 nwin)
  2901. {
  2902. return after(ack, tp->snd_una) ||
  2903. after(ack_seq, tp->snd_wl1) ||
  2904. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2905. }
  2906. /* If we update tp->snd_una, also update tp->bytes_acked */
  2907. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2908. {
  2909. u32 delta = ack - tp->snd_una;
  2910. sock_owned_by_me((struct sock *)tp);
  2911. tp->bytes_acked += delta;
  2912. tp->snd_una = ack;
  2913. }
  2914. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2915. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2916. {
  2917. u32 delta = seq - tp->rcv_nxt;
  2918. sock_owned_by_me((struct sock *)tp);
  2919. tp->bytes_received += delta;
  2920. tp->rcv_nxt = seq;
  2921. }
  2922. /* Update our send window.
  2923. *
  2924. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2925. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2926. */
  2927. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2928. u32 ack_seq)
  2929. {
  2930. struct tcp_sock *tp = tcp_sk(sk);
  2931. int flag = 0;
  2932. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2933. if (likely(!tcp_hdr(skb)->syn))
  2934. nwin <<= tp->rx_opt.snd_wscale;
  2935. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2936. flag |= FLAG_WIN_UPDATE;
  2937. tcp_update_wl(tp, ack_seq);
  2938. if (tp->snd_wnd != nwin) {
  2939. tp->snd_wnd = nwin;
  2940. /* Note, it is the only place, where
  2941. * fast path is recovered for sending TCP.
  2942. */
  2943. tp->pred_flags = 0;
  2944. tcp_fast_path_check(sk);
  2945. if (!tcp_write_queue_empty(sk))
  2946. tcp_slow_start_after_idle_check(sk);
  2947. if (nwin > tp->max_window) {
  2948. tp->max_window = nwin;
  2949. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2950. }
  2951. }
  2952. }
  2953. tcp_snd_una_update(tp, ack);
  2954. return flag;
  2955. }
  2956. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2957. u32 *last_oow_ack_time)
  2958. {
  2959. if (*last_oow_ack_time) {
  2960. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2961. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2962. NET_INC_STATS(net, mib_idx);
  2963. return true; /* rate-limited: don't send yet! */
  2964. }
  2965. }
  2966. *last_oow_ack_time = tcp_jiffies32;
  2967. return false; /* not rate-limited: go ahead, send dupack now! */
  2968. }
  2969. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2970. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2971. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2972. * attacks that send repeated SYNs or ACKs for the same connection. To
  2973. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2974. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2975. */
  2976. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2977. int mib_idx, u32 *last_oow_ack_time)
  2978. {
  2979. /* Data packets without SYNs are not likely part of an ACK loop. */
  2980. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2981. !tcp_hdr(skb)->syn)
  2982. return false;
  2983. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2984. }
  2985. /* RFC 5961 7 [ACK Throttling] */
  2986. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2987. {
  2988. /* unprotected vars, we dont care of overwrites */
  2989. static u32 challenge_timestamp;
  2990. static unsigned int challenge_count;
  2991. struct tcp_sock *tp = tcp_sk(sk);
  2992. u32 count, now;
  2993. /* First check our per-socket dupack rate limit. */
  2994. if (__tcp_oow_rate_limited(sock_net(sk),
  2995. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2996. &tp->last_oow_ack_time))
  2997. return;
  2998. /* Then check host-wide RFC 5961 rate limit. */
  2999. now = jiffies / HZ;
  3000. if (now != challenge_timestamp) {
  3001. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  3002. challenge_timestamp = now;
  3003. WRITE_ONCE(challenge_count, half +
  3004. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  3005. }
  3006. count = READ_ONCE(challenge_count);
  3007. if (count > 0) {
  3008. WRITE_ONCE(challenge_count, count - 1);
  3009. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  3010. tcp_send_ack(sk);
  3011. }
  3012. }
  3013. static void tcp_store_ts_recent(struct tcp_sock *tp)
  3014. {
  3015. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3016. tp->rx_opt.ts_recent_stamp = get_seconds();
  3017. }
  3018. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3019. {
  3020. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3021. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3022. * extra check below makes sure this can only happen
  3023. * for pure ACK frames. -DaveM
  3024. *
  3025. * Not only, also it occurs for expired timestamps.
  3026. */
  3027. if (tcp_paws_check(&tp->rx_opt, 0))
  3028. tcp_store_ts_recent(tp);
  3029. }
  3030. }
  3031. /* This routine deals with acks during a TLP episode.
  3032. * We mark the end of a TLP episode on receiving TLP dupack or when
  3033. * ack is after tlp_high_seq.
  3034. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3035. */
  3036. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3037. {
  3038. struct tcp_sock *tp = tcp_sk(sk);
  3039. if (before(ack, tp->tlp_high_seq))
  3040. return;
  3041. if (flag & FLAG_DSACKING_ACK) {
  3042. /* This DSACK means original and TLP probe arrived; no loss */
  3043. tp->tlp_high_seq = 0;
  3044. } else if (after(ack, tp->tlp_high_seq)) {
  3045. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3046. * tlp_high_seq in tcp_init_cwnd_reduction()
  3047. */
  3048. tcp_init_cwnd_reduction(sk);
  3049. tcp_set_ca_state(sk, TCP_CA_CWR);
  3050. tcp_end_cwnd_reduction(sk);
  3051. tcp_try_keep_open(sk);
  3052. NET_INC_STATS(sock_net(sk),
  3053. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3054. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3055. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3056. /* Pure dupack: original and TLP probe arrived; no loss */
  3057. tp->tlp_high_seq = 0;
  3058. }
  3059. }
  3060. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3061. {
  3062. const struct inet_connection_sock *icsk = inet_csk(sk);
  3063. if (icsk->icsk_ca_ops->in_ack_event)
  3064. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3065. }
  3066. /* Congestion control has updated the cwnd already. So if we're in
  3067. * loss recovery then now we do any new sends (for FRTO) or
  3068. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3069. */
  3070. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3071. {
  3072. struct tcp_sock *tp = tcp_sk(sk);
  3073. if (rexmit == REXMIT_NONE)
  3074. return;
  3075. if (unlikely(rexmit == 2)) {
  3076. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3077. TCP_NAGLE_OFF);
  3078. if (after(tp->snd_nxt, tp->high_seq))
  3079. return;
  3080. tp->frto = 0;
  3081. }
  3082. tcp_xmit_retransmit_queue(sk);
  3083. }
  3084. /* This routine deals with incoming acks, but not outgoing ones. */
  3085. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3086. {
  3087. struct inet_connection_sock *icsk = inet_csk(sk);
  3088. struct tcp_sock *tp = tcp_sk(sk);
  3089. struct tcp_sacktag_state sack_state;
  3090. struct rate_sample rs = { .prior_delivered = 0 };
  3091. u32 prior_snd_una = tp->snd_una;
  3092. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3093. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3094. bool is_dupack = false;
  3095. u32 prior_fackets;
  3096. int prior_packets = tp->packets_out;
  3097. u32 delivered = tp->delivered;
  3098. u32 lost = tp->lost;
  3099. int acked = 0; /* Number of packets newly acked */
  3100. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3101. sack_state.first_sackt = 0;
  3102. sack_state.rate = &rs;
  3103. /* We very likely will need to access rtx queue. */
  3104. prefetch(sk->tcp_rtx_queue.rb_node);
  3105. /* If the ack is older than previous acks
  3106. * then we can probably ignore it.
  3107. */
  3108. if (before(ack, prior_snd_una)) {
  3109. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3110. if (before(ack, prior_snd_una - tp->max_window)) {
  3111. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3112. tcp_send_challenge_ack(sk, skb);
  3113. return -1;
  3114. }
  3115. goto old_ack;
  3116. }
  3117. /* If the ack includes data we haven't sent yet, discard
  3118. * this segment (RFC793 Section 3.9).
  3119. */
  3120. if (after(ack, tp->snd_nxt))
  3121. goto invalid_ack;
  3122. if (after(ack, prior_snd_una)) {
  3123. flag |= FLAG_SND_UNA_ADVANCED;
  3124. icsk->icsk_retransmits = 0;
  3125. }
  3126. prior_fackets = tp->fackets_out;
  3127. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3128. /* ts_recent update must be made after we are sure that the packet
  3129. * is in window.
  3130. */
  3131. if (flag & FLAG_UPDATE_TS_RECENT)
  3132. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3133. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3134. /* Window is constant, pure forward advance.
  3135. * No more checks are required.
  3136. * Note, we use the fact that SND.UNA>=SND.WL2.
  3137. */
  3138. tcp_update_wl(tp, ack_seq);
  3139. tcp_snd_una_update(tp, ack);
  3140. flag |= FLAG_WIN_UPDATE;
  3141. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3142. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3143. } else {
  3144. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3145. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3146. flag |= FLAG_DATA;
  3147. else
  3148. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3149. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3150. if (TCP_SKB_CB(skb)->sacked)
  3151. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3152. &sack_state);
  3153. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3154. flag |= FLAG_ECE;
  3155. ack_ev_flags |= CA_ACK_ECE;
  3156. }
  3157. if (flag & FLAG_WIN_UPDATE)
  3158. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3159. tcp_in_ack_event(sk, ack_ev_flags);
  3160. }
  3161. /* We passed data and got it acked, remove any soft error
  3162. * log. Something worked...
  3163. */
  3164. sk->sk_err_soft = 0;
  3165. icsk->icsk_probes_out = 0;
  3166. tp->rcv_tstamp = tcp_jiffies32;
  3167. if (!prior_packets)
  3168. goto no_queue;
  3169. /* See if we can take anything off of the retransmit queue. */
  3170. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3171. &sack_state);
  3172. if (tp->tlp_high_seq)
  3173. tcp_process_tlp_ack(sk, ack, flag);
  3174. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3175. if (flag & FLAG_SET_XMIT_TIMER)
  3176. tcp_set_xmit_timer(sk);
  3177. if (tcp_ack_is_dubious(sk, flag)) {
  3178. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3179. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3180. }
  3181. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3182. sk_dst_confirm(sk);
  3183. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3184. lost = tp->lost - lost; /* freshly marked lost */
  3185. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3186. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3187. tcp_xmit_recovery(sk, rexmit);
  3188. return 1;
  3189. no_queue:
  3190. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3191. if (flag & FLAG_DSACKING_ACK)
  3192. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3193. /* If this ack opens up a zero window, clear backoff. It was
  3194. * being used to time the probes, and is probably far higher than
  3195. * it needs to be for normal retransmission.
  3196. */
  3197. tcp_ack_probe(sk);
  3198. if (tp->tlp_high_seq)
  3199. tcp_process_tlp_ack(sk, ack, flag);
  3200. return 1;
  3201. invalid_ack:
  3202. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3203. return -1;
  3204. old_ack:
  3205. /* If data was SACKed, tag it and see if we should send more data.
  3206. * If data was DSACKed, see if we can undo a cwnd reduction.
  3207. */
  3208. if (TCP_SKB_CB(skb)->sacked) {
  3209. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3210. &sack_state);
  3211. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3212. tcp_xmit_recovery(sk, rexmit);
  3213. }
  3214. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3215. return 0;
  3216. }
  3217. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3218. bool syn, struct tcp_fastopen_cookie *foc,
  3219. bool exp_opt)
  3220. {
  3221. /* Valid only in SYN or SYN-ACK with an even length. */
  3222. if (!foc || !syn || len < 0 || (len & 1))
  3223. return;
  3224. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3225. len <= TCP_FASTOPEN_COOKIE_MAX)
  3226. memcpy(foc->val, cookie, len);
  3227. else if (len != 0)
  3228. len = -1;
  3229. foc->len = len;
  3230. foc->exp = exp_opt;
  3231. }
  3232. static void smc_parse_options(const struct tcphdr *th,
  3233. struct tcp_options_received *opt_rx,
  3234. const unsigned char *ptr,
  3235. int opsize)
  3236. {
  3237. #if IS_ENABLED(CONFIG_SMC)
  3238. if (static_branch_unlikely(&tcp_have_smc)) {
  3239. if (th->syn && !(opsize & 1) &&
  3240. opsize >= TCPOLEN_EXP_SMC_BASE &&
  3241. get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
  3242. opt_rx->smc_ok = 1;
  3243. }
  3244. #endif
  3245. }
  3246. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3247. * But, this can also be called on packets in the established flow when
  3248. * the fast version below fails.
  3249. */
  3250. void tcp_parse_options(const struct net *net,
  3251. const struct sk_buff *skb,
  3252. struct tcp_options_received *opt_rx, int estab,
  3253. struct tcp_fastopen_cookie *foc)
  3254. {
  3255. const unsigned char *ptr;
  3256. const struct tcphdr *th = tcp_hdr(skb);
  3257. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3258. ptr = (const unsigned char *)(th + 1);
  3259. opt_rx->saw_tstamp = 0;
  3260. while (length > 0) {
  3261. int opcode = *ptr++;
  3262. int opsize;
  3263. switch (opcode) {
  3264. case TCPOPT_EOL:
  3265. return;
  3266. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3267. length--;
  3268. continue;
  3269. default:
  3270. opsize = *ptr++;
  3271. if (opsize < 2) /* "silly options" */
  3272. return;
  3273. if (opsize > length)
  3274. return; /* don't parse partial options */
  3275. switch (opcode) {
  3276. case TCPOPT_MSS:
  3277. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3278. u16 in_mss = get_unaligned_be16(ptr);
  3279. if (in_mss) {
  3280. if (opt_rx->user_mss &&
  3281. opt_rx->user_mss < in_mss)
  3282. in_mss = opt_rx->user_mss;
  3283. opt_rx->mss_clamp = in_mss;
  3284. }
  3285. }
  3286. break;
  3287. case TCPOPT_WINDOW:
  3288. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3289. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3290. __u8 snd_wscale = *(__u8 *)ptr;
  3291. opt_rx->wscale_ok = 1;
  3292. if (snd_wscale > TCP_MAX_WSCALE) {
  3293. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3294. __func__,
  3295. snd_wscale,
  3296. TCP_MAX_WSCALE);
  3297. snd_wscale = TCP_MAX_WSCALE;
  3298. }
  3299. opt_rx->snd_wscale = snd_wscale;
  3300. }
  3301. break;
  3302. case TCPOPT_TIMESTAMP:
  3303. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3304. ((estab && opt_rx->tstamp_ok) ||
  3305. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3306. opt_rx->saw_tstamp = 1;
  3307. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3308. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3309. }
  3310. break;
  3311. case TCPOPT_SACK_PERM:
  3312. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3313. !estab && net->ipv4.sysctl_tcp_sack) {
  3314. opt_rx->sack_ok = TCP_SACK_SEEN;
  3315. tcp_sack_reset(opt_rx);
  3316. }
  3317. break;
  3318. case TCPOPT_SACK:
  3319. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3320. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3321. opt_rx->sack_ok) {
  3322. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3323. }
  3324. break;
  3325. #ifdef CONFIG_TCP_MD5SIG
  3326. case TCPOPT_MD5SIG:
  3327. /*
  3328. * The MD5 Hash has already been
  3329. * checked (see tcp_v{4,6}_do_rcv()).
  3330. */
  3331. break;
  3332. #endif
  3333. case TCPOPT_FASTOPEN:
  3334. tcp_parse_fastopen_option(
  3335. opsize - TCPOLEN_FASTOPEN_BASE,
  3336. ptr, th->syn, foc, false);
  3337. break;
  3338. case TCPOPT_EXP:
  3339. /* Fast Open option shares code 254 using a
  3340. * 16 bits magic number.
  3341. */
  3342. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3343. get_unaligned_be16(ptr) ==
  3344. TCPOPT_FASTOPEN_MAGIC)
  3345. tcp_parse_fastopen_option(opsize -
  3346. TCPOLEN_EXP_FASTOPEN_BASE,
  3347. ptr + 2, th->syn, foc, true);
  3348. else
  3349. smc_parse_options(th, opt_rx, ptr,
  3350. opsize);
  3351. break;
  3352. }
  3353. ptr += opsize-2;
  3354. length -= opsize;
  3355. }
  3356. }
  3357. }
  3358. EXPORT_SYMBOL(tcp_parse_options);
  3359. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3360. {
  3361. const __be32 *ptr = (const __be32 *)(th + 1);
  3362. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3363. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3364. tp->rx_opt.saw_tstamp = 1;
  3365. ++ptr;
  3366. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3367. ++ptr;
  3368. if (*ptr)
  3369. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3370. else
  3371. tp->rx_opt.rcv_tsecr = 0;
  3372. return true;
  3373. }
  3374. return false;
  3375. }
  3376. /* Fast parse options. This hopes to only see timestamps.
  3377. * If it is wrong it falls back on tcp_parse_options().
  3378. */
  3379. static bool tcp_fast_parse_options(const struct net *net,
  3380. const struct sk_buff *skb,
  3381. const struct tcphdr *th, struct tcp_sock *tp)
  3382. {
  3383. /* In the spirit of fast parsing, compare doff directly to constant
  3384. * values. Because equality is used, short doff can be ignored here.
  3385. */
  3386. if (th->doff == (sizeof(*th) / 4)) {
  3387. tp->rx_opt.saw_tstamp = 0;
  3388. return false;
  3389. } else if (tp->rx_opt.tstamp_ok &&
  3390. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3391. if (tcp_parse_aligned_timestamp(tp, th))
  3392. return true;
  3393. }
  3394. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3395. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3396. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3397. return true;
  3398. }
  3399. #ifdef CONFIG_TCP_MD5SIG
  3400. /*
  3401. * Parse MD5 Signature option
  3402. */
  3403. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3404. {
  3405. int length = (th->doff << 2) - sizeof(*th);
  3406. const u8 *ptr = (const u8 *)(th + 1);
  3407. /* If the TCP option is too short, we can short cut */
  3408. if (length < TCPOLEN_MD5SIG)
  3409. return NULL;
  3410. while (length > 0) {
  3411. int opcode = *ptr++;
  3412. int opsize;
  3413. switch (opcode) {
  3414. case TCPOPT_EOL:
  3415. return NULL;
  3416. case TCPOPT_NOP:
  3417. length--;
  3418. continue;
  3419. default:
  3420. opsize = *ptr++;
  3421. if (opsize < 2 || opsize > length)
  3422. return NULL;
  3423. if (opcode == TCPOPT_MD5SIG)
  3424. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3425. }
  3426. ptr += opsize - 2;
  3427. length -= opsize;
  3428. }
  3429. return NULL;
  3430. }
  3431. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3432. #endif
  3433. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3434. *
  3435. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3436. * it can pass through stack. So, the following predicate verifies that
  3437. * this segment is not used for anything but congestion avoidance or
  3438. * fast retransmit. Moreover, we even are able to eliminate most of such
  3439. * second order effects, if we apply some small "replay" window (~RTO)
  3440. * to timestamp space.
  3441. *
  3442. * All these measures still do not guarantee that we reject wrapped ACKs
  3443. * on networks with high bandwidth, when sequence space is recycled fastly,
  3444. * but it guarantees that such events will be very rare and do not affect
  3445. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3446. * buggy extension.
  3447. *
  3448. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3449. * states that events when retransmit arrives after original data are rare.
  3450. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3451. * the biggest problem on large power networks even with minor reordering.
  3452. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3453. * up to bandwidth of 18Gigabit/sec. 8) ]
  3454. */
  3455. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3456. {
  3457. const struct tcp_sock *tp = tcp_sk(sk);
  3458. const struct tcphdr *th = tcp_hdr(skb);
  3459. u32 seq = TCP_SKB_CB(skb)->seq;
  3460. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3461. return (/* 1. Pure ACK with correct sequence number. */
  3462. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3463. /* 2. ... and duplicate ACK. */
  3464. ack == tp->snd_una &&
  3465. /* 3. ... and does not update window. */
  3466. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3467. /* 4. ... and sits in replay window. */
  3468. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3469. }
  3470. static inline bool tcp_paws_discard(const struct sock *sk,
  3471. const struct sk_buff *skb)
  3472. {
  3473. const struct tcp_sock *tp = tcp_sk(sk);
  3474. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3475. !tcp_disordered_ack(sk, skb);
  3476. }
  3477. /* Check segment sequence number for validity.
  3478. *
  3479. * Segment controls are considered valid, if the segment
  3480. * fits to the window after truncation to the window. Acceptability
  3481. * of data (and SYN, FIN, of course) is checked separately.
  3482. * See tcp_data_queue(), for example.
  3483. *
  3484. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3485. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3486. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3487. * (borrowed from freebsd)
  3488. */
  3489. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3490. {
  3491. return !before(end_seq, tp->rcv_wup) &&
  3492. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3493. }
  3494. /* When we get a reset we do this. */
  3495. void tcp_reset(struct sock *sk)
  3496. {
  3497. trace_tcp_receive_reset(sk);
  3498. /* We want the right error as BSD sees it (and indeed as we do). */
  3499. switch (sk->sk_state) {
  3500. case TCP_SYN_SENT:
  3501. sk->sk_err = ECONNREFUSED;
  3502. break;
  3503. case TCP_CLOSE_WAIT:
  3504. sk->sk_err = EPIPE;
  3505. break;
  3506. case TCP_CLOSE:
  3507. return;
  3508. default:
  3509. sk->sk_err = ECONNRESET;
  3510. }
  3511. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3512. smp_wmb();
  3513. tcp_done(sk);
  3514. if (!sock_flag(sk, SOCK_DEAD))
  3515. sk->sk_error_report(sk);
  3516. }
  3517. /*
  3518. * Process the FIN bit. This now behaves as it is supposed to work
  3519. * and the FIN takes effect when it is validly part of sequence
  3520. * space. Not before when we get holes.
  3521. *
  3522. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3523. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3524. * TIME-WAIT)
  3525. *
  3526. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3527. * close and we go into CLOSING (and later onto TIME-WAIT)
  3528. *
  3529. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3530. */
  3531. void tcp_fin(struct sock *sk)
  3532. {
  3533. struct tcp_sock *tp = tcp_sk(sk);
  3534. inet_csk_schedule_ack(sk);
  3535. sk->sk_shutdown |= RCV_SHUTDOWN;
  3536. sock_set_flag(sk, SOCK_DONE);
  3537. switch (sk->sk_state) {
  3538. case TCP_SYN_RECV:
  3539. case TCP_ESTABLISHED:
  3540. /* Move to CLOSE_WAIT */
  3541. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3542. inet_csk(sk)->icsk_ack.pingpong = 1;
  3543. break;
  3544. case TCP_CLOSE_WAIT:
  3545. case TCP_CLOSING:
  3546. /* Received a retransmission of the FIN, do
  3547. * nothing.
  3548. */
  3549. break;
  3550. case TCP_LAST_ACK:
  3551. /* RFC793: Remain in the LAST-ACK state. */
  3552. break;
  3553. case TCP_FIN_WAIT1:
  3554. /* This case occurs when a simultaneous close
  3555. * happens, we must ack the received FIN and
  3556. * enter the CLOSING state.
  3557. */
  3558. tcp_send_ack(sk);
  3559. tcp_set_state(sk, TCP_CLOSING);
  3560. break;
  3561. case TCP_FIN_WAIT2:
  3562. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3563. tcp_send_ack(sk);
  3564. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3565. break;
  3566. default:
  3567. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3568. * cases we should never reach this piece of code.
  3569. */
  3570. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3571. __func__, sk->sk_state);
  3572. break;
  3573. }
  3574. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3575. * Probably, we should reset in this case. For now drop them.
  3576. */
  3577. skb_rbtree_purge(&tp->out_of_order_queue);
  3578. if (tcp_is_sack(tp))
  3579. tcp_sack_reset(&tp->rx_opt);
  3580. sk_mem_reclaim(sk);
  3581. if (!sock_flag(sk, SOCK_DEAD)) {
  3582. sk->sk_state_change(sk);
  3583. /* Do not send POLL_HUP for half duplex close. */
  3584. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3585. sk->sk_state == TCP_CLOSE)
  3586. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3587. else
  3588. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3589. }
  3590. }
  3591. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3592. u32 end_seq)
  3593. {
  3594. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3595. if (before(seq, sp->start_seq))
  3596. sp->start_seq = seq;
  3597. if (after(end_seq, sp->end_seq))
  3598. sp->end_seq = end_seq;
  3599. return true;
  3600. }
  3601. return false;
  3602. }
  3603. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3604. {
  3605. struct tcp_sock *tp = tcp_sk(sk);
  3606. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3607. int mib_idx;
  3608. if (before(seq, tp->rcv_nxt))
  3609. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3610. else
  3611. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3612. NET_INC_STATS(sock_net(sk), mib_idx);
  3613. tp->rx_opt.dsack = 1;
  3614. tp->duplicate_sack[0].start_seq = seq;
  3615. tp->duplicate_sack[0].end_seq = end_seq;
  3616. }
  3617. }
  3618. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3619. {
  3620. struct tcp_sock *tp = tcp_sk(sk);
  3621. if (!tp->rx_opt.dsack)
  3622. tcp_dsack_set(sk, seq, end_seq);
  3623. else
  3624. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3625. }
  3626. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3627. {
  3628. struct tcp_sock *tp = tcp_sk(sk);
  3629. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3630. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3631. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3632. tcp_enter_quickack_mode(sk);
  3633. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3634. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3635. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3636. end_seq = tp->rcv_nxt;
  3637. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3638. }
  3639. }
  3640. tcp_send_ack(sk);
  3641. }
  3642. /* These routines update the SACK block as out-of-order packets arrive or
  3643. * in-order packets close up the sequence space.
  3644. */
  3645. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3646. {
  3647. int this_sack;
  3648. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3649. struct tcp_sack_block *swalk = sp + 1;
  3650. /* See if the recent change to the first SACK eats into
  3651. * or hits the sequence space of other SACK blocks, if so coalesce.
  3652. */
  3653. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3654. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3655. int i;
  3656. /* Zap SWALK, by moving every further SACK up by one slot.
  3657. * Decrease num_sacks.
  3658. */
  3659. tp->rx_opt.num_sacks--;
  3660. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3661. sp[i] = sp[i + 1];
  3662. continue;
  3663. }
  3664. this_sack++, swalk++;
  3665. }
  3666. }
  3667. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3668. {
  3669. struct tcp_sock *tp = tcp_sk(sk);
  3670. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3671. int cur_sacks = tp->rx_opt.num_sacks;
  3672. int this_sack;
  3673. if (!cur_sacks)
  3674. goto new_sack;
  3675. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3676. if (tcp_sack_extend(sp, seq, end_seq)) {
  3677. /* Rotate this_sack to the first one. */
  3678. for (; this_sack > 0; this_sack--, sp--)
  3679. swap(*sp, *(sp - 1));
  3680. if (cur_sacks > 1)
  3681. tcp_sack_maybe_coalesce(tp);
  3682. return;
  3683. }
  3684. }
  3685. /* Could not find an adjacent existing SACK, build a new one,
  3686. * put it at the front, and shift everyone else down. We
  3687. * always know there is at least one SACK present already here.
  3688. *
  3689. * If the sack array is full, forget about the last one.
  3690. */
  3691. if (this_sack >= TCP_NUM_SACKS) {
  3692. this_sack--;
  3693. tp->rx_opt.num_sacks--;
  3694. sp--;
  3695. }
  3696. for (; this_sack > 0; this_sack--, sp--)
  3697. *sp = *(sp - 1);
  3698. new_sack:
  3699. /* Build the new head SACK, and we're done. */
  3700. sp->start_seq = seq;
  3701. sp->end_seq = end_seq;
  3702. tp->rx_opt.num_sacks++;
  3703. }
  3704. /* RCV.NXT advances, some SACKs should be eaten. */
  3705. static void tcp_sack_remove(struct tcp_sock *tp)
  3706. {
  3707. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3708. int num_sacks = tp->rx_opt.num_sacks;
  3709. int this_sack;
  3710. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3711. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3712. tp->rx_opt.num_sacks = 0;
  3713. return;
  3714. }
  3715. for (this_sack = 0; this_sack < num_sacks;) {
  3716. /* Check if the start of the sack is covered by RCV.NXT. */
  3717. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3718. int i;
  3719. /* RCV.NXT must cover all the block! */
  3720. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3721. /* Zap this SACK, by moving forward any other SACKS. */
  3722. for (i = this_sack+1; i < num_sacks; i++)
  3723. tp->selective_acks[i-1] = tp->selective_acks[i];
  3724. num_sacks--;
  3725. continue;
  3726. }
  3727. this_sack++;
  3728. sp++;
  3729. }
  3730. tp->rx_opt.num_sacks = num_sacks;
  3731. }
  3732. /**
  3733. * tcp_try_coalesce - try to merge skb to prior one
  3734. * @sk: socket
  3735. * @dest: destination queue
  3736. * @to: prior buffer
  3737. * @from: buffer to add in queue
  3738. * @fragstolen: pointer to boolean
  3739. *
  3740. * Before queueing skb @from after @to, try to merge them
  3741. * to reduce overall memory use and queue lengths, if cost is small.
  3742. * Packets in ofo or receive queues can stay a long time.
  3743. * Better try to coalesce them right now to avoid future collapses.
  3744. * Returns true if caller should free @from instead of queueing it
  3745. */
  3746. static bool tcp_try_coalesce(struct sock *sk,
  3747. struct sk_buff *to,
  3748. struct sk_buff *from,
  3749. bool *fragstolen)
  3750. {
  3751. int delta;
  3752. *fragstolen = false;
  3753. /* Its possible this segment overlaps with prior segment in queue */
  3754. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3755. return false;
  3756. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3757. return false;
  3758. atomic_add(delta, &sk->sk_rmem_alloc);
  3759. sk_mem_charge(sk, delta);
  3760. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3761. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3762. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3763. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3764. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3765. TCP_SKB_CB(to)->has_rxtstamp = true;
  3766. to->tstamp = from->tstamp;
  3767. }
  3768. return true;
  3769. }
  3770. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3771. {
  3772. sk_drops_add(sk, skb);
  3773. __kfree_skb(skb);
  3774. }
  3775. /* This one checks to see if we can put data from the
  3776. * out_of_order queue into the receive_queue.
  3777. */
  3778. static void tcp_ofo_queue(struct sock *sk)
  3779. {
  3780. struct tcp_sock *tp = tcp_sk(sk);
  3781. __u32 dsack_high = tp->rcv_nxt;
  3782. bool fin, fragstolen, eaten;
  3783. struct sk_buff *skb, *tail;
  3784. struct rb_node *p;
  3785. p = rb_first(&tp->out_of_order_queue);
  3786. while (p) {
  3787. skb = rb_to_skb(p);
  3788. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3789. break;
  3790. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3791. __u32 dsack = dsack_high;
  3792. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3793. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3794. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3795. }
  3796. p = rb_next(p);
  3797. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3798. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3799. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3800. tcp_drop(sk, skb);
  3801. continue;
  3802. }
  3803. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3804. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3805. TCP_SKB_CB(skb)->end_seq);
  3806. tail = skb_peek_tail(&sk->sk_receive_queue);
  3807. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3808. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3809. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3810. if (!eaten)
  3811. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3812. else
  3813. kfree_skb_partial(skb, fragstolen);
  3814. if (unlikely(fin)) {
  3815. tcp_fin(sk);
  3816. /* tcp_fin() purges tp->out_of_order_queue,
  3817. * so we must end this loop right now.
  3818. */
  3819. break;
  3820. }
  3821. }
  3822. }
  3823. static bool tcp_prune_ofo_queue(struct sock *sk);
  3824. static int tcp_prune_queue(struct sock *sk);
  3825. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3826. unsigned int size)
  3827. {
  3828. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3829. !sk_rmem_schedule(sk, skb, size)) {
  3830. if (tcp_prune_queue(sk) < 0)
  3831. return -1;
  3832. while (!sk_rmem_schedule(sk, skb, size)) {
  3833. if (!tcp_prune_ofo_queue(sk))
  3834. return -1;
  3835. }
  3836. }
  3837. return 0;
  3838. }
  3839. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3840. {
  3841. struct tcp_sock *tp = tcp_sk(sk);
  3842. struct rb_node **p, *parent;
  3843. struct sk_buff *skb1;
  3844. u32 seq, end_seq;
  3845. bool fragstolen;
  3846. tcp_ecn_check_ce(tp, skb);
  3847. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3848. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3849. tcp_drop(sk, skb);
  3850. return;
  3851. }
  3852. /* Disable header prediction. */
  3853. tp->pred_flags = 0;
  3854. inet_csk_schedule_ack(sk);
  3855. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3856. seq = TCP_SKB_CB(skb)->seq;
  3857. end_seq = TCP_SKB_CB(skb)->end_seq;
  3858. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3859. tp->rcv_nxt, seq, end_seq);
  3860. p = &tp->out_of_order_queue.rb_node;
  3861. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3862. /* Initial out of order segment, build 1 SACK. */
  3863. if (tcp_is_sack(tp)) {
  3864. tp->rx_opt.num_sacks = 1;
  3865. tp->selective_acks[0].start_seq = seq;
  3866. tp->selective_acks[0].end_seq = end_seq;
  3867. }
  3868. rb_link_node(&skb->rbnode, NULL, p);
  3869. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3870. tp->ooo_last_skb = skb;
  3871. goto end;
  3872. }
  3873. /* In the typical case, we are adding an skb to the end of the list.
  3874. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3875. */
  3876. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3877. skb, &fragstolen)) {
  3878. coalesce_done:
  3879. tcp_grow_window(sk, skb);
  3880. kfree_skb_partial(skb, fragstolen);
  3881. skb = NULL;
  3882. goto add_sack;
  3883. }
  3884. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3885. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3886. parent = &tp->ooo_last_skb->rbnode;
  3887. p = &parent->rb_right;
  3888. goto insert;
  3889. }
  3890. /* Find place to insert this segment. Handle overlaps on the way. */
  3891. parent = NULL;
  3892. while (*p) {
  3893. parent = *p;
  3894. skb1 = rb_to_skb(parent);
  3895. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3896. p = &parent->rb_left;
  3897. continue;
  3898. }
  3899. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3900. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3901. /* All the bits are present. Drop. */
  3902. NET_INC_STATS(sock_net(sk),
  3903. LINUX_MIB_TCPOFOMERGE);
  3904. __kfree_skb(skb);
  3905. skb = NULL;
  3906. tcp_dsack_set(sk, seq, end_seq);
  3907. goto add_sack;
  3908. }
  3909. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3910. /* Partial overlap. */
  3911. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3912. } else {
  3913. /* skb's seq == skb1's seq and skb covers skb1.
  3914. * Replace skb1 with skb.
  3915. */
  3916. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3917. &tp->out_of_order_queue);
  3918. tcp_dsack_extend(sk,
  3919. TCP_SKB_CB(skb1)->seq,
  3920. TCP_SKB_CB(skb1)->end_seq);
  3921. NET_INC_STATS(sock_net(sk),
  3922. LINUX_MIB_TCPOFOMERGE);
  3923. __kfree_skb(skb1);
  3924. goto merge_right;
  3925. }
  3926. } else if (tcp_try_coalesce(sk, skb1,
  3927. skb, &fragstolen)) {
  3928. goto coalesce_done;
  3929. }
  3930. p = &parent->rb_right;
  3931. }
  3932. insert:
  3933. /* Insert segment into RB tree. */
  3934. rb_link_node(&skb->rbnode, parent, p);
  3935. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3936. merge_right:
  3937. /* Remove other segments covered by skb. */
  3938. while ((skb1 = skb_rb_next(skb)) != NULL) {
  3939. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3940. break;
  3941. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3942. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3943. end_seq);
  3944. break;
  3945. }
  3946. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3947. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3948. TCP_SKB_CB(skb1)->end_seq);
  3949. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3950. tcp_drop(sk, skb1);
  3951. }
  3952. /* If there is no skb after us, we are the last_skb ! */
  3953. if (!skb1)
  3954. tp->ooo_last_skb = skb;
  3955. add_sack:
  3956. if (tcp_is_sack(tp))
  3957. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3958. end:
  3959. if (skb) {
  3960. tcp_grow_window(sk, skb);
  3961. skb_condense(skb);
  3962. skb_set_owner_r(skb, sk);
  3963. }
  3964. }
  3965. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3966. bool *fragstolen)
  3967. {
  3968. int eaten;
  3969. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3970. __skb_pull(skb, hdrlen);
  3971. eaten = (tail &&
  3972. tcp_try_coalesce(sk, tail,
  3973. skb, fragstolen)) ? 1 : 0;
  3974. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3975. if (!eaten) {
  3976. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3977. skb_set_owner_r(skb, sk);
  3978. }
  3979. return eaten;
  3980. }
  3981. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3982. {
  3983. struct sk_buff *skb;
  3984. int err = -ENOMEM;
  3985. int data_len = 0;
  3986. bool fragstolen;
  3987. if (size == 0)
  3988. return 0;
  3989. if (size > PAGE_SIZE) {
  3990. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3991. data_len = npages << PAGE_SHIFT;
  3992. size = data_len + (size & ~PAGE_MASK);
  3993. }
  3994. skb = alloc_skb_with_frags(size - data_len, data_len,
  3995. PAGE_ALLOC_COSTLY_ORDER,
  3996. &err, sk->sk_allocation);
  3997. if (!skb)
  3998. goto err;
  3999. skb_put(skb, size - data_len);
  4000. skb->data_len = data_len;
  4001. skb->len = size;
  4002. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4003. goto err_free;
  4004. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  4005. if (err)
  4006. goto err_free;
  4007. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  4008. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  4009. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  4010. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  4011. WARN_ON_ONCE(fragstolen); /* should not happen */
  4012. __kfree_skb(skb);
  4013. }
  4014. return size;
  4015. err_free:
  4016. kfree_skb(skb);
  4017. err:
  4018. return err;
  4019. }
  4020. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4021. {
  4022. struct tcp_sock *tp = tcp_sk(sk);
  4023. bool fragstolen;
  4024. int eaten;
  4025. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  4026. __kfree_skb(skb);
  4027. return;
  4028. }
  4029. skb_dst_drop(skb);
  4030. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  4031. tcp_ecn_accept_cwr(tp, skb);
  4032. tp->rx_opt.dsack = 0;
  4033. /* Queue data for delivery to the user.
  4034. * Packets in sequence go to the receive queue.
  4035. * Out of sequence packets to the out_of_order_queue.
  4036. */
  4037. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4038. if (tcp_receive_window(tp) == 0)
  4039. goto out_of_window;
  4040. /* Ok. In sequence. In window. */
  4041. queue_and_out:
  4042. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4043. sk_forced_mem_schedule(sk, skb->truesize);
  4044. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4045. goto drop;
  4046. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4047. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4048. if (skb->len)
  4049. tcp_event_data_recv(sk, skb);
  4050. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4051. tcp_fin(sk);
  4052. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4053. tcp_ofo_queue(sk);
  4054. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4055. * gap in queue is filled.
  4056. */
  4057. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4058. inet_csk(sk)->icsk_ack.pingpong = 0;
  4059. }
  4060. if (tp->rx_opt.num_sacks)
  4061. tcp_sack_remove(tp);
  4062. tcp_fast_path_check(sk);
  4063. if (eaten > 0)
  4064. kfree_skb_partial(skb, fragstolen);
  4065. if (!sock_flag(sk, SOCK_DEAD))
  4066. sk->sk_data_ready(sk);
  4067. return;
  4068. }
  4069. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4070. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4071. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4072. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4073. out_of_window:
  4074. tcp_enter_quickack_mode(sk);
  4075. inet_csk_schedule_ack(sk);
  4076. drop:
  4077. tcp_drop(sk, skb);
  4078. return;
  4079. }
  4080. /* Out of window. F.e. zero window probe. */
  4081. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4082. goto out_of_window;
  4083. tcp_enter_quickack_mode(sk);
  4084. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4085. /* Partial packet, seq < rcv_next < end_seq */
  4086. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4087. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4088. TCP_SKB_CB(skb)->end_seq);
  4089. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4090. /* If window is closed, drop tail of packet. But after
  4091. * remembering D-SACK for its head made in previous line.
  4092. */
  4093. if (!tcp_receive_window(tp))
  4094. goto out_of_window;
  4095. goto queue_and_out;
  4096. }
  4097. tcp_data_queue_ofo(sk, skb);
  4098. }
  4099. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4100. {
  4101. if (list)
  4102. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4103. return skb_rb_next(skb);
  4104. }
  4105. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4106. struct sk_buff_head *list,
  4107. struct rb_root *root)
  4108. {
  4109. struct sk_buff *next = tcp_skb_next(skb, list);
  4110. if (list)
  4111. __skb_unlink(skb, list);
  4112. else
  4113. rb_erase(&skb->rbnode, root);
  4114. __kfree_skb(skb);
  4115. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4116. return next;
  4117. }
  4118. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4119. void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4120. {
  4121. struct rb_node **p = &root->rb_node;
  4122. struct rb_node *parent = NULL;
  4123. struct sk_buff *skb1;
  4124. while (*p) {
  4125. parent = *p;
  4126. skb1 = rb_to_skb(parent);
  4127. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4128. p = &parent->rb_left;
  4129. else
  4130. p = &parent->rb_right;
  4131. }
  4132. rb_link_node(&skb->rbnode, parent, p);
  4133. rb_insert_color(&skb->rbnode, root);
  4134. }
  4135. /* Collapse contiguous sequence of skbs head..tail with
  4136. * sequence numbers start..end.
  4137. *
  4138. * If tail is NULL, this means until the end of the queue.
  4139. *
  4140. * Segments with FIN/SYN are not collapsed (only because this
  4141. * simplifies code)
  4142. */
  4143. static void
  4144. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4145. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4146. {
  4147. struct sk_buff *skb = head, *n;
  4148. struct sk_buff_head tmp;
  4149. bool end_of_skbs;
  4150. /* First, check that queue is collapsible and find
  4151. * the point where collapsing can be useful.
  4152. */
  4153. restart:
  4154. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4155. n = tcp_skb_next(skb, list);
  4156. /* No new bits? It is possible on ofo queue. */
  4157. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4158. skb = tcp_collapse_one(sk, skb, list, root);
  4159. if (!skb)
  4160. break;
  4161. goto restart;
  4162. }
  4163. /* The first skb to collapse is:
  4164. * - not SYN/FIN and
  4165. * - bloated or contains data before "start" or
  4166. * overlaps to the next one.
  4167. */
  4168. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4169. (tcp_win_from_space(skb->truesize) > skb->len ||
  4170. before(TCP_SKB_CB(skb)->seq, start))) {
  4171. end_of_skbs = false;
  4172. break;
  4173. }
  4174. if (n && n != tail &&
  4175. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4176. end_of_skbs = false;
  4177. break;
  4178. }
  4179. /* Decided to skip this, advance start seq. */
  4180. start = TCP_SKB_CB(skb)->end_seq;
  4181. }
  4182. if (end_of_skbs ||
  4183. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4184. return;
  4185. __skb_queue_head_init(&tmp);
  4186. while (before(start, end)) {
  4187. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4188. struct sk_buff *nskb;
  4189. nskb = alloc_skb(copy, GFP_ATOMIC);
  4190. if (!nskb)
  4191. break;
  4192. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4193. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4194. if (list)
  4195. __skb_queue_before(list, skb, nskb);
  4196. else
  4197. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4198. skb_set_owner_r(nskb, sk);
  4199. /* Copy data, releasing collapsed skbs. */
  4200. while (copy > 0) {
  4201. int offset = start - TCP_SKB_CB(skb)->seq;
  4202. int size = TCP_SKB_CB(skb)->end_seq - start;
  4203. BUG_ON(offset < 0);
  4204. if (size > 0) {
  4205. size = min(copy, size);
  4206. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4207. BUG();
  4208. TCP_SKB_CB(nskb)->end_seq += size;
  4209. copy -= size;
  4210. start += size;
  4211. }
  4212. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4213. skb = tcp_collapse_one(sk, skb, list, root);
  4214. if (!skb ||
  4215. skb == tail ||
  4216. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4217. goto end;
  4218. }
  4219. }
  4220. }
  4221. end:
  4222. skb_queue_walk_safe(&tmp, skb, n)
  4223. tcp_rbtree_insert(root, skb);
  4224. }
  4225. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4226. * and tcp_collapse() them until all the queue is collapsed.
  4227. */
  4228. static void tcp_collapse_ofo_queue(struct sock *sk)
  4229. {
  4230. struct tcp_sock *tp = tcp_sk(sk);
  4231. struct sk_buff *skb, *head;
  4232. u32 start, end;
  4233. skb = skb_rb_first(&tp->out_of_order_queue);
  4234. new_range:
  4235. if (!skb) {
  4236. tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
  4237. return;
  4238. }
  4239. start = TCP_SKB_CB(skb)->seq;
  4240. end = TCP_SKB_CB(skb)->end_seq;
  4241. for (head = skb;;) {
  4242. skb = skb_rb_next(skb);
  4243. /* Range is terminated when we see a gap or when
  4244. * we are at the queue end.
  4245. */
  4246. if (!skb ||
  4247. after(TCP_SKB_CB(skb)->seq, end) ||
  4248. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4249. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4250. head, skb, start, end);
  4251. goto new_range;
  4252. }
  4253. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4254. start = TCP_SKB_CB(skb)->seq;
  4255. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4256. end = TCP_SKB_CB(skb)->end_seq;
  4257. }
  4258. }
  4259. /*
  4260. * Clean the out-of-order queue to make room.
  4261. * We drop high sequences packets to :
  4262. * 1) Let a chance for holes to be filled.
  4263. * 2) not add too big latencies if thousands of packets sit there.
  4264. * (But if application shrinks SO_RCVBUF, we could still end up
  4265. * freeing whole queue here)
  4266. *
  4267. * Return true if queue has shrunk.
  4268. */
  4269. static bool tcp_prune_ofo_queue(struct sock *sk)
  4270. {
  4271. struct tcp_sock *tp = tcp_sk(sk);
  4272. struct rb_node *node, *prev;
  4273. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4274. return false;
  4275. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4276. node = &tp->ooo_last_skb->rbnode;
  4277. do {
  4278. prev = rb_prev(node);
  4279. rb_erase(node, &tp->out_of_order_queue);
  4280. tcp_drop(sk, rb_to_skb(node));
  4281. sk_mem_reclaim(sk);
  4282. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4283. !tcp_under_memory_pressure(sk))
  4284. break;
  4285. node = prev;
  4286. } while (node);
  4287. tp->ooo_last_skb = rb_to_skb(prev);
  4288. /* Reset SACK state. A conforming SACK implementation will
  4289. * do the same at a timeout based retransmit. When a connection
  4290. * is in a sad state like this, we care only about integrity
  4291. * of the connection not performance.
  4292. */
  4293. if (tp->rx_opt.sack_ok)
  4294. tcp_sack_reset(&tp->rx_opt);
  4295. return true;
  4296. }
  4297. /* Reduce allocated memory if we can, trying to get
  4298. * the socket within its memory limits again.
  4299. *
  4300. * Return less than zero if we should start dropping frames
  4301. * until the socket owning process reads some of the data
  4302. * to stabilize the situation.
  4303. */
  4304. static int tcp_prune_queue(struct sock *sk)
  4305. {
  4306. struct tcp_sock *tp = tcp_sk(sk);
  4307. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4308. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4309. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4310. tcp_clamp_window(sk);
  4311. else if (tcp_under_memory_pressure(sk))
  4312. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4313. tcp_collapse_ofo_queue(sk);
  4314. if (!skb_queue_empty(&sk->sk_receive_queue))
  4315. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4316. skb_peek(&sk->sk_receive_queue),
  4317. NULL,
  4318. tp->copied_seq, tp->rcv_nxt);
  4319. sk_mem_reclaim(sk);
  4320. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4321. return 0;
  4322. /* Collapsing did not help, destructive actions follow.
  4323. * This must not ever occur. */
  4324. tcp_prune_ofo_queue(sk);
  4325. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4326. return 0;
  4327. /* If we are really being abused, tell the caller to silently
  4328. * drop receive data on the floor. It will get retransmitted
  4329. * and hopefully then we'll have sufficient space.
  4330. */
  4331. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4332. /* Massive buffer overcommit. */
  4333. tp->pred_flags = 0;
  4334. return -1;
  4335. }
  4336. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4337. {
  4338. const struct tcp_sock *tp = tcp_sk(sk);
  4339. /* If the user specified a specific send buffer setting, do
  4340. * not modify it.
  4341. */
  4342. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4343. return false;
  4344. /* If we are under global TCP memory pressure, do not expand. */
  4345. if (tcp_under_memory_pressure(sk))
  4346. return false;
  4347. /* If we are under soft global TCP memory pressure, do not expand. */
  4348. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4349. return false;
  4350. /* If we filled the congestion window, do not expand. */
  4351. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4352. return false;
  4353. return true;
  4354. }
  4355. /* When incoming ACK allowed to free some skb from write_queue,
  4356. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4357. * on the exit from tcp input handler.
  4358. *
  4359. * PROBLEM: sndbuf expansion does not work well with largesend.
  4360. */
  4361. static void tcp_new_space(struct sock *sk)
  4362. {
  4363. struct tcp_sock *tp = tcp_sk(sk);
  4364. if (tcp_should_expand_sndbuf(sk)) {
  4365. tcp_sndbuf_expand(sk);
  4366. tp->snd_cwnd_stamp = tcp_jiffies32;
  4367. }
  4368. sk->sk_write_space(sk);
  4369. }
  4370. static void tcp_check_space(struct sock *sk)
  4371. {
  4372. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4373. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4374. /* pairs with tcp_poll() */
  4375. smp_mb();
  4376. if (sk->sk_socket &&
  4377. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4378. tcp_new_space(sk);
  4379. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4380. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4381. }
  4382. }
  4383. }
  4384. static inline void tcp_data_snd_check(struct sock *sk)
  4385. {
  4386. tcp_push_pending_frames(sk);
  4387. tcp_check_space(sk);
  4388. }
  4389. /*
  4390. * Check if sending an ack is needed.
  4391. */
  4392. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4393. {
  4394. struct tcp_sock *tp = tcp_sk(sk);
  4395. /* More than one full frame received... */
  4396. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4397. /* ... and right edge of window advances far enough.
  4398. * (tcp_recvmsg() will send ACK otherwise). Or...
  4399. */
  4400. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4401. /* We ACK each frame or... */
  4402. tcp_in_quickack_mode(sk) ||
  4403. /* We have out of order data. */
  4404. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4405. /* Then ack it now */
  4406. tcp_send_ack(sk);
  4407. } else {
  4408. /* Else, send delayed ack. */
  4409. tcp_send_delayed_ack(sk);
  4410. }
  4411. }
  4412. static inline void tcp_ack_snd_check(struct sock *sk)
  4413. {
  4414. if (!inet_csk_ack_scheduled(sk)) {
  4415. /* We sent a data segment already. */
  4416. return;
  4417. }
  4418. __tcp_ack_snd_check(sk, 1);
  4419. }
  4420. /*
  4421. * This routine is only called when we have urgent data
  4422. * signaled. Its the 'slow' part of tcp_urg. It could be
  4423. * moved inline now as tcp_urg is only called from one
  4424. * place. We handle URGent data wrong. We have to - as
  4425. * BSD still doesn't use the correction from RFC961.
  4426. * For 1003.1g we should support a new option TCP_STDURG to permit
  4427. * either form (or just set the sysctl tcp_stdurg).
  4428. */
  4429. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4430. {
  4431. struct tcp_sock *tp = tcp_sk(sk);
  4432. u32 ptr = ntohs(th->urg_ptr);
  4433. if (ptr && !sysctl_tcp_stdurg)
  4434. ptr--;
  4435. ptr += ntohl(th->seq);
  4436. /* Ignore urgent data that we've already seen and read. */
  4437. if (after(tp->copied_seq, ptr))
  4438. return;
  4439. /* Do not replay urg ptr.
  4440. *
  4441. * NOTE: interesting situation not covered by specs.
  4442. * Misbehaving sender may send urg ptr, pointing to segment,
  4443. * which we already have in ofo queue. We are not able to fetch
  4444. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4445. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4446. * situations. But it is worth to think about possibility of some
  4447. * DoSes using some hypothetical application level deadlock.
  4448. */
  4449. if (before(ptr, tp->rcv_nxt))
  4450. return;
  4451. /* Do we already have a newer (or duplicate) urgent pointer? */
  4452. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4453. return;
  4454. /* Tell the world about our new urgent pointer. */
  4455. sk_send_sigurg(sk);
  4456. /* We may be adding urgent data when the last byte read was
  4457. * urgent. To do this requires some care. We cannot just ignore
  4458. * tp->copied_seq since we would read the last urgent byte again
  4459. * as data, nor can we alter copied_seq until this data arrives
  4460. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4461. *
  4462. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4463. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4464. * and expect that both A and B disappear from stream. This is _wrong_.
  4465. * Though this happens in BSD with high probability, this is occasional.
  4466. * Any application relying on this is buggy. Note also, that fix "works"
  4467. * only in this artificial test. Insert some normal data between A and B and we will
  4468. * decline of BSD again. Verdict: it is better to remove to trap
  4469. * buggy users.
  4470. */
  4471. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4472. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4473. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4474. tp->copied_seq++;
  4475. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4476. __skb_unlink(skb, &sk->sk_receive_queue);
  4477. __kfree_skb(skb);
  4478. }
  4479. }
  4480. tp->urg_data = TCP_URG_NOTYET;
  4481. tp->urg_seq = ptr;
  4482. /* Disable header prediction. */
  4483. tp->pred_flags = 0;
  4484. }
  4485. /* This is the 'fast' part of urgent handling. */
  4486. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4487. {
  4488. struct tcp_sock *tp = tcp_sk(sk);
  4489. /* Check if we get a new urgent pointer - normally not. */
  4490. if (th->urg)
  4491. tcp_check_urg(sk, th);
  4492. /* Do we wait for any urgent data? - normally not... */
  4493. if (tp->urg_data == TCP_URG_NOTYET) {
  4494. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4495. th->syn;
  4496. /* Is the urgent pointer pointing into this packet? */
  4497. if (ptr < skb->len) {
  4498. u8 tmp;
  4499. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4500. BUG();
  4501. tp->urg_data = TCP_URG_VALID | tmp;
  4502. if (!sock_flag(sk, SOCK_DEAD))
  4503. sk->sk_data_ready(sk);
  4504. }
  4505. }
  4506. }
  4507. /* Accept RST for rcv_nxt - 1 after a FIN.
  4508. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4509. * FIN is sent followed by a RST packet. The RST is sent with the same
  4510. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4511. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4512. * ACKs on the closed socket. In addition middleboxes can drop either the
  4513. * challenge ACK or a subsequent RST.
  4514. */
  4515. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4516. {
  4517. struct tcp_sock *tp = tcp_sk(sk);
  4518. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4519. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4520. TCPF_CLOSING));
  4521. }
  4522. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4523. * play significant role here.
  4524. */
  4525. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4526. const struct tcphdr *th, int syn_inerr)
  4527. {
  4528. struct tcp_sock *tp = tcp_sk(sk);
  4529. bool rst_seq_match = false;
  4530. /* RFC1323: H1. Apply PAWS check first. */
  4531. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4532. tp->rx_opt.saw_tstamp &&
  4533. tcp_paws_discard(sk, skb)) {
  4534. if (!th->rst) {
  4535. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4536. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4537. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4538. &tp->last_oow_ack_time))
  4539. tcp_send_dupack(sk, skb);
  4540. goto discard;
  4541. }
  4542. /* Reset is accepted even if it did not pass PAWS. */
  4543. }
  4544. /* Step 1: check sequence number */
  4545. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4546. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4547. * (RST) segments are validated by checking their SEQ-fields."
  4548. * And page 69: "If an incoming segment is not acceptable,
  4549. * an acknowledgment should be sent in reply (unless the RST
  4550. * bit is set, if so drop the segment and return)".
  4551. */
  4552. if (!th->rst) {
  4553. if (th->syn)
  4554. goto syn_challenge;
  4555. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4556. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4557. &tp->last_oow_ack_time))
  4558. tcp_send_dupack(sk, skb);
  4559. } else if (tcp_reset_check(sk, skb)) {
  4560. tcp_reset(sk);
  4561. }
  4562. goto discard;
  4563. }
  4564. /* Step 2: check RST bit */
  4565. if (th->rst) {
  4566. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4567. * FIN and SACK too if available):
  4568. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4569. * the right-most SACK block,
  4570. * then
  4571. * RESET the connection
  4572. * else
  4573. * Send a challenge ACK
  4574. */
  4575. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4576. tcp_reset_check(sk, skb)) {
  4577. rst_seq_match = true;
  4578. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4579. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4580. int max_sack = sp[0].end_seq;
  4581. int this_sack;
  4582. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4583. ++this_sack) {
  4584. max_sack = after(sp[this_sack].end_seq,
  4585. max_sack) ?
  4586. sp[this_sack].end_seq : max_sack;
  4587. }
  4588. if (TCP_SKB_CB(skb)->seq == max_sack)
  4589. rst_seq_match = true;
  4590. }
  4591. if (rst_seq_match)
  4592. tcp_reset(sk);
  4593. else {
  4594. /* Disable TFO if RST is out-of-order
  4595. * and no data has been received
  4596. * for current active TFO socket
  4597. */
  4598. if (tp->syn_fastopen && !tp->data_segs_in &&
  4599. sk->sk_state == TCP_ESTABLISHED)
  4600. tcp_fastopen_active_disable(sk);
  4601. tcp_send_challenge_ack(sk, skb);
  4602. }
  4603. goto discard;
  4604. }
  4605. /* step 3: check security and precedence [ignored] */
  4606. /* step 4: Check for a SYN
  4607. * RFC 5961 4.2 : Send a challenge ack
  4608. */
  4609. if (th->syn) {
  4610. syn_challenge:
  4611. if (syn_inerr)
  4612. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4613. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4614. tcp_send_challenge_ack(sk, skb);
  4615. goto discard;
  4616. }
  4617. return true;
  4618. discard:
  4619. tcp_drop(sk, skb);
  4620. return false;
  4621. }
  4622. /*
  4623. * TCP receive function for the ESTABLISHED state.
  4624. *
  4625. * It is split into a fast path and a slow path. The fast path is
  4626. * disabled when:
  4627. * - A zero window was announced from us - zero window probing
  4628. * is only handled properly in the slow path.
  4629. * - Out of order segments arrived.
  4630. * - Urgent data is expected.
  4631. * - There is no buffer space left
  4632. * - Unexpected TCP flags/window values/header lengths are received
  4633. * (detected by checking the TCP header against pred_flags)
  4634. * - Data is sent in both directions. Fast path only supports pure senders
  4635. * or pure receivers (this means either the sequence number or the ack
  4636. * value must stay constant)
  4637. * - Unexpected TCP option.
  4638. *
  4639. * When these conditions are not satisfied it drops into a standard
  4640. * receive procedure patterned after RFC793 to handle all cases.
  4641. * The first three cases are guaranteed by proper pred_flags setting,
  4642. * the rest is checked inline. Fast processing is turned on in
  4643. * tcp_data_queue when everything is OK.
  4644. */
  4645. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4646. const struct tcphdr *th)
  4647. {
  4648. unsigned int len = skb->len;
  4649. struct tcp_sock *tp = tcp_sk(sk);
  4650. tcp_mstamp_refresh(tp);
  4651. if (unlikely(!sk->sk_rx_dst))
  4652. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4653. /*
  4654. * Header prediction.
  4655. * The code loosely follows the one in the famous
  4656. * "30 instruction TCP receive" Van Jacobson mail.
  4657. *
  4658. * Van's trick is to deposit buffers into socket queue
  4659. * on a device interrupt, to call tcp_recv function
  4660. * on the receive process context and checksum and copy
  4661. * the buffer to user space. smart...
  4662. *
  4663. * Our current scheme is not silly either but we take the
  4664. * extra cost of the net_bh soft interrupt processing...
  4665. * We do checksum and copy also but from device to kernel.
  4666. */
  4667. tp->rx_opt.saw_tstamp = 0;
  4668. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4669. * if header_prediction is to be made
  4670. * 'S' will always be tp->tcp_header_len >> 2
  4671. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4672. * turn it off (when there are holes in the receive
  4673. * space for instance)
  4674. * PSH flag is ignored.
  4675. */
  4676. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4677. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4678. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4679. int tcp_header_len = tp->tcp_header_len;
  4680. /* Timestamp header prediction: tcp_header_len
  4681. * is automatically equal to th->doff*4 due to pred_flags
  4682. * match.
  4683. */
  4684. /* Check timestamp */
  4685. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4686. /* No? Slow path! */
  4687. if (!tcp_parse_aligned_timestamp(tp, th))
  4688. goto slow_path;
  4689. /* If PAWS failed, check it more carefully in slow path */
  4690. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4691. goto slow_path;
  4692. /* DO NOT update ts_recent here, if checksum fails
  4693. * and timestamp was corrupted part, it will result
  4694. * in a hung connection since we will drop all
  4695. * future packets due to the PAWS test.
  4696. */
  4697. }
  4698. if (len <= tcp_header_len) {
  4699. /* Bulk data transfer: sender */
  4700. if (len == tcp_header_len) {
  4701. /* Predicted packet is in window by definition.
  4702. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4703. * Hence, check seq<=rcv_wup reduces to:
  4704. */
  4705. if (tcp_header_len ==
  4706. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4707. tp->rcv_nxt == tp->rcv_wup)
  4708. tcp_store_ts_recent(tp);
  4709. /* We know that such packets are checksummed
  4710. * on entry.
  4711. */
  4712. tcp_ack(sk, skb, 0);
  4713. __kfree_skb(skb);
  4714. tcp_data_snd_check(sk);
  4715. return;
  4716. } else { /* Header too small */
  4717. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4718. goto discard;
  4719. }
  4720. } else {
  4721. int eaten = 0;
  4722. bool fragstolen = false;
  4723. if (tcp_checksum_complete(skb))
  4724. goto csum_error;
  4725. if ((int)skb->truesize > sk->sk_forward_alloc)
  4726. goto step5;
  4727. /* Predicted packet is in window by definition.
  4728. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4729. * Hence, check seq<=rcv_wup reduces to:
  4730. */
  4731. if (tcp_header_len ==
  4732. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4733. tp->rcv_nxt == tp->rcv_wup)
  4734. tcp_store_ts_recent(tp);
  4735. tcp_rcv_rtt_measure_ts(sk, skb);
  4736. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4737. /* Bulk data transfer: receiver */
  4738. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4739. &fragstolen);
  4740. tcp_event_data_recv(sk, skb);
  4741. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4742. /* Well, only one small jumplet in fast path... */
  4743. tcp_ack(sk, skb, FLAG_DATA);
  4744. tcp_data_snd_check(sk);
  4745. if (!inet_csk_ack_scheduled(sk))
  4746. goto no_ack;
  4747. }
  4748. __tcp_ack_snd_check(sk, 0);
  4749. no_ack:
  4750. if (eaten)
  4751. kfree_skb_partial(skb, fragstolen);
  4752. sk->sk_data_ready(sk);
  4753. return;
  4754. }
  4755. }
  4756. slow_path:
  4757. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4758. goto csum_error;
  4759. if (!th->ack && !th->rst && !th->syn)
  4760. goto discard;
  4761. /*
  4762. * Standard slow path.
  4763. */
  4764. if (!tcp_validate_incoming(sk, skb, th, 1))
  4765. return;
  4766. step5:
  4767. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4768. goto discard;
  4769. tcp_rcv_rtt_measure_ts(sk, skb);
  4770. /* Process urgent data. */
  4771. tcp_urg(sk, skb, th);
  4772. /* step 7: process the segment text */
  4773. tcp_data_queue(sk, skb);
  4774. tcp_data_snd_check(sk);
  4775. tcp_ack_snd_check(sk);
  4776. return;
  4777. csum_error:
  4778. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4779. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4780. discard:
  4781. tcp_drop(sk, skb);
  4782. }
  4783. EXPORT_SYMBOL(tcp_rcv_established);
  4784. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4785. {
  4786. struct tcp_sock *tp = tcp_sk(sk);
  4787. struct inet_connection_sock *icsk = inet_csk(sk);
  4788. tcp_set_state(sk, TCP_ESTABLISHED);
  4789. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4790. if (skb) {
  4791. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4792. security_inet_conn_established(sk, skb);
  4793. }
  4794. tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4795. /* Prevent spurious tcp_cwnd_restart() on first data
  4796. * packet.
  4797. */
  4798. tp->lsndtime = tcp_jiffies32;
  4799. if (sock_flag(sk, SOCK_KEEPOPEN))
  4800. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4801. if (!tp->rx_opt.snd_wscale)
  4802. __tcp_fast_path_on(tp, tp->snd_wnd);
  4803. else
  4804. tp->pred_flags = 0;
  4805. }
  4806. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4807. struct tcp_fastopen_cookie *cookie)
  4808. {
  4809. struct tcp_sock *tp = tcp_sk(sk);
  4810. struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
  4811. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4812. bool syn_drop = false;
  4813. if (mss == tp->rx_opt.user_mss) {
  4814. struct tcp_options_received opt;
  4815. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4816. tcp_clear_options(&opt);
  4817. opt.user_mss = opt.mss_clamp = 0;
  4818. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4819. mss = opt.mss_clamp;
  4820. }
  4821. if (!tp->syn_fastopen) {
  4822. /* Ignore an unsolicited cookie */
  4823. cookie->len = -1;
  4824. } else if (tp->total_retrans) {
  4825. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4826. * acknowledges data. Presumably the remote received only
  4827. * the retransmitted (regular) SYNs: either the original
  4828. * SYN-data or the corresponding SYN-ACK was dropped.
  4829. */
  4830. syn_drop = (cookie->len < 0 && data);
  4831. } else if (cookie->len < 0 && !tp->syn_data) {
  4832. /* We requested a cookie but didn't get it. If we did not use
  4833. * the (old) exp opt format then try so next time (try_exp=1).
  4834. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4835. */
  4836. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4837. }
  4838. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4839. if (data) { /* Retransmit unacked data in SYN */
  4840. skb_rbtree_walk_from(data) {
  4841. if (__tcp_retransmit_skb(sk, data, 1))
  4842. break;
  4843. }
  4844. tcp_rearm_rto(sk);
  4845. NET_INC_STATS(sock_net(sk),
  4846. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4847. return true;
  4848. }
  4849. tp->syn_data_acked = tp->syn_data;
  4850. if (tp->syn_data_acked)
  4851. NET_INC_STATS(sock_net(sk),
  4852. LINUX_MIB_TCPFASTOPENACTIVE);
  4853. tcp_fastopen_add_skb(sk, synack);
  4854. return false;
  4855. }
  4856. static void smc_check_reset_syn(struct tcp_sock *tp)
  4857. {
  4858. #if IS_ENABLED(CONFIG_SMC)
  4859. if (static_branch_unlikely(&tcp_have_smc)) {
  4860. if (tp->syn_smc && !tp->rx_opt.smc_ok)
  4861. tp->syn_smc = 0;
  4862. }
  4863. #endif
  4864. }
  4865. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4866. const struct tcphdr *th)
  4867. {
  4868. struct inet_connection_sock *icsk = inet_csk(sk);
  4869. struct tcp_sock *tp = tcp_sk(sk);
  4870. struct tcp_fastopen_cookie foc = { .len = -1 };
  4871. int saved_clamp = tp->rx_opt.mss_clamp;
  4872. bool fastopen_fail;
  4873. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4874. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4875. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4876. if (th->ack) {
  4877. /* rfc793:
  4878. * "If the state is SYN-SENT then
  4879. * first check the ACK bit
  4880. * If the ACK bit is set
  4881. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4882. * a reset (unless the RST bit is set, if so drop
  4883. * the segment and return)"
  4884. */
  4885. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4886. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4887. goto reset_and_undo;
  4888. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4889. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4890. tcp_time_stamp(tp))) {
  4891. NET_INC_STATS(sock_net(sk),
  4892. LINUX_MIB_PAWSACTIVEREJECTED);
  4893. goto reset_and_undo;
  4894. }
  4895. /* Now ACK is acceptable.
  4896. *
  4897. * "If the RST bit is set
  4898. * If the ACK was acceptable then signal the user "error:
  4899. * connection reset", drop the segment, enter CLOSED state,
  4900. * delete TCB, and return."
  4901. */
  4902. if (th->rst) {
  4903. tcp_reset(sk);
  4904. goto discard;
  4905. }
  4906. /* rfc793:
  4907. * "fifth, if neither of the SYN or RST bits is set then
  4908. * drop the segment and return."
  4909. *
  4910. * See note below!
  4911. * --ANK(990513)
  4912. */
  4913. if (!th->syn)
  4914. goto discard_and_undo;
  4915. /* rfc793:
  4916. * "If the SYN bit is on ...
  4917. * are acceptable then ...
  4918. * (our SYN has been ACKed), change the connection
  4919. * state to ESTABLISHED..."
  4920. */
  4921. tcp_ecn_rcv_synack(tp, th);
  4922. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4923. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4924. /* Ok.. it's good. Set up sequence numbers and
  4925. * move to established.
  4926. */
  4927. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4928. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4929. /* RFC1323: The window in SYN & SYN/ACK segments is
  4930. * never scaled.
  4931. */
  4932. tp->snd_wnd = ntohs(th->window);
  4933. if (!tp->rx_opt.wscale_ok) {
  4934. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4935. tp->window_clamp = min(tp->window_clamp, 65535U);
  4936. }
  4937. if (tp->rx_opt.saw_tstamp) {
  4938. tp->rx_opt.tstamp_ok = 1;
  4939. tp->tcp_header_len =
  4940. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4941. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4942. tcp_store_ts_recent(tp);
  4943. } else {
  4944. tp->tcp_header_len = sizeof(struct tcphdr);
  4945. }
  4946. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4947. tcp_enable_fack(tp);
  4948. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4949. tcp_initialize_rcv_mss(sk);
  4950. /* Remember, tcp_poll() does not lock socket!
  4951. * Change state from SYN-SENT only after copied_seq
  4952. * is initialized. */
  4953. tp->copied_seq = tp->rcv_nxt;
  4954. smc_check_reset_syn(tp);
  4955. smp_mb();
  4956. tcp_finish_connect(sk, skb);
  4957. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4958. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4959. if (!sock_flag(sk, SOCK_DEAD)) {
  4960. sk->sk_state_change(sk);
  4961. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4962. }
  4963. if (fastopen_fail)
  4964. return -1;
  4965. if (sk->sk_write_pending ||
  4966. icsk->icsk_accept_queue.rskq_defer_accept ||
  4967. icsk->icsk_ack.pingpong) {
  4968. /* Save one ACK. Data will be ready after
  4969. * several ticks, if write_pending is set.
  4970. *
  4971. * It may be deleted, but with this feature tcpdumps
  4972. * look so _wonderfully_ clever, that I was not able
  4973. * to stand against the temptation 8) --ANK
  4974. */
  4975. inet_csk_schedule_ack(sk);
  4976. tcp_enter_quickack_mode(sk);
  4977. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4978. TCP_DELACK_MAX, TCP_RTO_MAX);
  4979. discard:
  4980. tcp_drop(sk, skb);
  4981. return 0;
  4982. } else {
  4983. tcp_send_ack(sk);
  4984. }
  4985. return -1;
  4986. }
  4987. /* No ACK in the segment */
  4988. if (th->rst) {
  4989. /* rfc793:
  4990. * "If the RST bit is set
  4991. *
  4992. * Otherwise (no ACK) drop the segment and return."
  4993. */
  4994. goto discard_and_undo;
  4995. }
  4996. /* PAWS check. */
  4997. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4998. tcp_paws_reject(&tp->rx_opt, 0))
  4999. goto discard_and_undo;
  5000. if (th->syn) {
  5001. /* We see SYN without ACK. It is attempt of
  5002. * simultaneous connect with crossed SYNs.
  5003. * Particularly, it can be connect to self.
  5004. */
  5005. tcp_set_state(sk, TCP_SYN_RECV);
  5006. if (tp->rx_opt.saw_tstamp) {
  5007. tp->rx_opt.tstamp_ok = 1;
  5008. tcp_store_ts_recent(tp);
  5009. tp->tcp_header_len =
  5010. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5011. } else {
  5012. tp->tcp_header_len = sizeof(struct tcphdr);
  5013. }
  5014. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5015. tp->copied_seq = tp->rcv_nxt;
  5016. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5017. /* RFC1323: The window in SYN & SYN/ACK segments is
  5018. * never scaled.
  5019. */
  5020. tp->snd_wnd = ntohs(th->window);
  5021. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5022. tp->max_window = tp->snd_wnd;
  5023. tcp_ecn_rcv_syn(tp, th);
  5024. tcp_mtup_init(sk);
  5025. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5026. tcp_initialize_rcv_mss(sk);
  5027. tcp_send_synack(sk);
  5028. #if 0
  5029. /* Note, we could accept data and URG from this segment.
  5030. * There are no obstacles to make this (except that we must
  5031. * either change tcp_recvmsg() to prevent it from returning data
  5032. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5033. *
  5034. * However, if we ignore data in ACKless segments sometimes,
  5035. * we have no reasons to accept it sometimes.
  5036. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5037. * is not flawless. So, discard packet for sanity.
  5038. * Uncomment this return to process the data.
  5039. */
  5040. return -1;
  5041. #else
  5042. goto discard;
  5043. #endif
  5044. }
  5045. /* "fifth, if neither of the SYN or RST bits is set then
  5046. * drop the segment and return."
  5047. */
  5048. discard_and_undo:
  5049. tcp_clear_options(&tp->rx_opt);
  5050. tp->rx_opt.mss_clamp = saved_clamp;
  5051. goto discard;
  5052. reset_and_undo:
  5053. tcp_clear_options(&tp->rx_opt);
  5054. tp->rx_opt.mss_clamp = saved_clamp;
  5055. return 1;
  5056. }
  5057. /*
  5058. * This function implements the receiving procedure of RFC 793 for
  5059. * all states except ESTABLISHED and TIME_WAIT.
  5060. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5061. * address independent.
  5062. */
  5063. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5064. {
  5065. struct tcp_sock *tp = tcp_sk(sk);
  5066. struct inet_connection_sock *icsk = inet_csk(sk);
  5067. const struct tcphdr *th = tcp_hdr(skb);
  5068. struct request_sock *req;
  5069. int queued = 0;
  5070. bool acceptable;
  5071. switch (sk->sk_state) {
  5072. case TCP_CLOSE:
  5073. goto discard;
  5074. case TCP_LISTEN:
  5075. if (th->ack)
  5076. return 1;
  5077. if (th->rst)
  5078. goto discard;
  5079. if (th->syn) {
  5080. if (th->fin)
  5081. goto discard;
  5082. /* It is possible that we process SYN packets from backlog,
  5083. * so we need to make sure to disable BH right there.
  5084. */
  5085. local_bh_disable();
  5086. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5087. local_bh_enable();
  5088. if (!acceptable)
  5089. return 1;
  5090. consume_skb(skb);
  5091. return 0;
  5092. }
  5093. goto discard;
  5094. case TCP_SYN_SENT:
  5095. tp->rx_opt.saw_tstamp = 0;
  5096. tcp_mstamp_refresh(tp);
  5097. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5098. if (queued >= 0)
  5099. return queued;
  5100. /* Do step6 onward by hand. */
  5101. tcp_urg(sk, skb, th);
  5102. __kfree_skb(skb);
  5103. tcp_data_snd_check(sk);
  5104. return 0;
  5105. }
  5106. tcp_mstamp_refresh(tp);
  5107. tp->rx_opt.saw_tstamp = 0;
  5108. req = tp->fastopen_rsk;
  5109. if (req) {
  5110. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5111. sk->sk_state != TCP_FIN_WAIT1);
  5112. if (!tcp_check_req(sk, skb, req, true))
  5113. goto discard;
  5114. }
  5115. if (!th->ack && !th->rst && !th->syn)
  5116. goto discard;
  5117. if (!tcp_validate_incoming(sk, skb, th, 0))
  5118. return 0;
  5119. /* step 5: check the ACK field */
  5120. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5121. FLAG_UPDATE_TS_RECENT |
  5122. FLAG_NO_CHALLENGE_ACK) > 0;
  5123. if (!acceptable) {
  5124. if (sk->sk_state == TCP_SYN_RECV)
  5125. return 1; /* send one RST */
  5126. tcp_send_challenge_ack(sk, skb);
  5127. goto discard;
  5128. }
  5129. switch (sk->sk_state) {
  5130. case TCP_SYN_RECV:
  5131. if (!tp->srtt_us)
  5132. tcp_synack_rtt_meas(sk, req);
  5133. /* Once we leave TCP_SYN_RECV, we no longer need req
  5134. * so release it.
  5135. */
  5136. if (req) {
  5137. inet_csk(sk)->icsk_retransmits = 0;
  5138. reqsk_fastopen_remove(sk, req, false);
  5139. /* Re-arm the timer because data may have been sent out.
  5140. * This is similar to the regular data transmission case
  5141. * when new data has just been ack'ed.
  5142. *
  5143. * (TFO) - we could try to be more aggressive and
  5144. * retransmitting any data sooner based on when they
  5145. * are sent out.
  5146. */
  5147. tcp_rearm_rto(sk);
  5148. } else {
  5149. tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5150. tp->copied_seq = tp->rcv_nxt;
  5151. }
  5152. smp_mb();
  5153. tcp_set_state(sk, TCP_ESTABLISHED);
  5154. sk->sk_state_change(sk);
  5155. /* Note, that this wakeup is only for marginal crossed SYN case.
  5156. * Passively open sockets are not waked up, because
  5157. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5158. */
  5159. if (sk->sk_socket)
  5160. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5161. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5162. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5163. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5164. if (tp->rx_opt.tstamp_ok)
  5165. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5166. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5167. tcp_update_pacing_rate(sk);
  5168. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5169. tp->lsndtime = tcp_jiffies32;
  5170. tcp_initialize_rcv_mss(sk);
  5171. tcp_fast_path_on(tp);
  5172. break;
  5173. case TCP_FIN_WAIT1: {
  5174. int tmo;
  5175. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5176. * Fast Open socket and this is the first acceptable
  5177. * ACK we have received, this would have acknowledged
  5178. * our SYNACK so stop the SYNACK timer.
  5179. */
  5180. if (req) {
  5181. /* We no longer need the request sock. */
  5182. reqsk_fastopen_remove(sk, req, false);
  5183. tcp_rearm_rto(sk);
  5184. }
  5185. if (tp->snd_una != tp->write_seq)
  5186. break;
  5187. tcp_set_state(sk, TCP_FIN_WAIT2);
  5188. sk->sk_shutdown |= SEND_SHUTDOWN;
  5189. sk_dst_confirm(sk);
  5190. if (!sock_flag(sk, SOCK_DEAD)) {
  5191. /* Wake up lingering close() */
  5192. sk->sk_state_change(sk);
  5193. break;
  5194. }
  5195. if (tp->linger2 < 0) {
  5196. tcp_done(sk);
  5197. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5198. return 1;
  5199. }
  5200. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5201. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5202. /* Receive out of order FIN after close() */
  5203. if (tp->syn_fastopen && th->fin)
  5204. tcp_fastopen_active_disable(sk);
  5205. tcp_done(sk);
  5206. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5207. return 1;
  5208. }
  5209. tmo = tcp_fin_time(sk);
  5210. if (tmo > TCP_TIMEWAIT_LEN) {
  5211. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5212. } else if (th->fin || sock_owned_by_user(sk)) {
  5213. /* Bad case. We could lose such FIN otherwise.
  5214. * It is not a big problem, but it looks confusing
  5215. * and not so rare event. We still can lose it now,
  5216. * if it spins in bh_lock_sock(), but it is really
  5217. * marginal case.
  5218. */
  5219. inet_csk_reset_keepalive_timer(sk, tmo);
  5220. } else {
  5221. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5222. goto discard;
  5223. }
  5224. break;
  5225. }
  5226. case TCP_CLOSING:
  5227. if (tp->snd_una == tp->write_seq) {
  5228. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5229. goto discard;
  5230. }
  5231. break;
  5232. case TCP_LAST_ACK:
  5233. if (tp->snd_una == tp->write_seq) {
  5234. tcp_update_metrics(sk);
  5235. tcp_done(sk);
  5236. goto discard;
  5237. }
  5238. break;
  5239. }
  5240. /* step 6: check the URG bit */
  5241. tcp_urg(sk, skb, th);
  5242. /* step 7: process the segment text */
  5243. switch (sk->sk_state) {
  5244. case TCP_CLOSE_WAIT:
  5245. case TCP_CLOSING:
  5246. case TCP_LAST_ACK:
  5247. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5248. break;
  5249. /* fall through */
  5250. case TCP_FIN_WAIT1:
  5251. case TCP_FIN_WAIT2:
  5252. /* RFC 793 says to queue data in these states,
  5253. * RFC 1122 says we MUST send a reset.
  5254. * BSD 4.4 also does reset.
  5255. */
  5256. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5257. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5258. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5259. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5260. tcp_reset(sk);
  5261. return 1;
  5262. }
  5263. }
  5264. /* Fall through */
  5265. case TCP_ESTABLISHED:
  5266. tcp_data_queue(sk, skb);
  5267. queued = 1;
  5268. break;
  5269. }
  5270. /* tcp_data could move socket to TIME-WAIT */
  5271. if (sk->sk_state != TCP_CLOSE) {
  5272. tcp_data_snd_check(sk);
  5273. tcp_ack_snd_check(sk);
  5274. }
  5275. if (!queued) {
  5276. discard:
  5277. tcp_drop(sk, skb);
  5278. }
  5279. return 0;
  5280. }
  5281. EXPORT_SYMBOL(tcp_rcv_state_process);
  5282. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5283. {
  5284. struct inet_request_sock *ireq = inet_rsk(req);
  5285. if (family == AF_INET)
  5286. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5287. &ireq->ir_rmt_addr, port);
  5288. #if IS_ENABLED(CONFIG_IPV6)
  5289. else if (family == AF_INET6)
  5290. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5291. &ireq->ir_v6_rmt_addr, port);
  5292. #endif
  5293. }
  5294. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5295. *
  5296. * If we receive a SYN packet with these bits set, it means a
  5297. * network is playing bad games with TOS bits. In order to
  5298. * avoid possible false congestion notifications, we disable
  5299. * TCP ECN negotiation.
  5300. *
  5301. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5302. * congestion control: Linux DCTCP asserts ECT on all packets,
  5303. * including SYN, which is most optimal solution; however,
  5304. * others, such as FreeBSD do not.
  5305. */
  5306. static void tcp_ecn_create_request(struct request_sock *req,
  5307. const struct sk_buff *skb,
  5308. const struct sock *listen_sk,
  5309. const struct dst_entry *dst)
  5310. {
  5311. const struct tcphdr *th = tcp_hdr(skb);
  5312. const struct net *net = sock_net(listen_sk);
  5313. bool th_ecn = th->ece && th->cwr;
  5314. bool ect, ecn_ok;
  5315. u32 ecn_ok_dst;
  5316. if (!th_ecn)
  5317. return;
  5318. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5319. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5320. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5321. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5322. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5323. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5324. inet_rsk(req)->ecn_ok = 1;
  5325. }
  5326. static void tcp_openreq_init(struct request_sock *req,
  5327. const struct tcp_options_received *rx_opt,
  5328. struct sk_buff *skb, const struct sock *sk)
  5329. {
  5330. struct inet_request_sock *ireq = inet_rsk(req);
  5331. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5332. req->cookie_ts = 0;
  5333. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5334. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5335. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5336. tcp_rsk(req)->last_oow_ack_time = 0;
  5337. req->mss = rx_opt->mss_clamp;
  5338. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5339. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5340. ireq->sack_ok = rx_opt->sack_ok;
  5341. ireq->snd_wscale = rx_opt->snd_wscale;
  5342. ireq->wscale_ok = rx_opt->wscale_ok;
  5343. ireq->acked = 0;
  5344. ireq->ecn_ok = 0;
  5345. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5346. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5347. ireq->ir_mark = inet_request_mark(sk, skb);
  5348. #if IS_ENABLED(CONFIG_SMC)
  5349. ireq->smc_ok = rx_opt->smc_ok;
  5350. #endif
  5351. }
  5352. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5353. struct sock *sk_listener,
  5354. bool attach_listener)
  5355. {
  5356. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5357. attach_listener);
  5358. if (req) {
  5359. struct inet_request_sock *ireq = inet_rsk(req);
  5360. kmemcheck_annotate_bitfield(ireq, flags);
  5361. ireq->ireq_opt = NULL;
  5362. #if IS_ENABLED(CONFIG_IPV6)
  5363. ireq->pktopts = NULL;
  5364. #endif
  5365. atomic64_set(&ireq->ir_cookie, 0);
  5366. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5367. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5368. ireq->ireq_family = sk_listener->sk_family;
  5369. }
  5370. return req;
  5371. }
  5372. EXPORT_SYMBOL(inet_reqsk_alloc);
  5373. /*
  5374. * Return true if a syncookie should be sent
  5375. */
  5376. static bool tcp_syn_flood_action(const struct sock *sk,
  5377. const struct sk_buff *skb,
  5378. const char *proto)
  5379. {
  5380. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5381. const char *msg = "Dropping request";
  5382. bool want_cookie = false;
  5383. struct net *net = sock_net(sk);
  5384. #ifdef CONFIG_SYN_COOKIES
  5385. if (net->ipv4.sysctl_tcp_syncookies) {
  5386. msg = "Sending cookies";
  5387. want_cookie = true;
  5388. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5389. } else
  5390. #endif
  5391. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5392. if (!queue->synflood_warned &&
  5393. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5394. xchg(&queue->synflood_warned, 1) == 0)
  5395. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5396. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5397. return want_cookie;
  5398. }
  5399. static void tcp_reqsk_record_syn(const struct sock *sk,
  5400. struct request_sock *req,
  5401. const struct sk_buff *skb)
  5402. {
  5403. if (tcp_sk(sk)->save_syn) {
  5404. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5405. u32 *copy;
  5406. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5407. if (copy) {
  5408. copy[0] = len;
  5409. memcpy(&copy[1], skb_network_header(skb), len);
  5410. req->saved_syn = copy;
  5411. }
  5412. }
  5413. }
  5414. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5415. const struct tcp_request_sock_ops *af_ops,
  5416. struct sock *sk, struct sk_buff *skb)
  5417. {
  5418. struct tcp_fastopen_cookie foc = { .len = -1 };
  5419. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5420. struct tcp_options_received tmp_opt;
  5421. struct tcp_sock *tp = tcp_sk(sk);
  5422. struct net *net = sock_net(sk);
  5423. struct sock *fastopen_sk = NULL;
  5424. struct request_sock *req;
  5425. bool want_cookie = false;
  5426. struct dst_entry *dst;
  5427. struct flowi fl;
  5428. /* TW buckets are converted to open requests without
  5429. * limitations, they conserve resources and peer is
  5430. * evidently real one.
  5431. */
  5432. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5433. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5434. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5435. if (!want_cookie)
  5436. goto drop;
  5437. }
  5438. if (sk_acceptq_is_full(sk)) {
  5439. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5440. goto drop;
  5441. }
  5442. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5443. if (!req)
  5444. goto drop;
  5445. tcp_rsk(req)->af_specific = af_ops;
  5446. tcp_rsk(req)->ts_off = 0;
  5447. tcp_clear_options(&tmp_opt);
  5448. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5449. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5450. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5451. want_cookie ? NULL : &foc);
  5452. if (want_cookie && !tmp_opt.saw_tstamp)
  5453. tcp_clear_options(&tmp_opt);
  5454. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5455. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5456. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5457. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5458. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5459. af_ops->init_req(req, sk, skb);
  5460. if (security_inet_conn_request(sk, skb, req))
  5461. goto drop_and_free;
  5462. if (tmp_opt.tstamp_ok)
  5463. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5464. dst = af_ops->route_req(sk, &fl, req);
  5465. if (!dst)
  5466. goto drop_and_free;
  5467. if (!want_cookie && !isn) {
  5468. /* Kill the following clause, if you dislike this way. */
  5469. if (!net->ipv4.sysctl_tcp_syncookies &&
  5470. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5471. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5472. !tcp_peer_is_proven(req, dst)) {
  5473. /* Without syncookies last quarter of
  5474. * backlog is filled with destinations,
  5475. * proven to be alive.
  5476. * It means that we continue to communicate
  5477. * to destinations, already remembered
  5478. * to the moment of synflood.
  5479. */
  5480. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5481. rsk_ops->family);
  5482. goto drop_and_release;
  5483. }
  5484. isn = af_ops->init_seq(skb);
  5485. }
  5486. tcp_ecn_create_request(req, skb, sk, dst);
  5487. if (want_cookie) {
  5488. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5489. req->cookie_ts = tmp_opt.tstamp_ok;
  5490. if (!tmp_opt.tstamp_ok)
  5491. inet_rsk(req)->ecn_ok = 0;
  5492. }
  5493. tcp_rsk(req)->snt_isn = isn;
  5494. tcp_rsk(req)->txhash = net_tx_rndhash();
  5495. tcp_openreq_init_rwin(req, sk, dst);
  5496. if (!want_cookie) {
  5497. tcp_reqsk_record_syn(sk, req, skb);
  5498. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
  5499. }
  5500. if (fastopen_sk) {
  5501. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5502. &foc, TCP_SYNACK_FASTOPEN);
  5503. /* Add the child socket directly into the accept queue */
  5504. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5505. sk->sk_data_ready(sk);
  5506. bh_unlock_sock(fastopen_sk);
  5507. sock_put(fastopen_sk);
  5508. } else {
  5509. tcp_rsk(req)->tfo_listener = false;
  5510. if (!want_cookie)
  5511. inet_csk_reqsk_queue_hash_add(sk, req,
  5512. tcp_timeout_init((struct sock *)req));
  5513. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5514. !want_cookie ? TCP_SYNACK_NORMAL :
  5515. TCP_SYNACK_COOKIE);
  5516. if (want_cookie) {
  5517. reqsk_free(req);
  5518. return 0;
  5519. }
  5520. }
  5521. reqsk_put(req);
  5522. return 0;
  5523. drop_and_release:
  5524. dst_release(dst);
  5525. drop_and_free:
  5526. reqsk_free(req);
  5527. drop:
  5528. tcp_listendrop(sk);
  5529. return 0;
  5530. }
  5531. EXPORT_SYMBOL(tcp_conn_request);