sparse-vmemmap.c 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Virtual Memory Map support
  4. *
  5. * (C) 2007 sgi. Christoph Lameter.
  6. *
  7. * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8. * virt_to_page, page_address() to be implemented as a base offset
  9. * calculation without memory access.
  10. *
  11. * However, virtual mappings need a page table and TLBs. Many Linux
  12. * architectures already map their physical space using 1-1 mappings
  13. * via TLBs. For those arches the virtual memory map is essentially
  14. * for free if we use the same page size as the 1-1 mappings. In that
  15. * case the overhead consists of a few additional pages that are
  16. * allocated to create a view of memory for vmemmap.
  17. *
  18. * The architecture is expected to provide a vmemmap_populate() function
  19. * to instantiate the mapping.
  20. */
  21. #include <linux/mm.h>
  22. #include <linux/mmzone.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/memremap.h>
  25. #include <linux/highmem.h>
  26. #include <linux/slab.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/sched.h>
  30. #include <asm/dma.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. /*
  34. * Allocate a block of memory to be used to back the virtual memory map
  35. * or to back the page tables that are used to create the mapping.
  36. * Uses the main allocators if they are available, else bootmem.
  37. */
  38. static void * __ref __earlyonly_bootmem_alloc(int node,
  39. unsigned long size,
  40. unsigned long align,
  41. unsigned long goal)
  42. {
  43. return memblock_virt_alloc_try_nid_raw(size, align, goal,
  44. BOOTMEM_ALLOC_ACCESSIBLE, node);
  45. }
  46. static void *vmemmap_buf;
  47. static void *vmemmap_buf_end;
  48. void * __meminit vmemmap_alloc_block(unsigned long size, int node)
  49. {
  50. /* If the main allocator is up use that, fallback to bootmem. */
  51. if (slab_is_available()) {
  52. gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
  53. int order = get_order(size);
  54. static bool warned;
  55. struct page *page;
  56. page = alloc_pages_node(node, gfp_mask, order);
  57. if (page)
  58. return page_address(page);
  59. if (!warned) {
  60. warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
  61. "vmemmap alloc failure: order:%u", order);
  62. warned = true;
  63. }
  64. return NULL;
  65. } else
  66. return __earlyonly_bootmem_alloc(node, size, size,
  67. __pa(MAX_DMA_ADDRESS));
  68. }
  69. /* need to make sure size is all the same during early stage */
  70. static void * __meminit alloc_block_buf(unsigned long size, int node)
  71. {
  72. void *ptr;
  73. if (!vmemmap_buf)
  74. return vmemmap_alloc_block(size, node);
  75. /* take the from buf */
  76. ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
  77. if (ptr + size > vmemmap_buf_end)
  78. return vmemmap_alloc_block(size, node);
  79. vmemmap_buf = ptr + size;
  80. return ptr;
  81. }
  82. static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
  83. {
  84. return altmap->base_pfn + altmap->reserve + altmap->alloc
  85. + altmap->align;
  86. }
  87. static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
  88. {
  89. unsigned long allocated = altmap->alloc + altmap->align;
  90. if (altmap->free > allocated)
  91. return altmap->free - allocated;
  92. return 0;
  93. }
  94. /**
  95. * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
  96. * @altmap - reserved page pool for the allocation
  97. * @nr_pfns - size (in pages) of the allocation
  98. *
  99. * Allocations are aligned to the size of the request
  100. */
  101. static unsigned long __meminit vmem_altmap_alloc(struct vmem_altmap *altmap,
  102. unsigned long nr_pfns)
  103. {
  104. unsigned long pfn = vmem_altmap_next_pfn(altmap);
  105. unsigned long nr_align;
  106. nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
  107. nr_align = ALIGN(pfn, nr_align) - pfn;
  108. if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
  109. return ULONG_MAX;
  110. altmap->alloc += nr_pfns;
  111. altmap->align += nr_align;
  112. return pfn + nr_align;
  113. }
  114. static void * __meminit altmap_alloc_block_buf(unsigned long size,
  115. struct vmem_altmap *altmap)
  116. {
  117. unsigned long pfn, nr_pfns;
  118. void *ptr;
  119. if (size & ~PAGE_MASK) {
  120. pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
  121. __func__, size);
  122. return NULL;
  123. }
  124. nr_pfns = size >> PAGE_SHIFT;
  125. pfn = vmem_altmap_alloc(altmap, nr_pfns);
  126. if (pfn < ULONG_MAX)
  127. ptr = __va(__pfn_to_phys(pfn));
  128. else
  129. ptr = NULL;
  130. pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
  131. __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
  132. return ptr;
  133. }
  134. /* need to make sure size is all the same during early stage */
  135. void * __meminit __vmemmap_alloc_block_buf(unsigned long size, int node,
  136. struct vmem_altmap *altmap)
  137. {
  138. if (altmap)
  139. return altmap_alloc_block_buf(size, altmap);
  140. return alloc_block_buf(size, node);
  141. }
  142. void __meminit vmemmap_verify(pte_t *pte, int node,
  143. unsigned long start, unsigned long end)
  144. {
  145. unsigned long pfn = pte_pfn(*pte);
  146. int actual_node = early_pfn_to_nid(pfn);
  147. if (node_distance(actual_node, node) > LOCAL_DISTANCE)
  148. pr_warn("[%lx-%lx] potential offnode page_structs\n",
  149. start, end - 1);
  150. }
  151. pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
  152. {
  153. pte_t *pte = pte_offset_kernel(pmd, addr);
  154. if (pte_none(*pte)) {
  155. pte_t entry;
  156. void *p = alloc_block_buf(PAGE_SIZE, node);
  157. if (!p)
  158. return NULL;
  159. entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
  160. set_pte_at(&init_mm, addr, pte, entry);
  161. }
  162. return pte;
  163. }
  164. static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
  165. {
  166. void *p = vmemmap_alloc_block(size, node);
  167. if (!p)
  168. return NULL;
  169. memset(p, 0, size);
  170. return p;
  171. }
  172. pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
  173. {
  174. pmd_t *pmd = pmd_offset(pud, addr);
  175. if (pmd_none(*pmd)) {
  176. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  177. if (!p)
  178. return NULL;
  179. pmd_populate_kernel(&init_mm, pmd, p);
  180. }
  181. return pmd;
  182. }
  183. pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
  184. {
  185. pud_t *pud = pud_offset(p4d, addr);
  186. if (pud_none(*pud)) {
  187. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  188. if (!p)
  189. return NULL;
  190. pud_populate(&init_mm, pud, p);
  191. }
  192. return pud;
  193. }
  194. p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
  195. {
  196. p4d_t *p4d = p4d_offset(pgd, addr);
  197. if (p4d_none(*p4d)) {
  198. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  199. if (!p)
  200. return NULL;
  201. p4d_populate(&init_mm, p4d, p);
  202. }
  203. return p4d;
  204. }
  205. pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
  206. {
  207. pgd_t *pgd = pgd_offset_k(addr);
  208. if (pgd_none(*pgd)) {
  209. void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
  210. if (!p)
  211. return NULL;
  212. pgd_populate(&init_mm, pgd, p);
  213. }
  214. return pgd;
  215. }
  216. int __meminit vmemmap_populate_basepages(unsigned long start,
  217. unsigned long end, int node)
  218. {
  219. unsigned long addr = start;
  220. pgd_t *pgd;
  221. p4d_t *p4d;
  222. pud_t *pud;
  223. pmd_t *pmd;
  224. pte_t *pte;
  225. for (; addr < end; addr += PAGE_SIZE) {
  226. pgd = vmemmap_pgd_populate(addr, node);
  227. if (!pgd)
  228. return -ENOMEM;
  229. p4d = vmemmap_p4d_populate(pgd, addr, node);
  230. if (!p4d)
  231. return -ENOMEM;
  232. pud = vmemmap_pud_populate(p4d, addr, node);
  233. if (!pud)
  234. return -ENOMEM;
  235. pmd = vmemmap_pmd_populate(pud, addr, node);
  236. if (!pmd)
  237. return -ENOMEM;
  238. pte = vmemmap_pte_populate(pmd, addr, node);
  239. if (!pte)
  240. return -ENOMEM;
  241. vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
  242. }
  243. return 0;
  244. }
  245. struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
  246. {
  247. unsigned long start;
  248. unsigned long end;
  249. struct page *map;
  250. map = pfn_to_page(pnum * PAGES_PER_SECTION);
  251. start = (unsigned long)map;
  252. end = (unsigned long)(map + PAGES_PER_SECTION);
  253. if (vmemmap_populate(start, end, nid))
  254. return NULL;
  255. return map;
  256. }
  257. void __init sparse_mem_maps_populate_node(struct page **map_map,
  258. unsigned long pnum_begin,
  259. unsigned long pnum_end,
  260. unsigned long map_count, int nodeid)
  261. {
  262. unsigned long pnum;
  263. unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  264. void *vmemmap_buf_start;
  265. size = ALIGN(size, PMD_SIZE);
  266. vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
  267. PMD_SIZE, __pa(MAX_DMA_ADDRESS));
  268. if (vmemmap_buf_start) {
  269. vmemmap_buf = vmemmap_buf_start;
  270. vmemmap_buf_end = vmemmap_buf_start + size * map_count;
  271. }
  272. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  273. struct mem_section *ms;
  274. if (!present_section_nr(pnum))
  275. continue;
  276. map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
  277. if (map_map[pnum])
  278. continue;
  279. ms = __nr_to_section(pnum);
  280. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  281. __func__);
  282. ms->section_mem_map = 0;
  283. }
  284. if (vmemmap_buf_start) {
  285. /* need to free left buf */
  286. memblock_free_early(__pa(vmemmap_buf),
  287. vmemmap_buf_end - vmemmap_buf);
  288. vmemmap_buf = NULL;
  289. vmemmap_buf_end = NULL;
  290. }
  291. }