page_ext.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/mmzone.h>
  4. #include <linux/bootmem.h>
  5. #include <linux/page_ext.h>
  6. #include <linux/memory.h>
  7. #include <linux/vmalloc.h>
  8. #include <linux/kmemleak.h>
  9. #include <linux/page_owner.h>
  10. #include <linux/page_idle.h>
  11. /*
  12. * struct page extension
  13. *
  14. * This is the feature to manage memory for extended data per page.
  15. *
  16. * Until now, we must modify struct page itself to store extra data per page.
  17. * This requires rebuilding the kernel and it is really time consuming process.
  18. * And, sometimes, rebuild is impossible due to third party module dependency.
  19. * At last, enlarging struct page could cause un-wanted system behaviour change.
  20. *
  21. * This feature is intended to overcome above mentioned problems. This feature
  22. * allocates memory for extended data per page in certain place rather than
  23. * the struct page itself. This memory can be accessed by the accessor
  24. * functions provided by this code. During the boot process, it checks whether
  25. * allocation of huge chunk of memory is needed or not. If not, it avoids
  26. * allocating memory at all. With this advantage, we can include this feature
  27. * into the kernel in default and can avoid rebuild and solve related problems.
  28. *
  29. * To help these things to work well, there are two callbacks for clients. One
  30. * is the need callback which is mandatory if user wants to avoid useless
  31. * memory allocation at boot-time. The other is optional, init callback, which
  32. * is used to do proper initialization after memory is allocated.
  33. *
  34. * The need callback is used to decide whether extended memory allocation is
  35. * needed or not. Sometimes users want to deactivate some features in this
  36. * boot and extra memory would be unneccessary. In this case, to avoid
  37. * allocating huge chunk of memory, each clients represent their need of
  38. * extra memory through the need callback. If one of the need callbacks
  39. * returns true, it means that someone needs extra memory so that
  40. * page extension core should allocates memory for page extension. If
  41. * none of need callbacks return true, memory isn't needed at all in this boot
  42. * and page extension core can skip to allocate memory. As result,
  43. * none of memory is wasted.
  44. *
  45. * When need callback returns true, page_ext checks if there is a request for
  46. * extra memory through size in struct page_ext_operations. If it is non-zero,
  47. * extra space is allocated for each page_ext entry and offset is returned to
  48. * user through offset in struct page_ext_operations.
  49. *
  50. * The init callback is used to do proper initialization after page extension
  51. * is completely initialized. In sparse memory system, extra memory is
  52. * allocated some time later than memmap is allocated. In other words, lifetime
  53. * of memory for page extension isn't same with memmap for struct page.
  54. * Therefore, clients can't store extra data until page extension is
  55. * initialized, even if pages are allocated and used freely. This could
  56. * cause inadequate state of extra data per page, so, to prevent it, client
  57. * can utilize this callback to initialize the state of it correctly.
  58. */
  59. static struct page_ext_operations *page_ext_ops[] = {
  60. &debug_guardpage_ops,
  61. #ifdef CONFIG_PAGE_OWNER
  62. &page_owner_ops,
  63. #endif
  64. #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  65. &page_idle_ops,
  66. #endif
  67. };
  68. static unsigned long total_usage;
  69. static unsigned long extra_mem;
  70. static bool __init invoke_need_callbacks(void)
  71. {
  72. int i;
  73. int entries = ARRAY_SIZE(page_ext_ops);
  74. bool need = false;
  75. for (i = 0; i < entries; i++) {
  76. if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  77. page_ext_ops[i]->offset = sizeof(struct page_ext) +
  78. extra_mem;
  79. extra_mem += page_ext_ops[i]->size;
  80. need = true;
  81. }
  82. }
  83. return need;
  84. }
  85. static void __init invoke_init_callbacks(void)
  86. {
  87. int i;
  88. int entries = ARRAY_SIZE(page_ext_ops);
  89. for (i = 0; i < entries; i++) {
  90. if (page_ext_ops[i]->init)
  91. page_ext_ops[i]->init();
  92. }
  93. }
  94. static unsigned long get_entry_size(void)
  95. {
  96. return sizeof(struct page_ext) + extra_mem;
  97. }
  98. static inline struct page_ext *get_entry(void *base, unsigned long index)
  99. {
  100. return base + get_entry_size() * index;
  101. }
  102. #if !defined(CONFIG_SPARSEMEM)
  103. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  104. {
  105. pgdat->node_page_ext = NULL;
  106. }
  107. struct page_ext *lookup_page_ext(struct page *page)
  108. {
  109. unsigned long pfn = page_to_pfn(page);
  110. unsigned long index;
  111. struct page_ext *base;
  112. base = NODE_DATA(page_to_nid(page))->node_page_ext;
  113. /*
  114. * The sanity checks the page allocator does upon freeing a
  115. * page can reach here before the page_ext arrays are
  116. * allocated when feeding a range of pages to the allocator
  117. * for the first time during bootup or memory hotplug.
  118. */
  119. if (unlikely(!base))
  120. return NULL;
  121. index = pfn - round_down(node_start_pfn(page_to_nid(page)),
  122. MAX_ORDER_NR_PAGES);
  123. return get_entry(base, index);
  124. }
  125. static int __init alloc_node_page_ext(int nid)
  126. {
  127. struct page_ext *base;
  128. unsigned long table_size;
  129. unsigned long nr_pages;
  130. nr_pages = NODE_DATA(nid)->node_spanned_pages;
  131. if (!nr_pages)
  132. return 0;
  133. /*
  134. * Need extra space if node range is not aligned with
  135. * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
  136. * checks buddy's status, range could be out of exact node range.
  137. */
  138. if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
  139. !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
  140. nr_pages += MAX_ORDER_NR_PAGES;
  141. table_size = get_entry_size() * nr_pages;
  142. base = memblock_virt_alloc_try_nid_nopanic(
  143. table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
  144. BOOTMEM_ALLOC_ACCESSIBLE, nid);
  145. if (!base)
  146. return -ENOMEM;
  147. NODE_DATA(nid)->node_page_ext = base;
  148. total_usage += table_size;
  149. return 0;
  150. }
  151. void __init page_ext_init_flatmem(void)
  152. {
  153. int nid, fail;
  154. if (!invoke_need_callbacks())
  155. return;
  156. for_each_online_node(nid) {
  157. fail = alloc_node_page_ext(nid);
  158. if (fail)
  159. goto fail;
  160. }
  161. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  162. invoke_init_callbacks();
  163. return;
  164. fail:
  165. pr_crit("allocation of page_ext failed.\n");
  166. panic("Out of memory");
  167. }
  168. #else /* CONFIG_FLAT_NODE_MEM_MAP */
  169. struct page_ext *lookup_page_ext(struct page *page)
  170. {
  171. unsigned long pfn = page_to_pfn(page);
  172. struct mem_section *section = __pfn_to_section(pfn);
  173. /*
  174. * The sanity checks the page allocator does upon freeing a
  175. * page can reach here before the page_ext arrays are
  176. * allocated when feeding a range of pages to the allocator
  177. * for the first time during bootup or memory hotplug.
  178. */
  179. if (!section->page_ext)
  180. return NULL;
  181. return get_entry(section->page_ext, pfn);
  182. }
  183. static void *__meminit alloc_page_ext(size_t size, int nid)
  184. {
  185. gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
  186. void *addr = NULL;
  187. addr = alloc_pages_exact_nid(nid, size, flags);
  188. if (addr) {
  189. kmemleak_alloc(addr, size, 1, flags);
  190. return addr;
  191. }
  192. addr = vzalloc_node(size, nid);
  193. return addr;
  194. }
  195. static int __meminit init_section_page_ext(unsigned long pfn, int nid)
  196. {
  197. struct mem_section *section;
  198. struct page_ext *base;
  199. unsigned long table_size;
  200. section = __pfn_to_section(pfn);
  201. if (section->page_ext)
  202. return 0;
  203. table_size = get_entry_size() * PAGES_PER_SECTION;
  204. base = alloc_page_ext(table_size, nid);
  205. /*
  206. * The value stored in section->page_ext is (base - pfn)
  207. * and it does not point to the memory block allocated above,
  208. * causing kmemleak false positives.
  209. */
  210. kmemleak_not_leak(base);
  211. if (!base) {
  212. pr_err("page ext allocation failure\n");
  213. return -ENOMEM;
  214. }
  215. /*
  216. * The passed "pfn" may not be aligned to SECTION. For the calculation
  217. * we need to apply a mask.
  218. */
  219. pfn &= PAGE_SECTION_MASK;
  220. section->page_ext = (void *)base - get_entry_size() * pfn;
  221. total_usage += table_size;
  222. return 0;
  223. }
  224. #ifdef CONFIG_MEMORY_HOTPLUG
  225. static void free_page_ext(void *addr)
  226. {
  227. if (is_vmalloc_addr(addr)) {
  228. vfree(addr);
  229. } else {
  230. struct page *page = virt_to_page(addr);
  231. size_t table_size;
  232. table_size = get_entry_size() * PAGES_PER_SECTION;
  233. BUG_ON(PageReserved(page));
  234. free_pages_exact(addr, table_size);
  235. }
  236. }
  237. static void __free_page_ext(unsigned long pfn)
  238. {
  239. struct mem_section *ms;
  240. struct page_ext *base;
  241. ms = __pfn_to_section(pfn);
  242. if (!ms || !ms->page_ext)
  243. return;
  244. base = get_entry(ms->page_ext, pfn);
  245. free_page_ext(base);
  246. ms->page_ext = NULL;
  247. }
  248. static int __meminit online_page_ext(unsigned long start_pfn,
  249. unsigned long nr_pages,
  250. int nid)
  251. {
  252. unsigned long start, end, pfn;
  253. int fail = 0;
  254. start = SECTION_ALIGN_DOWN(start_pfn);
  255. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  256. if (nid == -1) {
  257. /*
  258. * In this case, "nid" already exists and contains valid memory.
  259. * "start_pfn" passed to us is a pfn which is an arg for
  260. * online__pages(), and start_pfn should exist.
  261. */
  262. nid = pfn_to_nid(start_pfn);
  263. VM_BUG_ON(!node_state(nid, N_ONLINE));
  264. }
  265. for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
  266. if (!pfn_present(pfn))
  267. continue;
  268. fail = init_section_page_ext(pfn, nid);
  269. }
  270. if (!fail)
  271. return 0;
  272. /* rollback */
  273. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  274. __free_page_ext(pfn);
  275. return -ENOMEM;
  276. }
  277. static int __meminit offline_page_ext(unsigned long start_pfn,
  278. unsigned long nr_pages, int nid)
  279. {
  280. unsigned long start, end, pfn;
  281. start = SECTION_ALIGN_DOWN(start_pfn);
  282. end = SECTION_ALIGN_UP(start_pfn + nr_pages);
  283. for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
  284. __free_page_ext(pfn);
  285. return 0;
  286. }
  287. static int __meminit page_ext_callback(struct notifier_block *self,
  288. unsigned long action, void *arg)
  289. {
  290. struct memory_notify *mn = arg;
  291. int ret = 0;
  292. switch (action) {
  293. case MEM_GOING_ONLINE:
  294. ret = online_page_ext(mn->start_pfn,
  295. mn->nr_pages, mn->status_change_nid);
  296. break;
  297. case MEM_OFFLINE:
  298. offline_page_ext(mn->start_pfn,
  299. mn->nr_pages, mn->status_change_nid);
  300. break;
  301. case MEM_CANCEL_ONLINE:
  302. offline_page_ext(mn->start_pfn,
  303. mn->nr_pages, mn->status_change_nid);
  304. break;
  305. case MEM_GOING_OFFLINE:
  306. break;
  307. case MEM_ONLINE:
  308. case MEM_CANCEL_OFFLINE:
  309. break;
  310. }
  311. return notifier_from_errno(ret);
  312. }
  313. #endif
  314. void __init page_ext_init(void)
  315. {
  316. unsigned long pfn;
  317. int nid;
  318. if (!invoke_need_callbacks())
  319. return;
  320. for_each_node_state(nid, N_MEMORY) {
  321. unsigned long start_pfn, end_pfn;
  322. start_pfn = node_start_pfn(nid);
  323. end_pfn = node_end_pfn(nid);
  324. /*
  325. * start_pfn and end_pfn may not be aligned to SECTION and the
  326. * page->flags of out of node pages are not initialized. So we
  327. * scan [start_pfn, the biggest section's pfn < end_pfn) here.
  328. */
  329. for (pfn = start_pfn; pfn < end_pfn;
  330. pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
  331. if (!pfn_valid(pfn))
  332. continue;
  333. /*
  334. * Nodes's pfns can be overlapping.
  335. * We know some arch can have a nodes layout such as
  336. * -------------pfn-------------->
  337. * N0 | N1 | N2 | N0 | N1 | N2|....
  338. *
  339. * Take into account DEFERRED_STRUCT_PAGE_INIT.
  340. */
  341. if (early_pfn_to_nid(pfn) != nid)
  342. continue;
  343. if (init_section_page_ext(pfn, nid))
  344. goto oom;
  345. cond_resched();
  346. }
  347. }
  348. hotplug_memory_notifier(page_ext_callback, 0);
  349. pr_info("allocated %ld bytes of page_ext\n", total_usage);
  350. invoke_init_callbacks();
  351. return;
  352. oom:
  353. panic("Out of memory");
  354. }
  355. void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
  356. {
  357. }
  358. #endif