page_alloc.c 215 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kasan.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/memremap.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <linux/backing-dev.h>
  49. #include <linux/fault-inject.h>
  50. #include <linux/page-isolation.h>
  51. #include <linux/page_ext.h>
  52. #include <linux/debugobjects.h>
  53. #include <linux/kmemleak.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <trace/events/oom.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/hugetlb.h>
  61. #include <linux/sched/rt.h>
  62. #include <linux/sched/mm.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <linux/memcontrol.h>
  66. #include <linux/ftrace.h>
  67. #include <linux/lockdep.h>
  68. #include <linux/nmi.h>
  69. #include <asm/sections.h>
  70. #include <asm/tlbflush.h>
  71. #include <asm/div64.h>
  72. #include "internal.h"
  73. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  74. static DEFINE_MUTEX(pcp_batch_high_lock);
  75. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  76. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  77. DEFINE_PER_CPU(int, numa_node);
  78. EXPORT_PER_CPU_SYMBOL(numa_node);
  79. #endif
  80. DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  81. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  82. /*
  83. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  84. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  85. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  86. * defined in <linux/topology.h>.
  87. */
  88. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  89. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  90. int _node_numa_mem_[MAX_NUMNODES];
  91. #endif
  92. /* work_structs for global per-cpu drains */
  93. DEFINE_MUTEX(pcpu_drain_mutex);
  94. DEFINE_PER_CPU(struct work_struct, pcpu_drain);
  95. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  96. volatile unsigned long latent_entropy __latent_entropy;
  97. EXPORT_SYMBOL(latent_entropy);
  98. #endif
  99. /*
  100. * Array of node states.
  101. */
  102. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  103. [N_POSSIBLE] = NODE_MASK_ALL,
  104. [N_ONLINE] = { { [0] = 1UL } },
  105. #ifndef CONFIG_NUMA
  106. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  107. #ifdef CONFIG_HIGHMEM
  108. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  109. #endif
  110. [N_MEMORY] = { { [0] = 1UL } },
  111. [N_CPU] = { { [0] = 1UL } },
  112. #endif /* NUMA */
  113. };
  114. EXPORT_SYMBOL(node_states);
  115. /* Protect totalram_pages and zone->managed_pages */
  116. static DEFINE_SPINLOCK(managed_page_count_lock);
  117. unsigned long totalram_pages __read_mostly;
  118. unsigned long totalreserve_pages __read_mostly;
  119. unsigned long totalcma_pages __read_mostly;
  120. int percpu_pagelist_fraction;
  121. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  122. /*
  123. * A cached value of the page's pageblock's migratetype, used when the page is
  124. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  125. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  126. * Also the migratetype set in the page does not necessarily match the pcplist
  127. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  128. * other index - this ensures that it will be put on the correct CMA freelist.
  129. */
  130. static inline int get_pcppage_migratetype(struct page *page)
  131. {
  132. return page->index;
  133. }
  134. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  135. {
  136. page->index = migratetype;
  137. }
  138. #ifdef CONFIG_PM_SLEEP
  139. /*
  140. * The following functions are used by the suspend/hibernate code to temporarily
  141. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  142. * while devices are suspended. To avoid races with the suspend/hibernate code,
  143. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  144. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  145. * guaranteed not to run in parallel with that modification).
  146. */
  147. static gfp_t saved_gfp_mask;
  148. void pm_restore_gfp_mask(void)
  149. {
  150. WARN_ON(!mutex_is_locked(&pm_mutex));
  151. if (saved_gfp_mask) {
  152. gfp_allowed_mask = saved_gfp_mask;
  153. saved_gfp_mask = 0;
  154. }
  155. }
  156. void pm_restrict_gfp_mask(void)
  157. {
  158. WARN_ON(!mutex_is_locked(&pm_mutex));
  159. WARN_ON(saved_gfp_mask);
  160. saved_gfp_mask = gfp_allowed_mask;
  161. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  162. }
  163. bool pm_suspended_storage(void)
  164. {
  165. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  166. return false;
  167. return true;
  168. }
  169. #endif /* CONFIG_PM_SLEEP */
  170. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  171. unsigned int pageblock_order __read_mostly;
  172. #endif
  173. static void __free_pages_ok(struct page *page, unsigned int order);
  174. /*
  175. * results with 256, 32 in the lowmem_reserve sysctl:
  176. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  177. * 1G machine -> (16M dma, 784M normal, 224M high)
  178. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  179. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  180. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  181. *
  182. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  183. * don't need any ZONE_NORMAL reservation
  184. */
  185. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  186. #ifdef CONFIG_ZONE_DMA
  187. 256,
  188. #endif
  189. #ifdef CONFIG_ZONE_DMA32
  190. 256,
  191. #endif
  192. #ifdef CONFIG_HIGHMEM
  193. 32,
  194. #endif
  195. 32,
  196. };
  197. EXPORT_SYMBOL(totalram_pages);
  198. static char * const zone_names[MAX_NR_ZONES] = {
  199. #ifdef CONFIG_ZONE_DMA
  200. "DMA",
  201. #endif
  202. #ifdef CONFIG_ZONE_DMA32
  203. "DMA32",
  204. #endif
  205. "Normal",
  206. #ifdef CONFIG_HIGHMEM
  207. "HighMem",
  208. #endif
  209. "Movable",
  210. #ifdef CONFIG_ZONE_DEVICE
  211. "Device",
  212. #endif
  213. };
  214. char * const migratetype_names[MIGRATE_TYPES] = {
  215. "Unmovable",
  216. "Movable",
  217. "Reclaimable",
  218. "HighAtomic",
  219. #ifdef CONFIG_CMA
  220. "CMA",
  221. #endif
  222. #ifdef CONFIG_MEMORY_ISOLATION
  223. "Isolate",
  224. #endif
  225. };
  226. compound_page_dtor * const compound_page_dtors[] = {
  227. NULL,
  228. free_compound_page,
  229. #ifdef CONFIG_HUGETLB_PAGE
  230. free_huge_page,
  231. #endif
  232. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  233. free_transhuge_page,
  234. #endif
  235. };
  236. int min_free_kbytes = 1024;
  237. int user_min_free_kbytes = -1;
  238. int watermark_scale_factor = 10;
  239. static unsigned long __meminitdata nr_kernel_pages;
  240. static unsigned long __meminitdata nr_all_pages;
  241. static unsigned long __meminitdata dma_reserve;
  242. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  243. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  244. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  245. static unsigned long __initdata required_kernelcore;
  246. static unsigned long __initdata required_movablecore;
  247. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  248. static bool mirrored_kernelcore;
  249. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  250. int movable_zone;
  251. EXPORT_SYMBOL(movable_zone);
  252. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  253. #if MAX_NUMNODES > 1
  254. int nr_node_ids __read_mostly = MAX_NUMNODES;
  255. int nr_online_nodes __read_mostly = 1;
  256. EXPORT_SYMBOL(nr_node_ids);
  257. EXPORT_SYMBOL(nr_online_nodes);
  258. #endif
  259. int page_group_by_mobility_disabled __read_mostly;
  260. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  261. /*
  262. * Determine how many pages need to be initialized durig early boot
  263. * (non-deferred initialization).
  264. * The value of first_deferred_pfn will be set later, once non-deferred pages
  265. * are initialized, but for now set it ULONG_MAX.
  266. */
  267. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  268. {
  269. phys_addr_t start_addr, end_addr;
  270. unsigned long max_pgcnt;
  271. unsigned long reserved;
  272. /*
  273. * Initialise at least 2G of a node but also take into account that
  274. * two large system hashes that can take up 1GB for 0.25TB/node.
  275. */
  276. max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
  277. (pgdat->node_spanned_pages >> 8));
  278. /*
  279. * Compensate the all the memblock reservations (e.g. crash kernel)
  280. * from the initial estimation to make sure we will initialize enough
  281. * memory to boot.
  282. */
  283. start_addr = PFN_PHYS(pgdat->node_start_pfn);
  284. end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
  285. reserved = memblock_reserved_memory_within(start_addr, end_addr);
  286. max_pgcnt += PHYS_PFN(reserved);
  287. pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
  288. pgdat->first_deferred_pfn = ULONG_MAX;
  289. }
  290. /* Returns true if the struct page for the pfn is uninitialised */
  291. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  292. {
  293. int nid = early_pfn_to_nid(pfn);
  294. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  295. return true;
  296. return false;
  297. }
  298. /*
  299. * Returns false when the remaining initialisation should be deferred until
  300. * later in the boot cycle when it can be parallelised.
  301. */
  302. static inline bool update_defer_init(pg_data_t *pgdat,
  303. unsigned long pfn, unsigned long zone_end,
  304. unsigned long *nr_initialised)
  305. {
  306. /* Always populate low zones for address-contrained allocations */
  307. if (zone_end < pgdat_end_pfn(pgdat))
  308. return true;
  309. (*nr_initialised)++;
  310. if ((*nr_initialised > pgdat->static_init_pgcnt) &&
  311. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  312. pgdat->first_deferred_pfn = pfn;
  313. return false;
  314. }
  315. return true;
  316. }
  317. #else
  318. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  319. {
  320. }
  321. static inline bool early_page_uninitialised(unsigned long pfn)
  322. {
  323. return false;
  324. }
  325. static inline bool update_defer_init(pg_data_t *pgdat,
  326. unsigned long pfn, unsigned long zone_end,
  327. unsigned long *nr_initialised)
  328. {
  329. return true;
  330. }
  331. #endif
  332. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  333. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  334. unsigned long pfn)
  335. {
  336. #ifdef CONFIG_SPARSEMEM
  337. return __pfn_to_section(pfn)->pageblock_flags;
  338. #else
  339. return page_zone(page)->pageblock_flags;
  340. #endif /* CONFIG_SPARSEMEM */
  341. }
  342. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  343. {
  344. #ifdef CONFIG_SPARSEMEM
  345. pfn &= (PAGES_PER_SECTION-1);
  346. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  347. #else
  348. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  349. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  350. #endif /* CONFIG_SPARSEMEM */
  351. }
  352. /**
  353. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  354. * @page: The page within the block of interest
  355. * @pfn: The target page frame number
  356. * @end_bitidx: The last bit of interest to retrieve
  357. * @mask: mask of bits that the caller is interested in
  358. *
  359. * Return: pageblock_bits flags
  360. */
  361. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  362. unsigned long pfn,
  363. unsigned long end_bitidx,
  364. unsigned long mask)
  365. {
  366. unsigned long *bitmap;
  367. unsigned long bitidx, word_bitidx;
  368. unsigned long word;
  369. bitmap = get_pageblock_bitmap(page, pfn);
  370. bitidx = pfn_to_bitidx(page, pfn);
  371. word_bitidx = bitidx / BITS_PER_LONG;
  372. bitidx &= (BITS_PER_LONG-1);
  373. word = bitmap[word_bitidx];
  374. bitidx += end_bitidx;
  375. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  376. }
  377. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  378. unsigned long end_bitidx,
  379. unsigned long mask)
  380. {
  381. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  382. }
  383. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  384. {
  385. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  386. }
  387. /**
  388. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  389. * @page: The page within the block of interest
  390. * @flags: The flags to set
  391. * @pfn: The target page frame number
  392. * @end_bitidx: The last bit of interest
  393. * @mask: mask of bits that the caller is interested in
  394. */
  395. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  396. unsigned long pfn,
  397. unsigned long end_bitidx,
  398. unsigned long mask)
  399. {
  400. unsigned long *bitmap;
  401. unsigned long bitidx, word_bitidx;
  402. unsigned long old_word, word;
  403. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  404. bitmap = get_pageblock_bitmap(page, pfn);
  405. bitidx = pfn_to_bitidx(page, pfn);
  406. word_bitidx = bitidx / BITS_PER_LONG;
  407. bitidx &= (BITS_PER_LONG-1);
  408. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  409. bitidx += end_bitidx;
  410. mask <<= (BITS_PER_LONG - bitidx - 1);
  411. flags <<= (BITS_PER_LONG - bitidx - 1);
  412. word = READ_ONCE(bitmap[word_bitidx]);
  413. for (;;) {
  414. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  415. if (word == old_word)
  416. break;
  417. word = old_word;
  418. }
  419. }
  420. void set_pageblock_migratetype(struct page *page, int migratetype)
  421. {
  422. if (unlikely(page_group_by_mobility_disabled &&
  423. migratetype < MIGRATE_PCPTYPES))
  424. migratetype = MIGRATE_UNMOVABLE;
  425. set_pageblock_flags_group(page, (unsigned long)migratetype,
  426. PB_migrate, PB_migrate_end);
  427. }
  428. #ifdef CONFIG_DEBUG_VM
  429. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  430. {
  431. int ret = 0;
  432. unsigned seq;
  433. unsigned long pfn = page_to_pfn(page);
  434. unsigned long sp, start_pfn;
  435. do {
  436. seq = zone_span_seqbegin(zone);
  437. start_pfn = zone->zone_start_pfn;
  438. sp = zone->spanned_pages;
  439. if (!zone_spans_pfn(zone, pfn))
  440. ret = 1;
  441. } while (zone_span_seqretry(zone, seq));
  442. if (ret)
  443. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  444. pfn, zone_to_nid(zone), zone->name,
  445. start_pfn, start_pfn + sp);
  446. return ret;
  447. }
  448. static int page_is_consistent(struct zone *zone, struct page *page)
  449. {
  450. if (!pfn_valid_within(page_to_pfn(page)))
  451. return 0;
  452. if (zone != page_zone(page))
  453. return 0;
  454. return 1;
  455. }
  456. /*
  457. * Temporary debugging check for pages not lying within a given zone.
  458. */
  459. static int __maybe_unused bad_range(struct zone *zone, struct page *page)
  460. {
  461. if (page_outside_zone_boundaries(zone, page))
  462. return 1;
  463. if (!page_is_consistent(zone, page))
  464. return 1;
  465. return 0;
  466. }
  467. #else
  468. static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
  469. {
  470. return 0;
  471. }
  472. #endif
  473. static void bad_page(struct page *page, const char *reason,
  474. unsigned long bad_flags)
  475. {
  476. static unsigned long resume;
  477. static unsigned long nr_shown;
  478. static unsigned long nr_unshown;
  479. /*
  480. * Allow a burst of 60 reports, then keep quiet for that minute;
  481. * or allow a steady drip of one report per second.
  482. */
  483. if (nr_shown == 60) {
  484. if (time_before(jiffies, resume)) {
  485. nr_unshown++;
  486. goto out;
  487. }
  488. if (nr_unshown) {
  489. pr_alert(
  490. "BUG: Bad page state: %lu messages suppressed\n",
  491. nr_unshown);
  492. nr_unshown = 0;
  493. }
  494. nr_shown = 0;
  495. }
  496. if (nr_shown++ == 0)
  497. resume = jiffies + 60 * HZ;
  498. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  499. current->comm, page_to_pfn(page));
  500. __dump_page(page, reason);
  501. bad_flags &= page->flags;
  502. if (bad_flags)
  503. pr_alert("bad because of flags: %#lx(%pGp)\n",
  504. bad_flags, &bad_flags);
  505. dump_page_owner(page);
  506. print_modules();
  507. dump_stack();
  508. out:
  509. /* Leave bad fields for debug, except PageBuddy could make trouble */
  510. page_mapcount_reset(page); /* remove PageBuddy */
  511. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  512. }
  513. /*
  514. * Higher-order pages are called "compound pages". They are structured thusly:
  515. *
  516. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  517. *
  518. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  519. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  520. *
  521. * The first tail page's ->compound_dtor holds the offset in array of compound
  522. * page destructors. See compound_page_dtors.
  523. *
  524. * The first tail page's ->compound_order holds the order of allocation.
  525. * This usage means that zero-order pages may not be compound.
  526. */
  527. void free_compound_page(struct page *page)
  528. {
  529. __free_pages_ok(page, compound_order(page));
  530. }
  531. void prep_compound_page(struct page *page, unsigned int order)
  532. {
  533. int i;
  534. int nr_pages = 1 << order;
  535. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  536. set_compound_order(page, order);
  537. __SetPageHead(page);
  538. for (i = 1; i < nr_pages; i++) {
  539. struct page *p = page + i;
  540. set_page_count(p, 0);
  541. p->mapping = TAIL_MAPPING;
  542. set_compound_head(p, page);
  543. }
  544. atomic_set(compound_mapcount_ptr(page), -1);
  545. }
  546. #ifdef CONFIG_DEBUG_PAGEALLOC
  547. unsigned int _debug_guardpage_minorder;
  548. bool _debug_pagealloc_enabled __read_mostly
  549. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  550. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  551. bool _debug_guardpage_enabled __read_mostly;
  552. static int __init early_debug_pagealloc(char *buf)
  553. {
  554. if (!buf)
  555. return -EINVAL;
  556. return kstrtobool(buf, &_debug_pagealloc_enabled);
  557. }
  558. early_param("debug_pagealloc", early_debug_pagealloc);
  559. static bool need_debug_guardpage(void)
  560. {
  561. /* If we don't use debug_pagealloc, we don't need guard page */
  562. if (!debug_pagealloc_enabled())
  563. return false;
  564. if (!debug_guardpage_minorder())
  565. return false;
  566. return true;
  567. }
  568. static void init_debug_guardpage(void)
  569. {
  570. if (!debug_pagealloc_enabled())
  571. return;
  572. if (!debug_guardpage_minorder())
  573. return;
  574. _debug_guardpage_enabled = true;
  575. }
  576. struct page_ext_operations debug_guardpage_ops = {
  577. .need = need_debug_guardpage,
  578. .init = init_debug_guardpage,
  579. };
  580. static int __init debug_guardpage_minorder_setup(char *buf)
  581. {
  582. unsigned long res;
  583. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  584. pr_err("Bad debug_guardpage_minorder value\n");
  585. return 0;
  586. }
  587. _debug_guardpage_minorder = res;
  588. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  589. return 0;
  590. }
  591. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  592. static inline bool set_page_guard(struct zone *zone, struct page *page,
  593. unsigned int order, int migratetype)
  594. {
  595. struct page_ext *page_ext;
  596. if (!debug_guardpage_enabled())
  597. return false;
  598. if (order >= debug_guardpage_minorder())
  599. return false;
  600. page_ext = lookup_page_ext(page);
  601. if (unlikely(!page_ext))
  602. return false;
  603. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  604. INIT_LIST_HEAD(&page->lru);
  605. set_page_private(page, order);
  606. /* Guard pages are not available for any usage */
  607. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  608. return true;
  609. }
  610. static inline void clear_page_guard(struct zone *zone, struct page *page,
  611. unsigned int order, int migratetype)
  612. {
  613. struct page_ext *page_ext;
  614. if (!debug_guardpage_enabled())
  615. return;
  616. page_ext = lookup_page_ext(page);
  617. if (unlikely(!page_ext))
  618. return;
  619. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  620. set_page_private(page, 0);
  621. if (!is_migrate_isolate(migratetype))
  622. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  623. }
  624. #else
  625. struct page_ext_operations debug_guardpage_ops;
  626. static inline bool set_page_guard(struct zone *zone, struct page *page,
  627. unsigned int order, int migratetype) { return false; }
  628. static inline void clear_page_guard(struct zone *zone, struct page *page,
  629. unsigned int order, int migratetype) {}
  630. #endif
  631. static inline void set_page_order(struct page *page, unsigned int order)
  632. {
  633. set_page_private(page, order);
  634. __SetPageBuddy(page);
  635. }
  636. static inline void rmv_page_order(struct page *page)
  637. {
  638. __ClearPageBuddy(page);
  639. set_page_private(page, 0);
  640. }
  641. /*
  642. * This function checks whether a page is free && is the buddy
  643. * we can do coalesce a page and its buddy if
  644. * (a) the buddy is not in a hole (check before calling!) &&
  645. * (b) the buddy is in the buddy system &&
  646. * (c) a page and its buddy have the same order &&
  647. * (d) a page and its buddy are in the same zone.
  648. *
  649. * For recording whether a page is in the buddy system, we set ->_mapcount
  650. * PAGE_BUDDY_MAPCOUNT_VALUE.
  651. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  652. * serialized by zone->lock.
  653. *
  654. * For recording page's order, we use page_private(page).
  655. */
  656. static inline int page_is_buddy(struct page *page, struct page *buddy,
  657. unsigned int order)
  658. {
  659. if (page_is_guard(buddy) && page_order(buddy) == order) {
  660. if (page_zone_id(page) != page_zone_id(buddy))
  661. return 0;
  662. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  663. return 1;
  664. }
  665. if (PageBuddy(buddy) && page_order(buddy) == order) {
  666. /*
  667. * zone check is done late to avoid uselessly
  668. * calculating zone/node ids for pages that could
  669. * never merge.
  670. */
  671. if (page_zone_id(page) != page_zone_id(buddy))
  672. return 0;
  673. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  674. return 1;
  675. }
  676. return 0;
  677. }
  678. /*
  679. * Freeing function for a buddy system allocator.
  680. *
  681. * The concept of a buddy system is to maintain direct-mapped table
  682. * (containing bit values) for memory blocks of various "orders".
  683. * The bottom level table contains the map for the smallest allocatable
  684. * units of memory (here, pages), and each level above it describes
  685. * pairs of units from the levels below, hence, "buddies".
  686. * At a high level, all that happens here is marking the table entry
  687. * at the bottom level available, and propagating the changes upward
  688. * as necessary, plus some accounting needed to play nicely with other
  689. * parts of the VM system.
  690. * At each level, we keep a list of pages, which are heads of continuous
  691. * free pages of length of (1 << order) and marked with _mapcount
  692. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  693. * field.
  694. * So when we are allocating or freeing one, we can derive the state of the
  695. * other. That is, if we allocate a small block, and both were
  696. * free, the remainder of the region must be split into blocks.
  697. * If a block is freed, and its buddy is also free, then this
  698. * triggers coalescing into a block of larger size.
  699. *
  700. * -- nyc
  701. */
  702. static inline void __free_one_page(struct page *page,
  703. unsigned long pfn,
  704. struct zone *zone, unsigned int order,
  705. int migratetype)
  706. {
  707. unsigned long combined_pfn;
  708. unsigned long uninitialized_var(buddy_pfn);
  709. struct page *buddy;
  710. unsigned int max_order;
  711. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  712. VM_BUG_ON(!zone_is_initialized(zone));
  713. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  714. VM_BUG_ON(migratetype == -1);
  715. if (likely(!is_migrate_isolate(migratetype)))
  716. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  717. VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
  718. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  719. continue_merging:
  720. while (order < max_order - 1) {
  721. buddy_pfn = __find_buddy_pfn(pfn, order);
  722. buddy = page + (buddy_pfn - pfn);
  723. if (!pfn_valid_within(buddy_pfn))
  724. goto done_merging;
  725. if (!page_is_buddy(page, buddy, order))
  726. goto done_merging;
  727. /*
  728. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  729. * merge with it and move up one order.
  730. */
  731. if (page_is_guard(buddy)) {
  732. clear_page_guard(zone, buddy, order, migratetype);
  733. } else {
  734. list_del(&buddy->lru);
  735. zone->free_area[order].nr_free--;
  736. rmv_page_order(buddy);
  737. }
  738. combined_pfn = buddy_pfn & pfn;
  739. page = page + (combined_pfn - pfn);
  740. pfn = combined_pfn;
  741. order++;
  742. }
  743. if (max_order < MAX_ORDER) {
  744. /* If we are here, it means order is >= pageblock_order.
  745. * We want to prevent merge between freepages on isolate
  746. * pageblock and normal pageblock. Without this, pageblock
  747. * isolation could cause incorrect freepage or CMA accounting.
  748. *
  749. * We don't want to hit this code for the more frequent
  750. * low-order merging.
  751. */
  752. if (unlikely(has_isolate_pageblock(zone))) {
  753. int buddy_mt;
  754. buddy_pfn = __find_buddy_pfn(pfn, order);
  755. buddy = page + (buddy_pfn - pfn);
  756. buddy_mt = get_pageblock_migratetype(buddy);
  757. if (migratetype != buddy_mt
  758. && (is_migrate_isolate(migratetype) ||
  759. is_migrate_isolate(buddy_mt)))
  760. goto done_merging;
  761. }
  762. max_order++;
  763. goto continue_merging;
  764. }
  765. done_merging:
  766. set_page_order(page, order);
  767. /*
  768. * If this is not the largest possible page, check if the buddy
  769. * of the next-highest order is free. If it is, it's possible
  770. * that pages are being freed that will coalesce soon. In case,
  771. * that is happening, add the free page to the tail of the list
  772. * so it's less likely to be used soon and more likely to be merged
  773. * as a higher order page
  774. */
  775. if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
  776. struct page *higher_page, *higher_buddy;
  777. combined_pfn = buddy_pfn & pfn;
  778. higher_page = page + (combined_pfn - pfn);
  779. buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
  780. higher_buddy = higher_page + (buddy_pfn - combined_pfn);
  781. if (pfn_valid_within(buddy_pfn) &&
  782. page_is_buddy(higher_page, higher_buddy, order + 1)) {
  783. list_add_tail(&page->lru,
  784. &zone->free_area[order].free_list[migratetype]);
  785. goto out;
  786. }
  787. }
  788. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  789. out:
  790. zone->free_area[order].nr_free++;
  791. }
  792. /*
  793. * A bad page could be due to a number of fields. Instead of multiple branches,
  794. * try and check multiple fields with one check. The caller must do a detailed
  795. * check if necessary.
  796. */
  797. static inline bool page_expected_state(struct page *page,
  798. unsigned long check_flags)
  799. {
  800. if (unlikely(atomic_read(&page->_mapcount) != -1))
  801. return false;
  802. if (unlikely((unsigned long)page->mapping |
  803. page_ref_count(page) |
  804. #ifdef CONFIG_MEMCG
  805. (unsigned long)page->mem_cgroup |
  806. #endif
  807. (page->flags & check_flags)))
  808. return false;
  809. return true;
  810. }
  811. static void free_pages_check_bad(struct page *page)
  812. {
  813. const char *bad_reason;
  814. unsigned long bad_flags;
  815. bad_reason = NULL;
  816. bad_flags = 0;
  817. if (unlikely(atomic_read(&page->_mapcount) != -1))
  818. bad_reason = "nonzero mapcount";
  819. if (unlikely(page->mapping != NULL))
  820. bad_reason = "non-NULL mapping";
  821. if (unlikely(page_ref_count(page) != 0))
  822. bad_reason = "nonzero _refcount";
  823. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  824. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  825. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  826. }
  827. #ifdef CONFIG_MEMCG
  828. if (unlikely(page->mem_cgroup))
  829. bad_reason = "page still charged to cgroup";
  830. #endif
  831. bad_page(page, bad_reason, bad_flags);
  832. }
  833. static inline int free_pages_check(struct page *page)
  834. {
  835. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  836. return 0;
  837. /* Something has gone sideways, find it */
  838. free_pages_check_bad(page);
  839. return 1;
  840. }
  841. static int free_tail_pages_check(struct page *head_page, struct page *page)
  842. {
  843. int ret = 1;
  844. /*
  845. * We rely page->lru.next never has bit 0 set, unless the page
  846. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  847. */
  848. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  849. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  850. ret = 0;
  851. goto out;
  852. }
  853. switch (page - head_page) {
  854. case 1:
  855. /* the first tail page: ->mapping is compound_mapcount() */
  856. if (unlikely(compound_mapcount(page))) {
  857. bad_page(page, "nonzero compound_mapcount", 0);
  858. goto out;
  859. }
  860. break;
  861. case 2:
  862. /*
  863. * the second tail page: ->mapping is
  864. * page_deferred_list().next -- ignore value.
  865. */
  866. break;
  867. default:
  868. if (page->mapping != TAIL_MAPPING) {
  869. bad_page(page, "corrupted mapping in tail page", 0);
  870. goto out;
  871. }
  872. break;
  873. }
  874. if (unlikely(!PageTail(page))) {
  875. bad_page(page, "PageTail not set", 0);
  876. goto out;
  877. }
  878. if (unlikely(compound_head(page) != head_page)) {
  879. bad_page(page, "compound_head not consistent", 0);
  880. goto out;
  881. }
  882. ret = 0;
  883. out:
  884. page->mapping = NULL;
  885. clear_compound_head(page);
  886. return ret;
  887. }
  888. static __always_inline bool free_pages_prepare(struct page *page,
  889. unsigned int order, bool check_free)
  890. {
  891. int bad = 0;
  892. VM_BUG_ON_PAGE(PageTail(page), page);
  893. trace_mm_page_free(page, order);
  894. /*
  895. * Check tail pages before head page information is cleared to
  896. * avoid checking PageCompound for order-0 pages.
  897. */
  898. if (unlikely(order)) {
  899. bool compound = PageCompound(page);
  900. int i;
  901. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  902. if (compound)
  903. ClearPageDoubleMap(page);
  904. for (i = 1; i < (1 << order); i++) {
  905. if (compound)
  906. bad += free_tail_pages_check(page, page + i);
  907. if (unlikely(free_pages_check(page + i))) {
  908. bad++;
  909. continue;
  910. }
  911. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  912. }
  913. }
  914. if (PageMappingFlags(page))
  915. page->mapping = NULL;
  916. if (memcg_kmem_enabled() && PageKmemcg(page))
  917. memcg_kmem_uncharge(page, order);
  918. if (check_free)
  919. bad += free_pages_check(page);
  920. if (bad)
  921. return false;
  922. page_cpupid_reset_last(page);
  923. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  924. reset_page_owner(page, order);
  925. if (!PageHighMem(page)) {
  926. debug_check_no_locks_freed(page_address(page),
  927. PAGE_SIZE << order);
  928. debug_check_no_obj_freed(page_address(page),
  929. PAGE_SIZE << order);
  930. }
  931. arch_free_page(page, order);
  932. kernel_poison_pages(page, 1 << order, 0);
  933. kernel_map_pages(page, 1 << order, 0);
  934. kasan_free_pages(page, order);
  935. return true;
  936. }
  937. #ifdef CONFIG_DEBUG_VM
  938. static inline bool free_pcp_prepare(struct page *page)
  939. {
  940. return free_pages_prepare(page, 0, true);
  941. }
  942. static inline bool bulkfree_pcp_prepare(struct page *page)
  943. {
  944. return false;
  945. }
  946. #else
  947. static bool free_pcp_prepare(struct page *page)
  948. {
  949. return free_pages_prepare(page, 0, false);
  950. }
  951. static bool bulkfree_pcp_prepare(struct page *page)
  952. {
  953. return free_pages_check(page);
  954. }
  955. #endif /* CONFIG_DEBUG_VM */
  956. /*
  957. * Frees a number of pages from the PCP lists
  958. * Assumes all pages on list are in same zone, and of same order.
  959. * count is the number of pages to free.
  960. *
  961. * If the zone was previously in an "all pages pinned" state then look to
  962. * see if this freeing clears that state.
  963. *
  964. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  965. * pinned" detection logic.
  966. */
  967. static void free_pcppages_bulk(struct zone *zone, int count,
  968. struct per_cpu_pages *pcp)
  969. {
  970. int migratetype = 0;
  971. int batch_free = 0;
  972. bool isolated_pageblocks;
  973. spin_lock(&zone->lock);
  974. isolated_pageblocks = has_isolate_pageblock(zone);
  975. while (count) {
  976. struct page *page;
  977. struct list_head *list;
  978. /*
  979. * Remove pages from lists in a round-robin fashion. A
  980. * batch_free count is maintained that is incremented when an
  981. * empty list is encountered. This is so more pages are freed
  982. * off fuller lists instead of spinning excessively around empty
  983. * lists
  984. */
  985. do {
  986. batch_free++;
  987. if (++migratetype == MIGRATE_PCPTYPES)
  988. migratetype = 0;
  989. list = &pcp->lists[migratetype];
  990. } while (list_empty(list));
  991. /* This is the only non-empty list. Free them all. */
  992. if (batch_free == MIGRATE_PCPTYPES)
  993. batch_free = count;
  994. do {
  995. int mt; /* migratetype of the to-be-freed page */
  996. page = list_last_entry(list, struct page, lru);
  997. /* must delete as __free_one_page list manipulates */
  998. list_del(&page->lru);
  999. mt = get_pcppage_migratetype(page);
  1000. /* MIGRATE_ISOLATE page should not go to pcplists */
  1001. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  1002. /* Pageblock could have been isolated meanwhile */
  1003. if (unlikely(isolated_pageblocks))
  1004. mt = get_pageblock_migratetype(page);
  1005. if (bulkfree_pcp_prepare(page))
  1006. continue;
  1007. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  1008. trace_mm_page_pcpu_drain(page, 0, mt);
  1009. } while (--count && --batch_free && !list_empty(list));
  1010. }
  1011. spin_unlock(&zone->lock);
  1012. }
  1013. static void free_one_page(struct zone *zone,
  1014. struct page *page, unsigned long pfn,
  1015. unsigned int order,
  1016. int migratetype)
  1017. {
  1018. spin_lock(&zone->lock);
  1019. if (unlikely(has_isolate_pageblock(zone) ||
  1020. is_migrate_isolate(migratetype))) {
  1021. migratetype = get_pfnblock_migratetype(page, pfn);
  1022. }
  1023. __free_one_page(page, pfn, zone, order, migratetype);
  1024. spin_unlock(&zone->lock);
  1025. }
  1026. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1027. unsigned long zone, int nid)
  1028. {
  1029. mm_zero_struct_page(page);
  1030. set_page_links(page, zone, nid, pfn);
  1031. init_page_count(page);
  1032. page_mapcount_reset(page);
  1033. page_cpupid_reset_last(page);
  1034. INIT_LIST_HEAD(&page->lru);
  1035. #ifdef WANT_PAGE_VIRTUAL
  1036. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1037. if (!is_highmem_idx(zone))
  1038. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1039. #endif
  1040. }
  1041. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1042. int nid)
  1043. {
  1044. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1045. }
  1046. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1047. static void __meminit init_reserved_page(unsigned long pfn)
  1048. {
  1049. pg_data_t *pgdat;
  1050. int nid, zid;
  1051. if (!early_page_uninitialised(pfn))
  1052. return;
  1053. nid = early_pfn_to_nid(pfn);
  1054. pgdat = NODE_DATA(nid);
  1055. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1056. struct zone *zone = &pgdat->node_zones[zid];
  1057. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1058. break;
  1059. }
  1060. __init_single_pfn(pfn, zid, nid);
  1061. }
  1062. #else
  1063. static inline void init_reserved_page(unsigned long pfn)
  1064. {
  1065. }
  1066. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1067. /*
  1068. * Initialised pages do not have PageReserved set. This function is
  1069. * called for each range allocated by the bootmem allocator and
  1070. * marks the pages PageReserved. The remaining valid pages are later
  1071. * sent to the buddy page allocator.
  1072. */
  1073. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1074. {
  1075. unsigned long start_pfn = PFN_DOWN(start);
  1076. unsigned long end_pfn = PFN_UP(end);
  1077. for (; start_pfn < end_pfn; start_pfn++) {
  1078. if (pfn_valid(start_pfn)) {
  1079. struct page *page = pfn_to_page(start_pfn);
  1080. init_reserved_page(start_pfn);
  1081. /* Avoid false-positive PageTail() */
  1082. INIT_LIST_HEAD(&page->lru);
  1083. SetPageReserved(page);
  1084. }
  1085. }
  1086. }
  1087. static void __free_pages_ok(struct page *page, unsigned int order)
  1088. {
  1089. unsigned long flags;
  1090. int migratetype;
  1091. unsigned long pfn = page_to_pfn(page);
  1092. if (!free_pages_prepare(page, order, true))
  1093. return;
  1094. migratetype = get_pfnblock_migratetype(page, pfn);
  1095. local_irq_save(flags);
  1096. __count_vm_events(PGFREE, 1 << order);
  1097. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1098. local_irq_restore(flags);
  1099. }
  1100. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1101. {
  1102. unsigned int nr_pages = 1 << order;
  1103. struct page *p = page;
  1104. unsigned int loop;
  1105. prefetchw(p);
  1106. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1107. prefetchw(p + 1);
  1108. __ClearPageReserved(p);
  1109. set_page_count(p, 0);
  1110. }
  1111. __ClearPageReserved(p);
  1112. set_page_count(p, 0);
  1113. page_zone(page)->managed_pages += nr_pages;
  1114. set_page_refcounted(page);
  1115. __free_pages(page, order);
  1116. }
  1117. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1118. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1119. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1120. int __meminit early_pfn_to_nid(unsigned long pfn)
  1121. {
  1122. static DEFINE_SPINLOCK(early_pfn_lock);
  1123. int nid;
  1124. spin_lock(&early_pfn_lock);
  1125. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1126. if (nid < 0)
  1127. nid = first_online_node;
  1128. spin_unlock(&early_pfn_lock);
  1129. return nid;
  1130. }
  1131. #endif
  1132. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1133. static inline bool __meminit __maybe_unused
  1134. meminit_pfn_in_nid(unsigned long pfn, int node,
  1135. struct mminit_pfnnid_cache *state)
  1136. {
  1137. int nid;
  1138. nid = __early_pfn_to_nid(pfn, state);
  1139. if (nid >= 0 && nid != node)
  1140. return false;
  1141. return true;
  1142. }
  1143. /* Only safe to use early in boot when initialisation is single-threaded */
  1144. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1145. {
  1146. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1147. }
  1148. #else
  1149. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1150. {
  1151. return true;
  1152. }
  1153. static inline bool __meminit __maybe_unused
  1154. meminit_pfn_in_nid(unsigned long pfn, int node,
  1155. struct mminit_pfnnid_cache *state)
  1156. {
  1157. return true;
  1158. }
  1159. #endif
  1160. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1161. unsigned int order)
  1162. {
  1163. if (early_page_uninitialised(pfn))
  1164. return;
  1165. return __free_pages_boot_core(page, order);
  1166. }
  1167. /*
  1168. * Check that the whole (or subset of) a pageblock given by the interval of
  1169. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1170. * with the migration of free compaction scanner. The scanners then need to
  1171. * use only pfn_valid_within() check for arches that allow holes within
  1172. * pageblocks.
  1173. *
  1174. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1175. *
  1176. * It's possible on some configurations to have a setup like node0 node1 node0
  1177. * i.e. it's possible that all pages within a zones range of pages do not
  1178. * belong to a single zone. We assume that a border between node0 and node1
  1179. * can occur within a single pageblock, but not a node0 node1 node0
  1180. * interleaving within a single pageblock. It is therefore sufficient to check
  1181. * the first and last page of a pageblock and avoid checking each individual
  1182. * page in a pageblock.
  1183. */
  1184. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1185. unsigned long end_pfn, struct zone *zone)
  1186. {
  1187. struct page *start_page;
  1188. struct page *end_page;
  1189. /* end_pfn is one past the range we are checking */
  1190. end_pfn--;
  1191. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1192. return NULL;
  1193. start_page = pfn_to_online_page(start_pfn);
  1194. if (!start_page)
  1195. return NULL;
  1196. if (page_zone(start_page) != zone)
  1197. return NULL;
  1198. end_page = pfn_to_page(end_pfn);
  1199. /* This gives a shorter code than deriving page_zone(end_page) */
  1200. if (page_zone_id(start_page) != page_zone_id(end_page))
  1201. return NULL;
  1202. return start_page;
  1203. }
  1204. void set_zone_contiguous(struct zone *zone)
  1205. {
  1206. unsigned long block_start_pfn = zone->zone_start_pfn;
  1207. unsigned long block_end_pfn;
  1208. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1209. for (; block_start_pfn < zone_end_pfn(zone);
  1210. block_start_pfn = block_end_pfn,
  1211. block_end_pfn += pageblock_nr_pages) {
  1212. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1213. if (!__pageblock_pfn_to_page(block_start_pfn,
  1214. block_end_pfn, zone))
  1215. return;
  1216. }
  1217. /* We confirm that there is no hole */
  1218. zone->contiguous = true;
  1219. }
  1220. void clear_zone_contiguous(struct zone *zone)
  1221. {
  1222. zone->contiguous = false;
  1223. }
  1224. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1225. static void __init deferred_free_range(unsigned long pfn,
  1226. unsigned long nr_pages)
  1227. {
  1228. struct page *page;
  1229. unsigned long i;
  1230. if (!nr_pages)
  1231. return;
  1232. page = pfn_to_page(pfn);
  1233. /* Free a large naturally-aligned chunk if possible */
  1234. if (nr_pages == pageblock_nr_pages &&
  1235. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1236. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1237. __free_pages_boot_core(page, pageblock_order);
  1238. return;
  1239. }
  1240. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1241. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1242. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1243. __free_pages_boot_core(page, 0);
  1244. }
  1245. }
  1246. /* Completion tracking for deferred_init_memmap() threads */
  1247. static atomic_t pgdat_init_n_undone __initdata;
  1248. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1249. static inline void __init pgdat_init_report_one_done(void)
  1250. {
  1251. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1252. complete(&pgdat_init_all_done_comp);
  1253. }
  1254. /*
  1255. * Returns true if page needs to be initialized or freed to buddy allocator.
  1256. *
  1257. * First we check if pfn is valid on architectures where it is possible to have
  1258. * holes within pageblock_nr_pages. On systems where it is not possible, this
  1259. * function is optimized out.
  1260. *
  1261. * Then, we check if a current large page is valid by only checking the validity
  1262. * of the head pfn.
  1263. *
  1264. * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
  1265. * within a node: a pfn is between start and end of a node, but does not belong
  1266. * to this memory node.
  1267. */
  1268. static inline bool __init
  1269. deferred_pfn_valid(int nid, unsigned long pfn,
  1270. struct mminit_pfnnid_cache *nid_init_state)
  1271. {
  1272. if (!pfn_valid_within(pfn))
  1273. return false;
  1274. if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
  1275. return false;
  1276. if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
  1277. return false;
  1278. return true;
  1279. }
  1280. /*
  1281. * Free pages to buddy allocator. Try to free aligned pages in
  1282. * pageblock_nr_pages sizes.
  1283. */
  1284. static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
  1285. unsigned long end_pfn)
  1286. {
  1287. struct mminit_pfnnid_cache nid_init_state = { };
  1288. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1289. unsigned long nr_free = 0;
  1290. for (; pfn < end_pfn; pfn++) {
  1291. if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
  1292. deferred_free_range(pfn - nr_free, nr_free);
  1293. nr_free = 0;
  1294. } else if (!(pfn & nr_pgmask)) {
  1295. deferred_free_range(pfn - nr_free, nr_free);
  1296. nr_free = 1;
  1297. cond_resched();
  1298. } else {
  1299. nr_free++;
  1300. }
  1301. }
  1302. /* Free the last block of pages to allocator */
  1303. deferred_free_range(pfn - nr_free, nr_free);
  1304. }
  1305. /*
  1306. * Initialize struct pages. We minimize pfn page lookups and scheduler checks
  1307. * by performing it only once every pageblock_nr_pages.
  1308. * Return number of pages initialized.
  1309. */
  1310. static unsigned long __init deferred_init_pages(int nid, int zid,
  1311. unsigned long pfn,
  1312. unsigned long end_pfn)
  1313. {
  1314. struct mminit_pfnnid_cache nid_init_state = { };
  1315. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1316. unsigned long nr_pages = 0;
  1317. struct page *page = NULL;
  1318. for (; pfn < end_pfn; pfn++) {
  1319. if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
  1320. page = NULL;
  1321. continue;
  1322. } else if (!page || !(pfn & nr_pgmask)) {
  1323. page = pfn_to_page(pfn);
  1324. cond_resched();
  1325. } else {
  1326. page++;
  1327. }
  1328. __init_single_page(page, pfn, zid, nid);
  1329. nr_pages++;
  1330. }
  1331. return (nr_pages);
  1332. }
  1333. /* Initialise remaining memory on a node */
  1334. static int __init deferred_init_memmap(void *data)
  1335. {
  1336. pg_data_t *pgdat = data;
  1337. int nid = pgdat->node_id;
  1338. unsigned long start = jiffies;
  1339. unsigned long nr_pages = 0;
  1340. unsigned long spfn, epfn;
  1341. phys_addr_t spa, epa;
  1342. int zid;
  1343. struct zone *zone;
  1344. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1345. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1346. u64 i;
  1347. if (first_init_pfn == ULONG_MAX) {
  1348. pgdat_init_report_one_done();
  1349. return 0;
  1350. }
  1351. /* Bind memory initialisation thread to a local node if possible */
  1352. if (!cpumask_empty(cpumask))
  1353. set_cpus_allowed_ptr(current, cpumask);
  1354. /* Sanity check boundaries */
  1355. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1356. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1357. pgdat->first_deferred_pfn = ULONG_MAX;
  1358. /* Only the highest zone is deferred so find it */
  1359. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1360. zone = pgdat->node_zones + zid;
  1361. if (first_init_pfn < zone_end_pfn(zone))
  1362. break;
  1363. }
  1364. first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
  1365. /*
  1366. * Initialize and free pages. We do it in two loops: first we initialize
  1367. * struct page, than free to buddy allocator, because while we are
  1368. * freeing pages we can access pages that are ahead (computing buddy
  1369. * page in __free_one_page()).
  1370. */
  1371. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1372. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1373. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1374. nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
  1375. }
  1376. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1377. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1378. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1379. deferred_free_pages(nid, zid, spfn, epfn);
  1380. }
  1381. /* Sanity check that the next zone really is unpopulated */
  1382. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1383. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1384. jiffies_to_msecs(jiffies - start));
  1385. pgdat_init_report_one_done();
  1386. return 0;
  1387. }
  1388. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1389. void __init page_alloc_init_late(void)
  1390. {
  1391. struct zone *zone;
  1392. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1393. int nid;
  1394. /* There will be num_node_state(N_MEMORY) threads */
  1395. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1396. for_each_node_state(nid, N_MEMORY) {
  1397. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1398. }
  1399. /* Block until all are initialised */
  1400. wait_for_completion(&pgdat_init_all_done_comp);
  1401. /* Reinit limits that are based on free pages after the kernel is up */
  1402. files_maxfiles_init();
  1403. #endif
  1404. #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
  1405. /* Discard memblock private memory */
  1406. memblock_discard();
  1407. #endif
  1408. for_each_populated_zone(zone)
  1409. set_zone_contiguous(zone);
  1410. }
  1411. #ifdef CONFIG_CMA
  1412. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1413. void __init init_cma_reserved_pageblock(struct page *page)
  1414. {
  1415. unsigned i = pageblock_nr_pages;
  1416. struct page *p = page;
  1417. do {
  1418. __ClearPageReserved(p);
  1419. set_page_count(p, 0);
  1420. } while (++p, --i);
  1421. set_pageblock_migratetype(page, MIGRATE_CMA);
  1422. if (pageblock_order >= MAX_ORDER) {
  1423. i = pageblock_nr_pages;
  1424. p = page;
  1425. do {
  1426. set_page_refcounted(p);
  1427. __free_pages(p, MAX_ORDER - 1);
  1428. p += MAX_ORDER_NR_PAGES;
  1429. } while (i -= MAX_ORDER_NR_PAGES);
  1430. } else {
  1431. set_page_refcounted(page);
  1432. __free_pages(page, pageblock_order);
  1433. }
  1434. adjust_managed_page_count(page, pageblock_nr_pages);
  1435. }
  1436. #endif
  1437. /*
  1438. * The order of subdivision here is critical for the IO subsystem.
  1439. * Please do not alter this order without good reasons and regression
  1440. * testing. Specifically, as large blocks of memory are subdivided,
  1441. * the order in which smaller blocks are delivered depends on the order
  1442. * they're subdivided in this function. This is the primary factor
  1443. * influencing the order in which pages are delivered to the IO
  1444. * subsystem according to empirical testing, and this is also justified
  1445. * by considering the behavior of a buddy system containing a single
  1446. * large block of memory acted on by a series of small allocations.
  1447. * This behavior is a critical factor in sglist merging's success.
  1448. *
  1449. * -- nyc
  1450. */
  1451. static inline void expand(struct zone *zone, struct page *page,
  1452. int low, int high, struct free_area *area,
  1453. int migratetype)
  1454. {
  1455. unsigned long size = 1 << high;
  1456. while (high > low) {
  1457. area--;
  1458. high--;
  1459. size >>= 1;
  1460. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1461. /*
  1462. * Mark as guard pages (or page), that will allow to
  1463. * merge back to allocator when buddy will be freed.
  1464. * Corresponding page table entries will not be touched,
  1465. * pages will stay not present in virtual address space
  1466. */
  1467. if (set_page_guard(zone, &page[size], high, migratetype))
  1468. continue;
  1469. list_add(&page[size].lru, &area->free_list[migratetype]);
  1470. area->nr_free++;
  1471. set_page_order(&page[size], high);
  1472. }
  1473. }
  1474. static void check_new_page_bad(struct page *page)
  1475. {
  1476. const char *bad_reason = NULL;
  1477. unsigned long bad_flags = 0;
  1478. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1479. bad_reason = "nonzero mapcount";
  1480. if (unlikely(page->mapping != NULL))
  1481. bad_reason = "non-NULL mapping";
  1482. if (unlikely(page_ref_count(page) != 0))
  1483. bad_reason = "nonzero _count";
  1484. if (unlikely(page->flags & __PG_HWPOISON)) {
  1485. bad_reason = "HWPoisoned (hardware-corrupted)";
  1486. bad_flags = __PG_HWPOISON;
  1487. /* Don't complain about hwpoisoned pages */
  1488. page_mapcount_reset(page); /* remove PageBuddy */
  1489. return;
  1490. }
  1491. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1492. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1493. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1494. }
  1495. #ifdef CONFIG_MEMCG
  1496. if (unlikely(page->mem_cgroup))
  1497. bad_reason = "page still charged to cgroup";
  1498. #endif
  1499. bad_page(page, bad_reason, bad_flags);
  1500. }
  1501. /*
  1502. * This page is about to be returned from the page allocator
  1503. */
  1504. static inline int check_new_page(struct page *page)
  1505. {
  1506. if (likely(page_expected_state(page,
  1507. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1508. return 0;
  1509. check_new_page_bad(page);
  1510. return 1;
  1511. }
  1512. static inline bool free_pages_prezeroed(void)
  1513. {
  1514. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1515. page_poisoning_enabled();
  1516. }
  1517. #ifdef CONFIG_DEBUG_VM
  1518. static bool check_pcp_refill(struct page *page)
  1519. {
  1520. return false;
  1521. }
  1522. static bool check_new_pcp(struct page *page)
  1523. {
  1524. return check_new_page(page);
  1525. }
  1526. #else
  1527. static bool check_pcp_refill(struct page *page)
  1528. {
  1529. return check_new_page(page);
  1530. }
  1531. static bool check_new_pcp(struct page *page)
  1532. {
  1533. return false;
  1534. }
  1535. #endif /* CONFIG_DEBUG_VM */
  1536. static bool check_new_pages(struct page *page, unsigned int order)
  1537. {
  1538. int i;
  1539. for (i = 0; i < (1 << order); i++) {
  1540. struct page *p = page + i;
  1541. if (unlikely(check_new_page(p)))
  1542. return true;
  1543. }
  1544. return false;
  1545. }
  1546. inline void post_alloc_hook(struct page *page, unsigned int order,
  1547. gfp_t gfp_flags)
  1548. {
  1549. set_page_private(page, 0);
  1550. set_page_refcounted(page);
  1551. arch_alloc_page(page, order);
  1552. kernel_map_pages(page, 1 << order, 1);
  1553. kernel_poison_pages(page, 1 << order, 1);
  1554. kasan_alloc_pages(page, order);
  1555. set_page_owner(page, order, gfp_flags);
  1556. }
  1557. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1558. unsigned int alloc_flags)
  1559. {
  1560. int i;
  1561. post_alloc_hook(page, order, gfp_flags);
  1562. if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
  1563. for (i = 0; i < (1 << order); i++)
  1564. clear_highpage(page + i);
  1565. if (order && (gfp_flags & __GFP_COMP))
  1566. prep_compound_page(page, order);
  1567. /*
  1568. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1569. * allocate the page. The expectation is that the caller is taking
  1570. * steps that will free more memory. The caller should avoid the page
  1571. * being used for !PFMEMALLOC purposes.
  1572. */
  1573. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1574. set_page_pfmemalloc(page);
  1575. else
  1576. clear_page_pfmemalloc(page);
  1577. }
  1578. /*
  1579. * Go through the free lists for the given migratetype and remove
  1580. * the smallest available page from the freelists
  1581. */
  1582. static __always_inline
  1583. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1584. int migratetype)
  1585. {
  1586. unsigned int current_order;
  1587. struct free_area *area;
  1588. struct page *page;
  1589. /* Find a page of the appropriate size in the preferred list */
  1590. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1591. area = &(zone->free_area[current_order]);
  1592. page = list_first_entry_or_null(&area->free_list[migratetype],
  1593. struct page, lru);
  1594. if (!page)
  1595. continue;
  1596. list_del(&page->lru);
  1597. rmv_page_order(page);
  1598. area->nr_free--;
  1599. expand(zone, page, order, current_order, area, migratetype);
  1600. set_pcppage_migratetype(page, migratetype);
  1601. return page;
  1602. }
  1603. return NULL;
  1604. }
  1605. /*
  1606. * This array describes the order lists are fallen back to when
  1607. * the free lists for the desirable migrate type are depleted
  1608. */
  1609. static int fallbacks[MIGRATE_TYPES][4] = {
  1610. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1611. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1612. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1613. #ifdef CONFIG_CMA
  1614. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1615. #endif
  1616. #ifdef CONFIG_MEMORY_ISOLATION
  1617. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1618. #endif
  1619. };
  1620. #ifdef CONFIG_CMA
  1621. static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1622. unsigned int order)
  1623. {
  1624. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1625. }
  1626. #else
  1627. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1628. unsigned int order) { return NULL; }
  1629. #endif
  1630. /*
  1631. * Move the free pages in a range to the free lists of the requested type.
  1632. * Note that start_page and end_pages are not aligned on a pageblock
  1633. * boundary. If alignment is required, use move_freepages_block()
  1634. */
  1635. static int move_freepages(struct zone *zone,
  1636. struct page *start_page, struct page *end_page,
  1637. int migratetype, int *num_movable)
  1638. {
  1639. struct page *page;
  1640. unsigned int order;
  1641. int pages_moved = 0;
  1642. #ifndef CONFIG_HOLES_IN_ZONE
  1643. /*
  1644. * page_zone is not safe to call in this context when
  1645. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1646. * anyway as we check zone boundaries in move_freepages_block().
  1647. * Remove at a later date when no bug reports exist related to
  1648. * grouping pages by mobility
  1649. */
  1650. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1651. #endif
  1652. if (num_movable)
  1653. *num_movable = 0;
  1654. for (page = start_page; page <= end_page;) {
  1655. if (!pfn_valid_within(page_to_pfn(page))) {
  1656. page++;
  1657. continue;
  1658. }
  1659. /* Make sure we are not inadvertently changing nodes */
  1660. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1661. if (!PageBuddy(page)) {
  1662. /*
  1663. * We assume that pages that could be isolated for
  1664. * migration are movable. But we don't actually try
  1665. * isolating, as that would be expensive.
  1666. */
  1667. if (num_movable &&
  1668. (PageLRU(page) || __PageMovable(page)))
  1669. (*num_movable)++;
  1670. page++;
  1671. continue;
  1672. }
  1673. order = page_order(page);
  1674. list_move(&page->lru,
  1675. &zone->free_area[order].free_list[migratetype]);
  1676. page += 1 << order;
  1677. pages_moved += 1 << order;
  1678. }
  1679. return pages_moved;
  1680. }
  1681. int move_freepages_block(struct zone *zone, struct page *page,
  1682. int migratetype, int *num_movable)
  1683. {
  1684. unsigned long start_pfn, end_pfn;
  1685. struct page *start_page, *end_page;
  1686. start_pfn = page_to_pfn(page);
  1687. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1688. start_page = pfn_to_page(start_pfn);
  1689. end_page = start_page + pageblock_nr_pages - 1;
  1690. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1691. /* Do not cross zone boundaries */
  1692. if (!zone_spans_pfn(zone, start_pfn))
  1693. start_page = page;
  1694. if (!zone_spans_pfn(zone, end_pfn))
  1695. return 0;
  1696. return move_freepages(zone, start_page, end_page, migratetype,
  1697. num_movable);
  1698. }
  1699. static void change_pageblock_range(struct page *pageblock_page,
  1700. int start_order, int migratetype)
  1701. {
  1702. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1703. while (nr_pageblocks--) {
  1704. set_pageblock_migratetype(pageblock_page, migratetype);
  1705. pageblock_page += pageblock_nr_pages;
  1706. }
  1707. }
  1708. /*
  1709. * When we are falling back to another migratetype during allocation, try to
  1710. * steal extra free pages from the same pageblocks to satisfy further
  1711. * allocations, instead of polluting multiple pageblocks.
  1712. *
  1713. * If we are stealing a relatively large buddy page, it is likely there will
  1714. * be more free pages in the pageblock, so try to steal them all. For
  1715. * reclaimable and unmovable allocations, we steal regardless of page size,
  1716. * as fragmentation caused by those allocations polluting movable pageblocks
  1717. * is worse than movable allocations stealing from unmovable and reclaimable
  1718. * pageblocks.
  1719. */
  1720. static bool can_steal_fallback(unsigned int order, int start_mt)
  1721. {
  1722. /*
  1723. * Leaving this order check is intended, although there is
  1724. * relaxed order check in next check. The reason is that
  1725. * we can actually steal whole pageblock if this condition met,
  1726. * but, below check doesn't guarantee it and that is just heuristic
  1727. * so could be changed anytime.
  1728. */
  1729. if (order >= pageblock_order)
  1730. return true;
  1731. if (order >= pageblock_order / 2 ||
  1732. start_mt == MIGRATE_RECLAIMABLE ||
  1733. start_mt == MIGRATE_UNMOVABLE ||
  1734. page_group_by_mobility_disabled)
  1735. return true;
  1736. return false;
  1737. }
  1738. /*
  1739. * This function implements actual steal behaviour. If order is large enough,
  1740. * we can steal whole pageblock. If not, we first move freepages in this
  1741. * pageblock to our migratetype and determine how many already-allocated pages
  1742. * are there in the pageblock with a compatible migratetype. If at least half
  1743. * of pages are free or compatible, we can change migratetype of the pageblock
  1744. * itself, so pages freed in the future will be put on the correct free list.
  1745. */
  1746. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1747. int start_type, bool whole_block)
  1748. {
  1749. unsigned int current_order = page_order(page);
  1750. struct free_area *area;
  1751. int free_pages, movable_pages, alike_pages;
  1752. int old_block_type;
  1753. old_block_type = get_pageblock_migratetype(page);
  1754. /*
  1755. * This can happen due to races and we want to prevent broken
  1756. * highatomic accounting.
  1757. */
  1758. if (is_migrate_highatomic(old_block_type))
  1759. goto single_page;
  1760. /* Take ownership for orders >= pageblock_order */
  1761. if (current_order >= pageblock_order) {
  1762. change_pageblock_range(page, current_order, start_type);
  1763. goto single_page;
  1764. }
  1765. /* We are not allowed to try stealing from the whole block */
  1766. if (!whole_block)
  1767. goto single_page;
  1768. free_pages = move_freepages_block(zone, page, start_type,
  1769. &movable_pages);
  1770. /*
  1771. * Determine how many pages are compatible with our allocation.
  1772. * For movable allocation, it's the number of movable pages which
  1773. * we just obtained. For other types it's a bit more tricky.
  1774. */
  1775. if (start_type == MIGRATE_MOVABLE) {
  1776. alike_pages = movable_pages;
  1777. } else {
  1778. /*
  1779. * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
  1780. * to MOVABLE pageblock, consider all non-movable pages as
  1781. * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
  1782. * vice versa, be conservative since we can't distinguish the
  1783. * exact migratetype of non-movable pages.
  1784. */
  1785. if (old_block_type == MIGRATE_MOVABLE)
  1786. alike_pages = pageblock_nr_pages
  1787. - (free_pages + movable_pages);
  1788. else
  1789. alike_pages = 0;
  1790. }
  1791. /* moving whole block can fail due to zone boundary conditions */
  1792. if (!free_pages)
  1793. goto single_page;
  1794. /*
  1795. * If a sufficient number of pages in the block are either free or of
  1796. * comparable migratability as our allocation, claim the whole block.
  1797. */
  1798. if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
  1799. page_group_by_mobility_disabled)
  1800. set_pageblock_migratetype(page, start_type);
  1801. return;
  1802. single_page:
  1803. area = &zone->free_area[current_order];
  1804. list_move(&page->lru, &area->free_list[start_type]);
  1805. }
  1806. /*
  1807. * Check whether there is a suitable fallback freepage with requested order.
  1808. * If only_stealable is true, this function returns fallback_mt only if
  1809. * we can steal other freepages all together. This would help to reduce
  1810. * fragmentation due to mixed migratetype pages in one pageblock.
  1811. */
  1812. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1813. int migratetype, bool only_stealable, bool *can_steal)
  1814. {
  1815. int i;
  1816. int fallback_mt;
  1817. if (area->nr_free == 0)
  1818. return -1;
  1819. *can_steal = false;
  1820. for (i = 0;; i++) {
  1821. fallback_mt = fallbacks[migratetype][i];
  1822. if (fallback_mt == MIGRATE_TYPES)
  1823. break;
  1824. if (list_empty(&area->free_list[fallback_mt]))
  1825. continue;
  1826. if (can_steal_fallback(order, migratetype))
  1827. *can_steal = true;
  1828. if (!only_stealable)
  1829. return fallback_mt;
  1830. if (*can_steal)
  1831. return fallback_mt;
  1832. }
  1833. return -1;
  1834. }
  1835. /*
  1836. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1837. * there are no empty page blocks that contain a page with a suitable order
  1838. */
  1839. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1840. unsigned int alloc_order)
  1841. {
  1842. int mt;
  1843. unsigned long max_managed, flags;
  1844. /*
  1845. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1846. * Check is race-prone but harmless.
  1847. */
  1848. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1849. if (zone->nr_reserved_highatomic >= max_managed)
  1850. return;
  1851. spin_lock_irqsave(&zone->lock, flags);
  1852. /* Recheck the nr_reserved_highatomic limit under the lock */
  1853. if (zone->nr_reserved_highatomic >= max_managed)
  1854. goto out_unlock;
  1855. /* Yoink! */
  1856. mt = get_pageblock_migratetype(page);
  1857. if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
  1858. && !is_migrate_cma(mt)) {
  1859. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1860. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1861. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
  1862. }
  1863. out_unlock:
  1864. spin_unlock_irqrestore(&zone->lock, flags);
  1865. }
  1866. /*
  1867. * Used when an allocation is about to fail under memory pressure. This
  1868. * potentially hurts the reliability of high-order allocations when under
  1869. * intense memory pressure but failed atomic allocations should be easier
  1870. * to recover from than an OOM.
  1871. *
  1872. * If @force is true, try to unreserve a pageblock even though highatomic
  1873. * pageblock is exhausted.
  1874. */
  1875. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1876. bool force)
  1877. {
  1878. struct zonelist *zonelist = ac->zonelist;
  1879. unsigned long flags;
  1880. struct zoneref *z;
  1881. struct zone *zone;
  1882. struct page *page;
  1883. int order;
  1884. bool ret;
  1885. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1886. ac->nodemask) {
  1887. /*
  1888. * Preserve at least one pageblock unless memory pressure
  1889. * is really high.
  1890. */
  1891. if (!force && zone->nr_reserved_highatomic <=
  1892. pageblock_nr_pages)
  1893. continue;
  1894. spin_lock_irqsave(&zone->lock, flags);
  1895. for (order = 0; order < MAX_ORDER; order++) {
  1896. struct free_area *area = &(zone->free_area[order]);
  1897. page = list_first_entry_or_null(
  1898. &area->free_list[MIGRATE_HIGHATOMIC],
  1899. struct page, lru);
  1900. if (!page)
  1901. continue;
  1902. /*
  1903. * In page freeing path, migratetype change is racy so
  1904. * we can counter several free pages in a pageblock
  1905. * in this loop althoug we changed the pageblock type
  1906. * from highatomic to ac->migratetype. So we should
  1907. * adjust the count once.
  1908. */
  1909. if (is_migrate_highatomic_page(page)) {
  1910. /*
  1911. * It should never happen but changes to
  1912. * locking could inadvertently allow a per-cpu
  1913. * drain to add pages to MIGRATE_HIGHATOMIC
  1914. * while unreserving so be safe and watch for
  1915. * underflows.
  1916. */
  1917. zone->nr_reserved_highatomic -= min(
  1918. pageblock_nr_pages,
  1919. zone->nr_reserved_highatomic);
  1920. }
  1921. /*
  1922. * Convert to ac->migratetype and avoid the normal
  1923. * pageblock stealing heuristics. Minimally, the caller
  1924. * is doing the work and needs the pages. More
  1925. * importantly, if the block was always converted to
  1926. * MIGRATE_UNMOVABLE or another type then the number
  1927. * of pageblocks that cannot be completely freed
  1928. * may increase.
  1929. */
  1930. set_pageblock_migratetype(page, ac->migratetype);
  1931. ret = move_freepages_block(zone, page, ac->migratetype,
  1932. NULL);
  1933. if (ret) {
  1934. spin_unlock_irqrestore(&zone->lock, flags);
  1935. return ret;
  1936. }
  1937. }
  1938. spin_unlock_irqrestore(&zone->lock, flags);
  1939. }
  1940. return false;
  1941. }
  1942. /*
  1943. * Try finding a free buddy page on the fallback list and put it on the free
  1944. * list of requested migratetype, possibly along with other pages from the same
  1945. * block, depending on fragmentation avoidance heuristics. Returns true if
  1946. * fallback was found so that __rmqueue_smallest() can grab it.
  1947. *
  1948. * The use of signed ints for order and current_order is a deliberate
  1949. * deviation from the rest of this file, to make the for loop
  1950. * condition simpler.
  1951. */
  1952. static __always_inline bool
  1953. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  1954. {
  1955. struct free_area *area;
  1956. int current_order;
  1957. struct page *page;
  1958. int fallback_mt;
  1959. bool can_steal;
  1960. /*
  1961. * Find the largest available free page in the other list. This roughly
  1962. * approximates finding the pageblock with the most free pages, which
  1963. * would be too costly to do exactly.
  1964. */
  1965. for (current_order = MAX_ORDER - 1; current_order >= order;
  1966. --current_order) {
  1967. area = &(zone->free_area[current_order]);
  1968. fallback_mt = find_suitable_fallback(area, current_order,
  1969. start_migratetype, false, &can_steal);
  1970. if (fallback_mt == -1)
  1971. continue;
  1972. /*
  1973. * We cannot steal all free pages from the pageblock and the
  1974. * requested migratetype is movable. In that case it's better to
  1975. * steal and split the smallest available page instead of the
  1976. * largest available page, because even if the next movable
  1977. * allocation falls back into a different pageblock than this
  1978. * one, it won't cause permanent fragmentation.
  1979. */
  1980. if (!can_steal && start_migratetype == MIGRATE_MOVABLE
  1981. && current_order > order)
  1982. goto find_smallest;
  1983. goto do_steal;
  1984. }
  1985. return false;
  1986. find_smallest:
  1987. for (current_order = order; current_order < MAX_ORDER;
  1988. current_order++) {
  1989. area = &(zone->free_area[current_order]);
  1990. fallback_mt = find_suitable_fallback(area, current_order,
  1991. start_migratetype, false, &can_steal);
  1992. if (fallback_mt != -1)
  1993. break;
  1994. }
  1995. /*
  1996. * This should not happen - we already found a suitable fallback
  1997. * when looking for the largest page.
  1998. */
  1999. VM_BUG_ON(current_order == MAX_ORDER);
  2000. do_steal:
  2001. page = list_first_entry(&area->free_list[fallback_mt],
  2002. struct page, lru);
  2003. steal_suitable_fallback(zone, page, start_migratetype, can_steal);
  2004. trace_mm_page_alloc_extfrag(page, order, current_order,
  2005. start_migratetype, fallback_mt);
  2006. return true;
  2007. }
  2008. /*
  2009. * Do the hard work of removing an element from the buddy allocator.
  2010. * Call me with the zone->lock already held.
  2011. */
  2012. static __always_inline struct page *
  2013. __rmqueue(struct zone *zone, unsigned int order, int migratetype)
  2014. {
  2015. struct page *page;
  2016. retry:
  2017. page = __rmqueue_smallest(zone, order, migratetype);
  2018. if (unlikely(!page)) {
  2019. if (migratetype == MIGRATE_MOVABLE)
  2020. page = __rmqueue_cma_fallback(zone, order);
  2021. if (!page && __rmqueue_fallback(zone, order, migratetype))
  2022. goto retry;
  2023. }
  2024. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2025. return page;
  2026. }
  2027. /*
  2028. * Obtain a specified number of elements from the buddy allocator, all under
  2029. * a single hold of the lock, for efficiency. Add them to the supplied list.
  2030. * Returns the number of new pages which were placed at *list.
  2031. */
  2032. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  2033. unsigned long count, struct list_head *list,
  2034. int migratetype)
  2035. {
  2036. int i, alloced = 0;
  2037. spin_lock(&zone->lock);
  2038. for (i = 0; i < count; ++i) {
  2039. struct page *page = __rmqueue(zone, order, migratetype);
  2040. if (unlikely(page == NULL))
  2041. break;
  2042. if (unlikely(check_pcp_refill(page)))
  2043. continue;
  2044. /*
  2045. * Split buddy pages returned by expand() are received here in
  2046. * physical page order. The page is added to the tail of
  2047. * caller's list. From the callers perspective, the linked list
  2048. * is ordered by page number under some conditions. This is
  2049. * useful for IO devices that can forward direction from the
  2050. * head, thus also in the physical page order. This is useful
  2051. * for IO devices that can merge IO requests if the physical
  2052. * pages are ordered properly.
  2053. */
  2054. list_add_tail(&page->lru, list);
  2055. alloced++;
  2056. if (is_migrate_cma(get_pcppage_migratetype(page)))
  2057. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  2058. -(1 << order));
  2059. }
  2060. /*
  2061. * i pages were removed from the buddy list even if some leak due
  2062. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  2063. * on i. Do not confuse with 'alloced' which is the number of
  2064. * pages added to the pcp list.
  2065. */
  2066. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  2067. spin_unlock(&zone->lock);
  2068. return alloced;
  2069. }
  2070. #ifdef CONFIG_NUMA
  2071. /*
  2072. * Called from the vmstat counter updater to drain pagesets of this
  2073. * currently executing processor on remote nodes after they have
  2074. * expired.
  2075. *
  2076. * Note that this function must be called with the thread pinned to
  2077. * a single processor.
  2078. */
  2079. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  2080. {
  2081. unsigned long flags;
  2082. int to_drain, batch;
  2083. local_irq_save(flags);
  2084. batch = READ_ONCE(pcp->batch);
  2085. to_drain = min(pcp->count, batch);
  2086. if (to_drain > 0) {
  2087. free_pcppages_bulk(zone, to_drain, pcp);
  2088. pcp->count -= to_drain;
  2089. }
  2090. local_irq_restore(flags);
  2091. }
  2092. #endif
  2093. /*
  2094. * Drain pcplists of the indicated processor and zone.
  2095. *
  2096. * The processor must either be the current processor and the
  2097. * thread pinned to the current processor or a processor that
  2098. * is not online.
  2099. */
  2100. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  2101. {
  2102. unsigned long flags;
  2103. struct per_cpu_pageset *pset;
  2104. struct per_cpu_pages *pcp;
  2105. local_irq_save(flags);
  2106. pset = per_cpu_ptr(zone->pageset, cpu);
  2107. pcp = &pset->pcp;
  2108. if (pcp->count) {
  2109. free_pcppages_bulk(zone, pcp->count, pcp);
  2110. pcp->count = 0;
  2111. }
  2112. local_irq_restore(flags);
  2113. }
  2114. /*
  2115. * Drain pcplists of all zones on the indicated processor.
  2116. *
  2117. * The processor must either be the current processor and the
  2118. * thread pinned to the current processor or a processor that
  2119. * is not online.
  2120. */
  2121. static void drain_pages(unsigned int cpu)
  2122. {
  2123. struct zone *zone;
  2124. for_each_populated_zone(zone) {
  2125. drain_pages_zone(cpu, zone);
  2126. }
  2127. }
  2128. /*
  2129. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2130. *
  2131. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2132. * the single zone's pages.
  2133. */
  2134. void drain_local_pages(struct zone *zone)
  2135. {
  2136. int cpu = smp_processor_id();
  2137. if (zone)
  2138. drain_pages_zone(cpu, zone);
  2139. else
  2140. drain_pages(cpu);
  2141. }
  2142. static void drain_local_pages_wq(struct work_struct *work)
  2143. {
  2144. /*
  2145. * drain_all_pages doesn't use proper cpu hotplug protection so
  2146. * we can race with cpu offline when the WQ can move this from
  2147. * a cpu pinned worker to an unbound one. We can operate on a different
  2148. * cpu which is allright but we also have to make sure to not move to
  2149. * a different one.
  2150. */
  2151. preempt_disable();
  2152. drain_local_pages(NULL);
  2153. preempt_enable();
  2154. }
  2155. /*
  2156. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2157. *
  2158. * When zone parameter is non-NULL, spill just the single zone's pages.
  2159. *
  2160. * Note that this can be extremely slow as the draining happens in a workqueue.
  2161. */
  2162. void drain_all_pages(struct zone *zone)
  2163. {
  2164. int cpu;
  2165. /*
  2166. * Allocate in the BSS so we wont require allocation in
  2167. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2168. */
  2169. static cpumask_t cpus_with_pcps;
  2170. /*
  2171. * Make sure nobody triggers this path before mm_percpu_wq is fully
  2172. * initialized.
  2173. */
  2174. if (WARN_ON_ONCE(!mm_percpu_wq))
  2175. return;
  2176. /*
  2177. * Do not drain if one is already in progress unless it's specific to
  2178. * a zone. Such callers are primarily CMA and memory hotplug and need
  2179. * the drain to be complete when the call returns.
  2180. */
  2181. if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
  2182. if (!zone)
  2183. return;
  2184. mutex_lock(&pcpu_drain_mutex);
  2185. }
  2186. /*
  2187. * We don't care about racing with CPU hotplug event
  2188. * as offline notification will cause the notified
  2189. * cpu to drain that CPU pcps and on_each_cpu_mask
  2190. * disables preemption as part of its processing
  2191. */
  2192. for_each_online_cpu(cpu) {
  2193. struct per_cpu_pageset *pcp;
  2194. struct zone *z;
  2195. bool has_pcps = false;
  2196. if (zone) {
  2197. pcp = per_cpu_ptr(zone->pageset, cpu);
  2198. if (pcp->pcp.count)
  2199. has_pcps = true;
  2200. } else {
  2201. for_each_populated_zone(z) {
  2202. pcp = per_cpu_ptr(z->pageset, cpu);
  2203. if (pcp->pcp.count) {
  2204. has_pcps = true;
  2205. break;
  2206. }
  2207. }
  2208. }
  2209. if (has_pcps)
  2210. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2211. else
  2212. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2213. }
  2214. for_each_cpu(cpu, &cpus_with_pcps) {
  2215. struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
  2216. INIT_WORK(work, drain_local_pages_wq);
  2217. queue_work_on(cpu, mm_percpu_wq, work);
  2218. }
  2219. for_each_cpu(cpu, &cpus_with_pcps)
  2220. flush_work(per_cpu_ptr(&pcpu_drain, cpu));
  2221. mutex_unlock(&pcpu_drain_mutex);
  2222. }
  2223. #ifdef CONFIG_HIBERNATION
  2224. /*
  2225. * Touch the watchdog for every WD_PAGE_COUNT pages.
  2226. */
  2227. #define WD_PAGE_COUNT (128*1024)
  2228. void mark_free_pages(struct zone *zone)
  2229. {
  2230. unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
  2231. unsigned long flags;
  2232. unsigned int order, t;
  2233. struct page *page;
  2234. if (zone_is_empty(zone))
  2235. return;
  2236. spin_lock_irqsave(&zone->lock, flags);
  2237. max_zone_pfn = zone_end_pfn(zone);
  2238. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2239. if (pfn_valid(pfn)) {
  2240. page = pfn_to_page(pfn);
  2241. if (!--page_count) {
  2242. touch_nmi_watchdog();
  2243. page_count = WD_PAGE_COUNT;
  2244. }
  2245. if (page_zone(page) != zone)
  2246. continue;
  2247. if (!swsusp_page_is_forbidden(page))
  2248. swsusp_unset_page_free(page);
  2249. }
  2250. for_each_migratetype_order(order, t) {
  2251. list_for_each_entry(page,
  2252. &zone->free_area[order].free_list[t], lru) {
  2253. unsigned long i;
  2254. pfn = page_to_pfn(page);
  2255. for (i = 0; i < (1UL << order); i++) {
  2256. if (!--page_count) {
  2257. touch_nmi_watchdog();
  2258. page_count = WD_PAGE_COUNT;
  2259. }
  2260. swsusp_set_page_free(pfn_to_page(pfn + i));
  2261. }
  2262. }
  2263. }
  2264. spin_unlock_irqrestore(&zone->lock, flags);
  2265. }
  2266. #endif /* CONFIG_PM */
  2267. static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
  2268. {
  2269. int migratetype;
  2270. if (!free_pcp_prepare(page))
  2271. return false;
  2272. migratetype = get_pfnblock_migratetype(page, pfn);
  2273. set_pcppage_migratetype(page, migratetype);
  2274. return true;
  2275. }
  2276. static void free_unref_page_commit(struct page *page, unsigned long pfn)
  2277. {
  2278. struct zone *zone = page_zone(page);
  2279. struct per_cpu_pages *pcp;
  2280. int migratetype;
  2281. migratetype = get_pcppage_migratetype(page);
  2282. __count_vm_event(PGFREE);
  2283. /*
  2284. * We only track unmovable, reclaimable and movable on pcp lists.
  2285. * Free ISOLATE pages back to the allocator because they are being
  2286. * offlined but treat HIGHATOMIC as movable pages so we can get those
  2287. * areas back if necessary. Otherwise, we may have to free
  2288. * excessively into the page allocator
  2289. */
  2290. if (migratetype >= MIGRATE_PCPTYPES) {
  2291. if (unlikely(is_migrate_isolate(migratetype))) {
  2292. free_one_page(zone, page, pfn, 0, migratetype);
  2293. return;
  2294. }
  2295. migratetype = MIGRATE_MOVABLE;
  2296. }
  2297. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2298. list_add(&page->lru, &pcp->lists[migratetype]);
  2299. pcp->count++;
  2300. if (pcp->count >= pcp->high) {
  2301. unsigned long batch = READ_ONCE(pcp->batch);
  2302. free_pcppages_bulk(zone, batch, pcp);
  2303. pcp->count -= batch;
  2304. }
  2305. }
  2306. /*
  2307. * Free a 0-order page
  2308. */
  2309. void free_unref_page(struct page *page)
  2310. {
  2311. unsigned long flags;
  2312. unsigned long pfn = page_to_pfn(page);
  2313. if (!free_unref_page_prepare(page, pfn))
  2314. return;
  2315. local_irq_save(flags);
  2316. free_unref_page_commit(page, pfn);
  2317. local_irq_restore(flags);
  2318. }
  2319. /*
  2320. * Free a list of 0-order pages
  2321. */
  2322. void free_unref_page_list(struct list_head *list)
  2323. {
  2324. struct page *page, *next;
  2325. unsigned long flags, pfn;
  2326. int batch_count = 0;
  2327. /* Prepare pages for freeing */
  2328. list_for_each_entry_safe(page, next, list, lru) {
  2329. pfn = page_to_pfn(page);
  2330. if (!free_unref_page_prepare(page, pfn))
  2331. list_del(&page->lru);
  2332. set_page_private(page, pfn);
  2333. }
  2334. local_irq_save(flags);
  2335. list_for_each_entry_safe(page, next, list, lru) {
  2336. unsigned long pfn = page_private(page);
  2337. set_page_private(page, 0);
  2338. trace_mm_page_free_batched(page);
  2339. free_unref_page_commit(page, pfn);
  2340. /*
  2341. * Guard against excessive IRQ disabled times when we get
  2342. * a large list of pages to free.
  2343. */
  2344. if (++batch_count == SWAP_CLUSTER_MAX) {
  2345. local_irq_restore(flags);
  2346. batch_count = 0;
  2347. local_irq_save(flags);
  2348. }
  2349. }
  2350. local_irq_restore(flags);
  2351. }
  2352. /*
  2353. * split_page takes a non-compound higher-order page, and splits it into
  2354. * n (1<<order) sub-pages: page[0..n]
  2355. * Each sub-page must be freed individually.
  2356. *
  2357. * Note: this is probably too low level an operation for use in drivers.
  2358. * Please consult with lkml before using this in your driver.
  2359. */
  2360. void split_page(struct page *page, unsigned int order)
  2361. {
  2362. int i;
  2363. VM_BUG_ON_PAGE(PageCompound(page), page);
  2364. VM_BUG_ON_PAGE(!page_count(page), page);
  2365. for (i = 1; i < (1 << order); i++)
  2366. set_page_refcounted(page + i);
  2367. split_page_owner(page, order);
  2368. }
  2369. EXPORT_SYMBOL_GPL(split_page);
  2370. int __isolate_free_page(struct page *page, unsigned int order)
  2371. {
  2372. unsigned long watermark;
  2373. struct zone *zone;
  2374. int mt;
  2375. BUG_ON(!PageBuddy(page));
  2376. zone = page_zone(page);
  2377. mt = get_pageblock_migratetype(page);
  2378. if (!is_migrate_isolate(mt)) {
  2379. /*
  2380. * Obey watermarks as if the page was being allocated. We can
  2381. * emulate a high-order watermark check with a raised order-0
  2382. * watermark, because we already know our high-order page
  2383. * exists.
  2384. */
  2385. watermark = min_wmark_pages(zone) + (1UL << order);
  2386. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2387. return 0;
  2388. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2389. }
  2390. /* Remove page from free list */
  2391. list_del(&page->lru);
  2392. zone->free_area[order].nr_free--;
  2393. rmv_page_order(page);
  2394. /*
  2395. * Set the pageblock if the isolated page is at least half of a
  2396. * pageblock
  2397. */
  2398. if (order >= pageblock_order - 1) {
  2399. struct page *endpage = page + (1 << order) - 1;
  2400. for (; page < endpage; page += pageblock_nr_pages) {
  2401. int mt = get_pageblock_migratetype(page);
  2402. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2403. && !is_migrate_highatomic(mt))
  2404. set_pageblock_migratetype(page,
  2405. MIGRATE_MOVABLE);
  2406. }
  2407. }
  2408. return 1UL << order;
  2409. }
  2410. /*
  2411. * Update NUMA hit/miss statistics
  2412. *
  2413. * Must be called with interrupts disabled.
  2414. */
  2415. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
  2416. {
  2417. #ifdef CONFIG_NUMA
  2418. enum numa_stat_item local_stat = NUMA_LOCAL;
  2419. /* skip numa counters update if numa stats is disabled */
  2420. if (!static_branch_likely(&vm_numa_stat_key))
  2421. return;
  2422. if (z->node != numa_node_id())
  2423. local_stat = NUMA_OTHER;
  2424. if (z->node == preferred_zone->node)
  2425. __inc_numa_state(z, NUMA_HIT);
  2426. else {
  2427. __inc_numa_state(z, NUMA_MISS);
  2428. __inc_numa_state(preferred_zone, NUMA_FOREIGN);
  2429. }
  2430. __inc_numa_state(z, local_stat);
  2431. #endif
  2432. }
  2433. /* Remove page from the per-cpu list, caller must protect the list */
  2434. static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
  2435. struct per_cpu_pages *pcp,
  2436. struct list_head *list)
  2437. {
  2438. struct page *page;
  2439. do {
  2440. if (list_empty(list)) {
  2441. pcp->count += rmqueue_bulk(zone, 0,
  2442. pcp->batch, list,
  2443. migratetype);
  2444. if (unlikely(list_empty(list)))
  2445. return NULL;
  2446. }
  2447. page = list_first_entry(list, struct page, lru);
  2448. list_del(&page->lru);
  2449. pcp->count--;
  2450. } while (check_new_pcp(page));
  2451. return page;
  2452. }
  2453. /* Lock and remove page from the per-cpu list */
  2454. static struct page *rmqueue_pcplist(struct zone *preferred_zone,
  2455. struct zone *zone, unsigned int order,
  2456. gfp_t gfp_flags, int migratetype)
  2457. {
  2458. struct per_cpu_pages *pcp;
  2459. struct list_head *list;
  2460. struct page *page;
  2461. unsigned long flags;
  2462. local_irq_save(flags);
  2463. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2464. list = &pcp->lists[migratetype];
  2465. page = __rmqueue_pcplist(zone, migratetype, pcp, list);
  2466. if (page) {
  2467. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2468. zone_statistics(preferred_zone, zone);
  2469. }
  2470. local_irq_restore(flags);
  2471. return page;
  2472. }
  2473. /*
  2474. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2475. */
  2476. static inline
  2477. struct page *rmqueue(struct zone *preferred_zone,
  2478. struct zone *zone, unsigned int order,
  2479. gfp_t gfp_flags, unsigned int alloc_flags,
  2480. int migratetype)
  2481. {
  2482. unsigned long flags;
  2483. struct page *page;
  2484. if (likely(order == 0)) {
  2485. page = rmqueue_pcplist(preferred_zone, zone, order,
  2486. gfp_flags, migratetype);
  2487. goto out;
  2488. }
  2489. /*
  2490. * We most definitely don't want callers attempting to
  2491. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2492. */
  2493. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2494. spin_lock_irqsave(&zone->lock, flags);
  2495. do {
  2496. page = NULL;
  2497. if (alloc_flags & ALLOC_HARDER) {
  2498. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2499. if (page)
  2500. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2501. }
  2502. if (!page)
  2503. page = __rmqueue(zone, order, migratetype);
  2504. } while (page && check_new_pages(page, order));
  2505. spin_unlock(&zone->lock);
  2506. if (!page)
  2507. goto failed;
  2508. __mod_zone_freepage_state(zone, -(1 << order),
  2509. get_pcppage_migratetype(page));
  2510. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2511. zone_statistics(preferred_zone, zone);
  2512. local_irq_restore(flags);
  2513. out:
  2514. VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
  2515. return page;
  2516. failed:
  2517. local_irq_restore(flags);
  2518. return NULL;
  2519. }
  2520. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2521. static struct {
  2522. struct fault_attr attr;
  2523. bool ignore_gfp_highmem;
  2524. bool ignore_gfp_reclaim;
  2525. u32 min_order;
  2526. } fail_page_alloc = {
  2527. .attr = FAULT_ATTR_INITIALIZER,
  2528. .ignore_gfp_reclaim = true,
  2529. .ignore_gfp_highmem = true,
  2530. .min_order = 1,
  2531. };
  2532. static int __init setup_fail_page_alloc(char *str)
  2533. {
  2534. return setup_fault_attr(&fail_page_alloc.attr, str);
  2535. }
  2536. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2537. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2538. {
  2539. if (order < fail_page_alloc.min_order)
  2540. return false;
  2541. if (gfp_mask & __GFP_NOFAIL)
  2542. return false;
  2543. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2544. return false;
  2545. if (fail_page_alloc.ignore_gfp_reclaim &&
  2546. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2547. return false;
  2548. return should_fail(&fail_page_alloc.attr, 1 << order);
  2549. }
  2550. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2551. static int __init fail_page_alloc_debugfs(void)
  2552. {
  2553. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2554. struct dentry *dir;
  2555. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2556. &fail_page_alloc.attr);
  2557. if (IS_ERR(dir))
  2558. return PTR_ERR(dir);
  2559. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2560. &fail_page_alloc.ignore_gfp_reclaim))
  2561. goto fail;
  2562. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2563. &fail_page_alloc.ignore_gfp_highmem))
  2564. goto fail;
  2565. if (!debugfs_create_u32("min-order", mode, dir,
  2566. &fail_page_alloc.min_order))
  2567. goto fail;
  2568. return 0;
  2569. fail:
  2570. debugfs_remove_recursive(dir);
  2571. return -ENOMEM;
  2572. }
  2573. late_initcall(fail_page_alloc_debugfs);
  2574. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2575. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2576. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2577. {
  2578. return false;
  2579. }
  2580. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2581. /*
  2582. * Return true if free base pages are above 'mark'. For high-order checks it
  2583. * will return true of the order-0 watermark is reached and there is at least
  2584. * one free page of a suitable size. Checking now avoids taking the zone lock
  2585. * to check in the allocation paths if no pages are free.
  2586. */
  2587. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2588. int classzone_idx, unsigned int alloc_flags,
  2589. long free_pages)
  2590. {
  2591. long min = mark;
  2592. int o;
  2593. const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
  2594. /* free_pages may go negative - that's OK */
  2595. free_pages -= (1 << order) - 1;
  2596. if (alloc_flags & ALLOC_HIGH)
  2597. min -= min / 2;
  2598. /*
  2599. * If the caller does not have rights to ALLOC_HARDER then subtract
  2600. * the high-atomic reserves. This will over-estimate the size of the
  2601. * atomic reserve but it avoids a search.
  2602. */
  2603. if (likely(!alloc_harder)) {
  2604. free_pages -= z->nr_reserved_highatomic;
  2605. } else {
  2606. /*
  2607. * OOM victims can try even harder than normal ALLOC_HARDER
  2608. * users on the grounds that it's definitely going to be in
  2609. * the exit path shortly and free memory. Any allocation it
  2610. * makes during the free path will be small and short-lived.
  2611. */
  2612. if (alloc_flags & ALLOC_OOM)
  2613. min -= min / 2;
  2614. else
  2615. min -= min / 4;
  2616. }
  2617. #ifdef CONFIG_CMA
  2618. /* If allocation can't use CMA areas don't use free CMA pages */
  2619. if (!(alloc_flags & ALLOC_CMA))
  2620. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2621. #endif
  2622. /*
  2623. * Check watermarks for an order-0 allocation request. If these
  2624. * are not met, then a high-order request also cannot go ahead
  2625. * even if a suitable page happened to be free.
  2626. */
  2627. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2628. return false;
  2629. /* If this is an order-0 request then the watermark is fine */
  2630. if (!order)
  2631. return true;
  2632. /* For a high-order request, check at least one suitable page is free */
  2633. for (o = order; o < MAX_ORDER; o++) {
  2634. struct free_area *area = &z->free_area[o];
  2635. int mt;
  2636. if (!area->nr_free)
  2637. continue;
  2638. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2639. if (!list_empty(&area->free_list[mt]))
  2640. return true;
  2641. }
  2642. #ifdef CONFIG_CMA
  2643. if ((alloc_flags & ALLOC_CMA) &&
  2644. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2645. return true;
  2646. }
  2647. #endif
  2648. if (alloc_harder &&
  2649. !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  2650. return true;
  2651. }
  2652. return false;
  2653. }
  2654. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2655. int classzone_idx, unsigned int alloc_flags)
  2656. {
  2657. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2658. zone_page_state(z, NR_FREE_PAGES));
  2659. }
  2660. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2661. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2662. {
  2663. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2664. long cma_pages = 0;
  2665. #ifdef CONFIG_CMA
  2666. /* If allocation can't use CMA areas don't use free CMA pages */
  2667. if (!(alloc_flags & ALLOC_CMA))
  2668. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2669. #endif
  2670. /*
  2671. * Fast check for order-0 only. If this fails then the reserves
  2672. * need to be calculated. There is a corner case where the check
  2673. * passes but only the high-order atomic reserve are free. If
  2674. * the caller is !atomic then it'll uselessly search the free
  2675. * list. That corner case is then slower but it is harmless.
  2676. */
  2677. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2678. return true;
  2679. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2680. free_pages);
  2681. }
  2682. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2683. unsigned long mark, int classzone_idx)
  2684. {
  2685. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2686. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2687. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2688. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2689. free_pages);
  2690. }
  2691. #ifdef CONFIG_NUMA
  2692. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2693. {
  2694. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2695. RECLAIM_DISTANCE;
  2696. }
  2697. #else /* CONFIG_NUMA */
  2698. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2699. {
  2700. return true;
  2701. }
  2702. #endif /* CONFIG_NUMA */
  2703. /*
  2704. * get_page_from_freelist goes through the zonelist trying to allocate
  2705. * a page.
  2706. */
  2707. static struct page *
  2708. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2709. const struct alloc_context *ac)
  2710. {
  2711. struct zoneref *z = ac->preferred_zoneref;
  2712. struct zone *zone;
  2713. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2714. /*
  2715. * Scan zonelist, looking for a zone with enough free.
  2716. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2717. */
  2718. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2719. ac->nodemask) {
  2720. struct page *page;
  2721. unsigned long mark;
  2722. if (cpusets_enabled() &&
  2723. (alloc_flags & ALLOC_CPUSET) &&
  2724. !__cpuset_zone_allowed(zone, gfp_mask))
  2725. continue;
  2726. /*
  2727. * When allocating a page cache page for writing, we
  2728. * want to get it from a node that is within its dirty
  2729. * limit, such that no single node holds more than its
  2730. * proportional share of globally allowed dirty pages.
  2731. * The dirty limits take into account the node's
  2732. * lowmem reserves and high watermark so that kswapd
  2733. * should be able to balance it without having to
  2734. * write pages from its LRU list.
  2735. *
  2736. * XXX: For now, allow allocations to potentially
  2737. * exceed the per-node dirty limit in the slowpath
  2738. * (spread_dirty_pages unset) before going into reclaim,
  2739. * which is important when on a NUMA setup the allowed
  2740. * nodes are together not big enough to reach the
  2741. * global limit. The proper fix for these situations
  2742. * will require awareness of nodes in the
  2743. * dirty-throttling and the flusher threads.
  2744. */
  2745. if (ac->spread_dirty_pages) {
  2746. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2747. continue;
  2748. if (!node_dirty_ok(zone->zone_pgdat)) {
  2749. last_pgdat_dirty_limit = zone->zone_pgdat;
  2750. continue;
  2751. }
  2752. }
  2753. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2754. if (!zone_watermark_fast(zone, order, mark,
  2755. ac_classzone_idx(ac), alloc_flags)) {
  2756. int ret;
  2757. /* Checked here to keep the fast path fast */
  2758. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2759. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2760. goto try_this_zone;
  2761. if (node_reclaim_mode == 0 ||
  2762. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2763. continue;
  2764. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2765. switch (ret) {
  2766. case NODE_RECLAIM_NOSCAN:
  2767. /* did not scan */
  2768. continue;
  2769. case NODE_RECLAIM_FULL:
  2770. /* scanned but unreclaimable */
  2771. continue;
  2772. default:
  2773. /* did we reclaim enough */
  2774. if (zone_watermark_ok(zone, order, mark,
  2775. ac_classzone_idx(ac), alloc_flags))
  2776. goto try_this_zone;
  2777. continue;
  2778. }
  2779. }
  2780. try_this_zone:
  2781. page = rmqueue(ac->preferred_zoneref->zone, zone, order,
  2782. gfp_mask, alloc_flags, ac->migratetype);
  2783. if (page) {
  2784. prep_new_page(page, order, gfp_mask, alloc_flags);
  2785. /*
  2786. * If this is a high-order atomic allocation then check
  2787. * if the pageblock should be reserved for the future
  2788. */
  2789. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2790. reserve_highatomic_pageblock(page, zone, order);
  2791. return page;
  2792. }
  2793. }
  2794. return NULL;
  2795. }
  2796. /*
  2797. * Large machines with many possible nodes should not always dump per-node
  2798. * meminfo in irq context.
  2799. */
  2800. static inline bool should_suppress_show_mem(void)
  2801. {
  2802. bool ret = false;
  2803. #if NODES_SHIFT > 8
  2804. ret = in_interrupt();
  2805. #endif
  2806. return ret;
  2807. }
  2808. static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
  2809. {
  2810. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2811. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2812. if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
  2813. return;
  2814. /*
  2815. * This documents exceptions given to allocations in certain
  2816. * contexts that are allowed to allocate outside current's set
  2817. * of allowed nodes.
  2818. */
  2819. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2820. if (tsk_is_oom_victim(current) ||
  2821. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2822. filter &= ~SHOW_MEM_FILTER_NODES;
  2823. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2824. filter &= ~SHOW_MEM_FILTER_NODES;
  2825. show_mem(filter, nodemask);
  2826. }
  2827. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
  2828. {
  2829. struct va_format vaf;
  2830. va_list args;
  2831. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2832. DEFAULT_RATELIMIT_BURST);
  2833. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  2834. return;
  2835. va_start(args, fmt);
  2836. vaf.fmt = fmt;
  2837. vaf.va = &args;
  2838. pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
  2839. current->comm, &vaf, gfp_mask, &gfp_mask,
  2840. nodemask_pr_args(nodemask));
  2841. va_end(args);
  2842. cpuset_print_current_mems_allowed();
  2843. dump_stack();
  2844. warn_alloc_show_mem(gfp_mask, nodemask);
  2845. }
  2846. static inline struct page *
  2847. __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
  2848. unsigned int alloc_flags,
  2849. const struct alloc_context *ac)
  2850. {
  2851. struct page *page;
  2852. page = get_page_from_freelist(gfp_mask, order,
  2853. alloc_flags|ALLOC_CPUSET, ac);
  2854. /*
  2855. * fallback to ignore cpuset restriction if our nodes
  2856. * are depleted
  2857. */
  2858. if (!page)
  2859. page = get_page_from_freelist(gfp_mask, order,
  2860. alloc_flags, ac);
  2861. return page;
  2862. }
  2863. static inline struct page *
  2864. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2865. const struct alloc_context *ac, unsigned long *did_some_progress)
  2866. {
  2867. struct oom_control oc = {
  2868. .zonelist = ac->zonelist,
  2869. .nodemask = ac->nodemask,
  2870. .memcg = NULL,
  2871. .gfp_mask = gfp_mask,
  2872. .order = order,
  2873. };
  2874. struct page *page;
  2875. *did_some_progress = 0;
  2876. /*
  2877. * Acquire the oom lock. If that fails, somebody else is
  2878. * making progress for us.
  2879. */
  2880. if (!mutex_trylock(&oom_lock)) {
  2881. *did_some_progress = 1;
  2882. schedule_timeout_uninterruptible(1);
  2883. return NULL;
  2884. }
  2885. /*
  2886. * Go through the zonelist yet one more time, keep very high watermark
  2887. * here, this is only to catch a parallel oom killing, we must fail if
  2888. * we're still under heavy pressure. But make sure that this reclaim
  2889. * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
  2890. * allocation which will never fail due to oom_lock already held.
  2891. */
  2892. page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
  2893. ~__GFP_DIRECT_RECLAIM, order,
  2894. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2895. if (page)
  2896. goto out;
  2897. /* Coredumps can quickly deplete all memory reserves */
  2898. if (current->flags & PF_DUMPCORE)
  2899. goto out;
  2900. /* The OOM killer will not help higher order allocs */
  2901. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2902. goto out;
  2903. /*
  2904. * We have already exhausted all our reclaim opportunities without any
  2905. * success so it is time to admit defeat. We will skip the OOM killer
  2906. * because it is very likely that the caller has a more reasonable
  2907. * fallback than shooting a random task.
  2908. */
  2909. if (gfp_mask & __GFP_RETRY_MAYFAIL)
  2910. goto out;
  2911. /* The OOM killer does not needlessly kill tasks for lowmem */
  2912. if (ac->high_zoneidx < ZONE_NORMAL)
  2913. goto out;
  2914. if (pm_suspended_storage())
  2915. goto out;
  2916. /*
  2917. * XXX: GFP_NOFS allocations should rather fail than rely on
  2918. * other request to make a forward progress.
  2919. * We are in an unfortunate situation where out_of_memory cannot
  2920. * do much for this context but let's try it to at least get
  2921. * access to memory reserved if the current task is killed (see
  2922. * out_of_memory). Once filesystems are ready to handle allocation
  2923. * failures more gracefully we should just bail out here.
  2924. */
  2925. /* The OOM killer may not free memory on a specific node */
  2926. if (gfp_mask & __GFP_THISNODE)
  2927. goto out;
  2928. /* Exhausted what can be done so it's blamo time */
  2929. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2930. *did_some_progress = 1;
  2931. /*
  2932. * Help non-failing allocations by giving them access to memory
  2933. * reserves
  2934. */
  2935. if (gfp_mask & __GFP_NOFAIL)
  2936. page = __alloc_pages_cpuset_fallback(gfp_mask, order,
  2937. ALLOC_NO_WATERMARKS, ac);
  2938. }
  2939. out:
  2940. mutex_unlock(&oom_lock);
  2941. return page;
  2942. }
  2943. /*
  2944. * Maximum number of compaction retries wit a progress before OOM
  2945. * killer is consider as the only way to move forward.
  2946. */
  2947. #define MAX_COMPACT_RETRIES 16
  2948. #ifdef CONFIG_COMPACTION
  2949. /* Try memory compaction for high-order allocations before reclaim */
  2950. static struct page *
  2951. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2952. unsigned int alloc_flags, const struct alloc_context *ac,
  2953. enum compact_priority prio, enum compact_result *compact_result)
  2954. {
  2955. struct page *page;
  2956. unsigned int noreclaim_flag;
  2957. if (!order)
  2958. return NULL;
  2959. noreclaim_flag = memalloc_noreclaim_save();
  2960. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2961. prio);
  2962. memalloc_noreclaim_restore(noreclaim_flag);
  2963. if (*compact_result <= COMPACT_INACTIVE)
  2964. return NULL;
  2965. /*
  2966. * At least in one zone compaction wasn't deferred or skipped, so let's
  2967. * count a compaction stall
  2968. */
  2969. count_vm_event(COMPACTSTALL);
  2970. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  2971. if (page) {
  2972. struct zone *zone = page_zone(page);
  2973. zone->compact_blockskip_flush = false;
  2974. compaction_defer_reset(zone, order, true);
  2975. count_vm_event(COMPACTSUCCESS);
  2976. return page;
  2977. }
  2978. /*
  2979. * It's bad if compaction run occurs and fails. The most likely reason
  2980. * is that pages exist, but not enough to satisfy watermarks.
  2981. */
  2982. count_vm_event(COMPACTFAIL);
  2983. cond_resched();
  2984. return NULL;
  2985. }
  2986. static inline bool
  2987. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2988. enum compact_result compact_result,
  2989. enum compact_priority *compact_priority,
  2990. int *compaction_retries)
  2991. {
  2992. int max_retries = MAX_COMPACT_RETRIES;
  2993. int min_priority;
  2994. bool ret = false;
  2995. int retries = *compaction_retries;
  2996. enum compact_priority priority = *compact_priority;
  2997. if (!order)
  2998. return false;
  2999. if (compaction_made_progress(compact_result))
  3000. (*compaction_retries)++;
  3001. /*
  3002. * compaction considers all the zone as desperately out of memory
  3003. * so it doesn't really make much sense to retry except when the
  3004. * failure could be caused by insufficient priority
  3005. */
  3006. if (compaction_failed(compact_result))
  3007. goto check_priority;
  3008. /*
  3009. * make sure the compaction wasn't deferred or didn't bail out early
  3010. * due to locks contention before we declare that we should give up.
  3011. * But do not retry if the given zonelist is not suitable for
  3012. * compaction.
  3013. */
  3014. if (compaction_withdrawn(compact_result)) {
  3015. ret = compaction_zonelist_suitable(ac, order, alloc_flags);
  3016. goto out;
  3017. }
  3018. /*
  3019. * !costly requests are much more important than __GFP_RETRY_MAYFAIL
  3020. * costly ones because they are de facto nofail and invoke OOM
  3021. * killer to move on while costly can fail and users are ready
  3022. * to cope with that. 1/4 retries is rather arbitrary but we
  3023. * would need much more detailed feedback from compaction to
  3024. * make a better decision.
  3025. */
  3026. if (order > PAGE_ALLOC_COSTLY_ORDER)
  3027. max_retries /= 4;
  3028. if (*compaction_retries <= max_retries) {
  3029. ret = true;
  3030. goto out;
  3031. }
  3032. /*
  3033. * Make sure there are attempts at the highest priority if we exhausted
  3034. * all retries or failed at the lower priorities.
  3035. */
  3036. check_priority:
  3037. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  3038. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  3039. if (*compact_priority > min_priority) {
  3040. (*compact_priority)--;
  3041. *compaction_retries = 0;
  3042. ret = true;
  3043. }
  3044. out:
  3045. trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
  3046. return ret;
  3047. }
  3048. #else
  3049. static inline struct page *
  3050. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  3051. unsigned int alloc_flags, const struct alloc_context *ac,
  3052. enum compact_priority prio, enum compact_result *compact_result)
  3053. {
  3054. *compact_result = COMPACT_SKIPPED;
  3055. return NULL;
  3056. }
  3057. static inline bool
  3058. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  3059. enum compact_result compact_result,
  3060. enum compact_priority *compact_priority,
  3061. int *compaction_retries)
  3062. {
  3063. struct zone *zone;
  3064. struct zoneref *z;
  3065. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  3066. return false;
  3067. /*
  3068. * There are setups with compaction disabled which would prefer to loop
  3069. * inside the allocator rather than hit the oom killer prematurely.
  3070. * Let's give them a good hope and keep retrying while the order-0
  3071. * watermarks are OK.
  3072. */
  3073. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3074. ac->nodemask) {
  3075. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  3076. ac_classzone_idx(ac), alloc_flags))
  3077. return true;
  3078. }
  3079. return false;
  3080. }
  3081. #endif /* CONFIG_COMPACTION */
  3082. #ifdef CONFIG_LOCKDEP
  3083. struct lockdep_map __fs_reclaim_map =
  3084. STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
  3085. static bool __need_fs_reclaim(gfp_t gfp_mask)
  3086. {
  3087. gfp_mask = current_gfp_context(gfp_mask);
  3088. /* no reclaim without waiting on it */
  3089. if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
  3090. return false;
  3091. /* this guy won't enter reclaim */
  3092. if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
  3093. return false;
  3094. /* We're only interested __GFP_FS allocations for now */
  3095. if (!(gfp_mask & __GFP_FS))
  3096. return false;
  3097. if (gfp_mask & __GFP_NOLOCKDEP)
  3098. return false;
  3099. return true;
  3100. }
  3101. void fs_reclaim_acquire(gfp_t gfp_mask)
  3102. {
  3103. if (__need_fs_reclaim(gfp_mask))
  3104. lock_map_acquire(&__fs_reclaim_map);
  3105. }
  3106. EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
  3107. void fs_reclaim_release(gfp_t gfp_mask)
  3108. {
  3109. if (__need_fs_reclaim(gfp_mask))
  3110. lock_map_release(&__fs_reclaim_map);
  3111. }
  3112. EXPORT_SYMBOL_GPL(fs_reclaim_release);
  3113. #endif
  3114. /* Perform direct synchronous page reclaim */
  3115. static int
  3116. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  3117. const struct alloc_context *ac)
  3118. {
  3119. struct reclaim_state reclaim_state;
  3120. int progress;
  3121. unsigned int noreclaim_flag;
  3122. cond_resched();
  3123. /* We now go into synchronous reclaim */
  3124. cpuset_memory_pressure_bump();
  3125. noreclaim_flag = memalloc_noreclaim_save();
  3126. fs_reclaim_acquire(gfp_mask);
  3127. reclaim_state.reclaimed_slab = 0;
  3128. current->reclaim_state = &reclaim_state;
  3129. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  3130. ac->nodemask);
  3131. current->reclaim_state = NULL;
  3132. fs_reclaim_release(gfp_mask);
  3133. memalloc_noreclaim_restore(noreclaim_flag);
  3134. cond_resched();
  3135. return progress;
  3136. }
  3137. /* The really slow allocator path where we enter direct reclaim */
  3138. static inline struct page *
  3139. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  3140. unsigned int alloc_flags, const struct alloc_context *ac,
  3141. unsigned long *did_some_progress)
  3142. {
  3143. struct page *page = NULL;
  3144. bool drained = false;
  3145. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  3146. if (unlikely(!(*did_some_progress)))
  3147. return NULL;
  3148. retry:
  3149. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3150. /*
  3151. * If an allocation failed after direct reclaim, it could be because
  3152. * pages are pinned on the per-cpu lists or in high alloc reserves.
  3153. * Shrink them them and try again
  3154. */
  3155. if (!page && !drained) {
  3156. unreserve_highatomic_pageblock(ac, false);
  3157. drain_all_pages(NULL);
  3158. drained = true;
  3159. goto retry;
  3160. }
  3161. return page;
  3162. }
  3163. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  3164. {
  3165. struct zoneref *z;
  3166. struct zone *zone;
  3167. pg_data_t *last_pgdat = NULL;
  3168. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  3169. ac->high_zoneidx, ac->nodemask) {
  3170. if (last_pgdat != zone->zone_pgdat)
  3171. wakeup_kswapd(zone, order, ac->high_zoneidx);
  3172. last_pgdat = zone->zone_pgdat;
  3173. }
  3174. }
  3175. static inline unsigned int
  3176. gfp_to_alloc_flags(gfp_t gfp_mask)
  3177. {
  3178. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  3179. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  3180. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  3181. /*
  3182. * The caller may dip into page reserves a bit more if the caller
  3183. * cannot run direct reclaim, or if the caller has realtime scheduling
  3184. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  3185. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  3186. */
  3187. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  3188. if (gfp_mask & __GFP_ATOMIC) {
  3189. /*
  3190. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  3191. * if it can't schedule.
  3192. */
  3193. if (!(gfp_mask & __GFP_NOMEMALLOC))
  3194. alloc_flags |= ALLOC_HARDER;
  3195. /*
  3196. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  3197. * comment for __cpuset_node_allowed().
  3198. */
  3199. alloc_flags &= ~ALLOC_CPUSET;
  3200. } else if (unlikely(rt_task(current)) && !in_interrupt())
  3201. alloc_flags |= ALLOC_HARDER;
  3202. #ifdef CONFIG_CMA
  3203. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3204. alloc_flags |= ALLOC_CMA;
  3205. #endif
  3206. return alloc_flags;
  3207. }
  3208. static bool oom_reserves_allowed(struct task_struct *tsk)
  3209. {
  3210. if (!tsk_is_oom_victim(tsk))
  3211. return false;
  3212. /*
  3213. * !MMU doesn't have oom reaper so give access to memory reserves
  3214. * only to the thread with TIF_MEMDIE set
  3215. */
  3216. if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
  3217. return false;
  3218. return true;
  3219. }
  3220. /*
  3221. * Distinguish requests which really need access to full memory
  3222. * reserves from oom victims which can live with a portion of it
  3223. */
  3224. static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
  3225. {
  3226. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3227. return 0;
  3228. if (gfp_mask & __GFP_MEMALLOC)
  3229. return ALLOC_NO_WATERMARKS;
  3230. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3231. return ALLOC_NO_WATERMARKS;
  3232. if (!in_interrupt()) {
  3233. if (current->flags & PF_MEMALLOC)
  3234. return ALLOC_NO_WATERMARKS;
  3235. else if (oom_reserves_allowed(current))
  3236. return ALLOC_OOM;
  3237. }
  3238. return 0;
  3239. }
  3240. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3241. {
  3242. return !!__gfp_pfmemalloc_flags(gfp_mask);
  3243. }
  3244. /*
  3245. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3246. * for the given allocation request.
  3247. *
  3248. * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
  3249. * without success, or when we couldn't even meet the watermark if we
  3250. * reclaimed all remaining pages on the LRU lists.
  3251. *
  3252. * Returns true if a retry is viable or false to enter the oom path.
  3253. */
  3254. static inline bool
  3255. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3256. struct alloc_context *ac, int alloc_flags,
  3257. bool did_some_progress, int *no_progress_loops)
  3258. {
  3259. struct zone *zone;
  3260. struct zoneref *z;
  3261. /*
  3262. * Costly allocations might have made a progress but this doesn't mean
  3263. * their order will become available due to high fragmentation so
  3264. * always increment the no progress counter for them
  3265. */
  3266. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3267. *no_progress_loops = 0;
  3268. else
  3269. (*no_progress_loops)++;
  3270. /*
  3271. * Make sure we converge to OOM if we cannot make any progress
  3272. * several times in the row.
  3273. */
  3274. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3275. /* Before OOM, exhaust highatomic_reserve */
  3276. return unreserve_highatomic_pageblock(ac, true);
  3277. }
  3278. /*
  3279. * Keep reclaiming pages while there is a chance this will lead
  3280. * somewhere. If none of the target zones can satisfy our allocation
  3281. * request even if all reclaimable pages are considered then we are
  3282. * screwed and have to go OOM.
  3283. */
  3284. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3285. ac->nodemask) {
  3286. unsigned long available;
  3287. unsigned long reclaimable;
  3288. unsigned long min_wmark = min_wmark_pages(zone);
  3289. bool wmark;
  3290. available = reclaimable = zone_reclaimable_pages(zone);
  3291. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3292. /*
  3293. * Would the allocation succeed if we reclaimed all
  3294. * reclaimable pages?
  3295. */
  3296. wmark = __zone_watermark_ok(zone, order, min_wmark,
  3297. ac_classzone_idx(ac), alloc_flags, available);
  3298. trace_reclaim_retry_zone(z, order, reclaimable,
  3299. available, min_wmark, *no_progress_loops, wmark);
  3300. if (wmark) {
  3301. /*
  3302. * If we didn't make any progress and have a lot of
  3303. * dirty + writeback pages then we should wait for
  3304. * an IO to complete to slow down the reclaim and
  3305. * prevent from pre mature OOM
  3306. */
  3307. if (!did_some_progress) {
  3308. unsigned long write_pending;
  3309. write_pending = zone_page_state_snapshot(zone,
  3310. NR_ZONE_WRITE_PENDING);
  3311. if (2 * write_pending > reclaimable) {
  3312. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3313. return true;
  3314. }
  3315. }
  3316. /*
  3317. * Memory allocation/reclaim might be called from a WQ
  3318. * context and the current implementation of the WQ
  3319. * concurrency control doesn't recognize that
  3320. * a particular WQ is congested if the worker thread is
  3321. * looping without ever sleeping. Therefore we have to
  3322. * do a short sleep here rather than calling
  3323. * cond_resched().
  3324. */
  3325. if (current->flags & PF_WQ_WORKER)
  3326. schedule_timeout_uninterruptible(1);
  3327. else
  3328. cond_resched();
  3329. return true;
  3330. }
  3331. }
  3332. return false;
  3333. }
  3334. static inline bool
  3335. check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
  3336. {
  3337. /*
  3338. * It's possible that cpuset's mems_allowed and the nodemask from
  3339. * mempolicy don't intersect. This should be normally dealt with by
  3340. * policy_nodemask(), but it's possible to race with cpuset update in
  3341. * such a way the check therein was true, and then it became false
  3342. * before we got our cpuset_mems_cookie here.
  3343. * This assumes that for all allocations, ac->nodemask can come only
  3344. * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
  3345. * when it does not intersect with the cpuset restrictions) or the
  3346. * caller can deal with a violated nodemask.
  3347. */
  3348. if (cpusets_enabled() && ac->nodemask &&
  3349. !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
  3350. ac->nodemask = NULL;
  3351. return true;
  3352. }
  3353. /*
  3354. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3355. * possible to race with parallel threads in such a way that our
  3356. * allocation can fail while the mask is being updated. If we are about
  3357. * to fail, check if the cpuset changed during allocation and if so,
  3358. * retry.
  3359. */
  3360. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3361. return true;
  3362. return false;
  3363. }
  3364. static inline struct page *
  3365. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3366. struct alloc_context *ac)
  3367. {
  3368. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3369. const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
  3370. struct page *page = NULL;
  3371. unsigned int alloc_flags;
  3372. unsigned long did_some_progress;
  3373. enum compact_priority compact_priority;
  3374. enum compact_result compact_result;
  3375. int compaction_retries;
  3376. int no_progress_loops;
  3377. unsigned int cpuset_mems_cookie;
  3378. int reserve_flags;
  3379. /*
  3380. * In the slowpath, we sanity check order to avoid ever trying to
  3381. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3382. * be using allocators in order of preference for an area that is
  3383. * too large.
  3384. */
  3385. if (order >= MAX_ORDER) {
  3386. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3387. return NULL;
  3388. }
  3389. /*
  3390. * We also sanity check to catch abuse of atomic reserves being used by
  3391. * callers that are not in atomic context.
  3392. */
  3393. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3394. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3395. gfp_mask &= ~__GFP_ATOMIC;
  3396. retry_cpuset:
  3397. compaction_retries = 0;
  3398. no_progress_loops = 0;
  3399. compact_priority = DEF_COMPACT_PRIORITY;
  3400. cpuset_mems_cookie = read_mems_allowed_begin();
  3401. /*
  3402. * The fast path uses conservative alloc_flags to succeed only until
  3403. * kswapd needs to be woken up, and to avoid the cost of setting up
  3404. * alloc_flags precisely. So we do that now.
  3405. */
  3406. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3407. /*
  3408. * We need to recalculate the starting point for the zonelist iterator
  3409. * because we might have used different nodemask in the fast path, or
  3410. * there was a cpuset modification and we are retrying - otherwise we
  3411. * could end up iterating over non-eligible zones endlessly.
  3412. */
  3413. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3414. ac->high_zoneidx, ac->nodemask);
  3415. if (!ac->preferred_zoneref->zone)
  3416. goto nopage;
  3417. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3418. wake_all_kswapds(order, ac);
  3419. /*
  3420. * The adjusted alloc_flags might result in immediate success, so try
  3421. * that first
  3422. */
  3423. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3424. if (page)
  3425. goto got_pg;
  3426. /*
  3427. * For costly allocations, try direct compaction first, as it's likely
  3428. * that we have enough base pages and don't need to reclaim. For non-
  3429. * movable high-order allocations, do that as well, as compaction will
  3430. * try prevent permanent fragmentation by migrating from blocks of the
  3431. * same migratetype.
  3432. * Don't try this for allocations that are allowed to ignore
  3433. * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3434. */
  3435. if (can_direct_reclaim &&
  3436. (costly_order ||
  3437. (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
  3438. && !gfp_pfmemalloc_allowed(gfp_mask)) {
  3439. page = __alloc_pages_direct_compact(gfp_mask, order,
  3440. alloc_flags, ac,
  3441. INIT_COMPACT_PRIORITY,
  3442. &compact_result);
  3443. if (page)
  3444. goto got_pg;
  3445. /*
  3446. * Checks for costly allocations with __GFP_NORETRY, which
  3447. * includes THP page fault allocations
  3448. */
  3449. if (costly_order && (gfp_mask & __GFP_NORETRY)) {
  3450. /*
  3451. * If compaction is deferred for high-order allocations,
  3452. * it is because sync compaction recently failed. If
  3453. * this is the case and the caller requested a THP
  3454. * allocation, we do not want to heavily disrupt the
  3455. * system, so we fail the allocation instead of entering
  3456. * direct reclaim.
  3457. */
  3458. if (compact_result == COMPACT_DEFERRED)
  3459. goto nopage;
  3460. /*
  3461. * Looks like reclaim/compaction is worth trying, but
  3462. * sync compaction could be very expensive, so keep
  3463. * using async compaction.
  3464. */
  3465. compact_priority = INIT_COMPACT_PRIORITY;
  3466. }
  3467. }
  3468. retry:
  3469. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3470. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3471. wake_all_kswapds(order, ac);
  3472. reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
  3473. if (reserve_flags)
  3474. alloc_flags = reserve_flags;
  3475. /*
  3476. * Reset the zonelist iterators if memory policies can be ignored.
  3477. * These allocations are high priority and system rather than user
  3478. * orientated.
  3479. */
  3480. if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
  3481. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3482. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3483. ac->high_zoneidx, ac->nodemask);
  3484. }
  3485. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3486. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3487. if (page)
  3488. goto got_pg;
  3489. /* Caller is not willing to reclaim, we can't balance anything */
  3490. if (!can_direct_reclaim)
  3491. goto nopage;
  3492. /* Avoid recursion of direct reclaim */
  3493. if (current->flags & PF_MEMALLOC)
  3494. goto nopage;
  3495. /* Try direct reclaim and then allocating */
  3496. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3497. &did_some_progress);
  3498. if (page)
  3499. goto got_pg;
  3500. /* Try direct compaction and then allocating */
  3501. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3502. compact_priority, &compact_result);
  3503. if (page)
  3504. goto got_pg;
  3505. /* Do not loop if specifically requested */
  3506. if (gfp_mask & __GFP_NORETRY)
  3507. goto nopage;
  3508. /*
  3509. * Do not retry costly high order allocations unless they are
  3510. * __GFP_RETRY_MAYFAIL
  3511. */
  3512. if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
  3513. goto nopage;
  3514. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3515. did_some_progress > 0, &no_progress_loops))
  3516. goto retry;
  3517. /*
  3518. * It doesn't make any sense to retry for the compaction if the order-0
  3519. * reclaim is not able to make any progress because the current
  3520. * implementation of the compaction depends on the sufficient amount
  3521. * of free memory (see __compaction_suitable)
  3522. */
  3523. if (did_some_progress > 0 &&
  3524. should_compact_retry(ac, order, alloc_flags,
  3525. compact_result, &compact_priority,
  3526. &compaction_retries))
  3527. goto retry;
  3528. /* Deal with possible cpuset update races before we start OOM killing */
  3529. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3530. goto retry_cpuset;
  3531. /* Reclaim has failed us, start killing things */
  3532. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3533. if (page)
  3534. goto got_pg;
  3535. /* Avoid allocations with no watermarks from looping endlessly */
  3536. if (tsk_is_oom_victim(current) &&
  3537. (alloc_flags == ALLOC_OOM ||
  3538. (gfp_mask & __GFP_NOMEMALLOC)))
  3539. goto nopage;
  3540. /* Retry as long as the OOM killer is making progress */
  3541. if (did_some_progress) {
  3542. no_progress_loops = 0;
  3543. goto retry;
  3544. }
  3545. nopage:
  3546. /* Deal with possible cpuset update races before we fail */
  3547. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3548. goto retry_cpuset;
  3549. /*
  3550. * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
  3551. * we always retry
  3552. */
  3553. if (gfp_mask & __GFP_NOFAIL) {
  3554. /*
  3555. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3556. * of any new users that actually require GFP_NOWAIT
  3557. */
  3558. if (WARN_ON_ONCE(!can_direct_reclaim))
  3559. goto fail;
  3560. /*
  3561. * PF_MEMALLOC request from this context is rather bizarre
  3562. * because we cannot reclaim anything and only can loop waiting
  3563. * for somebody to do a work for us
  3564. */
  3565. WARN_ON_ONCE(current->flags & PF_MEMALLOC);
  3566. /*
  3567. * non failing costly orders are a hard requirement which we
  3568. * are not prepared for much so let's warn about these users
  3569. * so that we can identify them and convert them to something
  3570. * else.
  3571. */
  3572. WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
  3573. /*
  3574. * Help non-failing allocations by giving them access to memory
  3575. * reserves but do not use ALLOC_NO_WATERMARKS because this
  3576. * could deplete whole memory reserves which would just make
  3577. * the situation worse
  3578. */
  3579. page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
  3580. if (page)
  3581. goto got_pg;
  3582. cond_resched();
  3583. goto retry;
  3584. }
  3585. fail:
  3586. warn_alloc(gfp_mask, ac->nodemask,
  3587. "page allocation failure: order:%u", order);
  3588. got_pg:
  3589. return page;
  3590. }
  3591. static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
  3592. int preferred_nid, nodemask_t *nodemask,
  3593. struct alloc_context *ac, gfp_t *alloc_mask,
  3594. unsigned int *alloc_flags)
  3595. {
  3596. ac->high_zoneidx = gfp_zone(gfp_mask);
  3597. ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
  3598. ac->nodemask = nodemask;
  3599. ac->migratetype = gfpflags_to_migratetype(gfp_mask);
  3600. if (cpusets_enabled()) {
  3601. *alloc_mask |= __GFP_HARDWALL;
  3602. if (!ac->nodemask)
  3603. ac->nodemask = &cpuset_current_mems_allowed;
  3604. else
  3605. *alloc_flags |= ALLOC_CPUSET;
  3606. }
  3607. fs_reclaim_acquire(gfp_mask);
  3608. fs_reclaim_release(gfp_mask);
  3609. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3610. if (should_fail_alloc_page(gfp_mask, order))
  3611. return false;
  3612. if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
  3613. *alloc_flags |= ALLOC_CMA;
  3614. return true;
  3615. }
  3616. /* Determine whether to spread dirty pages and what the first usable zone */
  3617. static inline void finalise_ac(gfp_t gfp_mask,
  3618. unsigned int order, struct alloc_context *ac)
  3619. {
  3620. /* Dirty zone balancing only done in the fast path */
  3621. ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3622. /*
  3623. * The preferred zone is used for statistics but crucially it is
  3624. * also used as the starting point for the zonelist iterator. It
  3625. * may get reset for allocations that ignore memory policies.
  3626. */
  3627. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3628. ac->high_zoneidx, ac->nodemask);
  3629. }
  3630. /*
  3631. * This is the 'heart' of the zoned buddy allocator.
  3632. */
  3633. struct page *
  3634. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
  3635. nodemask_t *nodemask)
  3636. {
  3637. struct page *page;
  3638. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3639. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  3640. struct alloc_context ac = { };
  3641. gfp_mask &= gfp_allowed_mask;
  3642. alloc_mask = gfp_mask;
  3643. if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
  3644. return NULL;
  3645. finalise_ac(gfp_mask, order, &ac);
  3646. /* First allocation attempt */
  3647. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3648. if (likely(page))
  3649. goto out;
  3650. /*
  3651. * Apply scoped allocation constraints. This is mainly about GFP_NOFS
  3652. * resp. GFP_NOIO which has to be inherited for all allocation requests
  3653. * from a particular context which has been marked by
  3654. * memalloc_no{fs,io}_{save,restore}.
  3655. */
  3656. alloc_mask = current_gfp_context(gfp_mask);
  3657. ac.spread_dirty_pages = false;
  3658. /*
  3659. * Restore the original nodemask if it was potentially replaced with
  3660. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3661. */
  3662. if (unlikely(ac.nodemask != nodemask))
  3663. ac.nodemask = nodemask;
  3664. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3665. out:
  3666. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3667. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3668. __free_pages(page, order);
  3669. page = NULL;
  3670. }
  3671. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3672. return page;
  3673. }
  3674. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3675. /*
  3676. * Common helper functions.
  3677. */
  3678. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3679. {
  3680. struct page *page;
  3681. /*
  3682. * __get_free_pages() returns a virtual address, which cannot represent
  3683. * a highmem page
  3684. */
  3685. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3686. page = alloc_pages(gfp_mask, order);
  3687. if (!page)
  3688. return 0;
  3689. return (unsigned long) page_address(page);
  3690. }
  3691. EXPORT_SYMBOL(__get_free_pages);
  3692. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3693. {
  3694. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3695. }
  3696. EXPORT_SYMBOL(get_zeroed_page);
  3697. void __free_pages(struct page *page, unsigned int order)
  3698. {
  3699. if (put_page_testzero(page)) {
  3700. if (order == 0)
  3701. free_unref_page(page);
  3702. else
  3703. __free_pages_ok(page, order);
  3704. }
  3705. }
  3706. EXPORT_SYMBOL(__free_pages);
  3707. void free_pages(unsigned long addr, unsigned int order)
  3708. {
  3709. if (addr != 0) {
  3710. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3711. __free_pages(virt_to_page((void *)addr), order);
  3712. }
  3713. }
  3714. EXPORT_SYMBOL(free_pages);
  3715. /*
  3716. * Page Fragment:
  3717. * An arbitrary-length arbitrary-offset area of memory which resides
  3718. * within a 0 or higher order page. Multiple fragments within that page
  3719. * are individually refcounted, in the page's reference counter.
  3720. *
  3721. * The page_frag functions below provide a simple allocation framework for
  3722. * page fragments. This is used by the network stack and network device
  3723. * drivers to provide a backing region of memory for use as either an
  3724. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3725. */
  3726. static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
  3727. gfp_t gfp_mask)
  3728. {
  3729. struct page *page = NULL;
  3730. gfp_t gfp = gfp_mask;
  3731. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3732. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3733. __GFP_NOMEMALLOC;
  3734. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3735. PAGE_FRAG_CACHE_MAX_ORDER);
  3736. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3737. #endif
  3738. if (unlikely(!page))
  3739. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3740. nc->va = page ? page_address(page) : NULL;
  3741. return page;
  3742. }
  3743. void __page_frag_cache_drain(struct page *page, unsigned int count)
  3744. {
  3745. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  3746. if (page_ref_sub_and_test(page, count)) {
  3747. unsigned int order = compound_order(page);
  3748. if (order == 0)
  3749. free_unref_page(page);
  3750. else
  3751. __free_pages_ok(page, order);
  3752. }
  3753. }
  3754. EXPORT_SYMBOL(__page_frag_cache_drain);
  3755. void *page_frag_alloc(struct page_frag_cache *nc,
  3756. unsigned int fragsz, gfp_t gfp_mask)
  3757. {
  3758. unsigned int size = PAGE_SIZE;
  3759. struct page *page;
  3760. int offset;
  3761. if (unlikely(!nc->va)) {
  3762. refill:
  3763. page = __page_frag_cache_refill(nc, gfp_mask);
  3764. if (!page)
  3765. return NULL;
  3766. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3767. /* if size can vary use size else just use PAGE_SIZE */
  3768. size = nc->size;
  3769. #endif
  3770. /* Even if we own the page, we do not use atomic_set().
  3771. * This would break get_page_unless_zero() users.
  3772. */
  3773. page_ref_add(page, size - 1);
  3774. /* reset page count bias and offset to start of new frag */
  3775. nc->pfmemalloc = page_is_pfmemalloc(page);
  3776. nc->pagecnt_bias = size;
  3777. nc->offset = size;
  3778. }
  3779. offset = nc->offset - fragsz;
  3780. if (unlikely(offset < 0)) {
  3781. page = virt_to_page(nc->va);
  3782. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3783. goto refill;
  3784. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3785. /* if size can vary use size else just use PAGE_SIZE */
  3786. size = nc->size;
  3787. #endif
  3788. /* OK, page count is 0, we can safely set it */
  3789. set_page_count(page, size);
  3790. /* reset page count bias and offset to start of new frag */
  3791. nc->pagecnt_bias = size;
  3792. offset = size - fragsz;
  3793. }
  3794. nc->pagecnt_bias--;
  3795. nc->offset = offset;
  3796. return nc->va + offset;
  3797. }
  3798. EXPORT_SYMBOL(page_frag_alloc);
  3799. /*
  3800. * Frees a page fragment allocated out of either a compound or order 0 page.
  3801. */
  3802. void page_frag_free(void *addr)
  3803. {
  3804. struct page *page = virt_to_head_page(addr);
  3805. if (unlikely(put_page_testzero(page)))
  3806. __free_pages_ok(page, compound_order(page));
  3807. }
  3808. EXPORT_SYMBOL(page_frag_free);
  3809. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3810. size_t size)
  3811. {
  3812. if (addr) {
  3813. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3814. unsigned long used = addr + PAGE_ALIGN(size);
  3815. split_page(virt_to_page((void *)addr), order);
  3816. while (used < alloc_end) {
  3817. free_page(used);
  3818. used += PAGE_SIZE;
  3819. }
  3820. }
  3821. return (void *)addr;
  3822. }
  3823. /**
  3824. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3825. * @size: the number of bytes to allocate
  3826. * @gfp_mask: GFP flags for the allocation
  3827. *
  3828. * This function is similar to alloc_pages(), except that it allocates the
  3829. * minimum number of pages to satisfy the request. alloc_pages() can only
  3830. * allocate memory in power-of-two pages.
  3831. *
  3832. * This function is also limited by MAX_ORDER.
  3833. *
  3834. * Memory allocated by this function must be released by free_pages_exact().
  3835. */
  3836. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3837. {
  3838. unsigned int order = get_order(size);
  3839. unsigned long addr;
  3840. addr = __get_free_pages(gfp_mask, order);
  3841. return make_alloc_exact(addr, order, size);
  3842. }
  3843. EXPORT_SYMBOL(alloc_pages_exact);
  3844. /**
  3845. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3846. * pages on a node.
  3847. * @nid: the preferred node ID where memory should be allocated
  3848. * @size: the number of bytes to allocate
  3849. * @gfp_mask: GFP flags for the allocation
  3850. *
  3851. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3852. * back.
  3853. */
  3854. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3855. {
  3856. unsigned int order = get_order(size);
  3857. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3858. if (!p)
  3859. return NULL;
  3860. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3861. }
  3862. /**
  3863. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3864. * @virt: the value returned by alloc_pages_exact.
  3865. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3866. *
  3867. * Release the memory allocated by a previous call to alloc_pages_exact.
  3868. */
  3869. void free_pages_exact(void *virt, size_t size)
  3870. {
  3871. unsigned long addr = (unsigned long)virt;
  3872. unsigned long end = addr + PAGE_ALIGN(size);
  3873. while (addr < end) {
  3874. free_page(addr);
  3875. addr += PAGE_SIZE;
  3876. }
  3877. }
  3878. EXPORT_SYMBOL(free_pages_exact);
  3879. /**
  3880. * nr_free_zone_pages - count number of pages beyond high watermark
  3881. * @offset: The zone index of the highest zone
  3882. *
  3883. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3884. * high watermark within all zones at or below a given zone index. For each
  3885. * zone, the number of pages is calculated as:
  3886. *
  3887. * nr_free_zone_pages = managed_pages - high_pages
  3888. */
  3889. static unsigned long nr_free_zone_pages(int offset)
  3890. {
  3891. struct zoneref *z;
  3892. struct zone *zone;
  3893. /* Just pick one node, since fallback list is circular */
  3894. unsigned long sum = 0;
  3895. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3896. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3897. unsigned long size = zone->managed_pages;
  3898. unsigned long high = high_wmark_pages(zone);
  3899. if (size > high)
  3900. sum += size - high;
  3901. }
  3902. return sum;
  3903. }
  3904. /**
  3905. * nr_free_buffer_pages - count number of pages beyond high watermark
  3906. *
  3907. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3908. * watermark within ZONE_DMA and ZONE_NORMAL.
  3909. */
  3910. unsigned long nr_free_buffer_pages(void)
  3911. {
  3912. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3913. }
  3914. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3915. /**
  3916. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3917. *
  3918. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3919. * high watermark within all zones.
  3920. */
  3921. unsigned long nr_free_pagecache_pages(void)
  3922. {
  3923. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3924. }
  3925. static inline void show_node(struct zone *zone)
  3926. {
  3927. if (IS_ENABLED(CONFIG_NUMA))
  3928. printk("Node %d ", zone_to_nid(zone));
  3929. }
  3930. long si_mem_available(void)
  3931. {
  3932. long available;
  3933. unsigned long pagecache;
  3934. unsigned long wmark_low = 0;
  3935. unsigned long pages[NR_LRU_LISTS];
  3936. struct zone *zone;
  3937. int lru;
  3938. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3939. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  3940. for_each_zone(zone)
  3941. wmark_low += zone->watermark[WMARK_LOW];
  3942. /*
  3943. * Estimate the amount of memory available for userspace allocations,
  3944. * without causing swapping.
  3945. */
  3946. available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3947. /*
  3948. * Not all the page cache can be freed, otherwise the system will
  3949. * start swapping. Assume at least half of the page cache, or the
  3950. * low watermark worth of cache, needs to stay.
  3951. */
  3952. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3953. pagecache -= min(pagecache / 2, wmark_low);
  3954. available += pagecache;
  3955. /*
  3956. * Part of the reclaimable slab consists of items that are in use,
  3957. * and cannot be freed. Cap this estimate at the low watermark.
  3958. */
  3959. available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
  3960. min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
  3961. wmark_low);
  3962. if (available < 0)
  3963. available = 0;
  3964. return available;
  3965. }
  3966. EXPORT_SYMBOL_GPL(si_mem_available);
  3967. void si_meminfo(struct sysinfo *val)
  3968. {
  3969. val->totalram = totalram_pages;
  3970. val->sharedram = global_node_page_state(NR_SHMEM);
  3971. val->freeram = global_zone_page_state(NR_FREE_PAGES);
  3972. val->bufferram = nr_blockdev_pages();
  3973. val->totalhigh = totalhigh_pages;
  3974. val->freehigh = nr_free_highpages();
  3975. val->mem_unit = PAGE_SIZE;
  3976. }
  3977. EXPORT_SYMBOL(si_meminfo);
  3978. #ifdef CONFIG_NUMA
  3979. void si_meminfo_node(struct sysinfo *val, int nid)
  3980. {
  3981. int zone_type; /* needs to be signed */
  3982. unsigned long managed_pages = 0;
  3983. unsigned long managed_highpages = 0;
  3984. unsigned long free_highpages = 0;
  3985. pg_data_t *pgdat = NODE_DATA(nid);
  3986. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3987. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3988. val->totalram = managed_pages;
  3989. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  3990. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  3991. #ifdef CONFIG_HIGHMEM
  3992. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3993. struct zone *zone = &pgdat->node_zones[zone_type];
  3994. if (is_highmem(zone)) {
  3995. managed_highpages += zone->managed_pages;
  3996. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3997. }
  3998. }
  3999. val->totalhigh = managed_highpages;
  4000. val->freehigh = free_highpages;
  4001. #else
  4002. val->totalhigh = managed_highpages;
  4003. val->freehigh = free_highpages;
  4004. #endif
  4005. val->mem_unit = PAGE_SIZE;
  4006. }
  4007. #endif
  4008. /*
  4009. * Determine whether the node should be displayed or not, depending on whether
  4010. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  4011. */
  4012. static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
  4013. {
  4014. if (!(flags & SHOW_MEM_FILTER_NODES))
  4015. return false;
  4016. /*
  4017. * no node mask - aka implicit memory numa policy. Do not bother with
  4018. * the synchronization - read_mems_allowed_begin - because we do not
  4019. * have to be precise here.
  4020. */
  4021. if (!nodemask)
  4022. nodemask = &cpuset_current_mems_allowed;
  4023. return !node_isset(nid, *nodemask);
  4024. }
  4025. #define K(x) ((x) << (PAGE_SHIFT-10))
  4026. static void show_migration_types(unsigned char type)
  4027. {
  4028. static const char types[MIGRATE_TYPES] = {
  4029. [MIGRATE_UNMOVABLE] = 'U',
  4030. [MIGRATE_MOVABLE] = 'M',
  4031. [MIGRATE_RECLAIMABLE] = 'E',
  4032. [MIGRATE_HIGHATOMIC] = 'H',
  4033. #ifdef CONFIG_CMA
  4034. [MIGRATE_CMA] = 'C',
  4035. #endif
  4036. #ifdef CONFIG_MEMORY_ISOLATION
  4037. [MIGRATE_ISOLATE] = 'I',
  4038. #endif
  4039. };
  4040. char tmp[MIGRATE_TYPES + 1];
  4041. char *p = tmp;
  4042. int i;
  4043. for (i = 0; i < MIGRATE_TYPES; i++) {
  4044. if (type & (1 << i))
  4045. *p++ = types[i];
  4046. }
  4047. *p = '\0';
  4048. printk(KERN_CONT "(%s) ", tmp);
  4049. }
  4050. /*
  4051. * Show free area list (used inside shift_scroll-lock stuff)
  4052. * We also calculate the percentage fragmentation. We do this by counting the
  4053. * memory on each free list with the exception of the first item on the list.
  4054. *
  4055. * Bits in @filter:
  4056. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  4057. * cpuset.
  4058. */
  4059. void show_free_areas(unsigned int filter, nodemask_t *nodemask)
  4060. {
  4061. unsigned long free_pcp = 0;
  4062. int cpu;
  4063. struct zone *zone;
  4064. pg_data_t *pgdat;
  4065. for_each_populated_zone(zone) {
  4066. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4067. continue;
  4068. for_each_online_cpu(cpu)
  4069. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4070. }
  4071. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  4072. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  4073. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  4074. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  4075. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  4076. " free:%lu free_pcp:%lu free_cma:%lu\n",
  4077. global_node_page_state(NR_ACTIVE_ANON),
  4078. global_node_page_state(NR_INACTIVE_ANON),
  4079. global_node_page_state(NR_ISOLATED_ANON),
  4080. global_node_page_state(NR_ACTIVE_FILE),
  4081. global_node_page_state(NR_INACTIVE_FILE),
  4082. global_node_page_state(NR_ISOLATED_FILE),
  4083. global_node_page_state(NR_UNEVICTABLE),
  4084. global_node_page_state(NR_FILE_DIRTY),
  4085. global_node_page_state(NR_WRITEBACK),
  4086. global_node_page_state(NR_UNSTABLE_NFS),
  4087. global_node_page_state(NR_SLAB_RECLAIMABLE),
  4088. global_node_page_state(NR_SLAB_UNRECLAIMABLE),
  4089. global_node_page_state(NR_FILE_MAPPED),
  4090. global_node_page_state(NR_SHMEM),
  4091. global_zone_page_state(NR_PAGETABLE),
  4092. global_zone_page_state(NR_BOUNCE),
  4093. global_zone_page_state(NR_FREE_PAGES),
  4094. free_pcp,
  4095. global_zone_page_state(NR_FREE_CMA_PAGES));
  4096. for_each_online_pgdat(pgdat) {
  4097. if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
  4098. continue;
  4099. printk("Node %d"
  4100. " active_anon:%lukB"
  4101. " inactive_anon:%lukB"
  4102. " active_file:%lukB"
  4103. " inactive_file:%lukB"
  4104. " unevictable:%lukB"
  4105. " isolated(anon):%lukB"
  4106. " isolated(file):%lukB"
  4107. " mapped:%lukB"
  4108. " dirty:%lukB"
  4109. " writeback:%lukB"
  4110. " shmem:%lukB"
  4111. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4112. " shmem_thp: %lukB"
  4113. " shmem_pmdmapped: %lukB"
  4114. " anon_thp: %lukB"
  4115. #endif
  4116. " writeback_tmp:%lukB"
  4117. " unstable:%lukB"
  4118. " all_unreclaimable? %s"
  4119. "\n",
  4120. pgdat->node_id,
  4121. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  4122. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  4123. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  4124. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  4125. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  4126. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  4127. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  4128. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  4129. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  4130. K(node_page_state(pgdat, NR_WRITEBACK)),
  4131. K(node_page_state(pgdat, NR_SHMEM)),
  4132. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4133. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  4134. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  4135. * HPAGE_PMD_NR),
  4136. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  4137. #endif
  4138. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  4139. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  4140. pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
  4141. "yes" : "no");
  4142. }
  4143. for_each_populated_zone(zone) {
  4144. int i;
  4145. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4146. continue;
  4147. free_pcp = 0;
  4148. for_each_online_cpu(cpu)
  4149. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4150. show_node(zone);
  4151. printk(KERN_CONT
  4152. "%s"
  4153. " free:%lukB"
  4154. " min:%lukB"
  4155. " low:%lukB"
  4156. " high:%lukB"
  4157. " active_anon:%lukB"
  4158. " inactive_anon:%lukB"
  4159. " active_file:%lukB"
  4160. " inactive_file:%lukB"
  4161. " unevictable:%lukB"
  4162. " writepending:%lukB"
  4163. " present:%lukB"
  4164. " managed:%lukB"
  4165. " mlocked:%lukB"
  4166. " kernel_stack:%lukB"
  4167. " pagetables:%lukB"
  4168. " bounce:%lukB"
  4169. " free_pcp:%lukB"
  4170. " local_pcp:%ukB"
  4171. " free_cma:%lukB"
  4172. "\n",
  4173. zone->name,
  4174. K(zone_page_state(zone, NR_FREE_PAGES)),
  4175. K(min_wmark_pages(zone)),
  4176. K(low_wmark_pages(zone)),
  4177. K(high_wmark_pages(zone)),
  4178. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  4179. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  4180. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  4181. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  4182. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  4183. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  4184. K(zone->present_pages),
  4185. K(zone->managed_pages),
  4186. K(zone_page_state(zone, NR_MLOCK)),
  4187. zone_page_state(zone, NR_KERNEL_STACK_KB),
  4188. K(zone_page_state(zone, NR_PAGETABLE)),
  4189. K(zone_page_state(zone, NR_BOUNCE)),
  4190. K(free_pcp),
  4191. K(this_cpu_read(zone->pageset->pcp.count)),
  4192. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  4193. printk("lowmem_reserve[]:");
  4194. for (i = 0; i < MAX_NR_ZONES; i++)
  4195. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  4196. printk(KERN_CONT "\n");
  4197. }
  4198. for_each_populated_zone(zone) {
  4199. unsigned int order;
  4200. unsigned long nr[MAX_ORDER], flags, total = 0;
  4201. unsigned char types[MAX_ORDER];
  4202. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4203. continue;
  4204. show_node(zone);
  4205. printk(KERN_CONT "%s: ", zone->name);
  4206. spin_lock_irqsave(&zone->lock, flags);
  4207. for (order = 0; order < MAX_ORDER; order++) {
  4208. struct free_area *area = &zone->free_area[order];
  4209. int type;
  4210. nr[order] = area->nr_free;
  4211. total += nr[order] << order;
  4212. types[order] = 0;
  4213. for (type = 0; type < MIGRATE_TYPES; type++) {
  4214. if (!list_empty(&area->free_list[type]))
  4215. types[order] |= 1 << type;
  4216. }
  4217. }
  4218. spin_unlock_irqrestore(&zone->lock, flags);
  4219. for (order = 0; order < MAX_ORDER; order++) {
  4220. printk(KERN_CONT "%lu*%lukB ",
  4221. nr[order], K(1UL) << order);
  4222. if (nr[order])
  4223. show_migration_types(types[order]);
  4224. }
  4225. printk(KERN_CONT "= %lukB\n", K(total));
  4226. }
  4227. hugetlb_show_meminfo();
  4228. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  4229. show_swap_cache_info();
  4230. }
  4231. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  4232. {
  4233. zoneref->zone = zone;
  4234. zoneref->zone_idx = zone_idx(zone);
  4235. }
  4236. /*
  4237. * Builds allocation fallback zone lists.
  4238. *
  4239. * Add all populated zones of a node to the zonelist.
  4240. */
  4241. static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
  4242. {
  4243. struct zone *zone;
  4244. enum zone_type zone_type = MAX_NR_ZONES;
  4245. int nr_zones = 0;
  4246. do {
  4247. zone_type--;
  4248. zone = pgdat->node_zones + zone_type;
  4249. if (managed_zone(zone)) {
  4250. zoneref_set_zone(zone, &zonerefs[nr_zones++]);
  4251. check_highest_zone(zone_type);
  4252. }
  4253. } while (zone_type);
  4254. return nr_zones;
  4255. }
  4256. #ifdef CONFIG_NUMA
  4257. static int __parse_numa_zonelist_order(char *s)
  4258. {
  4259. /*
  4260. * We used to support different zonlists modes but they turned
  4261. * out to be just not useful. Let's keep the warning in place
  4262. * if somebody still use the cmd line parameter so that we do
  4263. * not fail it silently
  4264. */
  4265. if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
  4266. pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
  4267. return -EINVAL;
  4268. }
  4269. return 0;
  4270. }
  4271. static __init int setup_numa_zonelist_order(char *s)
  4272. {
  4273. if (!s)
  4274. return 0;
  4275. return __parse_numa_zonelist_order(s);
  4276. }
  4277. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4278. char numa_zonelist_order[] = "Node";
  4279. /*
  4280. * sysctl handler for numa_zonelist_order
  4281. */
  4282. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4283. void __user *buffer, size_t *length,
  4284. loff_t *ppos)
  4285. {
  4286. char *str;
  4287. int ret;
  4288. if (!write)
  4289. return proc_dostring(table, write, buffer, length, ppos);
  4290. str = memdup_user_nul(buffer, 16);
  4291. if (IS_ERR(str))
  4292. return PTR_ERR(str);
  4293. ret = __parse_numa_zonelist_order(str);
  4294. kfree(str);
  4295. return ret;
  4296. }
  4297. #define MAX_NODE_LOAD (nr_online_nodes)
  4298. static int node_load[MAX_NUMNODES];
  4299. /**
  4300. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4301. * @node: node whose fallback list we're appending
  4302. * @used_node_mask: nodemask_t of already used nodes
  4303. *
  4304. * We use a number of factors to determine which is the next node that should
  4305. * appear on a given node's fallback list. The node should not have appeared
  4306. * already in @node's fallback list, and it should be the next closest node
  4307. * according to the distance array (which contains arbitrary distance values
  4308. * from each node to each node in the system), and should also prefer nodes
  4309. * with no CPUs, since presumably they'll have very little allocation pressure
  4310. * on them otherwise.
  4311. * It returns -1 if no node is found.
  4312. */
  4313. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4314. {
  4315. int n, val;
  4316. int min_val = INT_MAX;
  4317. int best_node = NUMA_NO_NODE;
  4318. const struct cpumask *tmp = cpumask_of_node(0);
  4319. /* Use the local node if we haven't already */
  4320. if (!node_isset(node, *used_node_mask)) {
  4321. node_set(node, *used_node_mask);
  4322. return node;
  4323. }
  4324. for_each_node_state(n, N_MEMORY) {
  4325. /* Don't want a node to appear more than once */
  4326. if (node_isset(n, *used_node_mask))
  4327. continue;
  4328. /* Use the distance array to find the distance */
  4329. val = node_distance(node, n);
  4330. /* Penalize nodes under us ("prefer the next node") */
  4331. val += (n < node);
  4332. /* Give preference to headless and unused nodes */
  4333. tmp = cpumask_of_node(n);
  4334. if (!cpumask_empty(tmp))
  4335. val += PENALTY_FOR_NODE_WITH_CPUS;
  4336. /* Slight preference for less loaded node */
  4337. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4338. val += node_load[n];
  4339. if (val < min_val) {
  4340. min_val = val;
  4341. best_node = n;
  4342. }
  4343. }
  4344. if (best_node >= 0)
  4345. node_set(best_node, *used_node_mask);
  4346. return best_node;
  4347. }
  4348. /*
  4349. * Build zonelists ordered by node and zones within node.
  4350. * This results in maximum locality--normal zone overflows into local
  4351. * DMA zone, if any--but risks exhausting DMA zone.
  4352. */
  4353. static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
  4354. unsigned nr_nodes)
  4355. {
  4356. struct zoneref *zonerefs;
  4357. int i;
  4358. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4359. for (i = 0; i < nr_nodes; i++) {
  4360. int nr_zones;
  4361. pg_data_t *node = NODE_DATA(node_order[i]);
  4362. nr_zones = build_zonerefs_node(node, zonerefs);
  4363. zonerefs += nr_zones;
  4364. }
  4365. zonerefs->zone = NULL;
  4366. zonerefs->zone_idx = 0;
  4367. }
  4368. /*
  4369. * Build gfp_thisnode zonelists
  4370. */
  4371. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4372. {
  4373. struct zoneref *zonerefs;
  4374. int nr_zones;
  4375. zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
  4376. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4377. zonerefs += nr_zones;
  4378. zonerefs->zone = NULL;
  4379. zonerefs->zone_idx = 0;
  4380. }
  4381. /*
  4382. * Build zonelists ordered by zone and nodes within zones.
  4383. * This results in conserving DMA zone[s] until all Normal memory is
  4384. * exhausted, but results in overflowing to remote node while memory
  4385. * may still exist in local DMA zone.
  4386. */
  4387. static void build_zonelists(pg_data_t *pgdat)
  4388. {
  4389. static int node_order[MAX_NUMNODES];
  4390. int node, load, nr_nodes = 0;
  4391. nodemask_t used_mask;
  4392. int local_node, prev_node;
  4393. /* NUMA-aware ordering of nodes */
  4394. local_node = pgdat->node_id;
  4395. load = nr_online_nodes;
  4396. prev_node = local_node;
  4397. nodes_clear(used_mask);
  4398. memset(node_order, 0, sizeof(node_order));
  4399. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4400. /*
  4401. * We don't want to pressure a particular node.
  4402. * So adding penalty to the first node in same
  4403. * distance group to make it round-robin.
  4404. */
  4405. if (node_distance(local_node, node) !=
  4406. node_distance(local_node, prev_node))
  4407. node_load[node] = load;
  4408. node_order[nr_nodes++] = node;
  4409. prev_node = node;
  4410. load--;
  4411. }
  4412. build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
  4413. build_thisnode_zonelists(pgdat);
  4414. }
  4415. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4416. /*
  4417. * Return node id of node used for "local" allocations.
  4418. * I.e., first node id of first zone in arg node's generic zonelist.
  4419. * Used for initializing percpu 'numa_mem', which is used primarily
  4420. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4421. */
  4422. int local_memory_node(int node)
  4423. {
  4424. struct zoneref *z;
  4425. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4426. gfp_zone(GFP_KERNEL),
  4427. NULL);
  4428. return z->zone->node;
  4429. }
  4430. #endif
  4431. static void setup_min_unmapped_ratio(void);
  4432. static void setup_min_slab_ratio(void);
  4433. #else /* CONFIG_NUMA */
  4434. static void build_zonelists(pg_data_t *pgdat)
  4435. {
  4436. int node, local_node;
  4437. struct zoneref *zonerefs;
  4438. int nr_zones;
  4439. local_node = pgdat->node_id;
  4440. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4441. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4442. zonerefs += nr_zones;
  4443. /*
  4444. * Now we build the zonelist so that it contains the zones
  4445. * of all the other nodes.
  4446. * We don't want to pressure a particular node, so when
  4447. * building the zones for node N, we make sure that the
  4448. * zones coming right after the local ones are those from
  4449. * node N+1 (modulo N)
  4450. */
  4451. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4452. if (!node_online(node))
  4453. continue;
  4454. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4455. zonerefs += nr_zones;
  4456. }
  4457. for (node = 0; node < local_node; node++) {
  4458. if (!node_online(node))
  4459. continue;
  4460. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4461. zonerefs += nr_zones;
  4462. }
  4463. zonerefs->zone = NULL;
  4464. zonerefs->zone_idx = 0;
  4465. }
  4466. #endif /* CONFIG_NUMA */
  4467. /*
  4468. * Boot pageset table. One per cpu which is going to be used for all
  4469. * zones and all nodes. The parameters will be set in such a way
  4470. * that an item put on a list will immediately be handed over to
  4471. * the buddy list. This is safe since pageset manipulation is done
  4472. * with interrupts disabled.
  4473. *
  4474. * The boot_pagesets must be kept even after bootup is complete for
  4475. * unused processors and/or zones. They do play a role for bootstrapping
  4476. * hotplugged processors.
  4477. *
  4478. * zoneinfo_show() and maybe other functions do
  4479. * not check if the processor is online before following the pageset pointer.
  4480. * Other parts of the kernel may not check if the zone is available.
  4481. */
  4482. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4483. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4484. static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
  4485. static void __build_all_zonelists(void *data)
  4486. {
  4487. int nid;
  4488. int __maybe_unused cpu;
  4489. pg_data_t *self = data;
  4490. static DEFINE_SPINLOCK(lock);
  4491. spin_lock(&lock);
  4492. #ifdef CONFIG_NUMA
  4493. memset(node_load, 0, sizeof(node_load));
  4494. #endif
  4495. /*
  4496. * This node is hotadded and no memory is yet present. So just
  4497. * building zonelists is fine - no need to touch other nodes.
  4498. */
  4499. if (self && !node_online(self->node_id)) {
  4500. build_zonelists(self);
  4501. } else {
  4502. for_each_online_node(nid) {
  4503. pg_data_t *pgdat = NODE_DATA(nid);
  4504. build_zonelists(pgdat);
  4505. }
  4506. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4507. /*
  4508. * We now know the "local memory node" for each node--
  4509. * i.e., the node of the first zone in the generic zonelist.
  4510. * Set up numa_mem percpu variable for on-line cpus. During
  4511. * boot, only the boot cpu should be on-line; we'll init the
  4512. * secondary cpus' numa_mem as they come on-line. During
  4513. * node/memory hotplug, we'll fixup all on-line cpus.
  4514. */
  4515. for_each_online_cpu(cpu)
  4516. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4517. #endif
  4518. }
  4519. spin_unlock(&lock);
  4520. }
  4521. static noinline void __init
  4522. build_all_zonelists_init(void)
  4523. {
  4524. int cpu;
  4525. __build_all_zonelists(NULL);
  4526. /*
  4527. * Initialize the boot_pagesets that are going to be used
  4528. * for bootstrapping processors. The real pagesets for
  4529. * each zone will be allocated later when the per cpu
  4530. * allocator is available.
  4531. *
  4532. * boot_pagesets are used also for bootstrapping offline
  4533. * cpus if the system is already booted because the pagesets
  4534. * are needed to initialize allocators on a specific cpu too.
  4535. * F.e. the percpu allocator needs the page allocator which
  4536. * needs the percpu allocator in order to allocate its pagesets
  4537. * (a chicken-egg dilemma).
  4538. */
  4539. for_each_possible_cpu(cpu)
  4540. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4541. mminit_verify_zonelist();
  4542. cpuset_init_current_mems_allowed();
  4543. }
  4544. /*
  4545. * unless system_state == SYSTEM_BOOTING.
  4546. *
  4547. * __ref due to call of __init annotated helper build_all_zonelists_init
  4548. * [protected by SYSTEM_BOOTING].
  4549. */
  4550. void __ref build_all_zonelists(pg_data_t *pgdat)
  4551. {
  4552. if (system_state == SYSTEM_BOOTING) {
  4553. build_all_zonelists_init();
  4554. } else {
  4555. __build_all_zonelists(pgdat);
  4556. /* cpuset refresh routine should be here */
  4557. }
  4558. vm_total_pages = nr_free_pagecache_pages();
  4559. /*
  4560. * Disable grouping by mobility if the number of pages in the
  4561. * system is too low to allow the mechanism to work. It would be
  4562. * more accurate, but expensive to check per-zone. This check is
  4563. * made on memory-hotadd so a system can start with mobility
  4564. * disabled and enable it later
  4565. */
  4566. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4567. page_group_by_mobility_disabled = 1;
  4568. else
  4569. page_group_by_mobility_disabled = 0;
  4570. pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
  4571. nr_online_nodes,
  4572. page_group_by_mobility_disabled ? "off" : "on",
  4573. vm_total_pages);
  4574. #ifdef CONFIG_NUMA
  4575. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4576. #endif
  4577. }
  4578. /*
  4579. * Initially all pages are reserved - free ones are freed
  4580. * up by free_all_bootmem() once the early boot process is
  4581. * done. Non-atomic initialization, single-pass.
  4582. */
  4583. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4584. unsigned long start_pfn, enum memmap_context context)
  4585. {
  4586. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4587. unsigned long end_pfn = start_pfn + size;
  4588. pg_data_t *pgdat = NODE_DATA(nid);
  4589. unsigned long pfn;
  4590. unsigned long nr_initialised = 0;
  4591. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4592. struct memblock_region *r = NULL, *tmp;
  4593. #endif
  4594. if (highest_memmap_pfn < end_pfn - 1)
  4595. highest_memmap_pfn = end_pfn - 1;
  4596. /*
  4597. * Honor reservation requested by the driver for this ZONE_DEVICE
  4598. * memory
  4599. */
  4600. if (altmap && start_pfn == altmap->base_pfn)
  4601. start_pfn += altmap->reserve;
  4602. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4603. /*
  4604. * There can be holes in boot-time mem_map[]s handed to this
  4605. * function. They do not exist on hotplugged memory.
  4606. */
  4607. if (context != MEMMAP_EARLY)
  4608. goto not_early;
  4609. if (!early_pfn_valid(pfn)) {
  4610. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4611. /*
  4612. * Skip to the pfn preceding the next valid one (or
  4613. * end_pfn), such that we hit a valid pfn (or end_pfn)
  4614. * on our next iteration of the loop.
  4615. */
  4616. pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
  4617. #endif
  4618. continue;
  4619. }
  4620. if (!early_pfn_in_nid(pfn, nid))
  4621. continue;
  4622. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4623. break;
  4624. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4625. /*
  4626. * Check given memblock attribute by firmware which can affect
  4627. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4628. * mirrored, it's an overlapped memmap init. skip it.
  4629. */
  4630. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4631. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4632. for_each_memblock(memory, tmp)
  4633. if (pfn < memblock_region_memory_end_pfn(tmp))
  4634. break;
  4635. r = tmp;
  4636. }
  4637. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4638. memblock_is_mirror(r)) {
  4639. /* already initialized as NORMAL */
  4640. pfn = memblock_region_memory_end_pfn(r);
  4641. continue;
  4642. }
  4643. }
  4644. #endif
  4645. not_early:
  4646. /*
  4647. * Mark the block movable so that blocks are reserved for
  4648. * movable at startup. This will force kernel allocations
  4649. * to reserve their blocks rather than leaking throughout
  4650. * the address space during boot when many long-lived
  4651. * kernel allocations are made.
  4652. *
  4653. * bitmap is created for zone's valid pfn range. but memmap
  4654. * can be created for invalid pages (for alignment)
  4655. * check here not to call set_pageblock_migratetype() against
  4656. * pfn out of zone.
  4657. */
  4658. if (!(pfn & (pageblock_nr_pages - 1))) {
  4659. struct page *page = pfn_to_page(pfn);
  4660. __init_single_page(page, pfn, zone, nid);
  4661. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4662. cond_resched();
  4663. } else {
  4664. __init_single_pfn(pfn, zone, nid);
  4665. }
  4666. }
  4667. }
  4668. static void __meminit zone_init_free_lists(struct zone *zone)
  4669. {
  4670. unsigned int order, t;
  4671. for_each_migratetype_order(order, t) {
  4672. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4673. zone->free_area[order].nr_free = 0;
  4674. }
  4675. }
  4676. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4677. #define memmap_init(size, nid, zone, start_pfn) \
  4678. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4679. #endif
  4680. static int zone_batchsize(struct zone *zone)
  4681. {
  4682. #ifdef CONFIG_MMU
  4683. int batch;
  4684. /*
  4685. * The per-cpu-pages pools are set to around 1000th of the
  4686. * size of the zone. But no more than 1/2 of a meg.
  4687. *
  4688. * OK, so we don't know how big the cache is. So guess.
  4689. */
  4690. batch = zone->managed_pages / 1024;
  4691. if (batch * PAGE_SIZE > 512 * 1024)
  4692. batch = (512 * 1024) / PAGE_SIZE;
  4693. batch /= 4; /* We effectively *= 4 below */
  4694. if (batch < 1)
  4695. batch = 1;
  4696. /*
  4697. * Clamp the batch to a 2^n - 1 value. Having a power
  4698. * of 2 value was found to be more likely to have
  4699. * suboptimal cache aliasing properties in some cases.
  4700. *
  4701. * For example if 2 tasks are alternately allocating
  4702. * batches of pages, one task can end up with a lot
  4703. * of pages of one half of the possible page colors
  4704. * and the other with pages of the other colors.
  4705. */
  4706. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4707. return batch;
  4708. #else
  4709. /* The deferral and batching of frees should be suppressed under NOMMU
  4710. * conditions.
  4711. *
  4712. * The problem is that NOMMU needs to be able to allocate large chunks
  4713. * of contiguous memory as there's no hardware page translation to
  4714. * assemble apparent contiguous memory from discontiguous pages.
  4715. *
  4716. * Queueing large contiguous runs of pages for batching, however,
  4717. * causes the pages to actually be freed in smaller chunks. As there
  4718. * can be a significant delay between the individual batches being
  4719. * recycled, this leads to the once large chunks of space being
  4720. * fragmented and becoming unavailable for high-order allocations.
  4721. */
  4722. return 0;
  4723. #endif
  4724. }
  4725. /*
  4726. * pcp->high and pcp->batch values are related and dependent on one another:
  4727. * ->batch must never be higher then ->high.
  4728. * The following function updates them in a safe manner without read side
  4729. * locking.
  4730. *
  4731. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4732. * those fields changing asynchronously (acording the the above rule).
  4733. *
  4734. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4735. * outside of boot time (or some other assurance that no concurrent updaters
  4736. * exist).
  4737. */
  4738. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4739. unsigned long batch)
  4740. {
  4741. /* start with a fail safe value for batch */
  4742. pcp->batch = 1;
  4743. smp_wmb();
  4744. /* Update high, then batch, in order */
  4745. pcp->high = high;
  4746. smp_wmb();
  4747. pcp->batch = batch;
  4748. }
  4749. /* a companion to pageset_set_high() */
  4750. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4751. {
  4752. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4753. }
  4754. static void pageset_init(struct per_cpu_pageset *p)
  4755. {
  4756. struct per_cpu_pages *pcp;
  4757. int migratetype;
  4758. memset(p, 0, sizeof(*p));
  4759. pcp = &p->pcp;
  4760. pcp->count = 0;
  4761. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4762. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4763. }
  4764. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4765. {
  4766. pageset_init(p);
  4767. pageset_set_batch(p, batch);
  4768. }
  4769. /*
  4770. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4771. * to the value high for the pageset p.
  4772. */
  4773. static void pageset_set_high(struct per_cpu_pageset *p,
  4774. unsigned long high)
  4775. {
  4776. unsigned long batch = max(1UL, high / 4);
  4777. if ((high / 4) > (PAGE_SHIFT * 8))
  4778. batch = PAGE_SHIFT * 8;
  4779. pageset_update(&p->pcp, high, batch);
  4780. }
  4781. static void pageset_set_high_and_batch(struct zone *zone,
  4782. struct per_cpu_pageset *pcp)
  4783. {
  4784. if (percpu_pagelist_fraction)
  4785. pageset_set_high(pcp,
  4786. (zone->managed_pages /
  4787. percpu_pagelist_fraction));
  4788. else
  4789. pageset_set_batch(pcp, zone_batchsize(zone));
  4790. }
  4791. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4792. {
  4793. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4794. pageset_init(pcp);
  4795. pageset_set_high_and_batch(zone, pcp);
  4796. }
  4797. void __meminit setup_zone_pageset(struct zone *zone)
  4798. {
  4799. int cpu;
  4800. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4801. for_each_possible_cpu(cpu)
  4802. zone_pageset_init(zone, cpu);
  4803. }
  4804. /*
  4805. * Allocate per cpu pagesets and initialize them.
  4806. * Before this call only boot pagesets were available.
  4807. */
  4808. void __init setup_per_cpu_pageset(void)
  4809. {
  4810. struct pglist_data *pgdat;
  4811. struct zone *zone;
  4812. for_each_populated_zone(zone)
  4813. setup_zone_pageset(zone);
  4814. for_each_online_pgdat(pgdat)
  4815. pgdat->per_cpu_nodestats =
  4816. alloc_percpu(struct per_cpu_nodestat);
  4817. }
  4818. static __meminit void zone_pcp_init(struct zone *zone)
  4819. {
  4820. /*
  4821. * per cpu subsystem is not up at this point. The following code
  4822. * relies on the ability of the linker to provide the
  4823. * offset of a (static) per cpu variable into the per cpu area.
  4824. */
  4825. zone->pageset = &boot_pageset;
  4826. if (populated_zone(zone))
  4827. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4828. zone->name, zone->present_pages,
  4829. zone_batchsize(zone));
  4830. }
  4831. void __meminit init_currently_empty_zone(struct zone *zone,
  4832. unsigned long zone_start_pfn,
  4833. unsigned long size)
  4834. {
  4835. struct pglist_data *pgdat = zone->zone_pgdat;
  4836. pgdat->nr_zones = zone_idx(zone) + 1;
  4837. zone->zone_start_pfn = zone_start_pfn;
  4838. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4839. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4840. pgdat->node_id,
  4841. (unsigned long)zone_idx(zone),
  4842. zone_start_pfn, (zone_start_pfn + size));
  4843. zone_init_free_lists(zone);
  4844. zone->initialized = 1;
  4845. }
  4846. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4847. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4848. /*
  4849. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4850. */
  4851. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4852. struct mminit_pfnnid_cache *state)
  4853. {
  4854. unsigned long start_pfn, end_pfn;
  4855. int nid;
  4856. if (state->last_start <= pfn && pfn < state->last_end)
  4857. return state->last_nid;
  4858. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4859. if (nid != -1) {
  4860. state->last_start = start_pfn;
  4861. state->last_end = end_pfn;
  4862. state->last_nid = nid;
  4863. }
  4864. return nid;
  4865. }
  4866. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4867. /**
  4868. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4869. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4870. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4871. *
  4872. * If an architecture guarantees that all ranges registered contain no holes
  4873. * and may be freed, this this function may be used instead of calling
  4874. * memblock_free_early_nid() manually.
  4875. */
  4876. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4877. {
  4878. unsigned long start_pfn, end_pfn;
  4879. int i, this_nid;
  4880. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4881. start_pfn = min(start_pfn, max_low_pfn);
  4882. end_pfn = min(end_pfn, max_low_pfn);
  4883. if (start_pfn < end_pfn)
  4884. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4885. (end_pfn - start_pfn) << PAGE_SHIFT,
  4886. this_nid);
  4887. }
  4888. }
  4889. /**
  4890. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4891. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4892. *
  4893. * If an architecture guarantees that all ranges registered contain no holes and may
  4894. * be freed, this function may be used instead of calling memory_present() manually.
  4895. */
  4896. void __init sparse_memory_present_with_active_regions(int nid)
  4897. {
  4898. unsigned long start_pfn, end_pfn;
  4899. int i, this_nid;
  4900. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4901. memory_present(this_nid, start_pfn, end_pfn);
  4902. }
  4903. /**
  4904. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4905. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4906. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4907. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4908. *
  4909. * It returns the start and end page frame of a node based on information
  4910. * provided by memblock_set_node(). If called for a node
  4911. * with no available memory, a warning is printed and the start and end
  4912. * PFNs will be 0.
  4913. */
  4914. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4915. unsigned long *start_pfn, unsigned long *end_pfn)
  4916. {
  4917. unsigned long this_start_pfn, this_end_pfn;
  4918. int i;
  4919. *start_pfn = -1UL;
  4920. *end_pfn = 0;
  4921. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4922. *start_pfn = min(*start_pfn, this_start_pfn);
  4923. *end_pfn = max(*end_pfn, this_end_pfn);
  4924. }
  4925. if (*start_pfn == -1UL)
  4926. *start_pfn = 0;
  4927. }
  4928. /*
  4929. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4930. * assumption is made that zones within a node are ordered in monotonic
  4931. * increasing memory addresses so that the "highest" populated zone is used
  4932. */
  4933. static void __init find_usable_zone_for_movable(void)
  4934. {
  4935. int zone_index;
  4936. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4937. if (zone_index == ZONE_MOVABLE)
  4938. continue;
  4939. if (arch_zone_highest_possible_pfn[zone_index] >
  4940. arch_zone_lowest_possible_pfn[zone_index])
  4941. break;
  4942. }
  4943. VM_BUG_ON(zone_index == -1);
  4944. movable_zone = zone_index;
  4945. }
  4946. /*
  4947. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4948. * because it is sized independent of architecture. Unlike the other zones,
  4949. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4950. * in each node depending on the size of each node and how evenly kernelcore
  4951. * is distributed. This helper function adjusts the zone ranges
  4952. * provided by the architecture for a given node by using the end of the
  4953. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4954. * zones within a node are in order of monotonic increases memory addresses
  4955. */
  4956. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4957. unsigned long zone_type,
  4958. unsigned long node_start_pfn,
  4959. unsigned long node_end_pfn,
  4960. unsigned long *zone_start_pfn,
  4961. unsigned long *zone_end_pfn)
  4962. {
  4963. /* Only adjust if ZONE_MOVABLE is on this node */
  4964. if (zone_movable_pfn[nid]) {
  4965. /* Size ZONE_MOVABLE */
  4966. if (zone_type == ZONE_MOVABLE) {
  4967. *zone_start_pfn = zone_movable_pfn[nid];
  4968. *zone_end_pfn = min(node_end_pfn,
  4969. arch_zone_highest_possible_pfn[movable_zone]);
  4970. /* Adjust for ZONE_MOVABLE starting within this range */
  4971. } else if (!mirrored_kernelcore &&
  4972. *zone_start_pfn < zone_movable_pfn[nid] &&
  4973. *zone_end_pfn > zone_movable_pfn[nid]) {
  4974. *zone_end_pfn = zone_movable_pfn[nid];
  4975. /* Check if this whole range is within ZONE_MOVABLE */
  4976. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4977. *zone_start_pfn = *zone_end_pfn;
  4978. }
  4979. }
  4980. /*
  4981. * Return the number of pages a zone spans in a node, including holes
  4982. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4983. */
  4984. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4985. unsigned long zone_type,
  4986. unsigned long node_start_pfn,
  4987. unsigned long node_end_pfn,
  4988. unsigned long *zone_start_pfn,
  4989. unsigned long *zone_end_pfn,
  4990. unsigned long *ignored)
  4991. {
  4992. /* When hotadd a new node from cpu_up(), the node should be empty */
  4993. if (!node_start_pfn && !node_end_pfn)
  4994. return 0;
  4995. /* Get the start and end of the zone */
  4996. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4997. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4998. adjust_zone_range_for_zone_movable(nid, zone_type,
  4999. node_start_pfn, node_end_pfn,
  5000. zone_start_pfn, zone_end_pfn);
  5001. /* Check that this node has pages within the zone's required range */
  5002. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  5003. return 0;
  5004. /* Move the zone boundaries inside the node if necessary */
  5005. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  5006. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  5007. /* Return the spanned pages */
  5008. return *zone_end_pfn - *zone_start_pfn;
  5009. }
  5010. /*
  5011. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  5012. * then all holes in the requested range will be accounted for.
  5013. */
  5014. unsigned long __meminit __absent_pages_in_range(int nid,
  5015. unsigned long range_start_pfn,
  5016. unsigned long range_end_pfn)
  5017. {
  5018. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  5019. unsigned long start_pfn, end_pfn;
  5020. int i;
  5021. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5022. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  5023. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  5024. nr_absent -= end_pfn - start_pfn;
  5025. }
  5026. return nr_absent;
  5027. }
  5028. /**
  5029. * absent_pages_in_range - Return number of page frames in holes within a range
  5030. * @start_pfn: The start PFN to start searching for holes
  5031. * @end_pfn: The end PFN to stop searching for holes
  5032. *
  5033. * It returns the number of pages frames in memory holes within a range.
  5034. */
  5035. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  5036. unsigned long end_pfn)
  5037. {
  5038. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  5039. }
  5040. /* Return the number of page frames in holes in a zone on a node */
  5041. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  5042. unsigned long zone_type,
  5043. unsigned long node_start_pfn,
  5044. unsigned long node_end_pfn,
  5045. unsigned long *ignored)
  5046. {
  5047. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  5048. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  5049. unsigned long zone_start_pfn, zone_end_pfn;
  5050. unsigned long nr_absent;
  5051. /* When hotadd a new node from cpu_up(), the node should be empty */
  5052. if (!node_start_pfn && !node_end_pfn)
  5053. return 0;
  5054. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  5055. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  5056. adjust_zone_range_for_zone_movable(nid, zone_type,
  5057. node_start_pfn, node_end_pfn,
  5058. &zone_start_pfn, &zone_end_pfn);
  5059. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  5060. /*
  5061. * ZONE_MOVABLE handling.
  5062. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  5063. * and vice versa.
  5064. */
  5065. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  5066. unsigned long start_pfn, end_pfn;
  5067. struct memblock_region *r;
  5068. for_each_memblock(memory, r) {
  5069. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  5070. zone_start_pfn, zone_end_pfn);
  5071. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  5072. zone_start_pfn, zone_end_pfn);
  5073. if (zone_type == ZONE_MOVABLE &&
  5074. memblock_is_mirror(r))
  5075. nr_absent += end_pfn - start_pfn;
  5076. if (zone_type == ZONE_NORMAL &&
  5077. !memblock_is_mirror(r))
  5078. nr_absent += end_pfn - start_pfn;
  5079. }
  5080. }
  5081. return nr_absent;
  5082. }
  5083. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5084. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  5085. unsigned long zone_type,
  5086. unsigned long node_start_pfn,
  5087. unsigned long node_end_pfn,
  5088. unsigned long *zone_start_pfn,
  5089. unsigned long *zone_end_pfn,
  5090. unsigned long *zones_size)
  5091. {
  5092. unsigned int zone;
  5093. *zone_start_pfn = node_start_pfn;
  5094. for (zone = 0; zone < zone_type; zone++)
  5095. *zone_start_pfn += zones_size[zone];
  5096. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  5097. return zones_size[zone_type];
  5098. }
  5099. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  5100. unsigned long zone_type,
  5101. unsigned long node_start_pfn,
  5102. unsigned long node_end_pfn,
  5103. unsigned long *zholes_size)
  5104. {
  5105. if (!zholes_size)
  5106. return 0;
  5107. return zholes_size[zone_type];
  5108. }
  5109. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5110. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5111. unsigned long node_start_pfn,
  5112. unsigned long node_end_pfn,
  5113. unsigned long *zones_size,
  5114. unsigned long *zholes_size)
  5115. {
  5116. unsigned long realtotalpages = 0, totalpages = 0;
  5117. enum zone_type i;
  5118. for (i = 0; i < MAX_NR_ZONES; i++) {
  5119. struct zone *zone = pgdat->node_zones + i;
  5120. unsigned long zone_start_pfn, zone_end_pfn;
  5121. unsigned long size, real_size;
  5122. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5123. node_start_pfn,
  5124. node_end_pfn,
  5125. &zone_start_pfn,
  5126. &zone_end_pfn,
  5127. zones_size);
  5128. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5129. node_start_pfn, node_end_pfn,
  5130. zholes_size);
  5131. if (size)
  5132. zone->zone_start_pfn = zone_start_pfn;
  5133. else
  5134. zone->zone_start_pfn = 0;
  5135. zone->spanned_pages = size;
  5136. zone->present_pages = real_size;
  5137. totalpages += size;
  5138. realtotalpages += real_size;
  5139. }
  5140. pgdat->node_spanned_pages = totalpages;
  5141. pgdat->node_present_pages = realtotalpages;
  5142. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5143. realtotalpages);
  5144. }
  5145. #ifndef CONFIG_SPARSEMEM
  5146. /*
  5147. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5148. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5149. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5150. * round what is now in bits to nearest long in bits, then return it in
  5151. * bytes.
  5152. */
  5153. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5154. {
  5155. unsigned long usemapsize;
  5156. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5157. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5158. usemapsize = usemapsize >> pageblock_order;
  5159. usemapsize *= NR_PAGEBLOCK_BITS;
  5160. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5161. return usemapsize / 8;
  5162. }
  5163. static void __init setup_usemap(struct pglist_data *pgdat,
  5164. struct zone *zone,
  5165. unsigned long zone_start_pfn,
  5166. unsigned long zonesize)
  5167. {
  5168. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5169. zone->pageblock_flags = NULL;
  5170. if (usemapsize)
  5171. zone->pageblock_flags =
  5172. memblock_virt_alloc_node_nopanic(usemapsize,
  5173. pgdat->node_id);
  5174. }
  5175. #else
  5176. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5177. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5178. #endif /* CONFIG_SPARSEMEM */
  5179. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5180. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5181. void __paginginit set_pageblock_order(void)
  5182. {
  5183. unsigned int order;
  5184. /* Check that pageblock_nr_pages has not already been setup */
  5185. if (pageblock_order)
  5186. return;
  5187. if (HPAGE_SHIFT > PAGE_SHIFT)
  5188. order = HUGETLB_PAGE_ORDER;
  5189. else
  5190. order = MAX_ORDER - 1;
  5191. /*
  5192. * Assume the largest contiguous order of interest is a huge page.
  5193. * This value may be variable depending on boot parameters on IA64 and
  5194. * powerpc.
  5195. */
  5196. pageblock_order = order;
  5197. }
  5198. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5199. /*
  5200. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5201. * is unused as pageblock_order is set at compile-time. See
  5202. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5203. * the kernel config
  5204. */
  5205. void __paginginit set_pageblock_order(void)
  5206. {
  5207. }
  5208. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5209. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5210. unsigned long present_pages)
  5211. {
  5212. unsigned long pages = spanned_pages;
  5213. /*
  5214. * Provide a more accurate estimation if there are holes within
  5215. * the zone and SPARSEMEM is in use. If there are holes within the
  5216. * zone, each populated memory region may cost us one or two extra
  5217. * memmap pages due to alignment because memmap pages for each
  5218. * populated regions may not be naturally aligned on page boundary.
  5219. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5220. */
  5221. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5222. IS_ENABLED(CONFIG_SPARSEMEM))
  5223. pages = present_pages;
  5224. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5225. }
  5226. /*
  5227. * Set up the zone data structures:
  5228. * - mark all pages reserved
  5229. * - mark all memory queues empty
  5230. * - clear the memory bitmaps
  5231. *
  5232. * NOTE: pgdat should get zeroed by caller.
  5233. */
  5234. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5235. {
  5236. enum zone_type j;
  5237. int nid = pgdat->node_id;
  5238. pgdat_resize_init(pgdat);
  5239. #ifdef CONFIG_NUMA_BALANCING
  5240. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5241. pgdat->numabalancing_migrate_nr_pages = 0;
  5242. pgdat->numabalancing_migrate_next_window = jiffies;
  5243. #endif
  5244. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5245. spin_lock_init(&pgdat->split_queue_lock);
  5246. INIT_LIST_HEAD(&pgdat->split_queue);
  5247. pgdat->split_queue_len = 0;
  5248. #endif
  5249. init_waitqueue_head(&pgdat->kswapd_wait);
  5250. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5251. #ifdef CONFIG_COMPACTION
  5252. init_waitqueue_head(&pgdat->kcompactd_wait);
  5253. #endif
  5254. pgdat_page_ext_init(pgdat);
  5255. spin_lock_init(&pgdat->lru_lock);
  5256. lruvec_init(node_lruvec(pgdat));
  5257. pgdat->per_cpu_nodestats = &boot_nodestats;
  5258. for (j = 0; j < MAX_NR_ZONES; j++) {
  5259. struct zone *zone = pgdat->node_zones + j;
  5260. unsigned long size, realsize, freesize, memmap_pages;
  5261. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5262. size = zone->spanned_pages;
  5263. realsize = freesize = zone->present_pages;
  5264. /*
  5265. * Adjust freesize so that it accounts for how much memory
  5266. * is used by this zone for memmap. This affects the watermark
  5267. * and per-cpu initialisations
  5268. */
  5269. memmap_pages = calc_memmap_size(size, realsize);
  5270. if (!is_highmem_idx(j)) {
  5271. if (freesize >= memmap_pages) {
  5272. freesize -= memmap_pages;
  5273. if (memmap_pages)
  5274. printk(KERN_DEBUG
  5275. " %s zone: %lu pages used for memmap\n",
  5276. zone_names[j], memmap_pages);
  5277. } else
  5278. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5279. zone_names[j], memmap_pages, freesize);
  5280. }
  5281. /* Account for reserved pages */
  5282. if (j == 0 && freesize > dma_reserve) {
  5283. freesize -= dma_reserve;
  5284. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5285. zone_names[0], dma_reserve);
  5286. }
  5287. if (!is_highmem_idx(j))
  5288. nr_kernel_pages += freesize;
  5289. /* Charge for highmem memmap if there are enough kernel pages */
  5290. else if (nr_kernel_pages > memmap_pages * 2)
  5291. nr_kernel_pages -= memmap_pages;
  5292. nr_all_pages += freesize;
  5293. /*
  5294. * Set an approximate value for lowmem here, it will be adjusted
  5295. * when the bootmem allocator frees pages into the buddy system.
  5296. * And all highmem pages will be managed by the buddy system.
  5297. */
  5298. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5299. #ifdef CONFIG_NUMA
  5300. zone->node = nid;
  5301. #endif
  5302. zone->name = zone_names[j];
  5303. zone->zone_pgdat = pgdat;
  5304. spin_lock_init(&zone->lock);
  5305. zone_seqlock_init(zone);
  5306. zone_pcp_init(zone);
  5307. if (!size)
  5308. continue;
  5309. set_pageblock_order();
  5310. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5311. init_currently_empty_zone(zone, zone_start_pfn, size);
  5312. memmap_init(size, nid, j, zone_start_pfn);
  5313. }
  5314. }
  5315. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5316. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5317. {
  5318. unsigned long __maybe_unused start = 0;
  5319. unsigned long __maybe_unused offset = 0;
  5320. /* Skip empty nodes */
  5321. if (!pgdat->node_spanned_pages)
  5322. return;
  5323. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5324. offset = pgdat->node_start_pfn - start;
  5325. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5326. if (!pgdat->node_mem_map) {
  5327. unsigned long size, end;
  5328. struct page *map;
  5329. /*
  5330. * The zone's endpoints aren't required to be MAX_ORDER
  5331. * aligned but the node_mem_map endpoints must be in order
  5332. * for the buddy allocator to function correctly.
  5333. */
  5334. end = pgdat_end_pfn(pgdat);
  5335. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5336. size = (end - start) * sizeof(struct page);
  5337. map = alloc_remap(pgdat->node_id, size);
  5338. if (!map)
  5339. map = memblock_virt_alloc_node_nopanic(size,
  5340. pgdat->node_id);
  5341. pgdat->node_mem_map = map + offset;
  5342. }
  5343. pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5344. __func__, pgdat->node_id, (unsigned long)pgdat,
  5345. (unsigned long)pgdat->node_mem_map);
  5346. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5347. /*
  5348. * With no DISCONTIG, the global mem_map is just set as node 0's
  5349. */
  5350. if (pgdat == NODE_DATA(0)) {
  5351. mem_map = NODE_DATA(0)->node_mem_map;
  5352. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5353. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5354. mem_map -= offset;
  5355. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5356. }
  5357. #endif
  5358. }
  5359. #else
  5360. static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
  5361. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5362. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5363. unsigned long node_start_pfn, unsigned long *zholes_size)
  5364. {
  5365. pg_data_t *pgdat = NODE_DATA(nid);
  5366. unsigned long start_pfn = 0;
  5367. unsigned long end_pfn = 0;
  5368. /* pg_data_t should be reset to zero when it's allocated */
  5369. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5370. pgdat->node_id = nid;
  5371. pgdat->node_start_pfn = node_start_pfn;
  5372. pgdat->per_cpu_nodestats = NULL;
  5373. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5374. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5375. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5376. (u64)start_pfn << PAGE_SHIFT,
  5377. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5378. #else
  5379. start_pfn = node_start_pfn;
  5380. #endif
  5381. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5382. zones_size, zholes_size);
  5383. alloc_node_mem_map(pgdat);
  5384. reset_deferred_meminit(pgdat);
  5385. free_area_init_core(pgdat);
  5386. }
  5387. #ifdef CONFIG_HAVE_MEMBLOCK
  5388. /*
  5389. * Only struct pages that are backed by physical memory are zeroed and
  5390. * initialized by going through __init_single_page(). But, there are some
  5391. * struct pages which are reserved in memblock allocator and their fields
  5392. * may be accessed (for example page_to_pfn() on some configuration accesses
  5393. * flags). We must explicitly zero those struct pages.
  5394. */
  5395. void __paginginit zero_resv_unavail(void)
  5396. {
  5397. phys_addr_t start, end;
  5398. unsigned long pfn;
  5399. u64 i, pgcnt;
  5400. /*
  5401. * Loop through ranges that are reserved, but do not have reported
  5402. * physical memory backing.
  5403. */
  5404. pgcnt = 0;
  5405. for_each_resv_unavail_range(i, &start, &end) {
  5406. for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
  5407. if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
  5408. continue;
  5409. mm_zero_struct_page(pfn_to_page(pfn));
  5410. pgcnt++;
  5411. }
  5412. }
  5413. /*
  5414. * Struct pages that do not have backing memory. This could be because
  5415. * firmware is using some of this memory, or for some other reasons.
  5416. * Once memblock is changed so such behaviour is not allowed: i.e.
  5417. * list of "reserved" memory must be a subset of list of "memory", then
  5418. * this code can be removed.
  5419. */
  5420. if (pgcnt)
  5421. pr_info("Reserved but unavailable: %lld pages", pgcnt);
  5422. }
  5423. #endif /* CONFIG_HAVE_MEMBLOCK */
  5424. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5425. #if MAX_NUMNODES > 1
  5426. /*
  5427. * Figure out the number of possible node ids.
  5428. */
  5429. void __init setup_nr_node_ids(void)
  5430. {
  5431. unsigned int highest;
  5432. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5433. nr_node_ids = highest + 1;
  5434. }
  5435. #endif
  5436. /**
  5437. * node_map_pfn_alignment - determine the maximum internode alignment
  5438. *
  5439. * This function should be called after node map is populated and sorted.
  5440. * It calculates the maximum power of two alignment which can distinguish
  5441. * all the nodes.
  5442. *
  5443. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5444. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5445. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5446. * shifted, 1GiB is enough and this function will indicate so.
  5447. *
  5448. * This is used to test whether pfn -> nid mapping of the chosen memory
  5449. * model has fine enough granularity to avoid incorrect mapping for the
  5450. * populated node map.
  5451. *
  5452. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5453. * requirement (single node).
  5454. */
  5455. unsigned long __init node_map_pfn_alignment(void)
  5456. {
  5457. unsigned long accl_mask = 0, last_end = 0;
  5458. unsigned long start, end, mask;
  5459. int last_nid = -1;
  5460. int i, nid;
  5461. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5462. if (!start || last_nid < 0 || last_nid == nid) {
  5463. last_nid = nid;
  5464. last_end = end;
  5465. continue;
  5466. }
  5467. /*
  5468. * Start with a mask granular enough to pin-point to the
  5469. * start pfn and tick off bits one-by-one until it becomes
  5470. * too coarse to separate the current node from the last.
  5471. */
  5472. mask = ~((1 << __ffs(start)) - 1);
  5473. while (mask && last_end <= (start & (mask << 1)))
  5474. mask <<= 1;
  5475. /* accumulate all internode masks */
  5476. accl_mask |= mask;
  5477. }
  5478. /* convert mask to number of pages */
  5479. return ~accl_mask + 1;
  5480. }
  5481. /* Find the lowest pfn for a node */
  5482. static unsigned long __init find_min_pfn_for_node(int nid)
  5483. {
  5484. unsigned long min_pfn = ULONG_MAX;
  5485. unsigned long start_pfn;
  5486. int i;
  5487. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5488. min_pfn = min(min_pfn, start_pfn);
  5489. if (min_pfn == ULONG_MAX) {
  5490. pr_warn("Could not find start_pfn for node %d\n", nid);
  5491. return 0;
  5492. }
  5493. return min_pfn;
  5494. }
  5495. /**
  5496. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5497. *
  5498. * It returns the minimum PFN based on information provided via
  5499. * memblock_set_node().
  5500. */
  5501. unsigned long __init find_min_pfn_with_active_regions(void)
  5502. {
  5503. return find_min_pfn_for_node(MAX_NUMNODES);
  5504. }
  5505. /*
  5506. * early_calculate_totalpages()
  5507. * Sum pages in active regions for movable zone.
  5508. * Populate N_MEMORY for calculating usable_nodes.
  5509. */
  5510. static unsigned long __init early_calculate_totalpages(void)
  5511. {
  5512. unsigned long totalpages = 0;
  5513. unsigned long start_pfn, end_pfn;
  5514. int i, nid;
  5515. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5516. unsigned long pages = end_pfn - start_pfn;
  5517. totalpages += pages;
  5518. if (pages)
  5519. node_set_state(nid, N_MEMORY);
  5520. }
  5521. return totalpages;
  5522. }
  5523. /*
  5524. * Find the PFN the Movable zone begins in each node. Kernel memory
  5525. * is spread evenly between nodes as long as the nodes have enough
  5526. * memory. When they don't, some nodes will have more kernelcore than
  5527. * others
  5528. */
  5529. static void __init find_zone_movable_pfns_for_nodes(void)
  5530. {
  5531. int i, nid;
  5532. unsigned long usable_startpfn;
  5533. unsigned long kernelcore_node, kernelcore_remaining;
  5534. /* save the state before borrow the nodemask */
  5535. nodemask_t saved_node_state = node_states[N_MEMORY];
  5536. unsigned long totalpages = early_calculate_totalpages();
  5537. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5538. struct memblock_region *r;
  5539. /* Need to find movable_zone earlier when movable_node is specified. */
  5540. find_usable_zone_for_movable();
  5541. /*
  5542. * If movable_node is specified, ignore kernelcore and movablecore
  5543. * options.
  5544. */
  5545. if (movable_node_is_enabled()) {
  5546. for_each_memblock(memory, r) {
  5547. if (!memblock_is_hotpluggable(r))
  5548. continue;
  5549. nid = r->nid;
  5550. usable_startpfn = PFN_DOWN(r->base);
  5551. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5552. min(usable_startpfn, zone_movable_pfn[nid]) :
  5553. usable_startpfn;
  5554. }
  5555. goto out2;
  5556. }
  5557. /*
  5558. * If kernelcore=mirror is specified, ignore movablecore option
  5559. */
  5560. if (mirrored_kernelcore) {
  5561. bool mem_below_4gb_not_mirrored = false;
  5562. for_each_memblock(memory, r) {
  5563. if (memblock_is_mirror(r))
  5564. continue;
  5565. nid = r->nid;
  5566. usable_startpfn = memblock_region_memory_base_pfn(r);
  5567. if (usable_startpfn < 0x100000) {
  5568. mem_below_4gb_not_mirrored = true;
  5569. continue;
  5570. }
  5571. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5572. min(usable_startpfn, zone_movable_pfn[nid]) :
  5573. usable_startpfn;
  5574. }
  5575. if (mem_below_4gb_not_mirrored)
  5576. pr_warn("This configuration results in unmirrored kernel memory.");
  5577. goto out2;
  5578. }
  5579. /*
  5580. * If movablecore=nn[KMG] was specified, calculate what size of
  5581. * kernelcore that corresponds so that memory usable for
  5582. * any allocation type is evenly spread. If both kernelcore
  5583. * and movablecore are specified, then the value of kernelcore
  5584. * will be used for required_kernelcore if it's greater than
  5585. * what movablecore would have allowed.
  5586. */
  5587. if (required_movablecore) {
  5588. unsigned long corepages;
  5589. /*
  5590. * Round-up so that ZONE_MOVABLE is at least as large as what
  5591. * was requested by the user
  5592. */
  5593. required_movablecore =
  5594. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5595. required_movablecore = min(totalpages, required_movablecore);
  5596. corepages = totalpages - required_movablecore;
  5597. required_kernelcore = max(required_kernelcore, corepages);
  5598. }
  5599. /*
  5600. * If kernelcore was not specified or kernelcore size is larger
  5601. * than totalpages, there is no ZONE_MOVABLE.
  5602. */
  5603. if (!required_kernelcore || required_kernelcore >= totalpages)
  5604. goto out;
  5605. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5606. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5607. restart:
  5608. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5609. kernelcore_node = required_kernelcore / usable_nodes;
  5610. for_each_node_state(nid, N_MEMORY) {
  5611. unsigned long start_pfn, end_pfn;
  5612. /*
  5613. * Recalculate kernelcore_node if the division per node
  5614. * now exceeds what is necessary to satisfy the requested
  5615. * amount of memory for the kernel
  5616. */
  5617. if (required_kernelcore < kernelcore_node)
  5618. kernelcore_node = required_kernelcore / usable_nodes;
  5619. /*
  5620. * As the map is walked, we track how much memory is usable
  5621. * by the kernel using kernelcore_remaining. When it is
  5622. * 0, the rest of the node is usable by ZONE_MOVABLE
  5623. */
  5624. kernelcore_remaining = kernelcore_node;
  5625. /* Go through each range of PFNs within this node */
  5626. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5627. unsigned long size_pages;
  5628. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5629. if (start_pfn >= end_pfn)
  5630. continue;
  5631. /* Account for what is only usable for kernelcore */
  5632. if (start_pfn < usable_startpfn) {
  5633. unsigned long kernel_pages;
  5634. kernel_pages = min(end_pfn, usable_startpfn)
  5635. - start_pfn;
  5636. kernelcore_remaining -= min(kernel_pages,
  5637. kernelcore_remaining);
  5638. required_kernelcore -= min(kernel_pages,
  5639. required_kernelcore);
  5640. /* Continue if range is now fully accounted */
  5641. if (end_pfn <= usable_startpfn) {
  5642. /*
  5643. * Push zone_movable_pfn to the end so
  5644. * that if we have to rebalance
  5645. * kernelcore across nodes, we will
  5646. * not double account here
  5647. */
  5648. zone_movable_pfn[nid] = end_pfn;
  5649. continue;
  5650. }
  5651. start_pfn = usable_startpfn;
  5652. }
  5653. /*
  5654. * The usable PFN range for ZONE_MOVABLE is from
  5655. * start_pfn->end_pfn. Calculate size_pages as the
  5656. * number of pages used as kernelcore
  5657. */
  5658. size_pages = end_pfn - start_pfn;
  5659. if (size_pages > kernelcore_remaining)
  5660. size_pages = kernelcore_remaining;
  5661. zone_movable_pfn[nid] = start_pfn + size_pages;
  5662. /*
  5663. * Some kernelcore has been met, update counts and
  5664. * break if the kernelcore for this node has been
  5665. * satisfied
  5666. */
  5667. required_kernelcore -= min(required_kernelcore,
  5668. size_pages);
  5669. kernelcore_remaining -= size_pages;
  5670. if (!kernelcore_remaining)
  5671. break;
  5672. }
  5673. }
  5674. /*
  5675. * If there is still required_kernelcore, we do another pass with one
  5676. * less node in the count. This will push zone_movable_pfn[nid] further
  5677. * along on the nodes that still have memory until kernelcore is
  5678. * satisfied
  5679. */
  5680. usable_nodes--;
  5681. if (usable_nodes && required_kernelcore > usable_nodes)
  5682. goto restart;
  5683. out2:
  5684. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5685. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5686. zone_movable_pfn[nid] =
  5687. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5688. out:
  5689. /* restore the node_state */
  5690. node_states[N_MEMORY] = saved_node_state;
  5691. }
  5692. /* Any regular or high memory on that node ? */
  5693. static void check_for_memory(pg_data_t *pgdat, int nid)
  5694. {
  5695. enum zone_type zone_type;
  5696. if (N_MEMORY == N_NORMAL_MEMORY)
  5697. return;
  5698. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5699. struct zone *zone = &pgdat->node_zones[zone_type];
  5700. if (populated_zone(zone)) {
  5701. node_set_state(nid, N_HIGH_MEMORY);
  5702. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5703. zone_type <= ZONE_NORMAL)
  5704. node_set_state(nid, N_NORMAL_MEMORY);
  5705. break;
  5706. }
  5707. }
  5708. }
  5709. /**
  5710. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5711. * @max_zone_pfn: an array of max PFNs for each zone
  5712. *
  5713. * This will call free_area_init_node() for each active node in the system.
  5714. * Using the page ranges provided by memblock_set_node(), the size of each
  5715. * zone in each node and their holes is calculated. If the maximum PFN
  5716. * between two adjacent zones match, it is assumed that the zone is empty.
  5717. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5718. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5719. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5720. * at arch_max_dma_pfn.
  5721. */
  5722. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5723. {
  5724. unsigned long start_pfn, end_pfn;
  5725. int i, nid;
  5726. /* Record where the zone boundaries are */
  5727. memset(arch_zone_lowest_possible_pfn, 0,
  5728. sizeof(arch_zone_lowest_possible_pfn));
  5729. memset(arch_zone_highest_possible_pfn, 0,
  5730. sizeof(arch_zone_highest_possible_pfn));
  5731. start_pfn = find_min_pfn_with_active_regions();
  5732. for (i = 0; i < MAX_NR_ZONES; i++) {
  5733. if (i == ZONE_MOVABLE)
  5734. continue;
  5735. end_pfn = max(max_zone_pfn[i], start_pfn);
  5736. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5737. arch_zone_highest_possible_pfn[i] = end_pfn;
  5738. start_pfn = end_pfn;
  5739. }
  5740. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5741. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5742. find_zone_movable_pfns_for_nodes();
  5743. /* Print out the zone ranges */
  5744. pr_info("Zone ranges:\n");
  5745. for (i = 0; i < MAX_NR_ZONES; i++) {
  5746. if (i == ZONE_MOVABLE)
  5747. continue;
  5748. pr_info(" %-8s ", zone_names[i]);
  5749. if (arch_zone_lowest_possible_pfn[i] ==
  5750. arch_zone_highest_possible_pfn[i])
  5751. pr_cont("empty\n");
  5752. else
  5753. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5754. (u64)arch_zone_lowest_possible_pfn[i]
  5755. << PAGE_SHIFT,
  5756. ((u64)arch_zone_highest_possible_pfn[i]
  5757. << PAGE_SHIFT) - 1);
  5758. }
  5759. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5760. pr_info("Movable zone start for each node\n");
  5761. for (i = 0; i < MAX_NUMNODES; i++) {
  5762. if (zone_movable_pfn[i])
  5763. pr_info(" Node %d: %#018Lx\n", i,
  5764. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5765. }
  5766. /* Print out the early node map */
  5767. pr_info("Early memory node ranges\n");
  5768. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5769. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5770. (u64)start_pfn << PAGE_SHIFT,
  5771. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5772. /* Initialise every node */
  5773. mminit_verify_pageflags_layout();
  5774. setup_nr_node_ids();
  5775. for_each_online_node(nid) {
  5776. pg_data_t *pgdat = NODE_DATA(nid);
  5777. free_area_init_node(nid, NULL,
  5778. find_min_pfn_for_node(nid), NULL);
  5779. /* Any memory on that node */
  5780. if (pgdat->node_present_pages)
  5781. node_set_state(nid, N_MEMORY);
  5782. check_for_memory(pgdat, nid);
  5783. }
  5784. zero_resv_unavail();
  5785. }
  5786. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5787. {
  5788. unsigned long long coremem;
  5789. if (!p)
  5790. return -EINVAL;
  5791. coremem = memparse(p, &p);
  5792. *core = coremem >> PAGE_SHIFT;
  5793. /* Paranoid check that UL is enough for the coremem value */
  5794. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5795. return 0;
  5796. }
  5797. /*
  5798. * kernelcore=size sets the amount of memory for use for allocations that
  5799. * cannot be reclaimed or migrated.
  5800. */
  5801. static int __init cmdline_parse_kernelcore(char *p)
  5802. {
  5803. /* parse kernelcore=mirror */
  5804. if (parse_option_str(p, "mirror")) {
  5805. mirrored_kernelcore = true;
  5806. return 0;
  5807. }
  5808. return cmdline_parse_core(p, &required_kernelcore);
  5809. }
  5810. /*
  5811. * movablecore=size sets the amount of memory for use for allocations that
  5812. * can be reclaimed or migrated.
  5813. */
  5814. static int __init cmdline_parse_movablecore(char *p)
  5815. {
  5816. return cmdline_parse_core(p, &required_movablecore);
  5817. }
  5818. early_param("kernelcore", cmdline_parse_kernelcore);
  5819. early_param("movablecore", cmdline_parse_movablecore);
  5820. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5821. void adjust_managed_page_count(struct page *page, long count)
  5822. {
  5823. spin_lock(&managed_page_count_lock);
  5824. page_zone(page)->managed_pages += count;
  5825. totalram_pages += count;
  5826. #ifdef CONFIG_HIGHMEM
  5827. if (PageHighMem(page))
  5828. totalhigh_pages += count;
  5829. #endif
  5830. spin_unlock(&managed_page_count_lock);
  5831. }
  5832. EXPORT_SYMBOL(adjust_managed_page_count);
  5833. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5834. {
  5835. void *pos;
  5836. unsigned long pages = 0;
  5837. start = (void *)PAGE_ALIGN((unsigned long)start);
  5838. end = (void *)((unsigned long)end & PAGE_MASK);
  5839. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5840. if ((unsigned int)poison <= 0xFF)
  5841. memset(pos, poison, PAGE_SIZE);
  5842. free_reserved_page(virt_to_page(pos));
  5843. }
  5844. if (pages && s)
  5845. pr_info("Freeing %s memory: %ldK\n",
  5846. s, pages << (PAGE_SHIFT - 10));
  5847. return pages;
  5848. }
  5849. EXPORT_SYMBOL(free_reserved_area);
  5850. #ifdef CONFIG_HIGHMEM
  5851. void free_highmem_page(struct page *page)
  5852. {
  5853. __free_reserved_page(page);
  5854. totalram_pages++;
  5855. page_zone(page)->managed_pages++;
  5856. totalhigh_pages++;
  5857. }
  5858. #endif
  5859. void __init mem_init_print_info(const char *str)
  5860. {
  5861. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5862. unsigned long init_code_size, init_data_size;
  5863. physpages = get_num_physpages();
  5864. codesize = _etext - _stext;
  5865. datasize = _edata - _sdata;
  5866. rosize = __end_rodata - __start_rodata;
  5867. bss_size = __bss_stop - __bss_start;
  5868. init_data_size = __init_end - __init_begin;
  5869. init_code_size = _einittext - _sinittext;
  5870. /*
  5871. * Detect special cases and adjust section sizes accordingly:
  5872. * 1) .init.* may be embedded into .data sections
  5873. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5874. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5875. * 3) .rodata.* may be embedded into .text or .data sections.
  5876. */
  5877. #define adj_init_size(start, end, size, pos, adj) \
  5878. do { \
  5879. if (start <= pos && pos < end && size > adj) \
  5880. size -= adj; \
  5881. } while (0)
  5882. adj_init_size(__init_begin, __init_end, init_data_size,
  5883. _sinittext, init_code_size);
  5884. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5885. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5886. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5887. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5888. #undef adj_init_size
  5889. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5890. #ifdef CONFIG_HIGHMEM
  5891. ", %luK highmem"
  5892. #endif
  5893. "%s%s)\n",
  5894. nr_free_pages() << (PAGE_SHIFT - 10),
  5895. physpages << (PAGE_SHIFT - 10),
  5896. codesize >> 10, datasize >> 10, rosize >> 10,
  5897. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5898. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5899. totalcma_pages << (PAGE_SHIFT - 10),
  5900. #ifdef CONFIG_HIGHMEM
  5901. totalhigh_pages << (PAGE_SHIFT - 10),
  5902. #endif
  5903. str ? ", " : "", str ? str : "");
  5904. }
  5905. /**
  5906. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5907. * @new_dma_reserve: The number of pages to mark reserved
  5908. *
  5909. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5910. * In the DMA zone, a significant percentage may be consumed by kernel image
  5911. * and other unfreeable allocations which can skew the watermarks badly. This
  5912. * function may optionally be used to account for unfreeable pages in the
  5913. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5914. * smaller per-cpu batchsize.
  5915. */
  5916. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5917. {
  5918. dma_reserve = new_dma_reserve;
  5919. }
  5920. void __init free_area_init(unsigned long *zones_size)
  5921. {
  5922. free_area_init_node(0, zones_size,
  5923. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5924. zero_resv_unavail();
  5925. }
  5926. static int page_alloc_cpu_dead(unsigned int cpu)
  5927. {
  5928. lru_add_drain_cpu(cpu);
  5929. drain_pages(cpu);
  5930. /*
  5931. * Spill the event counters of the dead processor
  5932. * into the current processors event counters.
  5933. * This artificially elevates the count of the current
  5934. * processor.
  5935. */
  5936. vm_events_fold_cpu(cpu);
  5937. /*
  5938. * Zero the differential counters of the dead processor
  5939. * so that the vm statistics are consistent.
  5940. *
  5941. * This is only okay since the processor is dead and cannot
  5942. * race with what we are doing.
  5943. */
  5944. cpu_vm_stats_fold(cpu);
  5945. return 0;
  5946. }
  5947. void __init page_alloc_init(void)
  5948. {
  5949. int ret;
  5950. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  5951. "mm/page_alloc:dead", NULL,
  5952. page_alloc_cpu_dead);
  5953. WARN_ON(ret < 0);
  5954. }
  5955. /*
  5956. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5957. * or min_free_kbytes changes.
  5958. */
  5959. static void calculate_totalreserve_pages(void)
  5960. {
  5961. struct pglist_data *pgdat;
  5962. unsigned long reserve_pages = 0;
  5963. enum zone_type i, j;
  5964. for_each_online_pgdat(pgdat) {
  5965. pgdat->totalreserve_pages = 0;
  5966. for (i = 0; i < MAX_NR_ZONES; i++) {
  5967. struct zone *zone = pgdat->node_zones + i;
  5968. long max = 0;
  5969. /* Find valid and maximum lowmem_reserve in the zone */
  5970. for (j = i; j < MAX_NR_ZONES; j++) {
  5971. if (zone->lowmem_reserve[j] > max)
  5972. max = zone->lowmem_reserve[j];
  5973. }
  5974. /* we treat the high watermark as reserved pages. */
  5975. max += high_wmark_pages(zone);
  5976. if (max > zone->managed_pages)
  5977. max = zone->managed_pages;
  5978. pgdat->totalreserve_pages += max;
  5979. reserve_pages += max;
  5980. }
  5981. }
  5982. totalreserve_pages = reserve_pages;
  5983. }
  5984. /*
  5985. * setup_per_zone_lowmem_reserve - called whenever
  5986. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5987. * has a correct pages reserved value, so an adequate number of
  5988. * pages are left in the zone after a successful __alloc_pages().
  5989. */
  5990. static void setup_per_zone_lowmem_reserve(void)
  5991. {
  5992. struct pglist_data *pgdat;
  5993. enum zone_type j, idx;
  5994. for_each_online_pgdat(pgdat) {
  5995. for (j = 0; j < MAX_NR_ZONES; j++) {
  5996. struct zone *zone = pgdat->node_zones + j;
  5997. unsigned long managed_pages = zone->managed_pages;
  5998. zone->lowmem_reserve[j] = 0;
  5999. idx = j;
  6000. while (idx) {
  6001. struct zone *lower_zone;
  6002. idx--;
  6003. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  6004. sysctl_lowmem_reserve_ratio[idx] = 1;
  6005. lower_zone = pgdat->node_zones + idx;
  6006. lower_zone->lowmem_reserve[j] = managed_pages /
  6007. sysctl_lowmem_reserve_ratio[idx];
  6008. managed_pages += lower_zone->managed_pages;
  6009. }
  6010. }
  6011. }
  6012. /* update totalreserve_pages */
  6013. calculate_totalreserve_pages();
  6014. }
  6015. static void __setup_per_zone_wmarks(void)
  6016. {
  6017. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  6018. unsigned long lowmem_pages = 0;
  6019. struct zone *zone;
  6020. unsigned long flags;
  6021. /* Calculate total number of !ZONE_HIGHMEM pages */
  6022. for_each_zone(zone) {
  6023. if (!is_highmem(zone))
  6024. lowmem_pages += zone->managed_pages;
  6025. }
  6026. for_each_zone(zone) {
  6027. u64 tmp;
  6028. spin_lock_irqsave(&zone->lock, flags);
  6029. tmp = (u64)pages_min * zone->managed_pages;
  6030. do_div(tmp, lowmem_pages);
  6031. if (is_highmem(zone)) {
  6032. /*
  6033. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  6034. * need highmem pages, so cap pages_min to a small
  6035. * value here.
  6036. *
  6037. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  6038. * deltas control asynch page reclaim, and so should
  6039. * not be capped for highmem.
  6040. */
  6041. unsigned long min_pages;
  6042. min_pages = zone->managed_pages / 1024;
  6043. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  6044. zone->watermark[WMARK_MIN] = min_pages;
  6045. } else {
  6046. /*
  6047. * If it's a lowmem zone, reserve a number of pages
  6048. * proportionate to the zone's size.
  6049. */
  6050. zone->watermark[WMARK_MIN] = tmp;
  6051. }
  6052. /*
  6053. * Set the kswapd watermarks distance according to the
  6054. * scale factor in proportion to available memory, but
  6055. * ensure a minimum size on small systems.
  6056. */
  6057. tmp = max_t(u64, tmp >> 2,
  6058. mult_frac(zone->managed_pages,
  6059. watermark_scale_factor, 10000));
  6060. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  6061. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  6062. spin_unlock_irqrestore(&zone->lock, flags);
  6063. }
  6064. /* update totalreserve_pages */
  6065. calculate_totalreserve_pages();
  6066. }
  6067. /**
  6068. * setup_per_zone_wmarks - called when min_free_kbytes changes
  6069. * or when memory is hot-{added|removed}
  6070. *
  6071. * Ensures that the watermark[min,low,high] values for each zone are set
  6072. * correctly with respect to min_free_kbytes.
  6073. */
  6074. void setup_per_zone_wmarks(void)
  6075. {
  6076. static DEFINE_SPINLOCK(lock);
  6077. spin_lock(&lock);
  6078. __setup_per_zone_wmarks();
  6079. spin_unlock(&lock);
  6080. }
  6081. /*
  6082. * Initialise min_free_kbytes.
  6083. *
  6084. * For small machines we want it small (128k min). For large machines
  6085. * we want it large (64MB max). But it is not linear, because network
  6086. * bandwidth does not increase linearly with machine size. We use
  6087. *
  6088. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  6089. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  6090. *
  6091. * which yields
  6092. *
  6093. * 16MB: 512k
  6094. * 32MB: 724k
  6095. * 64MB: 1024k
  6096. * 128MB: 1448k
  6097. * 256MB: 2048k
  6098. * 512MB: 2896k
  6099. * 1024MB: 4096k
  6100. * 2048MB: 5792k
  6101. * 4096MB: 8192k
  6102. * 8192MB: 11584k
  6103. * 16384MB: 16384k
  6104. */
  6105. int __meminit init_per_zone_wmark_min(void)
  6106. {
  6107. unsigned long lowmem_kbytes;
  6108. int new_min_free_kbytes;
  6109. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  6110. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  6111. if (new_min_free_kbytes > user_min_free_kbytes) {
  6112. min_free_kbytes = new_min_free_kbytes;
  6113. if (min_free_kbytes < 128)
  6114. min_free_kbytes = 128;
  6115. if (min_free_kbytes > 65536)
  6116. min_free_kbytes = 65536;
  6117. } else {
  6118. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  6119. new_min_free_kbytes, user_min_free_kbytes);
  6120. }
  6121. setup_per_zone_wmarks();
  6122. refresh_zone_stat_thresholds();
  6123. setup_per_zone_lowmem_reserve();
  6124. #ifdef CONFIG_NUMA
  6125. setup_min_unmapped_ratio();
  6126. setup_min_slab_ratio();
  6127. #endif
  6128. return 0;
  6129. }
  6130. core_initcall(init_per_zone_wmark_min)
  6131. /*
  6132. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  6133. * that we can call two helper functions whenever min_free_kbytes
  6134. * changes.
  6135. */
  6136. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  6137. void __user *buffer, size_t *length, loff_t *ppos)
  6138. {
  6139. int rc;
  6140. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6141. if (rc)
  6142. return rc;
  6143. if (write) {
  6144. user_min_free_kbytes = min_free_kbytes;
  6145. setup_per_zone_wmarks();
  6146. }
  6147. return 0;
  6148. }
  6149. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6150. void __user *buffer, size_t *length, loff_t *ppos)
  6151. {
  6152. int rc;
  6153. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6154. if (rc)
  6155. return rc;
  6156. if (write)
  6157. setup_per_zone_wmarks();
  6158. return 0;
  6159. }
  6160. #ifdef CONFIG_NUMA
  6161. static void setup_min_unmapped_ratio(void)
  6162. {
  6163. pg_data_t *pgdat;
  6164. struct zone *zone;
  6165. for_each_online_pgdat(pgdat)
  6166. pgdat->min_unmapped_pages = 0;
  6167. for_each_zone(zone)
  6168. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6169. sysctl_min_unmapped_ratio) / 100;
  6170. }
  6171. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6172. void __user *buffer, size_t *length, loff_t *ppos)
  6173. {
  6174. int rc;
  6175. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6176. if (rc)
  6177. return rc;
  6178. setup_min_unmapped_ratio();
  6179. return 0;
  6180. }
  6181. static void setup_min_slab_ratio(void)
  6182. {
  6183. pg_data_t *pgdat;
  6184. struct zone *zone;
  6185. for_each_online_pgdat(pgdat)
  6186. pgdat->min_slab_pages = 0;
  6187. for_each_zone(zone)
  6188. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6189. sysctl_min_slab_ratio) / 100;
  6190. }
  6191. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6192. void __user *buffer, size_t *length, loff_t *ppos)
  6193. {
  6194. int rc;
  6195. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6196. if (rc)
  6197. return rc;
  6198. setup_min_slab_ratio();
  6199. return 0;
  6200. }
  6201. #endif
  6202. /*
  6203. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6204. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6205. * whenever sysctl_lowmem_reserve_ratio changes.
  6206. *
  6207. * The reserve ratio obviously has absolutely no relation with the
  6208. * minimum watermarks. The lowmem reserve ratio can only make sense
  6209. * if in function of the boot time zone sizes.
  6210. */
  6211. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6212. void __user *buffer, size_t *length, loff_t *ppos)
  6213. {
  6214. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6215. setup_per_zone_lowmem_reserve();
  6216. return 0;
  6217. }
  6218. /*
  6219. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6220. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6221. * pagelist can have before it gets flushed back to buddy allocator.
  6222. */
  6223. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6224. void __user *buffer, size_t *length, loff_t *ppos)
  6225. {
  6226. struct zone *zone;
  6227. int old_percpu_pagelist_fraction;
  6228. int ret;
  6229. mutex_lock(&pcp_batch_high_lock);
  6230. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6231. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6232. if (!write || ret < 0)
  6233. goto out;
  6234. /* Sanity checking to avoid pcp imbalance */
  6235. if (percpu_pagelist_fraction &&
  6236. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6237. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6238. ret = -EINVAL;
  6239. goto out;
  6240. }
  6241. /* No change? */
  6242. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6243. goto out;
  6244. for_each_populated_zone(zone) {
  6245. unsigned int cpu;
  6246. for_each_possible_cpu(cpu)
  6247. pageset_set_high_and_batch(zone,
  6248. per_cpu_ptr(zone->pageset, cpu));
  6249. }
  6250. out:
  6251. mutex_unlock(&pcp_batch_high_lock);
  6252. return ret;
  6253. }
  6254. #ifdef CONFIG_NUMA
  6255. int hashdist = HASHDIST_DEFAULT;
  6256. static int __init set_hashdist(char *str)
  6257. {
  6258. if (!str)
  6259. return 0;
  6260. hashdist = simple_strtoul(str, &str, 0);
  6261. return 1;
  6262. }
  6263. __setup("hashdist=", set_hashdist);
  6264. #endif
  6265. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6266. /*
  6267. * Returns the number of pages that arch has reserved but
  6268. * is not known to alloc_large_system_hash().
  6269. */
  6270. static unsigned long __init arch_reserved_kernel_pages(void)
  6271. {
  6272. return 0;
  6273. }
  6274. #endif
  6275. /*
  6276. * Adaptive scale is meant to reduce sizes of hash tables on large memory
  6277. * machines. As memory size is increased the scale is also increased but at
  6278. * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
  6279. * quadruples the scale is increased by one, which means the size of hash table
  6280. * only doubles, instead of quadrupling as well.
  6281. * Because 32-bit systems cannot have large physical memory, where this scaling
  6282. * makes sense, it is disabled on such platforms.
  6283. */
  6284. #if __BITS_PER_LONG > 32
  6285. #define ADAPT_SCALE_BASE (64ul << 30)
  6286. #define ADAPT_SCALE_SHIFT 2
  6287. #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
  6288. #endif
  6289. /*
  6290. * allocate a large system hash table from bootmem
  6291. * - it is assumed that the hash table must contain an exact power-of-2
  6292. * quantity of entries
  6293. * - limit is the number of hash buckets, not the total allocation size
  6294. */
  6295. void *__init alloc_large_system_hash(const char *tablename,
  6296. unsigned long bucketsize,
  6297. unsigned long numentries,
  6298. int scale,
  6299. int flags,
  6300. unsigned int *_hash_shift,
  6301. unsigned int *_hash_mask,
  6302. unsigned long low_limit,
  6303. unsigned long high_limit)
  6304. {
  6305. unsigned long long max = high_limit;
  6306. unsigned long log2qty, size;
  6307. void *table = NULL;
  6308. gfp_t gfp_flags;
  6309. /* allow the kernel cmdline to have a say */
  6310. if (!numentries) {
  6311. /* round applicable memory size up to nearest megabyte */
  6312. numentries = nr_kernel_pages;
  6313. numentries -= arch_reserved_kernel_pages();
  6314. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6315. if (PAGE_SHIFT < 20)
  6316. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6317. #if __BITS_PER_LONG > 32
  6318. if (!high_limit) {
  6319. unsigned long adapt;
  6320. for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
  6321. adapt <<= ADAPT_SCALE_SHIFT)
  6322. scale++;
  6323. }
  6324. #endif
  6325. /* limit to 1 bucket per 2^scale bytes of low memory */
  6326. if (scale > PAGE_SHIFT)
  6327. numentries >>= (scale - PAGE_SHIFT);
  6328. else
  6329. numentries <<= (PAGE_SHIFT - scale);
  6330. /* Make sure we've got at least a 0-order allocation.. */
  6331. if (unlikely(flags & HASH_SMALL)) {
  6332. /* Makes no sense without HASH_EARLY */
  6333. WARN_ON(!(flags & HASH_EARLY));
  6334. if (!(numentries >> *_hash_shift)) {
  6335. numentries = 1UL << *_hash_shift;
  6336. BUG_ON(!numentries);
  6337. }
  6338. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6339. numentries = PAGE_SIZE / bucketsize;
  6340. }
  6341. numentries = roundup_pow_of_two(numentries);
  6342. /* limit allocation size to 1/16 total memory by default */
  6343. if (max == 0) {
  6344. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6345. do_div(max, bucketsize);
  6346. }
  6347. max = min(max, 0x80000000ULL);
  6348. if (numentries < low_limit)
  6349. numentries = low_limit;
  6350. if (numentries > max)
  6351. numentries = max;
  6352. log2qty = ilog2(numentries);
  6353. gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
  6354. do {
  6355. size = bucketsize << log2qty;
  6356. if (flags & HASH_EARLY) {
  6357. if (flags & HASH_ZERO)
  6358. table = memblock_virt_alloc_nopanic(size, 0);
  6359. else
  6360. table = memblock_virt_alloc_raw(size, 0);
  6361. } else if (hashdist) {
  6362. table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  6363. } else {
  6364. /*
  6365. * If bucketsize is not a power-of-two, we may free
  6366. * some pages at the end of hash table which
  6367. * alloc_pages_exact() automatically does
  6368. */
  6369. if (get_order(size) < MAX_ORDER) {
  6370. table = alloc_pages_exact(size, gfp_flags);
  6371. kmemleak_alloc(table, size, 1, gfp_flags);
  6372. }
  6373. }
  6374. } while (!table && size > PAGE_SIZE && --log2qty);
  6375. if (!table)
  6376. panic("Failed to allocate %s hash table\n", tablename);
  6377. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6378. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6379. if (_hash_shift)
  6380. *_hash_shift = log2qty;
  6381. if (_hash_mask)
  6382. *_hash_mask = (1 << log2qty) - 1;
  6383. return table;
  6384. }
  6385. /*
  6386. * This function checks whether pageblock includes unmovable pages or not.
  6387. * If @count is not zero, it is okay to include less @count unmovable pages
  6388. *
  6389. * PageLRU check without isolation or lru_lock could race so that
  6390. * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
  6391. * check without lock_page also may miss some movable non-lru pages at
  6392. * race condition. So you can't expect this function should be exact.
  6393. */
  6394. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6395. int migratetype,
  6396. bool skip_hwpoisoned_pages)
  6397. {
  6398. unsigned long pfn, iter, found;
  6399. /*
  6400. * For avoiding noise data, lru_add_drain_all() should be called
  6401. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6402. */
  6403. if (zone_idx(zone) == ZONE_MOVABLE)
  6404. return false;
  6405. /*
  6406. * CMA allocations (alloc_contig_range) really need to mark isolate
  6407. * CMA pageblocks even when they are not movable in fact so consider
  6408. * them movable here.
  6409. */
  6410. if (is_migrate_cma(migratetype) &&
  6411. is_migrate_cma(get_pageblock_migratetype(page)))
  6412. return false;
  6413. pfn = page_to_pfn(page);
  6414. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6415. unsigned long check = pfn + iter;
  6416. if (!pfn_valid_within(check))
  6417. continue;
  6418. page = pfn_to_page(check);
  6419. if (PageReserved(page))
  6420. return true;
  6421. /*
  6422. * Hugepages are not in LRU lists, but they're movable.
  6423. * We need not scan over tail pages bacause we don't
  6424. * handle each tail page individually in migration.
  6425. */
  6426. if (PageHuge(page)) {
  6427. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6428. continue;
  6429. }
  6430. /*
  6431. * We can't use page_count without pin a page
  6432. * because another CPU can free compound page.
  6433. * This check already skips compound tails of THP
  6434. * because their page->_refcount is zero at all time.
  6435. */
  6436. if (!page_ref_count(page)) {
  6437. if (PageBuddy(page))
  6438. iter += (1 << page_order(page)) - 1;
  6439. continue;
  6440. }
  6441. /*
  6442. * The HWPoisoned page may be not in buddy system, and
  6443. * page_count() is not 0.
  6444. */
  6445. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6446. continue;
  6447. if (__PageMovable(page))
  6448. continue;
  6449. if (!PageLRU(page))
  6450. found++;
  6451. /*
  6452. * If there are RECLAIMABLE pages, we need to check
  6453. * it. But now, memory offline itself doesn't call
  6454. * shrink_node_slabs() and it still to be fixed.
  6455. */
  6456. /*
  6457. * If the page is not RAM, page_count()should be 0.
  6458. * we don't need more check. This is an _used_ not-movable page.
  6459. *
  6460. * The problematic thing here is PG_reserved pages. PG_reserved
  6461. * is set to both of a memory hole page and a _used_ kernel
  6462. * page at boot.
  6463. */
  6464. if (found > count)
  6465. return true;
  6466. }
  6467. return false;
  6468. }
  6469. bool is_pageblock_removable_nolock(struct page *page)
  6470. {
  6471. struct zone *zone;
  6472. unsigned long pfn;
  6473. /*
  6474. * We have to be careful here because we are iterating over memory
  6475. * sections which are not zone aware so we might end up outside of
  6476. * the zone but still within the section.
  6477. * We have to take care about the node as well. If the node is offline
  6478. * its NODE_DATA will be NULL - see page_zone.
  6479. */
  6480. if (!node_online(page_to_nid(page)))
  6481. return false;
  6482. zone = page_zone(page);
  6483. pfn = page_to_pfn(page);
  6484. if (!zone_spans_pfn(zone, pfn))
  6485. return false;
  6486. return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
  6487. }
  6488. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6489. static unsigned long pfn_max_align_down(unsigned long pfn)
  6490. {
  6491. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6492. pageblock_nr_pages) - 1);
  6493. }
  6494. static unsigned long pfn_max_align_up(unsigned long pfn)
  6495. {
  6496. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6497. pageblock_nr_pages));
  6498. }
  6499. /* [start, end) must belong to a single zone. */
  6500. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6501. unsigned long start, unsigned long end)
  6502. {
  6503. /* This function is based on compact_zone() from compaction.c. */
  6504. unsigned long nr_reclaimed;
  6505. unsigned long pfn = start;
  6506. unsigned int tries = 0;
  6507. int ret = 0;
  6508. migrate_prep();
  6509. while (pfn < end || !list_empty(&cc->migratepages)) {
  6510. if (fatal_signal_pending(current)) {
  6511. ret = -EINTR;
  6512. break;
  6513. }
  6514. if (list_empty(&cc->migratepages)) {
  6515. cc->nr_migratepages = 0;
  6516. pfn = isolate_migratepages_range(cc, pfn, end);
  6517. if (!pfn) {
  6518. ret = -EINTR;
  6519. break;
  6520. }
  6521. tries = 0;
  6522. } else if (++tries == 5) {
  6523. ret = ret < 0 ? ret : -EBUSY;
  6524. break;
  6525. }
  6526. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6527. &cc->migratepages);
  6528. cc->nr_migratepages -= nr_reclaimed;
  6529. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6530. NULL, 0, cc->mode, MR_CMA);
  6531. }
  6532. if (ret < 0) {
  6533. putback_movable_pages(&cc->migratepages);
  6534. return ret;
  6535. }
  6536. return 0;
  6537. }
  6538. /**
  6539. * alloc_contig_range() -- tries to allocate given range of pages
  6540. * @start: start PFN to allocate
  6541. * @end: one-past-the-last PFN to allocate
  6542. * @migratetype: migratetype of the underlaying pageblocks (either
  6543. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6544. * in range must have the same migratetype and it must
  6545. * be either of the two.
  6546. * @gfp_mask: GFP mask to use during compaction
  6547. *
  6548. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6549. * aligned, however it's the caller's responsibility to guarantee that
  6550. * we are the only thread that changes migrate type of pageblocks the
  6551. * pages fall in.
  6552. *
  6553. * The PFN range must belong to a single zone.
  6554. *
  6555. * Returns zero on success or negative error code. On success all
  6556. * pages which PFN is in [start, end) are allocated for the caller and
  6557. * need to be freed with free_contig_range().
  6558. */
  6559. int alloc_contig_range(unsigned long start, unsigned long end,
  6560. unsigned migratetype, gfp_t gfp_mask)
  6561. {
  6562. unsigned long outer_start, outer_end;
  6563. unsigned int order;
  6564. int ret = 0;
  6565. struct compact_control cc = {
  6566. .nr_migratepages = 0,
  6567. .order = -1,
  6568. .zone = page_zone(pfn_to_page(start)),
  6569. .mode = MIGRATE_SYNC,
  6570. .ignore_skip_hint = true,
  6571. .no_set_skip_hint = true,
  6572. .gfp_mask = current_gfp_context(gfp_mask),
  6573. };
  6574. INIT_LIST_HEAD(&cc.migratepages);
  6575. /*
  6576. * What we do here is we mark all pageblocks in range as
  6577. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6578. * have different sizes, and due to the way page allocator
  6579. * work, we align the range to biggest of the two pages so
  6580. * that page allocator won't try to merge buddies from
  6581. * different pageblocks and change MIGRATE_ISOLATE to some
  6582. * other migration type.
  6583. *
  6584. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6585. * migrate the pages from an unaligned range (ie. pages that
  6586. * we are interested in). This will put all the pages in
  6587. * range back to page allocator as MIGRATE_ISOLATE.
  6588. *
  6589. * When this is done, we take the pages in range from page
  6590. * allocator removing them from the buddy system. This way
  6591. * page allocator will never consider using them.
  6592. *
  6593. * This lets us mark the pageblocks back as
  6594. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6595. * aligned range but not in the unaligned, original range are
  6596. * put back to page allocator so that buddy can use them.
  6597. */
  6598. ret = start_isolate_page_range(pfn_max_align_down(start),
  6599. pfn_max_align_up(end), migratetype,
  6600. false);
  6601. if (ret)
  6602. return ret;
  6603. /*
  6604. * In case of -EBUSY, we'd like to know which page causes problem.
  6605. * So, just fall through. test_pages_isolated() has a tracepoint
  6606. * which will report the busy page.
  6607. *
  6608. * It is possible that busy pages could become available before
  6609. * the call to test_pages_isolated, and the range will actually be
  6610. * allocated. So, if we fall through be sure to clear ret so that
  6611. * -EBUSY is not accidentally used or returned to caller.
  6612. */
  6613. ret = __alloc_contig_migrate_range(&cc, start, end);
  6614. if (ret && ret != -EBUSY)
  6615. goto done;
  6616. ret =0;
  6617. /*
  6618. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6619. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6620. * more, all pages in [start, end) are free in page allocator.
  6621. * What we are going to do is to allocate all pages from
  6622. * [start, end) (that is remove them from page allocator).
  6623. *
  6624. * The only problem is that pages at the beginning and at the
  6625. * end of interesting range may be not aligned with pages that
  6626. * page allocator holds, ie. they can be part of higher order
  6627. * pages. Because of this, we reserve the bigger range and
  6628. * once this is done free the pages we are not interested in.
  6629. *
  6630. * We don't have to hold zone->lock here because the pages are
  6631. * isolated thus they won't get removed from buddy.
  6632. */
  6633. lru_add_drain_all();
  6634. drain_all_pages(cc.zone);
  6635. order = 0;
  6636. outer_start = start;
  6637. while (!PageBuddy(pfn_to_page(outer_start))) {
  6638. if (++order >= MAX_ORDER) {
  6639. outer_start = start;
  6640. break;
  6641. }
  6642. outer_start &= ~0UL << order;
  6643. }
  6644. if (outer_start != start) {
  6645. order = page_order(pfn_to_page(outer_start));
  6646. /*
  6647. * outer_start page could be small order buddy page and
  6648. * it doesn't include start page. Adjust outer_start
  6649. * in this case to report failed page properly
  6650. * on tracepoint in test_pages_isolated()
  6651. */
  6652. if (outer_start + (1UL << order) <= start)
  6653. outer_start = start;
  6654. }
  6655. /* Make sure the range is really isolated. */
  6656. if (test_pages_isolated(outer_start, end, false)) {
  6657. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  6658. __func__, outer_start, end);
  6659. ret = -EBUSY;
  6660. goto done;
  6661. }
  6662. /* Grab isolated pages from freelists. */
  6663. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6664. if (!outer_end) {
  6665. ret = -EBUSY;
  6666. goto done;
  6667. }
  6668. /* Free head and tail (if any) */
  6669. if (start != outer_start)
  6670. free_contig_range(outer_start, start - outer_start);
  6671. if (end != outer_end)
  6672. free_contig_range(end, outer_end - end);
  6673. done:
  6674. undo_isolate_page_range(pfn_max_align_down(start),
  6675. pfn_max_align_up(end), migratetype);
  6676. return ret;
  6677. }
  6678. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6679. {
  6680. unsigned int count = 0;
  6681. for (; nr_pages--; pfn++) {
  6682. struct page *page = pfn_to_page(pfn);
  6683. count += page_count(page) != 1;
  6684. __free_page(page);
  6685. }
  6686. WARN(count != 0, "%d pages are still in use!\n", count);
  6687. }
  6688. #endif
  6689. #ifdef CONFIG_MEMORY_HOTPLUG
  6690. /*
  6691. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6692. * page high values need to be recalulated.
  6693. */
  6694. void __meminit zone_pcp_update(struct zone *zone)
  6695. {
  6696. unsigned cpu;
  6697. mutex_lock(&pcp_batch_high_lock);
  6698. for_each_possible_cpu(cpu)
  6699. pageset_set_high_and_batch(zone,
  6700. per_cpu_ptr(zone->pageset, cpu));
  6701. mutex_unlock(&pcp_batch_high_lock);
  6702. }
  6703. #endif
  6704. void zone_pcp_reset(struct zone *zone)
  6705. {
  6706. unsigned long flags;
  6707. int cpu;
  6708. struct per_cpu_pageset *pset;
  6709. /* avoid races with drain_pages() */
  6710. local_irq_save(flags);
  6711. if (zone->pageset != &boot_pageset) {
  6712. for_each_online_cpu(cpu) {
  6713. pset = per_cpu_ptr(zone->pageset, cpu);
  6714. drain_zonestat(zone, pset);
  6715. }
  6716. free_percpu(zone->pageset);
  6717. zone->pageset = &boot_pageset;
  6718. }
  6719. local_irq_restore(flags);
  6720. }
  6721. #ifdef CONFIG_MEMORY_HOTREMOVE
  6722. /*
  6723. * All pages in the range must be in a single zone and isolated
  6724. * before calling this.
  6725. */
  6726. void
  6727. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6728. {
  6729. struct page *page;
  6730. struct zone *zone;
  6731. unsigned int order, i;
  6732. unsigned long pfn;
  6733. unsigned long flags;
  6734. /* find the first valid pfn */
  6735. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6736. if (pfn_valid(pfn))
  6737. break;
  6738. if (pfn == end_pfn)
  6739. return;
  6740. offline_mem_sections(pfn, end_pfn);
  6741. zone = page_zone(pfn_to_page(pfn));
  6742. spin_lock_irqsave(&zone->lock, flags);
  6743. pfn = start_pfn;
  6744. while (pfn < end_pfn) {
  6745. if (!pfn_valid(pfn)) {
  6746. pfn++;
  6747. continue;
  6748. }
  6749. page = pfn_to_page(pfn);
  6750. /*
  6751. * The HWPoisoned page may be not in buddy system, and
  6752. * page_count() is not 0.
  6753. */
  6754. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6755. pfn++;
  6756. SetPageReserved(page);
  6757. continue;
  6758. }
  6759. BUG_ON(page_count(page));
  6760. BUG_ON(!PageBuddy(page));
  6761. order = page_order(page);
  6762. #ifdef CONFIG_DEBUG_VM
  6763. pr_info("remove from free list %lx %d %lx\n",
  6764. pfn, 1 << order, end_pfn);
  6765. #endif
  6766. list_del(&page->lru);
  6767. rmv_page_order(page);
  6768. zone->free_area[order].nr_free--;
  6769. for (i = 0; i < (1 << order); i++)
  6770. SetPageReserved((page+i));
  6771. pfn += (1 << order);
  6772. }
  6773. spin_unlock_irqrestore(&zone->lock, flags);
  6774. }
  6775. #endif
  6776. bool is_free_buddy_page(struct page *page)
  6777. {
  6778. struct zone *zone = page_zone(page);
  6779. unsigned long pfn = page_to_pfn(page);
  6780. unsigned long flags;
  6781. unsigned int order;
  6782. spin_lock_irqsave(&zone->lock, flags);
  6783. for (order = 0; order < MAX_ORDER; order++) {
  6784. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6785. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6786. break;
  6787. }
  6788. spin_unlock_irqrestore(&zone->lock, flags);
  6789. return order < MAX_ORDER;
  6790. }