dm-writecache.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2018 Red Hat. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include <linux/device-mapper.h>
  8. #include <linux/module.h>
  9. #include <linux/init.h>
  10. #include <linux/vmalloc.h>
  11. #include <linux/kthread.h>
  12. #include <linux/dm-io.h>
  13. #include <linux/dm-kcopyd.h>
  14. #include <linux/dax.h>
  15. #include <linux/pfn_t.h>
  16. #include <linux/libnvdimm.h>
  17. #define DM_MSG_PREFIX "writecache"
  18. #define HIGH_WATERMARK 50
  19. #define LOW_WATERMARK 45
  20. #define MAX_WRITEBACK_JOBS 0
  21. #define ENDIO_LATENCY 16
  22. #define WRITEBACK_LATENCY 64
  23. #define AUTOCOMMIT_BLOCKS_SSD 65536
  24. #define AUTOCOMMIT_BLOCKS_PMEM 64
  25. #define AUTOCOMMIT_MSEC 1000
  26. #define BITMAP_GRANULARITY 65536
  27. #if BITMAP_GRANULARITY < PAGE_SIZE
  28. #undef BITMAP_GRANULARITY
  29. #define BITMAP_GRANULARITY PAGE_SIZE
  30. #endif
  31. #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  32. #define DM_WRITECACHE_HAS_PMEM
  33. #endif
  34. #ifdef DM_WRITECACHE_HAS_PMEM
  35. #define pmem_assign(dest, src) \
  36. do { \
  37. typeof(dest) uniq = (src); \
  38. memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
  39. } while (0)
  40. #else
  41. #define pmem_assign(dest, src) ((dest) = (src))
  42. #endif
  43. #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
  44. #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  45. #endif
  46. #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
  47. #define MEMORY_SUPERBLOCK_VERSION 1
  48. struct wc_memory_entry {
  49. __le64 original_sector;
  50. __le64 seq_count;
  51. };
  52. struct wc_memory_superblock {
  53. union {
  54. struct {
  55. __le32 magic;
  56. __le32 version;
  57. __le32 block_size;
  58. __le32 pad;
  59. __le64 n_blocks;
  60. __le64 seq_count;
  61. };
  62. __le64 padding[8];
  63. };
  64. struct wc_memory_entry entries[0];
  65. };
  66. struct wc_entry {
  67. struct rb_node rb_node;
  68. struct list_head lru;
  69. unsigned short wc_list_contiguous;
  70. bool write_in_progress
  71. #if BITS_PER_LONG == 64
  72. :1
  73. #endif
  74. ;
  75. unsigned long index
  76. #if BITS_PER_LONG == 64
  77. :47
  78. #endif
  79. ;
  80. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  81. uint64_t original_sector;
  82. uint64_t seq_count;
  83. #endif
  84. };
  85. #ifdef DM_WRITECACHE_HAS_PMEM
  86. #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
  87. #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
  88. #else
  89. #define WC_MODE_PMEM(wc) false
  90. #define WC_MODE_FUA(wc) false
  91. #endif
  92. #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
  93. struct dm_writecache {
  94. struct mutex lock;
  95. struct list_head lru;
  96. union {
  97. struct list_head freelist;
  98. struct {
  99. struct rb_root freetree;
  100. struct wc_entry *current_free;
  101. };
  102. };
  103. struct rb_root tree;
  104. size_t freelist_size;
  105. size_t writeback_size;
  106. size_t freelist_high_watermark;
  107. size_t freelist_low_watermark;
  108. unsigned uncommitted_blocks;
  109. unsigned autocommit_blocks;
  110. unsigned max_writeback_jobs;
  111. int error;
  112. unsigned long autocommit_jiffies;
  113. struct timer_list autocommit_timer;
  114. struct wait_queue_head freelist_wait;
  115. atomic_t bio_in_progress[2];
  116. struct wait_queue_head bio_in_progress_wait[2];
  117. struct dm_target *ti;
  118. struct dm_dev *dev;
  119. struct dm_dev *ssd_dev;
  120. void *memory_map;
  121. uint64_t memory_map_size;
  122. size_t metadata_sectors;
  123. size_t n_blocks;
  124. uint64_t seq_count;
  125. void *block_start;
  126. struct wc_entry *entries;
  127. unsigned block_size;
  128. unsigned char block_size_bits;
  129. bool pmem_mode:1;
  130. bool writeback_fua:1;
  131. bool overwrote_committed:1;
  132. bool memory_vmapped:1;
  133. bool high_wm_percent_set:1;
  134. bool low_wm_percent_set:1;
  135. bool max_writeback_jobs_set:1;
  136. bool autocommit_blocks_set:1;
  137. bool autocommit_time_set:1;
  138. bool writeback_fua_set:1;
  139. bool flush_on_suspend:1;
  140. unsigned writeback_all;
  141. struct workqueue_struct *writeback_wq;
  142. struct work_struct writeback_work;
  143. struct work_struct flush_work;
  144. struct dm_io_client *dm_io;
  145. raw_spinlock_t endio_list_lock;
  146. struct list_head endio_list;
  147. struct task_struct *endio_thread;
  148. struct task_struct *flush_thread;
  149. struct bio_list flush_list;
  150. struct dm_kcopyd_client *dm_kcopyd;
  151. unsigned long *dirty_bitmap;
  152. unsigned dirty_bitmap_size;
  153. struct bio_set bio_set;
  154. mempool_t copy_pool;
  155. };
  156. #define WB_LIST_INLINE 16
  157. struct writeback_struct {
  158. struct list_head endio_entry;
  159. struct dm_writecache *wc;
  160. struct wc_entry **wc_list;
  161. unsigned wc_list_n;
  162. unsigned page_offset;
  163. struct page *page;
  164. struct wc_entry *wc_list_inline[WB_LIST_INLINE];
  165. struct bio bio;
  166. };
  167. struct copy_struct {
  168. struct list_head endio_entry;
  169. struct dm_writecache *wc;
  170. struct wc_entry *e;
  171. unsigned n_entries;
  172. int error;
  173. };
  174. DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
  175. "A percentage of time allocated for data copying");
  176. static void wc_lock(struct dm_writecache *wc)
  177. {
  178. mutex_lock(&wc->lock);
  179. }
  180. static void wc_unlock(struct dm_writecache *wc)
  181. {
  182. mutex_unlock(&wc->lock);
  183. }
  184. #ifdef DM_WRITECACHE_HAS_PMEM
  185. static int persistent_memory_claim(struct dm_writecache *wc)
  186. {
  187. int r;
  188. loff_t s;
  189. long p, da;
  190. pfn_t pfn;
  191. int id;
  192. struct page **pages;
  193. wc->memory_vmapped = false;
  194. if (!wc->ssd_dev->dax_dev) {
  195. r = -EOPNOTSUPP;
  196. goto err1;
  197. }
  198. s = wc->memory_map_size;
  199. p = s >> PAGE_SHIFT;
  200. if (!p) {
  201. r = -EINVAL;
  202. goto err1;
  203. }
  204. if (p != s >> PAGE_SHIFT) {
  205. r = -EOVERFLOW;
  206. goto err1;
  207. }
  208. id = dax_read_lock();
  209. da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
  210. if (da < 0) {
  211. wc->memory_map = NULL;
  212. r = da;
  213. goto err2;
  214. }
  215. if (!pfn_t_has_page(pfn)) {
  216. wc->memory_map = NULL;
  217. r = -EOPNOTSUPP;
  218. goto err2;
  219. }
  220. if (da != p) {
  221. long i;
  222. wc->memory_map = NULL;
  223. pages = kvmalloc(p * sizeof(struct page *), GFP_KERNEL);
  224. if (!pages) {
  225. r = -ENOMEM;
  226. goto err2;
  227. }
  228. i = 0;
  229. do {
  230. long daa;
  231. void *dummy_addr;
  232. daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
  233. &dummy_addr, &pfn);
  234. if (daa <= 0) {
  235. r = daa ? daa : -EINVAL;
  236. goto err3;
  237. }
  238. if (!pfn_t_has_page(pfn)) {
  239. r = -EOPNOTSUPP;
  240. goto err3;
  241. }
  242. while (daa-- && i < p) {
  243. pages[i++] = pfn_t_to_page(pfn);
  244. pfn.val++;
  245. }
  246. } while (i < p);
  247. wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
  248. if (!wc->memory_map) {
  249. r = -ENOMEM;
  250. goto err3;
  251. }
  252. kvfree(pages);
  253. wc->memory_vmapped = true;
  254. }
  255. dax_read_unlock(id);
  256. return 0;
  257. err3:
  258. kvfree(pages);
  259. err2:
  260. dax_read_unlock(id);
  261. err1:
  262. return r;
  263. }
  264. #else
  265. static int persistent_memory_claim(struct dm_writecache *wc)
  266. {
  267. BUG();
  268. }
  269. #endif
  270. static void persistent_memory_release(struct dm_writecache *wc)
  271. {
  272. if (wc->memory_vmapped)
  273. vunmap(wc->memory_map);
  274. }
  275. static struct page *persistent_memory_page(void *addr)
  276. {
  277. if (is_vmalloc_addr(addr))
  278. return vmalloc_to_page(addr);
  279. else
  280. return virt_to_page(addr);
  281. }
  282. static unsigned persistent_memory_page_offset(void *addr)
  283. {
  284. return (unsigned long)addr & (PAGE_SIZE - 1);
  285. }
  286. static void persistent_memory_flush_cache(void *ptr, size_t size)
  287. {
  288. if (is_vmalloc_addr(ptr))
  289. flush_kernel_vmap_range(ptr, size);
  290. }
  291. static void persistent_memory_invalidate_cache(void *ptr, size_t size)
  292. {
  293. if (is_vmalloc_addr(ptr))
  294. invalidate_kernel_vmap_range(ptr, size);
  295. }
  296. static struct wc_memory_superblock *sb(struct dm_writecache *wc)
  297. {
  298. return wc->memory_map;
  299. }
  300. static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
  301. {
  302. if (is_power_of_2(sizeof(struct wc_entry)) && 0)
  303. return &sb(wc)->entries[e - wc->entries];
  304. else
  305. return &sb(wc)->entries[e->index];
  306. }
  307. static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
  308. {
  309. return (char *)wc->block_start + (e->index << wc->block_size_bits);
  310. }
  311. static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
  312. {
  313. return wc->metadata_sectors +
  314. ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
  315. }
  316. static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
  317. {
  318. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  319. return e->original_sector;
  320. #else
  321. return le64_to_cpu(memory_entry(wc, e)->original_sector);
  322. #endif
  323. }
  324. static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  325. {
  326. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  327. return e->seq_count;
  328. #else
  329. return le64_to_cpu(memory_entry(wc, e)->seq_count);
  330. #endif
  331. }
  332. static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
  333. {
  334. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  335. e->seq_count = -1;
  336. #endif
  337. pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
  338. }
  339. static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
  340. uint64_t original_sector, uint64_t seq_count)
  341. {
  342. struct wc_memory_entry me;
  343. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  344. e->original_sector = original_sector;
  345. e->seq_count = seq_count;
  346. #endif
  347. me.original_sector = cpu_to_le64(original_sector);
  348. me.seq_count = cpu_to_le64(seq_count);
  349. pmem_assign(*memory_entry(wc, e), me);
  350. }
  351. #define writecache_error(wc, err, msg, arg...) \
  352. do { \
  353. if (!cmpxchg(&(wc)->error, 0, err)) \
  354. DMERR(msg, ##arg); \
  355. wake_up(&(wc)->freelist_wait); \
  356. } while (0)
  357. #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
  358. static void writecache_flush_all_metadata(struct dm_writecache *wc)
  359. {
  360. if (!WC_MODE_PMEM(wc))
  361. memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
  362. }
  363. static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
  364. {
  365. if (!WC_MODE_PMEM(wc))
  366. __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
  367. wc->dirty_bitmap);
  368. }
  369. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
  370. struct io_notify {
  371. struct dm_writecache *wc;
  372. struct completion c;
  373. atomic_t count;
  374. };
  375. static void writecache_notify_io(unsigned long error, void *context)
  376. {
  377. struct io_notify *endio = context;
  378. if (unlikely(error != 0))
  379. writecache_error(endio->wc, -EIO, "error writing metadata");
  380. BUG_ON(atomic_read(&endio->count) <= 0);
  381. if (atomic_dec_and_test(&endio->count))
  382. complete(&endio->c);
  383. }
  384. static void ssd_commit_flushed(struct dm_writecache *wc)
  385. {
  386. struct dm_io_region region;
  387. struct dm_io_request req;
  388. struct io_notify endio = {
  389. wc,
  390. COMPLETION_INITIALIZER_ONSTACK(endio.c),
  391. ATOMIC_INIT(1),
  392. };
  393. unsigned bitmap_bits = wc->dirty_bitmap_size * BITS_PER_LONG;
  394. unsigned i = 0;
  395. while (1) {
  396. unsigned j;
  397. i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
  398. if (unlikely(i == bitmap_bits))
  399. break;
  400. j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
  401. region.bdev = wc->ssd_dev->bdev;
  402. region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  403. region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
  404. if (unlikely(region.sector >= wc->metadata_sectors))
  405. break;
  406. if (unlikely(region.sector + region.count > wc->metadata_sectors))
  407. region.count = wc->metadata_sectors - region.sector;
  408. atomic_inc(&endio.count);
  409. req.bi_op = REQ_OP_WRITE;
  410. req.bi_op_flags = REQ_SYNC;
  411. req.mem.type = DM_IO_VMA;
  412. req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
  413. req.client = wc->dm_io;
  414. req.notify.fn = writecache_notify_io;
  415. req.notify.context = &endio;
  416. /* writing via async dm-io (implied by notify.fn above) won't return an error */
  417. (void) dm_io(&req, 1, &region, NULL);
  418. i = j;
  419. }
  420. writecache_notify_io(0, &endio);
  421. wait_for_completion_io(&endio.c);
  422. writecache_disk_flush(wc, wc->ssd_dev);
  423. memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
  424. }
  425. static void writecache_commit_flushed(struct dm_writecache *wc)
  426. {
  427. if (WC_MODE_PMEM(wc))
  428. wmb();
  429. else
  430. ssd_commit_flushed(wc);
  431. }
  432. static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
  433. {
  434. int r;
  435. struct dm_io_region region;
  436. struct dm_io_request req;
  437. region.bdev = dev->bdev;
  438. region.sector = 0;
  439. region.count = 0;
  440. req.bi_op = REQ_OP_WRITE;
  441. req.bi_op_flags = REQ_PREFLUSH;
  442. req.mem.type = DM_IO_KMEM;
  443. req.mem.ptr.addr = NULL;
  444. req.client = wc->dm_io;
  445. req.notify.fn = NULL;
  446. r = dm_io(&req, 1, &region, NULL);
  447. if (unlikely(r))
  448. writecache_error(wc, r, "error flushing metadata: %d", r);
  449. }
  450. static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
  451. {
  452. wait_event(wc->bio_in_progress_wait[direction],
  453. !atomic_read(&wc->bio_in_progress[direction]));
  454. }
  455. #define WFE_RETURN_FOLLOWING 1
  456. #define WFE_LOWEST_SEQ 2
  457. static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
  458. uint64_t block, int flags)
  459. {
  460. struct wc_entry *e;
  461. struct rb_node *node = wc->tree.rb_node;
  462. if (unlikely(!node))
  463. return NULL;
  464. while (1) {
  465. e = container_of(node, struct wc_entry, rb_node);
  466. if (read_original_sector(wc, e) == block)
  467. break;
  468. node = (read_original_sector(wc, e) >= block ?
  469. e->rb_node.rb_left : e->rb_node.rb_right);
  470. if (unlikely(!node)) {
  471. if (!(flags & WFE_RETURN_FOLLOWING)) {
  472. return NULL;
  473. }
  474. if (read_original_sector(wc, e) >= block) {
  475. break;
  476. } else {
  477. node = rb_next(&e->rb_node);
  478. if (unlikely(!node)) {
  479. return NULL;
  480. }
  481. e = container_of(node, struct wc_entry, rb_node);
  482. break;
  483. }
  484. }
  485. }
  486. while (1) {
  487. struct wc_entry *e2;
  488. if (flags & WFE_LOWEST_SEQ)
  489. node = rb_prev(&e->rb_node);
  490. else
  491. node = rb_next(&e->rb_node);
  492. if (!node)
  493. return e;
  494. e2 = container_of(node, struct wc_entry, rb_node);
  495. if (read_original_sector(wc, e2) != block)
  496. return e;
  497. e = e2;
  498. }
  499. }
  500. static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
  501. {
  502. struct wc_entry *e;
  503. struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
  504. while (*node) {
  505. e = container_of(*node, struct wc_entry, rb_node);
  506. parent = &e->rb_node;
  507. if (read_original_sector(wc, e) > read_original_sector(wc, ins))
  508. node = &parent->rb_left;
  509. else
  510. node = &parent->rb_right;
  511. }
  512. rb_link_node(&ins->rb_node, parent, node);
  513. rb_insert_color(&ins->rb_node, &wc->tree);
  514. list_add(&ins->lru, &wc->lru);
  515. }
  516. static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
  517. {
  518. list_del(&e->lru);
  519. rb_erase(&e->rb_node, &wc->tree);
  520. }
  521. static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
  522. {
  523. if (WC_MODE_SORT_FREELIST(wc)) {
  524. struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
  525. if (unlikely(!*node))
  526. wc->current_free = e;
  527. while (*node) {
  528. parent = *node;
  529. if (&e->rb_node < *node)
  530. node = &parent->rb_left;
  531. else
  532. node = &parent->rb_right;
  533. }
  534. rb_link_node(&e->rb_node, parent, node);
  535. rb_insert_color(&e->rb_node, &wc->freetree);
  536. } else {
  537. list_add_tail(&e->lru, &wc->freelist);
  538. }
  539. wc->freelist_size++;
  540. }
  541. static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
  542. {
  543. struct wc_entry *e;
  544. if (WC_MODE_SORT_FREELIST(wc)) {
  545. struct rb_node *next;
  546. if (unlikely(!wc->current_free))
  547. return NULL;
  548. e = wc->current_free;
  549. next = rb_next(&e->rb_node);
  550. rb_erase(&e->rb_node, &wc->freetree);
  551. if (unlikely(!next))
  552. next = rb_first(&wc->freetree);
  553. wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
  554. } else {
  555. if (unlikely(list_empty(&wc->freelist)))
  556. return NULL;
  557. e = container_of(wc->freelist.next, struct wc_entry, lru);
  558. list_del(&e->lru);
  559. }
  560. wc->freelist_size--;
  561. if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
  562. queue_work(wc->writeback_wq, &wc->writeback_work);
  563. return e;
  564. }
  565. static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
  566. {
  567. writecache_unlink(wc, e);
  568. writecache_add_to_freelist(wc, e);
  569. clear_seq_count(wc, e);
  570. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  571. if (unlikely(waitqueue_active(&wc->freelist_wait)))
  572. wake_up(&wc->freelist_wait);
  573. }
  574. static void writecache_wait_on_freelist(struct dm_writecache *wc)
  575. {
  576. DEFINE_WAIT(wait);
  577. prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
  578. wc_unlock(wc);
  579. io_schedule();
  580. finish_wait(&wc->freelist_wait, &wait);
  581. wc_lock(wc);
  582. }
  583. static void writecache_poison_lists(struct dm_writecache *wc)
  584. {
  585. /*
  586. * Catch incorrect access to these values while the device is suspended.
  587. */
  588. memset(&wc->tree, -1, sizeof wc->tree);
  589. wc->lru.next = LIST_POISON1;
  590. wc->lru.prev = LIST_POISON2;
  591. wc->freelist.next = LIST_POISON1;
  592. wc->freelist.prev = LIST_POISON2;
  593. }
  594. static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
  595. {
  596. writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  597. if (WC_MODE_PMEM(wc))
  598. writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
  599. }
  600. static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
  601. {
  602. return read_seq_count(wc, e) < wc->seq_count;
  603. }
  604. static void writecache_flush(struct dm_writecache *wc)
  605. {
  606. struct wc_entry *e, *e2;
  607. bool need_flush_after_free;
  608. wc->uncommitted_blocks = 0;
  609. del_timer(&wc->autocommit_timer);
  610. if (list_empty(&wc->lru))
  611. return;
  612. e = container_of(wc->lru.next, struct wc_entry, lru);
  613. if (writecache_entry_is_committed(wc, e)) {
  614. if (wc->overwrote_committed) {
  615. writecache_wait_for_ios(wc, WRITE);
  616. writecache_disk_flush(wc, wc->ssd_dev);
  617. wc->overwrote_committed = false;
  618. }
  619. return;
  620. }
  621. while (1) {
  622. writecache_flush_entry(wc, e);
  623. if (unlikely(e->lru.next == &wc->lru))
  624. break;
  625. e2 = container_of(e->lru.next, struct wc_entry, lru);
  626. if (writecache_entry_is_committed(wc, e2))
  627. break;
  628. e = e2;
  629. cond_resched();
  630. }
  631. writecache_commit_flushed(wc);
  632. writecache_wait_for_ios(wc, WRITE);
  633. wc->seq_count++;
  634. pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
  635. writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
  636. writecache_commit_flushed(wc);
  637. wc->overwrote_committed = false;
  638. need_flush_after_free = false;
  639. while (1) {
  640. /* Free another committed entry with lower seq-count */
  641. struct rb_node *rb_node = rb_prev(&e->rb_node);
  642. if (rb_node) {
  643. e2 = container_of(rb_node, struct wc_entry, rb_node);
  644. if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
  645. likely(!e2->write_in_progress)) {
  646. writecache_free_entry(wc, e2);
  647. need_flush_after_free = true;
  648. }
  649. }
  650. if (unlikely(e->lru.prev == &wc->lru))
  651. break;
  652. e = container_of(e->lru.prev, struct wc_entry, lru);
  653. cond_resched();
  654. }
  655. if (need_flush_after_free)
  656. writecache_commit_flushed(wc);
  657. }
  658. static void writecache_flush_work(struct work_struct *work)
  659. {
  660. struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
  661. wc_lock(wc);
  662. writecache_flush(wc);
  663. wc_unlock(wc);
  664. }
  665. static void writecache_autocommit_timer(struct timer_list *t)
  666. {
  667. struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
  668. if (!writecache_has_error(wc))
  669. queue_work(wc->writeback_wq, &wc->flush_work);
  670. }
  671. static void writecache_schedule_autocommit(struct dm_writecache *wc)
  672. {
  673. if (!timer_pending(&wc->autocommit_timer))
  674. mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
  675. }
  676. static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
  677. {
  678. struct wc_entry *e;
  679. bool discarded_something = false;
  680. e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
  681. if (unlikely(!e))
  682. return;
  683. while (read_original_sector(wc, e) < end) {
  684. struct rb_node *node = rb_next(&e->rb_node);
  685. if (likely(!e->write_in_progress)) {
  686. if (!discarded_something) {
  687. writecache_wait_for_ios(wc, READ);
  688. writecache_wait_for_ios(wc, WRITE);
  689. discarded_something = true;
  690. }
  691. writecache_free_entry(wc, e);
  692. }
  693. if (!node)
  694. break;
  695. e = container_of(node, struct wc_entry, rb_node);
  696. }
  697. if (discarded_something)
  698. writecache_commit_flushed(wc);
  699. }
  700. static bool writecache_wait_for_writeback(struct dm_writecache *wc)
  701. {
  702. if (wc->writeback_size) {
  703. writecache_wait_on_freelist(wc);
  704. return true;
  705. }
  706. return false;
  707. }
  708. static void writecache_suspend(struct dm_target *ti)
  709. {
  710. struct dm_writecache *wc = ti->private;
  711. bool flush_on_suspend;
  712. del_timer_sync(&wc->autocommit_timer);
  713. wc_lock(wc);
  714. writecache_flush(wc);
  715. flush_on_suspend = wc->flush_on_suspend;
  716. if (flush_on_suspend) {
  717. wc->flush_on_suspend = false;
  718. wc->writeback_all++;
  719. queue_work(wc->writeback_wq, &wc->writeback_work);
  720. }
  721. wc_unlock(wc);
  722. flush_workqueue(wc->writeback_wq);
  723. wc_lock(wc);
  724. if (flush_on_suspend)
  725. wc->writeback_all--;
  726. while (writecache_wait_for_writeback(wc));
  727. if (WC_MODE_PMEM(wc))
  728. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  729. writecache_poison_lists(wc);
  730. wc_unlock(wc);
  731. }
  732. static int writecache_alloc_entries(struct dm_writecache *wc)
  733. {
  734. size_t b;
  735. if (wc->entries)
  736. return 0;
  737. wc->entries = vmalloc(sizeof(struct wc_entry) * wc->n_blocks);
  738. if (!wc->entries)
  739. return -ENOMEM;
  740. for (b = 0; b < wc->n_blocks; b++) {
  741. struct wc_entry *e = &wc->entries[b];
  742. e->index = b;
  743. e->write_in_progress = false;
  744. }
  745. return 0;
  746. }
  747. static void writecache_resume(struct dm_target *ti)
  748. {
  749. struct dm_writecache *wc = ti->private;
  750. size_t b;
  751. bool need_flush = false;
  752. __le64 sb_seq_count;
  753. int r;
  754. wc_lock(wc);
  755. if (WC_MODE_PMEM(wc))
  756. persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
  757. wc->tree = RB_ROOT;
  758. INIT_LIST_HEAD(&wc->lru);
  759. if (WC_MODE_SORT_FREELIST(wc)) {
  760. wc->freetree = RB_ROOT;
  761. wc->current_free = NULL;
  762. } else {
  763. INIT_LIST_HEAD(&wc->freelist);
  764. }
  765. wc->freelist_size = 0;
  766. r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
  767. if (r) {
  768. writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
  769. sb_seq_count = cpu_to_le64(0);
  770. }
  771. wc->seq_count = le64_to_cpu(sb_seq_count);
  772. #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  773. for (b = 0; b < wc->n_blocks; b++) {
  774. struct wc_entry *e = &wc->entries[b];
  775. struct wc_memory_entry wme;
  776. if (writecache_has_error(wc)) {
  777. e->original_sector = -1;
  778. e->seq_count = -1;
  779. continue;
  780. }
  781. r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
  782. if (r) {
  783. writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
  784. (unsigned long)b, r);
  785. e->original_sector = -1;
  786. e->seq_count = -1;
  787. } else {
  788. e->original_sector = le64_to_cpu(wme.original_sector);
  789. e->seq_count = le64_to_cpu(wme.seq_count);
  790. }
  791. }
  792. #endif
  793. for (b = 0; b < wc->n_blocks; b++) {
  794. struct wc_entry *e = &wc->entries[b];
  795. if (!writecache_entry_is_committed(wc, e)) {
  796. if (read_seq_count(wc, e) != -1) {
  797. erase_this:
  798. clear_seq_count(wc, e);
  799. need_flush = true;
  800. }
  801. writecache_add_to_freelist(wc, e);
  802. } else {
  803. struct wc_entry *old;
  804. old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
  805. if (!old) {
  806. writecache_insert_entry(wc, e);
  807. } else {
  808. if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
  809. writecache_error(wc, -EINVAL,
  810. "two identical entries, position %llu, sector %llu, sequence %llu",
  811. (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
  812. (unsigned long long)read_seq_count(wc, e));
  813. }
  814. if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
  815. goto erase_this;
  816. } else {
  817. writecache_free_entry(wc, old);
  818. writecache_insert_entry(wc, e);
  819. need_flush = true;
  820. }
  821. }
  822. }
  823. cond_resched();
  824. }
  825. if (need_flush) {
  826. writecache_flush_all_metadata(wc);
  827. writecache_commit_flushed(wc);
  828. }
  829. wc_unlock(wc);
  830. }
  831. static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  832. {
  833. if (argc != 1)
  834. return -EINVAL;
  835. wc_lock(wc);
  836. if (dm_suspended(wc->ti)) {
  837. wc_unlock(wc);
  838. return -EBUSY;
  839. }
  840. if (writecache_has_error(wc)) {
  841. wc_unlock(wc);
  842. return -EIO;
  843. }
  844. writecache_flush(wc);
  845. wc->writeback_all++;
  846. queue_work(wc->writeback_wq, &wc->writeback_work);
  847. wc_unlock(wc);
  848. flush_workqueue(wc->writeback_wq);
  849. wc_lock(wc);
  850. wc->writeback_all--;
  851. if (writecache_has_error(wc)) {
  852. wc_unlock(wc);
  853. return -EIO;
  854. }
  855. wc_unlock(wc);
  856. return 0;
  857. }
  858. static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
  859. {
  860. if (argc != 1)
  861. return -EINVAL;
  862. wc_lock(wc);
  863. wc->flush_on_suspend = true;
  864. wc_unlock(wc);
  865. return 0;
  866. }
  867. static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
  868. char *result, unsigned maxlen)
  869. {
  870. int r = -EINVAL;
  871. struct dm_writecache *wc = ti->private;
  872. if (!strcasecmp(argv[0], "flush"))
  873. r = process_flush_mesg(argc, argv, wc);
  874. else if (!strcasecmp(argv[0], "flush_on_suspend"))
  875. r = process_flush_on_suspend_mesg(argc, argv, wc);
  876. else
  877. DMERR("unrecognised message received: %s", argv[0]);
  878. return r;
  879. }
  880. static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
  881. {
  882. void *buf;
  883. unsigned long flags;
  884. unsigned size;
  885. int rw = bio_data_dir(bio);
  886. unsigned remaining_size = wc->block_size;
  887. do {
  888. struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
  889. buf = bvec_kmap_irq(&bv, &flags);
  890. size = bv.bv_len;
  891. if (unlikely(size > remaining_size))
  892. size = remaining_size;
  893. if (rw == READ) {
  894. int r;
  895. r = memcpy_mcsafe(buf, data, size);
  896. flush_dcache_page(bio_page(bio));
  897. if (unlikely(r)) {
  898. writecache_error(wc, r, "hardware memory error when reading data: %d", r);
  899. bio->bi_status = BLK_STS_IOERR;
  900. }
  901. } else {
  902. flush_dcache_page(bio_page(bio));
  903. memcpy_flushcache(data, buf, size);
  904. }
  905. bvec_kunmap_irq(buf, &flags);
  906. data = (char *)data + size;
  907. remaining_size -= size;
  908. bio_advance(bio, size);
  909. } while (unlikely(remaining_size));
  910. }
  911. static int writecache_flush_thread(void *data)
  912. {
  913. struct dm_writecache *wc = data;
  914. while (1) {
  915. struct bio *bio;
  916. wc_lock(wc);
  917. bio = bio_list_pop(&wc->flush_list);
  918. if (!bio) {
  919. set_current_state(TASK_INTERRUPTIBLE);
  920. wc_unlock(wc);
  921. if (unlikely(kthread_should_stop())) {
  922. set_current_state(TASK_RUNNING);
  923. break;
  924. }
  925. schedule();
  926. continue;
  927. }
  928. if (bio_op(bio) == REQ_OP_DISCARD) {
  929. writecache_discard(wc, bio->bi_iter.bi_sector,
  930. bio_end_sector(bio));
  931. wc_unlock(wc);
  932. bio_set_dev(bio, wc->dev->bdev);
  933. generic_make_request(bio);
  934. } else {
  935. writecache_flush(wc);
  936. wc_unlock(wc);
  937. if (writecache_has_error(wc))
  938. bio->bi_status = BLK_STS_IOERR;
  939. bio_endio(bio);
  940. }
  941. }
  942. return 0;
  943. }
  944. static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
  945. {
  946. if (bio_list_empty(&wc->flush_list))
  947. wake_up_process(wc->flush_thread);
  948. bio_list_add(&wc->flush_list, bio);
  949. }
  950. static int writecache_map(struct dm_target *ti, struct bio *bio)
  951. {
  952. struct wc_entry *e;
  953. struct dm_writecache *wc = ti->private;
  954. bio->bi_private = NULL;
  955. wc_lock(wc);
  956. if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
  957. if (writecache_has_error(wc))
  958. goto unlock_error;
  959. if (WC_MODE_PMEM(wc)) {
  960. writecache_flush(wc);
  961. if (writecache_has_error(wc))
  962. goto unlock_error;
  963. goto unlock_submit;
  964. } else {
  965. writecache_offload_bio(wc, bio);
  966. goto unlock_return;
  967. }
  968. }
  969. bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
  970. if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
  971. (wc->block_size / 512 - 1)) != 0)) {
  972. DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
  973. (unsigned long long)bio->bi_iter.bi_sector,
  974. bio->bi_iter.bi_size, wc->block_size);
  975. goto unlock_error;
  976. }
  977. if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
  978. if (writecache_has_error(wc))
  979. goto unlock_error;
  980. if (WC_MODE_PMEM(wc)) {
  981. writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
  982. goto unlock_remap_origin;
  983. } else {
  984. writecache_offload_bio(wc, bio);
  985. goto unlock_return;
  986. }
  987. }
  988. if (bio_data_dir(bio) == READ) {
  989. read_next_block:
  990. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
  991. if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
  992. if (WC_MODE_PMEM(wc)) {
  993. bio_copy_block(wc, bio, memory_data(wc, e));
  994. if (bio->bi_iter.bi_size)
  995. goto read_next_block;
  996. goto unlock_submit;
  997. } else {
  998. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  999. bio_set_dev(bio, wc->ssd_dev->bdev);
  1000. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1001. if (!writecache_entry_is_committed(wc, e))
  1002. writecache_wait_for_ios(wc, WRITE);
  1003. goto unlock_remap;
  1004. }
  1005. } else {
  1006. if (e) {
  1007. sector_t next_boundary =
  1008. read_original_sector(wc, e) - bio->bi_iter.bi_sector;
  1009. if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
  1010. dm_accept_partial_bio(bio, next_boundary);
  1011. }
  1012. }
  1013. goto unlock_remap_origin;
  1014. }
  1015. } else {
  1016. do {
  1017. if (writecache_has_error(wc))
  1018. goto unlock_error;
  1019. e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
  1020. if (e) {
  1021. if (!writecache_entry_is_committed(wc, e))
  1022. goto bio_copy;
  1023. if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
  1024. wc->overwrote_committed = true;
  1025. goto bio_copy;
  1026. }
  1027. }
  1028. e = writecache_pop_from_freelist(wc);
  1029. if (unlikely(!e)) {
  1030. writecache_wait_on_freelist(wc);
  1031. continue;
  1032. }
  1033. write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
  1034. writecache_insert_entry(wc, e);
  1035. wc->uncommitted_blocks++;
  1036. bio_copy:
  1037. if (WC_MODE_PMEM(wc)) {
  1038. bio_copy_block(wc, bio, memory_data(wc, e));
  1039. } else {
  1040. dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
  1041. bio_set_dev(bio, wc->ssd_dev->bdev);
  1042. bio->bi_iter.bi_sector = cache_sector(wc, e);
  1043. if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
  1044. wc->uncommitted_blocks = 0;
  1045. queue_work(wc->writeback_wq, &wc->flush_work);
  1046. } else {
  1047. writecache_schedule_autocommit(wc);
  1048. }
  1049. goto unlock_remap;
  1050. }
  1051. } while (bio->bi_iter.bi_size);
  1052. if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
  1053. writecache_flush(wc);
  1054. else
  1055. writecache_schedule_autocommit(wc);
  1056. goto unlock_submit;
  1057. }
  1058. unlock_remap_origin:
  1059. bio_set_dev(bio, wc->dev->bdev);
  1060. wc_unlock(wc);
  1061. return DM_MAPIO_REMAPPED;
  1062. unlock_remap:
  1063. /* make sure that writecache_end_io decrements bio_in_progress: */
  1064. bio->bi_private = (void *)1;
  1065. atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
  1066. wc_unlock(wc);
  1067. return DM_MAPIO_REMAPPED;
  1068. unlock_submit:
  1069. wc_unlock(wc);
  1070. bio_endio(bio);
  1071. return DM_MAPIO_SUBMITTED;
  1072. unlock_return:
  1073. wc_unlock(wc);
  1074. return DM_MAPIO_SUBMITTED;
  1075. unlock_error:
  1076. wc_unlock(wc);
  1077. bio_io_error(bio);
  1078. return DM_MAPIO_SUBMITTED;
  1079. }
  1080. static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
  1081. {
  1082. struct dm_writecache *wc = ti->private;
  1083. if (bio->bi_private != NULL) {
  1084. int dir = bio_data_dir(bio);
  1085. if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
  1086. if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
  1087. wake_up(&wc->bio_in_progress_wait[dir]);
  1088. }
  1089. return 0;
  1090. }
  1091. static int writecache_iterate_devices(struct dm_target *ti,
  1092. iterate_devices_callout_fn fn, void *data)
  1093. {
  1094. struct dm_writecache *wc = ti->private;
  1095. return fn(ti, wc->dev, 0, ti->len, data);
  1096. }
  1097. static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
  1098. {
  1099. struct dm_writecache *wc = ti->private;
  1100. if (limits->logical_block_size < wc->block_size)
  1101. limits->logical_block_size = wc->block_size;
  1102. if (limits->physical_block_size < wc->block_size)
  1103. limits->physical_block_size = wc->block_size;
  1104. if (limits->io_min < wc->block_size)
  1105. limits->io_min = wc->block_size;
  1106. }
  1107. static void writecache_writeback_endio(struct bio *bio)
  1108. {
  1109. struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
  1110. struct dm_writecache *wc = wb->wc;
  1111. unsigned long flags;
  1112. raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
  1113. if (unlikely(list_empty(&wc->endio_list)))
  1114. wake_up_process(wc->endio_thread);
  1115. list_add_tail(&wb->endio_entry, &wc->endio_list);
  1116. raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
  1117. }
  1118. static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
  1119. {
  1120. struct copy_struct *c = ptr;
  1121. struct dm_writecache *wc = c->wc;
  1122. c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
  1123. raw_spin_lock_irq(&wc->endio_list_lock);
  1124. if (unlikely(list_empty(&wc->endio_list)))
  1125. wake_up_process(wc->endio_thread);
  1126. list_add_tail(&c->endio_entry, &wc->endio_list);
  1127. raw_spin_unlock_irq(&wc->endio_list_lock);
  1128. }
  1129. static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
  1130. {
  1131. unsigned i;
  1132. struct writeback_struct *wb;
  1133. struct wc_entry *e;
  1134. unsigned long n_walked = 0;
  1135. do {
  1136. wb = list_entry(list->next, struct writeback_struct, endio_entry);
  1137. list_del(&wb->endio_entry);
  1138. if (unlikely(wb->bio.bi_status != BLK_STS_OK))
  1139. writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
  1140. "write error %d", wb->bio.bi_status);
  1141. i = 0;
  1142. do {
  1143. e = wb->wc_list[i];
  1144. BUG_ON(!e->write_in_progress);
  1145. e->write_in_progress = false;
  1146. INIT_LIST_HEAD(&e->lru);
  1147. if (!writecache_has_error(wc))
  1148. writecache_free_entry(wc, e);
  1149. BUG_ON(!wc->writeback_size);
  1150. wc->writeback_size--;
  1151. n_walked++;
  1152. if (unlikely(n_walked >= ENDIO_LATENCY)) {
  1153. writecache_commit_flushed(wc);
  1154. wc_unlock(wc);
  1155. wc_lock(wc);
  1156. n_walked = 0;
  1157. }
  1158. } while (++i < wb->wc_list_n);
  1159. if (wb->wc_list != wb->wc_list_inline)
  1160. kfree(wb->wc_list);
  1161. bio_put(&wb->bio);
  1162. } while (!list_empty(list));
  1163. }
  1164. static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
  1165. {
  1166. struct copy_struct *c;
  1167. struct wc_entry *e;
  1168. do {
  1169. c = list_entry(list->next, struct copy_struct, endio_entry);
  1170. list_del(&c->endio_entry);
  1171. if (unlikely(c->error))
  1172. writecache_error(wc, c->error, "copy error");
  1173. e = c->e;
  1174. do {
  1175. BUG_ON(!e->write_in_progress);
  1176. e->write_in_progress = false;
  1177. INIT_LIST_HEAD(&e->lru);
  1178. if (!writecache_has_error(wc))
  1179. writecache_free_entry(wc, e);
  1180. BUG_ON(!wc->writeback_size);
  1181. wc->writeback_size--;
  1182. e++;
  1183. } while (--c->n_entries);
  1184. mempool_free(c, &wc->copy_pool);
  1185. } while (!list_empty(list));
  1186. }
  1187. static int writecache_endio_thread(void *data)
  1188. {
  1189. struct dm_writecache *wc = data;
  1190. while (1) {
  1191. struct list_head list;
  1192. raw_spin_lock_irq(&wc->endio_list_lock);
  1193. if (!list_empty(&wc->endio_list))
  1194. goto pop_from_list;
  1195. set_current_state(TASK_INTERRUPTIBLE);
  1196. raw_spin_unlock_irq(&wc->endio_list_lock);
  1197. if (unlikely(kthread_should_stop())) {
  1198. set_current_state(TASK_RUNNING);
  1199. break;
  1200. }
  1201. schedule();
  1202. continue;
  1203. pop_from_list:
  1204. list = wc->endio_list;
  1205. list.next->prev = list.prev->next = &list;
  1206. INIT_LIST_HEAD(&wc->endio_list);
  1207. raw_spin_unlock_irq(&wc->endio_list_lock);
  1208. if (!WC_MODE_FUA(wc))
  1209. writecache_disk_flush(wc, wc->dev);
  1210. wc_lock(wc);
  1211. if (WC_MODE_PMEM(wc)) {
  1212. __writecache_endio_pmem(wc, &list);
  1213. } else {
  1214. __writecache_endio_ssd(wc, &list);
  1215. writecache_wait_for_ios(wc, READ);
  1216. }
  1217. writecache_commit_flushed(wc);
  1218. wc_unlock(wc);
  1219. }
  1220. return 0;
  1221. }
  1222. static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
  1223. {
  1224. struct dm_writecache *wc = wb->wc;
  1225. unsigned block_size = wc->block_size;
  1226. void *address = memory_data(wc, e);
  1227. persistent_memory_flush_cache(address, block_size);
  1228. return bio_add_page(&wb->bio, persistent_memory_page(address),
  1229. block_size, persistent_memory_page_offset(address)) != 0;
  1230. }
  1231. struct writeback_list {
  1232. struct list_head list;
  1233. size_t size;
  1234. };
  1235. static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
  1236. {
  1237. if (unlikely(wc->max_writeback_jobs)) {
  1238. if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
  1239. wc_lock(wc);
  1240. while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
  1241. writecache_wait_on_freelist(wc);
  1242. wc_unlock(wc);
  1243. }
  1244. }
  1245. cond_resched();
  1246. }
  1247. static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
  1248. {
  1249. struct wc_entry *e, *f;
  1250. struct bio *bio;
  1251. struct writeback_struct *wb;
  1252. unsigned max_pages;
  1253. while (wbl->size) {
  1254. wbl->size--;
  1255. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1256. list_del(&e->lru);
  1257. max_pages = e->wc_list_contiguous;
  1258. bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
  1259. wb = container_of(bio, struct writeback_struct, bio);
  1260. wb->wc = wc;
  1261. wb->bio.bi_end_io = writecache_writeback_endio;
  1262. bio_set_dev(&wb->bio, wc->dev->bdev);
  1263. wb->bio.bi_iter.bi_sector = read_original_sector(wc, e);
  1264. wb->page_offset = PAGE_SIZE;
  1265. if (max_pages <= WB_LIST_INLINE ||
  1266. unlikely(!(wb->wc_list = kmalloc(max_pages * sizeof(struct wc_entry *),
  1267. GFP_NOIO | __GFP_NORETRY |
  1268. __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
  1269. wb->wc_list = wb->wc_list_inline;
  1270. max_pages = WB_LIST_INLINE;
  1271. }
  1272. BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
  1273. wb->wc_list[0] = e;
  1274. wb->wc_list_n = 1;
  1275. while (wbl->size && wb->wc_list_n < max_pages) {
  1276. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1277. if (read_original_sector(wc, f) !=
  1278. read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
  1279. break;
  1280. if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
  1281. break;
  1282. wbl->size--;
  1283. list_del(&f->lru);
  1284. wb->wc_list[wb->wc_list_n++] = f;
  1285. e = f;
  1286. }
  1287. bio_set_op_attrs(&wb->bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
  1288. if (writecache_has_error(wc)) {
  1289. bio->bi_status = BLK_STS_IOERR;
  1290. bio_endio(&wb->bio);
  1291. } else {
  1292. submit_bio(&wb->bio);
  1293. }
  1294. __writeback_throttle(wc, wbl);
  1295. }
  1296. }
  1297. static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
  1298. {
  1299. struct wc_entry *e, *f;
  1300. struct dm_io_region from, to;
  1301. struct copy_struct *c;
  1302. while (wbl->size) {
  1303. unsigned n_sectors;
  1304. wbl->size--;
  1305. e = container_of(wbl->list.prev, struct wc_entry, lru);
  1306. list_del(&e->lru);
  1307. n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
  1308. from.bdev = wc->ssd_dev->bdev;
  1309. from.sector = cache_sector(wc, e);
  1310. from.count = n_sectors;
  1311. to.bdev = wc->dev->bdev;
  1312. to.sector = read_original_sector(wc, e);
  1313. to.count = n_sectors;
  1314. c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
  1315. c->wc = wc;
  1316. c->e = e;
  1317. c->n_entries = e->wc_list_contiguous;
  1318. while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
  1319. wbl->size--;
  1320. f = container_of(wbl->list.prev, struct wc_entry, lru);
  1321. BUG_ON(f != e + 1);
  1322. list_del(&f->lru);
  1323. e = f;
  1324. }
  1325. dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
  1326. __writeback_throttle(wc, wbl);
  1327. }
  1328. }
  1329. static void writecache_writeback(struct work_struct *work)
  1330. {
  1331. struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
  1332. struct blk_plug plug;
  1333. struct wc_entry *e, *f, *g;
  1334. struct rb_node *node, *next_node;
  1335. struct list_head skipped;
  1336. struct writeback_list wbl;
  1337. unsigned long n_walked;
  1338. wc_lock(wc);
  1339. restart:
  1340. if (writecache_has_error(wc)) {
  1341. wc_unlock(wc);
  1342. return;
  1343. }
  1344. if (unlikely(wc->writeback_all)) {
  1345. if (writecache_wait_for_writeback(wc))
  1346. goto restart;
  1347. }
  1348. if (wc->overwrote_committed) {
  1349. writecache_wait_for_ios(wc, WRITE);
  1350. }
  1351. n_walked = 0;
  1352. INIT_LIST_HEAD(&skipped);
  1353. INIT_LIST_HEAD(&wbl.list);
  1354. wbl.size = 0;
  1355. while (!list_empty(&wc->lru) &&
  1356. (wc->writeback_all ||
  1357. wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
  1358. n_walked++;
  1359. if (unlikely(n_walked > WRITEBACK_LATENCY) &&
  1360. likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
  1361. queue_work(wc->writeback_wq, &wc->writeback_work);
  1362. break;
  1363. }
  1364. e = container_of(wc->lru.prev, struct wc_entry, lru);
  1365. BUG_ON(e->write_in_progress);
  1366. if (unlikely(!writecache_entry_is_committed(wc, e))) {
  1367. writecache_flush(wc);
  1368. }
  1369. node = rb_prev(&e->rb_node);
  1370. if (node) {
  1371. f = container_of(node, struct wc_entry, rb_node);
  1372. if (unlikely(read_original_sector(wc, f) ==
  1373. read_original_sector(wc, e))) {
  1374. BUG_ON(!f->write_in_progress);
  1375. list_del(&e->lru);
  1376. list_add(&e->lru, &skipped);
  1377. cond_resched();
  1378. continue;
  1379. }
  1380. }
  1381. wc->writeback_size++;
  1382. list_del(&e->lru);
  1383. list_add(&e->lru, &wbl.list);
  1384. wbl.size++;
  1385. e->write_in_progress = true;
  1386. e->wc_list_contiguous = 1;
  1387. f = e;
  1388. while (1) {
  1389. next_node = rb_next(&f->rb_node);
  1390. if (unlikely(!next_node))
  1391. break;
  1392. g = container_of(next_node, struct wc_entry, rb_node);
  1393. if (read_original_sector(wc, g) ==
  1394. read_original_sector(wc, f)) {
  1395. f = g;
  1396. continue;
  1397. }
  1398. if (read_original_sector(wc, g) !=
  1399. read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
  1400. break;
  1401. if (unlikely(g->write_in_progress))
  1402. break;
  1403. if (unlikely(!writecache_entry_is_committed(wc, g)))
  1404. break;
  1405. if (!WC_MODE_PMEM(wc)) {
  1406. if (g != f + 1)
  1407. break;
  1408. }
  1409. n_walked++;
  1410. //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
  1411. // break;
  1412. wc->writeback_size++;
  1413. list_del(&g->lru);
  1414. list_add(&g->lru, &wbl.list);
  1415. wbl.size++;
  1416. g->write_in_progress = true;
  1417. g->wc_list_contiguous = BIO_MAX_PAGES;
  1418. f = g;
  1419. e->wc_list_contiguous++;
  1420. if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES))
  1421. break;
  1422. }
  1423. cond_resched();
  1424. }
  1425. if (!list_empty(&skipped)) {
  1426. list_splice_tail(&skipped, &wc->lru);
  1427. /*
  1428. * If we didn't do any progress, we must wait until some
  1429. * writeback finishes to avoid burning CPU in a loop
  1430. */
  1431. if (unlikely(!wbl.size))
  1432. writecache_wait_for_writeback(wc);
  1433. }
  1434. wc_unlock(wc);
  1435. blk_start_plug(&plug);
  1436. if (WC_MODE_PMEM(wc))
  1437. __writecache_writeback_pmem(wc, &wbl);
  1438. else
  1439. __writecache_writeback_ssd(wc, &wbl);
  1440. blk_finish_plug(&plug);
  1441. if (unlikely(wc->writeback_all)) {
  1442. wc_lock(wc);
  1443. while (writecache_wait_for_writeback(wc));
  1444. wc_unlock(wc);
  1445. }
  1446. }
  1447. static int calculate_memory_size(uint64_t device_size, unsigned block_size,
  1448. size_t *n_blocks_p, size_t *n_metadata_blocks_p)
  1449. {
  1450. uint64_t n_blocks, offset;
  1451. struct wc_entry e;
  1452. n_blocks = device_size;
  1453. do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
  1454. while (1) {
  1455. if (!n_blocks)
  1456. return -ENOSPC;
  1457. /* Verify the following entries[n_blocks] won't overflow */
  1458. if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
  1459. sizeof(struct wc_memory_entry)))
  1460. return -EFBIG;
  1461. offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
  1462. offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
  1463. if (offset + n_blocks * block_size <= device_size)
  1464. break;
  1465. n_blocks--;
  1466. }
  1467. /* check if the bit field overflows */
  1468. e.index = n_blocks;
  1469. if (e.index != n_blocks)
  1470. return -EFBIG;
  1471. if (n_blocks_p)
  1472. *n_blocks_p = n_blocks;
  1473. if (n_metadata_blocks_p)
  1474. *n_metadata_blocks_p = offset >> __ffs(block_size);
  1475. return 0;
  1476. }
  1477. static int init_memory(struct dm_writecache *wc)
  1478. {
  1479. size_t b;
  1480. int r;
  1481. r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
  1482. if (r)
  1483. return r;
  1484. r = writecache_alloc_entries(wc);
  1485. if (r)
  1486. return r;
  1487. for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
  1488. pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
  1489. pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
  1490. pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
  1491. pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
  1492. pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
  1493. for (b = 0; b < wc->n_blocks; b++)
  1494. write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
  1495. writecache_flush_all_metadata(wc);
  1496. writecache_commit_flushed(wc);
  1497. pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
  1498. writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
  1499. writecache_commit_flushed(wc);
  1500. return 0;
  1501. }
  1502. static void writecache_dtr(struct dm_target *ti)
  1503. {
  1504. struct dm_writecache *wc = ti->private;
  1505. if (!wc)
  1506. return;
  1507. if (wc->endio_thread)
  1508. kthread_stop(wc->endio_thread);
  1509. if (wc->flush_thread)
  1510. kthread_stop(wc->flush_thread);
  1511. bioset_exit(&wc->bio_set);
  1512. mempool_exit(&wc->copy_pool);
  1513. if (wc->writeback_wq)
  1514. destroy_workqueue(wc->writeback_wq);
  1515. if (wc->dev)
  1516. dm_put_device(ti, wc->dev);
  1517. if (wc->ssd_dev)
  1518. dm_put_device(ti, wc->ssd_dev);
  1519. if (wc->entries)
  1520. vfree(wc->entries);
  1521. if (wc->memory_map) {
  1522. if (WC_MODE_PMEM(wc))
  1523. persistent_memory_release(wc);
  1524. else
  1525. vfree(wc->memory_map);
  1526. }
  1527. if (wc->dm_kcopyd)
  1528. dm_kcopyd_client_destroy(wc->dm_kcopyd);
  1529. if (wc->dm_io)
  1530. dm_io_client_destroy(wc->dm_io);
  1531. if (wc->dirty_bitmap)
  1532. vfree(wc->dirty_bitmap);
  1533. kfree(wc);
  1534. }
  1535. static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
  1536. {
  1537. struct dm_writecache *wc;
  1538. struct dm_arg_set as;
  1539. const char *string;
  1540. unsigned opt_params;
  1541. size_t offset, data_size;
  1542. int i, r;
  1543. char dummy;
  1544. int high_wm_percent = HIGH_WATERMARK;
  1545. int low_wm_percent = LOW_WATERMARK;
  1546. uint64_t x;
  1547. struct wc_memory_superblock s;
  1548. static struct dm_arg _args[] = {
  1549. {0, 10, "Invalid number of feature args"},
  1550. };
  1551. as.argc = argc;
  1552. as.argv = argv;
  1553. wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
  1554. if (!wc) {
  1555. ti->error = "Cannot allocate writecache structure";
  1556. r = -ENOMEM;
  1557. goto bad;
  1558. }
  1559. ti->private = wc;
  1560. wc->ti = ti;
  1561. mutex_init(&wc->lock);
  1562. writecache_poison_lists(wc);
  1563. init_waitqueue_head(&wc->freelist_wait);
  1564. timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
  1565. for (i = 0; i < 2; i++) {
  1566. atomic_set(&wc->bio_in_progress[i], 0);
  1567. init_waitqueue_head(&wc->bio_in_progress_wait[i]);
  1568. }
  1569. wc->dm_io = dm_io_client_create();
  1570. if (IS_ERR(wc->dm_io)) {
  1571. r = PTR_ERR(wc->dm_io);
  1572. ti->error = "Unable to allocate dm-io client";
  1573. wc->dm_io = NULL;
  1574. goto bad;
  1575. }
  1576. wc->writeback_wq = alloc_workqueue("writecache-writeabck", WQ_MEM_RECLAIM, 1);
  1577. if (!wc->writeback_wq) {
  1578. r = -ENOMEM;
  1579. ti->error = "Could not allocate writeback workqueue";
  1580. goto bad;
  1581. }
  1582. INIT_WORK(&wc->writeback_work, writecache_writeback);
  1583. INIT_WORK(&wc->flush_work, writecache_flush_work);
  1584. raw_spin_lock_init(&wc->endio_list_lock);
  1585. INIT_LIST_HEAD(&wc->endio_list);
  1586. wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
  1587. if (IS_ERR(wc->endio_thread)) {
  1588. r = PTR_ERR(wc->endio_thread);
  1589. wc->endio_thread = NULL;
  1590. ti->error = "Couldn't spawn endio thread";
  1591. goto bad;
  1592. }
  1593. wake_up_process(wc->endio_thread);
  1594. /*
  1595. * Parse the mode (pmem or ssd)
  1596. */
  1597. string = dm_shift_arg(&as);
  1598. if (!string)
  1599. goto bad_arguments;
  1600. if (!strcasecmp(string, "s")) {
  1601. wc->pmem_mode = false;
  1602. } else if (!strcasecmp(string, "p")) {
  1603. #ifdef DM_WRITECACHE_HAS_PMEM
  1604. wc->pmem_mode = true;
  1605. wc->writeback_fua = true;
  1606. #else
  1607. /*
  1608. * If the architecture doesn't support persistent memory or
  1609. * the kernel doesn't support any DAX drivers, this driver can
  1610. * only be used in SSD-only mode.
  1611. */
  1612. r = -EOPNOTSUPP;
  1613. ti->error = "Persistent memory or DAX not supported on this system";
  1614. goto bad;
  1615. #endif
  1616. } else {
  1617. goto bad_arguments;
  1618. }
  1619. if (WC_MODE_PMEM(wc)) {
  1620. r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
  1621. offsetof(struct writeback_struct, bio),
  1622. BIOSET_NEED_BVECS);
  1623. if (r) {
  1624. ti->error = "Could not allocate bio set";
  1625. goto bad;
  1626. }
  1627. } else {
  1628. r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
  1629. if (r) {
  1630. ti->error = "Could not allocate mempool";
  1631. goto bad;
  1632. }
  1633. }
  1634. /*
  1635. * Parse the origin data device
  1636. */
  1637. string = dm_shift_arg(&as);
  1638. if (!string)
  1639. goto bad_arguments;
  1640. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
  1641. if (r) {
  1642. ti->error = "Origin data device lookup failed";
  1643. goto bad;
  1644. }
  1645. /*
  1646. * Parse cache data device (be it pmem or ssd)
  1647. */
  1648. string = dm_shift_arg(&as);
  1649. if (!string)
  1650. goto bad_arguments;
  1651. r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
  1652. if (r) {
  1653. ti->error = "Cache data device lookup failed";
  1654. goto bad;
  1655. }
  1656. wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
  1657. if (WC_MODE_PMEM(wc)) {
  1658. r = persistent_memory_claim(wc);
  1659. if (r) {
  1660. ti->error = "Unable to map persistent memory for cache";
  1661. goto bad;
  1662. }
  1663. }
  1664. /*
  1665. * Parse the cache block size
  1666. */
  1667. string = dm_shift_arg(&as);
  1668. if (!string)
  1669. goto bad_arguments;
  1670. if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
  1671. wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
  1672. (wc->block_size & (wc->block_size - 1))) {
  1673. r = -EINVAL;
  1674. ti->error = "Invalid block size";
  1675. goto bad;
  1676. }
  1677. wc->block_size_bits = __ffs(wc->block_size);
  1678. wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
  1679. wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
  1680. wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
  1681. /*
  1682. * Parse optional arguments
  1683. */
  1684. r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
  1685. if (r)
  1686. goto bad;
  1687. while (opt_params) {
  1688. string = dm_shift_arg(&as), opt_params--;
  1689. if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
  1690. string = dm_shift_arg(&as), opt_params--;
  1691. if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
  1692. goto invalid_optional;
  1693. if (high_wm_percent < 0 || high_wm_percent > 100)
  1694. goto invalid_optional;
  1695. wc->high_wm_percent_set = true;
  1696. } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
  1697. string = dm_shift_arg(&as), opt_params--;
  1698. if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
  1699. goto invalid_optional;
  1700. if (low_wm_percent < 0 || low_wm_percent > 100)
  1701. goto invalid_optional;
  1702. wc->low_wm_percent_set = true;
  1703. } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
  1704. string = dm_shift_arg(&as), opt_params--;
  1705. if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
  1706. goto invalid_optional;
  1707. wc->max_writeback_jobs_set = true;
  1708. } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
  1709. string = dm_shift_arg(&as), opt_params--;
  1710. if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
  1711. goto invalid_optional;
  1712. wc->autocommit_blocks_set = true;
  1713. } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
  1714. unsigned autocommit_msecs;
  1715. string = dm_shift_arg(&as), opt_params--;
  1716. if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
  1717. goto invalid_optional;
  1718. if (autocommit_msecs > 3600000)
  1719. goto invalid_optional;
  1720. wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
  1721. wc->autocommit_time_set = true;
  1722. } else if (!strcasecmp(string, "fua")) {
  1723. if (WC_MODE_PMEM(wc)) {
  1724. wc->writeback_fua = true;
  1725. wc->writeback_fua_set = true;
  1726. } else goto invalid_optional;
  1727. } else if (!strcasecmp(string, "nofua")) {
  1728. if (WC_MODE_PMEM(wc)) {
  1729. wc->writeback_fua = false;
  1730. wc->writeback_fua_set = true;
  1731. } else goto invalid_optional;
  1732. } else {
  1733. invalid_optional:
  1734. r = -EINVAL;
  1735. ti->error = "Invalid optional argument";
  1736. goto bad;
  1737. }
  1738. }
  1739. if (high_wm_percent < low_wm_percent) {
  1740. r = -EINVAL;
  1741. ti->error = "High watermark must be greater than or equal to low watermark";
  1742. goto bad;
  1743. }
  1744. if (!WC_MODE_PMEM(wc)) {
  1745. struct dm_io_region region;
  1746. struct dm_io_request req;
  1747. size_t n_blocks, n_metadata_blocks;
  1748. uint64_t n_bitmap_bits;
  1749. bio_list_init(&wc->flush_list);
  1750. wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
  1751. if (IS_ERR(wc->flush_thread)) {
  1752. r = PTR_ERR(wc->flush_thread);
  1753. wc->flush_thread = NULL;
  1754. ti->error = "Couldn't spawn endio thread";
  1755. goto bad;
  1756. }
  1757. wake_up_process(wc->flush_thread);
  1758. r = calculate_memory_size(wc->memory_map_size, wc->block_size,
  1759. &n_blocks, &n_metadata_blocks);
  1760. if (r) {
  1761. ti->error = "Invalid device size";
  1762. goto bad;
  1763. }
  1764. n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
  1765. BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
  1766. /* this is limitation of test_bit functions */
  1767. if (n_bitmap_bits > 1U << 31) {
  1768. r = -EFBIG;
  1769. ti->error = "Invalid device size";
  1770. goto bad;
  1771. }
  1772. wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
  1773. if (!wc->memory_map) {
  1774. r = -ENOMEM;
  1775. ti->error = "Unable to allocate memory for metadata";
  1776. goto bad;
  1777. }
  1778. wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
  1779. if (IS_ERR(wc->dm_kcopyd)) {
  1780. r = PTR_ERR(wc->dm_kcopyd);
  1781. ti->error = "Unable to allocate dm-kcopyd client";
  1782. wc->dm_kcopyd = NULL;
  1783. goto bad;
  1784. }
  1785. wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
  1786. wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
  1787. BITS_PER_LONG * sizeof(unsigned long);
  1788. wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
  1789. if (!wc->dirty_bitmap) {
  1790. r = -ENOMEM;
  1791. ti->error = "Unable to allocate dirty bitmap";
  1792. goto bad;
  1793. }
  1794. region.bdev = wc->ssd_dev->bdev;
  1795. region.sector = 0;
  1796. region.count = wc->metadata_sectors;
  1797. req.bi_op = REQ_OP_READ;
  1798. req.bi_op_flags = REQ_SYNC;
  1799. req.mem.type = DM_IO_VMA;
  1800. req.mem.ptr.vma = (char *)wc->memory_map;
  1801. req.client = wc->dm_io;
  1802. req.notify.fn = NULL;
  1803. r = dm_io(&req, 1, &region, NULL);
  1804. if (r) {
  1805. ti->error = "Unable to read metadata";
  1806. goto bad;
  1807. }
  1808. }
  1809. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1810. if (r) {
  1811. ti->error = "Hardware memory error when reading superblock";
  1812. goto bad;
  1813. }
  1814. if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
  1815. r = init_memory(wc);
  1816. if (r) {
  1817. ti->error = "Unable to initialize device";
  1818. goto bad;
  1819. }
  1820. r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
  1821. if (r) {
  1822. ti->error = "Hardware memory error when reading superblock";
  1823. goto bad;
  1824. }
  1825. }
  1826. if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
  1827. ti->error = "Invalid magic in the superblock";
  1828. r = -EINVAL;
  1829. goto bad;
  1830. }
  1831. if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
  1832. ti->error = "Invalid version in the superblock";
  1833. r = -EINVAL;
  1834. goto bad;
  1835. }
  1836. if (le32_to_cpu(s.block_size) != wc->block_size) {
  1837. ti->error = "Block size does not match superblock";
  1838. r = -EINVAL;
  1839. goto bad;
  1840. }
  1841. wc->n_blocks = le64_to_cpu(s.n_blocks);
  1842. offset = wc->n_blocks * sizeof(struct wc_memory_entry);
  1843. if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
  1844. overflow:
  1845. ti->error = "Overflow in size calculation";
  1846. r = -EINVAL;
  1847. goto bad;
  1848. }
  1849. offset += sizeof(struct wc_memory_superblock);
  1850. if (offset < sizeof(struct wc_memory_superblock))
  1851. goto overflow;
  1852. offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
  1853. data_size = wc->n_blocks * (size_t)wc->block_size;
  1854. if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
  1855. (offset + data_size < offset))
  1856. goto overflow;
  1857. if (offset + data_size > wc->memory_map_size) {
  1858. ti->error = "Memory area is too small";
  1859. r = -EINVAL;
  1860. goto bad;
  1861. }
  1862. wc->metadata_sectors = offset >> SECTOR_SHIFT;
  1863. wc->block_start = (char *)sb(wc) + offset;
  1864. x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
  1865. x += 50;
  1866. do_div(x, 100);
  1867. wc->freelist_high_watermark = x;
  1868. x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
  1869. x += 50;
  1870. do_div(x, 100);
  1871. wc->freelist_low_watermark = x;
  1872. r = writecache_alloc_entries(wc);
  1873. if (r) {
  1874. ti->error = "Cannot allocate memory";
  1875. goto bad;
  1876. }
  1877. ti->num_flush_bios = 1;
  1878. ti->flush_supported = true;
  1879. ti->num_discard_bios = 1;
  1880. if (WC_MODE_PMEM(wc))
  1881. persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
  1882. return 0;
  1883. bad_arguments:
  1884. r = -EINVAL;
  1885. ti->error = "Bad arguments";
  1886. bad:
  1887. writecache_dtr(ti);
  1888. return r;
  1889. }
  1890. static void writecache_status(struct dm_target *ti, status_type_t type,
  1891. unsigned status_flags, char *result, unsigned maxlen)
  1892. {
  1893. struct dm_writecache *wc = ti->private;
  1894. unsigned extra_args;
  1895. unsigned sz = 0;
  1896. uint64_t x;
  1897. switch (type) {
  1898. case STATUSTYPE_INFO:
  1899. DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
  1900. (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
  1901. (unsigned long long)wc->writeback_size);
  1902. break;
  1903. case STATUSTYPE_TABLE:
  1904. DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
  1905. wc->dev->name, wc->ssd_dev->name, wc->block_size);
  1906. extra_args = 0;
  1907. if (wc->high_wm_percent_set)
  1908. extra_args += 2;
  1909. if (wc->low_wm_percent_set)
  1910. extra_args += 2;
  1911. if (wc->max_writeback_jobs_set)
  1912. extra_args += 2;
  1913. if (wc->autocommit_blocks_set)
  1914. extra_args += 2;
  1915. if (wc->autocommit_time_set)
  1916. extra_args += 2;
  1917. if (wc->writeback_fua_set)
  1918. extra_args++;
  1919. DMEMIT("%u", extra_args);
  1920. if (wc->high_wm_percent_set) {
  1921. x = (uint64_t)wc->freelist_high_watermark * 100;
  1922. x += wc->n_blocks / 2;
  1923. do_div(x, (size_t)wc->n_blocks);
  1924. DMEMIT(" high_watermark %u", 100 - (unsigned)x);
  1925. }
  1926. if (wc->low_wm_percent_set) {
  1927. x = (uint64_t)wc->freelist_low_watermark * 100;
  1928. x += wc->n_blocks / 2;
  1929. do_div(x, (size_t)wc->n_blocks);
  1930. DMEMIT(" low_watermark %u", 100 - (unsigned)x);
  1931. }
  1932. if (wc->max_writeback_jobs_set)
  1933. DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
  1934. if (wc->autocommit_blocks_set)
  1935. DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
  1936. if (wc->autocommit_time_set)
  1937. DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
  1938. if (wc->writeback_fua_set)
  1939. DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
  1940. break;
  1941. }
  1942. }
  1943. static struct target_type writecache_target = {
  1944. .name = "writecache",
  1945. .version = {1, 0, 0},
  1946. .module = THIS_MODULE,
  1947. .ctr = writecache_ctr,
  1948. .dtr = writecache_dtr,
  1949. .status = writecache_status,
  1950. .postsuspend = writecache_suspend,
  1951. .resume = writecache_resume,
  1952. .message = writecache_message,
  1953. .map = writecache_map,
  1954. .end_io = writecache_end_io,
  1955. .iterate_devices = writecache_iterate_devices,
  1956. .io_hints = writecache_io_hints,
  1957. };
  1958. static int __init dm_writecache_init(void)
  1959. {
  1960. int r;
  1961. r = dm_register_target(&writecache_target);
  1962. if (r < 0) {
  1963. DMERR("register failed %d", r);
  1964. return r;
  1965. }
  1966. return 0;
  1967. }
  1968. static void __exit dm_writecache_exit(void)
  1969. {
  1970. dm_unregister_target(&writecache_target);
  1971. }
  1972. module_init(dm_writecache_init);
  1973. module_exit(dm_writecache_exit);
  1974. MODULE_DESCRIPTION(DM_NAME " writecache target");
  1975. MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
  1976. MODULE_LICENSE("GPL");