page_alloc.c 220 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kasan.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/memremap.h>
  45. #include <linux/stop_machine.h>
  46. #include <linux/sort.h>
  47. #include <linux/pfn.h>
  48. #include <xen/xen.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <trace/events/oom.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/mm_inline.h>
  60. #include <linux/migrate.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/sched/mm.h>
  64. #include <linux/page_owner.h>
  65. #include <linux/kthread.h>
  66. #include <linux/memcontrol.h>
  67. #include <linux/ftrace.h>
  68. #include <linux/lockdep.h>
  69. #include <linux/nmi.h>
  70. #include <asm/sections.h>
  71. #include <asm/tlbflush.h>
  72. #include <asm/div64.h>
  73. #include "internal.h"
  74. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  75. static DEFINE_MUTEX(pcp_batch_high_lock);
  76. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  77. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  78. DEFINE_PER_CPU(int, numa_node);
  79. EXPORT_PER_CPU_SYMBOL(numa_node);
  80. #endif
  81. DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  82. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  83. /*
  84. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  85. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  86. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  87. * defined in <linux/topology.h>.
  88. */
  89. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  90. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  91. int _node_numa_mem_[MAX_NUMNODES];
  92. #endif
  93. /* work_structs for global per-cpu drains */
  94. DEFINE_MUTEX(pcpu_drain_mutex);
  95. DEFINE_PER_CPU(struct work_struct, pcpu_drain);
  96. #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
  97. volatile unsigned long latent_entropy __latent_entropy;
  98. EXPORT_SYMBOL(latent_entropy);
  99. #endif
  100. /*
  101. * Array of node states.
  102. */
  103. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  104. [N_POSSIBLE] = NODE_MASK_ALL,
  105. [N_ONLINE] = { { [0] = 1UL } },
  106. #ifndef CONFIG_NUMA
  107. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  108. #ifdef CONFIG_HIGHMEM
  109. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  110. #endif
  111. [N_MEMORY] = { { [0] = 1UL } },
  112. [N_CPU] = { { [0] = 1UL } },
  113. #endif /* NUMA */
  114. };
  115. EXPORT_SYMBOL(node_states);
  116. /* Protect totalram_pages and zone->managed_pages */
  117. static DEFINE_SPINLOCK(managed_page_count_lock);
  118. unsigned long totalram_pages __read_mostly;
  119. unsigned long totalreserve_pages __read_mostly;
  120. unsigned long totalcma_pages __read_mostly;
  121. int percpu_pagelist_fraction;
  122. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  123. /*
  124. * A cached value of the page's pageblock's migratetype, used when the page is
  125. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  126. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  127. * Also the migratetype set in the page does not necessarily match the pcplist
  128. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  129. * other index - this ensures that it will be put on the correct CMA freelist.
  130. */
  131. static inline int get_pcppage_migratetype(struct page *page)
  132. {
  133. return page->index;
  134. }
  135. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  136. {
  137. page->index = migratetype;
  138. }
  139. #ifdef CONFIG_PM_SLEEP
  140. /*
  141. * The following functions are used by the suspend/hibernate code to temporarily
  142. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  143. * while devices are suspended. To avoid races with the suspend/hibernate code,
  144. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  145. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  146. * guaranteed not to run in parallel with that modification).
  147. */
  148. static gfp_t saved_gfp_mask;
  149. void pm_restore_gfp_mask(void)
  150. {
  151. WARN_ON(!mutex_is_locked(&pm_mutex));
  152. if (saved_gfp_mask) {
  153. gfp_allowed_mask = saved_gfp_mask;
  154. saved_gfp_mask = 0;
  155. }
  156. }
  157. void pm_restrict_gfp_mask(void)
  158. {
  159. WARN_ON(!mutex_is_locked(&pm_mutex));
  160. WARN_ON(saved_gfp_mask);
  161. saved_gfp_mask = gfp_allowed_mask;
  162. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  163. }
  164. bool pm_suspended_storage(void)
  165. {
  166. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  167. return false;
  168. return true;
  169. }
  170. #endif /* CONFIG_PM_SLEEP */
  171. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  172. unsigned int pageblock_order __read_mostly;
  173. #endif
  174. static void __free_pages_ok(struct page *page, unsigned int order);
  175. /*
  176. * results with 256, 32 in the lowmem_reserve sysctl:
  177. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  178. * 1G machine -> (16M dma, 784M normal, 224M high)
  179. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  180. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  181. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  182. *
  183. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  184. * don't need any ZONE_NORMAL reservation
  185. */
  186. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  187. #ifdef CONFIG_ZONE_DMA
  188. 256,
  189. #endif
  190. #ifdef CONFIG_ZONE_DMA32
  191. 256,
  192. #endif
  193. #ifdef CONFIG_HIGHMEM
  194. 32,
  195. #endif
  196. 32,
  197. };
  198. EXPORT_SYMBOL(totalram_pages);
  199. static char * const zone_names[MAX_NR_ZONES] = {
  200. #ifdef CONFIG_ZONE_DMA
  201. "DMA",
  202. #endif
  203. #ifdef CONFIG_ZONE_DMA32
  204. "DMA32",
  205. #endif
  206. "Normal",
  207. #ifdef CONFIG_HIGHMEM
  208. "HighMem",
  209. #endif
  210. "Movable",
  211. #ifdef CONFIG_ZONE_DEVICE
  212. "Device",
  213. #endif
  214. };
  215. char * const migratetype_names[MIGRATE_TYPES] = {
  216. "Unmovable",
  217. "Movable",
  218. "Reclaimable",
  219. "HighAtomic",
  220. #ifdef CONFIG_CMA
  221. "CMA",
  222. #endif
  223. #ifdef CONFIG_MEMORY_ISOLATION
  224. "Isolate",
  225. #endif
  226. };
  227. compound_page_dtor * const compound_page_dtors[] = {
  228. NULL,
  229. free_compound_page,
  230. #ifdef CONFIG_HUGETLB_PAGE
  231. free_huge_page,
  232. #endif
  233. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  234. free_transhuge_page,
  235. #endif
  236. };
  237. int min_free_kbytes = 1024;
  238. int user_min_free_kbytes = -1;
  239. int watermark_scale_factor = 10;
  240. static unsigned long nr_kernel_pages __meminitdata;
  241. static unsigned long nr_all_pages __meminitdata;
  242. static unsigned long dma_reserve __meminitdata;
  243. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  244. static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
  245. static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
  246. static unsigned long required_kernelcore __initdata;
  247. static unsigned long required_kernelcore_percent __initdata;
  248. static unsigned long required_movablecore __initdata;
  249. static unsigned long required_movablecore_percent __initdata;
  250. static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
  251. static bool mirrored_kernelcore __meminitdata;
  252. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  253. int movable_zone;
  254. EXPORT_SYMBOL(movable_zone);
  255. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  256. #if MAX_NUMNODES > 1
  257. int nr_node_ids __read_mostly = MAX_NUMNODES;
  258. int nr_online_nodes __read_mostly = 1;
  259. EXPORT_SYMBOL(nr_node_ids);
  260. EXPORT_SYMBOL(nr_online_nodes);
  261. #endif
  262. int page_group_by_mobility_disabled __read_mostly;
  263. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  264. /* Returns true if the struct page for the pfn is uninitialised */
  265. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  266. {
  267. int nid = early_pfn_to_nid(pfn);
  268. if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
  269. return true;
  270. return false;
  271. }
  272. /*
  273. * Returns false when the remaining initialisation should be deferred until
  274. * later in the boot cycle when it can be parallelised.
  275. */
  276. static inline bool update_defer_init(pg_data_t *pgdat,
  277. unsigned long pfn, unsigned long zone_end,
  278. unsigned long *nr_initialised)
  279. {
  280. /* Always populate low zones for address-constrained allocations */
  281. if (zone_end < pgdat_end_pfn(pgdat))
  282. return true;
  283. /* Xen PV domains need page structures early */
  284. if (xen_pv_domain())
  285. return true;
  286. (*nr_initialised)++;
  287. if ((*nr_initialised > pgdat->static_init_pgcnt) &&
  288. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  289. pgdat->first_deferred_pfn = pfn;
  290. return false;
  291. }
  292. return true;
  293. }
  294. #else
  295. static inline bool early_page_uninitialised(unsigned long pfn)
  296. {
  297. return false;
  298. }
  299. static inline bool update_defer_init(pg_data_t *pgdat,
  300. unsigned long pfn, unsigned long zone_end,
  301. unsigned long *nr_initialised)
  302. {
  303. return true;
  304. }
  305. #endif
  306. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  307. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  308. unsigned long pfn)
  309. {
  310. #ifdef CONFIG_SPARSEMEM
  311. return __pfn_to_section(pfn)->pageblock_flags;
  312. #else
  313. return page_zone(page)->pageblock_flags;
  314. #endif /* CONFIG_SPARSEMEM */
  315. }
  316. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  317. {
  318. #ifdef CONFIG_SPARSEMEM
  319. pfn &= (PAGES_PER_SECTION-1);
  320. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  321. #else
  322. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  323. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  324. #endif /* CONFIG_SPARSEMEM */
  325. }
  326. /**
  327. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  328. * @page: The page within the block of interest
  329. * @pfn: The target page frame number
  330. * @end_bitidx: The last bit of interest to retrieve
  331. * @mask: mask of bits that the caller is interested in
  332. *
  333. * Return: pageblock_bits flags
  334. */
  335. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  336. unsigned long pfn,
  337. unsigned long end_bitidx,
  338. unsigned long mask)
  339. {
  340. unsigned long *bitmap;
  341. unsigned long bitidx, word_bitidx;
  342. unsigned long word;
  343. bitmap = get_pageblock_bitmap(page, pfn);
  344. bitidx = pfn_to_bitidx(page, pfn);
  345. word_bitidx = bitidx / BITS_PER_LONG;
  346. bitidx &= (BITS_PER_LONG-1);
  347. word = bitmap[word_bitidx];
  348. bitidx += end_bitidx;
  349. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  350. }
  351. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  352. unsigned long end_bitidx,
  353. unsigned long mask)
  354. {
  355. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  356. }
  357. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  358. {
  359. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  360. }
  361. /**
  362. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  363. * @page: The page within the block of interest
  364. * @flags: The flags to set
  365. * @pfn: The target page frame number
  366. * @end_bitidx: The last bit of interest
  367. * @mask: mask of bits that the caller is interested in
  368. */
  369. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  370. unsigned long pfn,
  371. unsigned long end_bitidx,
  372. unsigned long mask)
  373. {
  374. unsigned long *bitmap;
  375. unsigned long bitidx, word_bitidx;
  376. unsigned long old_word, word;
  377. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  378. bitmap = get_pageblock_bitmap(page, pfn);
  379. bitidx = pfn_to_bitidx(page, pfn);
  380. word_bitidx = bitidx / BITS_PER_LONG;
  381. bitidx &= (BITS_PER_LONG-1);
  382. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  383. bitidx += end_bitidx;
  384. mask <<= (BITS_PER_LONG - bitidx - 1);
  385. flags <<= (BITS_PER_LONG - bitidx - 1);
  386. word = READ_ONCE(bitmap[word_bitidx]);
  387. for (;;) {
  388. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  389. if (word == old_word)
  390. break;
  391. word = old_word;
  392. }
  393. }
  394. void set_pageblock_migratetype(struct page *page, int migratetype)
  395. {
  396. if (unlikely(page_group_by_mobility_disabled &&
  397. migratetype < MIGRATE_PCPTYPES))
  398. migratetype = MIGRATE_UNMOVABLE;
  399. set_pageblock_flags_group(page, (unsigned long)migratetype,
  400. PB_migrate, PB_migrate_end);
  401. }
  402. #ifdef CONFIG_DEBUG_VM
  403. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  404. {
  405. int ret = 0;
  406. unsigned seq;
  407. unsigned long pfn = page_to_pfn(page);
  408. unsigned long sp, start_pfn;
  409. do {
  410. seq = zone_span_seqbegin(zone);
  411. start_pfn = zone->zone_start_pfn;
  412. sp = zone->spanned_pages;
  413. if (!zone_spans_pfn(zone, pfn))
  414. ret = 1;
  415. } while (zone_span_seqretry(zone, seq));
  416. if (ret)
  417. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  418. pfn, zone_to_nid(zone), zone->name,
  419. start_pfn, start_pfn + sp);
  420. return ret;
  421. }
  422. static int page_is_consistent(struct zone *zone, struct page *page)
  423. {
  424. if (!pfn_valid_within(page_to_pfn(page)))
  425. return 0;
  426. if (zone != page_zone(page))
  427. return 0;
  428. return 1;
  429. }
  430. /*
  431. * Temporary debugging check for pages not lying within a given zone.
  432. */
  433. static int __maybe_unused bad_range(struct zone *zone, struct page *page)
  434. {
  435. if (page_outside_zone_boundaries(zone, page))
  436. return 1;
  437. if (!page_is_consistent(zone, page))
  438. return 1;
  439. return 0;
  440. }
  441. #else
  442. static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
  443. {
  444. return 0;
  445. }
  446. #endif
  447. static void bad_page(struct page *page, const char *reason,
  448. unsigned long bad_flags)
  449. {
  450. static unsigned long resume;
  451. static unsigned long nr_shown;
  452. static unsigned long nr_unshown;
  453. /*
  454. * Allow a burst of 60 reports, then keep quiet for that minute;
  455. * or allow a steady drip of one report per second.
  456. */
  457. if (nr_shown == 60) {
  458. if (time_before(jiffies, resume)) {
  459. nr_unshown++;
  460. goto out;
  461. }
  462. if (nr_unshown) {
  463. pr_alert(
  464. "BUG: Bad page state: %lu messages suppressed\n",
  465. nr_unshown);
  466. nr_unshown = 0;
  467. }
  468. nr_shown = 0;
  469. }
  470. if (nr_shown++ == 0)
  471. resume = jiffies + 60 * HZ;
  472. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  473. current->comm, page_to_pfn(page));
  474. __dump_page(page, reason);
  475. bad_flags &= page->flags;
  476. if (bad_flags)
  477. pr_alert("bad because of flags: %#lx(%pGp)\n",
  478. bad_flags, &bad_flags);
  479. dump_page_owner(page);
  480. print_modules();
  481. dump_stack();
  482. out:
  483. /* Leave bad fields for debug, except PageBuddy could make trouble */
  484. page_mapcount_reset(page); /* remove PageBuddy */
  485. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  486. }
  487. /*
  488. * Higher-order pages are called "compound pages". They are structured thusly:
  489. *
  490. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  491. *
  492. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  493. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  494. *
  495. * The first tail page's ->compound_dtor holds the offset in array of compound
  496. * page destructors. See compound_page_dtors.
  497. *
  498. * The first tail page's ->compound_order holds the order of allocation.
  499. * This usage means that zero-order pages may not be compound.
  500. */
  501. void free_compound_page(struct page *page)
  502. {
  503. __free_pages_ok(page, compound_order(page));
  504. }
  505. void prep_compound_page(struct page *page, unsigned int order)
  506. {
  507. int i;
  508. int nr_pages = 1 << order;
  509. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  510. set_compound_order(page, order);
  511. __SetPageHead(page);
  512. for (i = 1; i < nr_pages; i++) {
  513. struct page *p = page + i;
  514. set_page_count(p, 0);
  515. p->mapping = TAIL_MAPPING;
  516. set_compound_head(p, page);
  517. }
  518. atomic_set(compound_mapcount_ptr(page), -1);
  519. }
  520. #ifdef CONFIG_DEBUG_PAGEALLOC
  521. unsigned int _debug_guardpage_minorder;
  522. bool _debug_pagealloc_enabled __read_mostly
  523. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  524. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  525. bool _debug_guardpage_enabled __read_mostly;
  526. static int __init early_debug_pagealloc(char *buf)
  527. {
  528. if (!buf)
  529. return -EINVAL;
  530. return kstrtobool(buf, &_debug_pagealloc_enabled);
  531. }
  532. early_param("debug_pagealloc", early_debug_pagealloc);
  533. static bool need_debug_guardpage(void)
  534. {
  535. /* If we don't use debug_pagealloc, we don't need guard page */
  536. if (!debug_pagealloc_enabled())
  537. return false;
  538. if (!debug_guardpage_minorder())
  539. return false;
  540. return true;
  541. }
  542. static void init_debug_guardpage(void)
  543. {
  544. if (!debug_pagealloc_enabled())
  545. return;
  546. if (!debug_guardpage_minorder())
  547. return;
  548. _debug_guardpage_enabled = true;
  549. }
  550. struct page_ext_operations debug_guardpage_ops = {
  551. .need = need_debug_guardpage,
  552. .init = init_debug_guardpage,
  553. };
  554. static int __init debug_guardpage_minorder_setup(char *buf)
  555. {
  556. unsigned long res;
  557. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  558. pr_err("Bad debug_guardpage_minorder value\n");
  559. return 0;
  560. }
  561. _debug_guardpage_minorder = res;
  562. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  563. return 0;
  564. }
  565. early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
  566. static inline bool set_page_guard(struct zone *zone, struct page *page,
  567. unsigned int order, int migratetype)
  568. {
  569. struct page_ext *page_ext;
  570. if (!debug_guardpage_enabled())
  571. return false;
  572. if (order >= debug_guardpage_minorder())
  573. return false;
  574. page_ext = lookup_page_ext(page);
  575. if (unlikely(!page_ext))
  576. return false;
  577. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  578. INIT_LIST_HEAD(&page->lru);
  579. set_page_private(page, order);
  580. /* Guard pages are not available for any usage */
  581. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  582. return true;
  583. }
  584. static inline void clear_page_guard(struct zone *zone, struct page *page,
  585. unsigned int order, int migratetype)
  586. {
  587. struct page_ext *page_ext;
  588. if (!debug_guardpage_enabled())
  589. return;
  590. page_ext = lookup_page_ext(page);
  591. if (unlikely(!page_ext))
  592. return;
  593. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  594. set_page_private(page, 0);
  595. if (!is_migrate_isolate(migratetype))
  596. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  597. }
  598. #else
  599. struct page_ext_operations debug_guardpage_ops;
  600. static inline bool set_page_guard(struct zone *zone, struct page *page,
  601. unsigned int order, int migratetype) { return false; }
  602. static inline void clear_page_guard(struct zone *zone, struct page *page,
  603. unsigned int order, int migratetype) {}
  604. #endif
  605. static inline void set_page_order(struct page *page, unsigned int order)
  606. {
  607. set_page_private(page, order);
  608. __SetPageBuddy(page);
  609. }
  610. static inline void rmv_page_order(struct page *page)
  611. {
  612. __ClearPageBuddy(page);
  613. set_page_private(page, 0);
  614. }
  615. /*
  616. * This function checks whether a page is free && is the buddy
  617. * we can do coalesce a page and its buddy if
  618. * (a) the buddy is not in a hole (check before calling!) &&
  619. * (b) the buddy is in the buddy system &&
  620. * (c) a page and its buddy have the same order &&
  621. * (d) a page and its buddy are in the same zone.
  622. *
  623. * For recording whether a page is in the buddy system, we set ->_mapcount
  624. * PAGE_BUDDY_MAPCOUNT_VALUE.
  625. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  626. * serialized by zone->lock.
  627. *
  628. * For recording page's order, we use page_private(page).
  629. */
  630. static inline int page_is_buddy(struct page *page, struct page *buddy,
  631. unsigned int order)
  632. {
  633. if (page_is_guard(buddy) && page_order(buddy) == order) {
  634. if (page_zone_id(page) != page_zone_id(buddy))
  635. return 0;
  636. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  637. return 1;
  638. }
  639. if (PageBuddy(buddy) && page_order(buddy) == order) {
  640. /*
  641. * zone check is done late to avoid uselessly
  642. * calculating zone/node ids for pages that could
  643. * never merge.
  644. */
  645. if (page_zone_id(page) != page_zone_id(buddy))
  646. return 0;
  647. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  648. return 1;
  649. }
  650. return 0;
  651. }
  652. /*
  653. * Freeing function for a buddy system allocator.
  654. *
  655. * The concept of a buddy system is to maintain direct-mapped table
  656. * (containing bit values) for memory blocks of various "orders".
  657. * The bottom level table contains the map for the smallest allocatable
  658. * units of memory (here, pages), and each level above it describes
  659. * pairs of units from the levels below, hence, "buddies".
  660. * At a high level, all that happens here is marking the table entry
  661. * at the bottom level available, and propagating the changes upward
  662. * as necessary, plus some accounting needed to play nicely with other
  663. * parts of the VM system.
  664. * At each level, we keep a list of pages, which are heads of continuous
  665. * free pages of length of (1 << order) and marked with _mapcount
  666. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  667. * field.
  668. * So when we are allocating or freeing one, we can derive the state of the
  669. * other. That is, if we allocate a small block, and both were
  670. * free, the remainder of the region must be split into blocks.
  671. * If a block is freed, and its buddy is also free, then this
  672. * triggers coalescing into a block of larger size.
  673. *
  674. * -- nyc
  675. */
  676. static inline void __free_one_page(struct page *page,
  677. unsigned long pfn,
  678. struct zone *zone, unsigned int order,
  679. int migratetype)
  680. {
  681. unsigned long combined_pfn;
  682. unsigned long uninitialized_var(buddy_pfn);
  683. struct page *buddy;
  684. unsigned int max_order;
  685. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  686. VM_BUG_ON(!zone_is_initialized(zone));
  687. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  688. VM_BUG_ON(migratetype == -1);
  689. if (likely(!is_migrate_isolate(migratetype)))
  690. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  691. VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
  692. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  693. continue_merging:
  694. while (order < max_order - 1) {
  695. buddy_pfn = __find_buddy_pfn(pfn, order);
  696. buddy = page + (buddy_pfn - pfn);
  697. if (!pfn_valid_within(buddy_pfn))
  698. goto done_merging;
  699. if (!page_is_buddy(page, buddy, order))
  700. goto done_merging;
  701. /*
  702. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  703. * merge with it and move up one order.
  704. */
  705. if (page_is_guard(buddy)) {
  706. clear_page_guard(zone, buddy, order, migratetype);
  707. } else {
  708. list_del(&buddy->lru);
  709. zone->free_area[order].nr_free--;
  710. rmv_page_order(buddy);
  711. }
  712. combined_pfn = buddy_pfn & pfn;
  713. page = page + (combined_pfn - pfn);
  714. pfn = combined_pfn;
  715. order++;
  716. }
  717. if (max_order < MAX_ORDER) {
  718. /* If we are here, it means order is >= pageblock_order.
  719. * We want to prevent merge between freepages on isolate
  720. * pageblock and normal pageblock. Without this, pageblock
  721. * isolation could cause incorrect freepage or CMA accounting.
  722. *
  723. * We don't want to hit this code for the more frequent
  724. * low-order merging.
  725. */
  726. if (unlikely(has_isolate_pageblock(zone))) {
  727. int buddy_mt;
  728. buddy_pfn = __find_buddy_pfn(pfn, order);
  729. buddy = page + (buddy_pfn - pfn);
  730. buddy_mt = get_pageblock_migratetype(buddy);
  731. if (migratetype != buddy_mt
  732. && (is_migrate_isolate(migratetype) ||
  733. is_migrate_isolate(buddy_mt)))
  734. goto done_merging;
  735. }
  736. max_order++;
  737. goto continue_merging;
  738. }
  739. done_merging:
  740. set_page_order(page, order);
  741. /*
  742. * If this is not the largest possible page, check if the buddy
  743. * of the next-highest order is free. If it is, it's possible
  744. * that pages are being freed that will coalesce soon. In case,
  745. * that is happening, add the free page to the tail of the list
  746. * so it's less likely to be used soon and more likely to be merged
  747. * as a higher order page
  748. */
  749. if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
  750. struct page *higher_page, *higher_buddy;
  751. combined_pfn = buddy_pfn & pfn;
  752. higher_page = page + (combined_pfn - pfn);
  753. buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
  754. higher_buddy = higher_page + (buddy_pfn - combined_pfn);
  755. if (pfn_valid_within(buddy_pfn) &&
  756. page_is_buddy(higher_page, higher_buddy, order + 1)) {
  757. list_add_tail(&page->lru,
  758. &zone->free_area[order].free_list[migratetype]);
  759. goto out;
  760. }
  761. }
  762. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  763. out:
  764. zone->free_area[order].nr_free++;
  765. }
  766. /*
  767. * A bad page could be due to a number of fields. Instead of multiple branches,
  768. * try and check multiple fields with one check. The caller must do a detailed
  769. * check if necessary.
  770. */
  771. static inline bool page_expected_state(struct page *page,
  772. unsigned long check_flags)
  773. {
  774. if (unlikely(atomic_read(&page->_mapcount) != -1))
  775. return false;
  776. if (unlikely((unsigned long)page->mapping |
  777. page_ref_count(page) |
  778. #ifdef CONFIG_MEMCG
  779. (unsigned long)page->mem_cgroup |
  780. #endif
  781. (page->flags & check_flags)))
  782. return false;
  783. return true;
  784. }
  785. static void free_pages_check_bad(struct page *page)
  786. {
  787. const char *bad_reason;
  788. unsigned long bad_flags;
  789. bad_reason = NULL;
  790. bad_flags = 0;
  791. if (unlikely(atomic_read(&page->_mapcount) != -1))
  792. bad_reason = "nonzero mapcount";
  793. if (unlikely(page->mapping != NULL))
  794. bad_reason = "non-NULL mapping";
  795. if (unlikely(page_ref_count(page) != 0))
  796. bad_reason = "nonzero _refcount";
  797. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  798. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  799. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  800. }
  801. #ifdef CONFIG_MEMCG
  802. if (unlikely(page->mem_cgroup))
  803. bad_reason = "page still charged to cgroup";
  804. #endif
  805. bad_page(page, bad_reason, bad_flags);
  806. }
  807. static inline int free_pages_check(struct page *page)
  808. {
  809. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  810. return 0;
  811. /* Something has gone sideways, find it */
  812. free_pages_check_bad(page);
  813. return 1;
  814. }
  815. static int free_tail_pages_check(struct page *head_page, struct page *page)
  816. {
  817. int ret = 1;
  818. /*
  819. * We rely page->lru.next never has bit 0 set, unless the page
  820. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  821. */
  822. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  823. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  824. ret = 0;
  825. goto out;
  826. }
  827. switch (page - head_page) {
  828. case 1:
  829. /* the first tail page: ->mapping is compound_mapcount() */
  830. if (unlikely(compound_mapcount(page))) {
  831. bad_page(page, "nonzero compound_mapcount", 0);
  832. goto out;
  833. }
  834. break;
  835. case 2:
  836. /*
  837. * the second tail page: ->mapping is
  838. * page_deferred_list().next -- ignore value.
  839. */
  840. break;
  841. default:
  842. if (page->mapping != TAIL_MAPPING) {
  843. bad_page(page, "corrupted mapping in tail page", 0);
  844. goto out;
  845. }
  846. break;
  847. }
  848. if (unlikely(!PageTail(page))) {
  849. bad_page(page, "PageTail not set", 0);
  850. goto out;
  851. }
  852. if (unlikely(compound_head(page) != head_page)) {
  853. bad_page(page, "compound_head not consistent", 0);
  854. goto out;
  855. }
  856. ret = 0;
  857. out:
  858. page->mapping = NULL;
  859. clear_compound_head(page);
  860. return ret;
  861. }
  862. static __always_inline bool free_pages_prepare(struct page *page,
  863. unsigned int order, bool check_free)
  864. {
  865. int bad = 0;
  866. VM_BUG_ON_PAGE(PageTail(page), page);
  867. trace_mm_page_free(page, order);
  868. /*
  869. * Check tail pages before head page information is cleared to
  870. * avoid checking PageCompound for order-0 pages.
  871. */
  872. if (unlikely(order)) {
  873. bool compound = PageCompound(page);
  874. int i;
  875. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  876. if (compound)
  877. ClearPageDoubleMap(page);
  878. for (i = 1; i < (1 << order); i++) {
  879. if (compound)
  880. bad += free_tail_pages_check(page, page + i);
  881. if (unlikely(free_pages_check(page + i))) {
  882. bad++;
  883. continue;
  884. }
  885. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  886. }
  887. }
  888. if (PageMappingFlags(page))
  889. page->mapping = NULL;
  890. if (memcg_kmem_enabled() && PageKmemcg(page))
  891. memcg_kmem_uncharge(page, order);
  892. if (check_free)
  893. bad += free_pages_check(page);
  894. if (bad)
  895. return false;
  896. page_cpupid_reset_last(page);
  897. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  898. reset_page_owner(page, order);
  899. if (!PageHighMem(page)) {
  900. debug_check_no_locks_freed(page_address(page),
  901. PAGE_SIZE << order);
  902. debug_check_no_obj_freed(page_address(page),
  903. PAGE_SIZE << order);
  904. }
  905. arch_free_page(page, order);
  906. kernel_poison_pages(page, 1 << order, 0);
  907. kernel_map_pages(page, 1 << order, 0);
  908. kasan_free_pages(page, order);
  909. return true;
  910. }
  911. #ifdef CONFIG_DEBUG_VM
  912. static inline bool free_pcp_prepare(struct page *page)
  913. {
  914. return free_pages_prepare(page, 0, true);
  915. }
  916. static inline bool bulkfree_pcp_prepare(struct page *page)
  917. {
  918. return false;
  919. }
  920. #else
  921. static bool free_pcp_prepare(struct page *page)
  922. {
  923. return free_pages_prepare(page, 0, false);
  924. }
  925. static bool bulkfree_pcp_prepare(struct page *page)
  926. {
  927. return free_pages_check(page);
  928. }
  929. #endif /* CONFIG_DEBUG_VM */
  930. static inline void prefetch_buddy(struct page *page)
  931. {
  932. unsigned long pfn = page_to_pfn(page);
  933. unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
  934. struct page *buddy = page + (buddy_pfn - pfn);
  935. prefetch(buddy);
  936. }
  937. /*
  938. * Frees a number of pages from the PCP lists
  939. * Assumes all pages on list are in same zone, and of same order.
  940. * count is the number of pages to free.
  941. *
  942. * If the zone was previously in an "all pages pinned" state then look to
  943. * see if this freeing clears that state.
  944. *
  945. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  946. * pinned" detection logic.
  947. */
  948. static void free_pcppages_bulk(struct zone *zone, int count,
  949. struct per_cpu_pages *pcp)
  950. {
  951. int migratetype = 0;
  952. int batch_free = 0;
  953. int prefetch_nr = 0;
  954. bool isolated_pageblocks;
  955. struct page *page, *tmp;
  956. LIST_HEAD(head);
  957. while (count) {
  958. struct list_head *list;
  959. /*
  960. * Remove pages from lists in a round-robin fashion. A
  961. * batch_free count is maintained that is incremented when an
  962. * empty list is encountered. This is so more pages are freed
  963. * off fuller lists instead of spinning excessively around empty
  964. * lists
  965. */
  966. do {
  967. batch_free++;
  968. if (++migratetype == MIGRATE_PCPTYPES)
  969. migratetype = 0;
  970. list = &pcp->lists[migratetype];
  971. } while (list_empty(list));
  972. /* This is the only non-empty list. Free them all. */
  973. if (batch_free == MIGRATE_PCPTYPES)
  974. batch_free = count;
  975. do {
  976. page = list_last_entry(list, struct page, lru);
  977. /* must delete to avoid corrupting pcp list */
  978. list_del(&page->lru);
  979. pcp->count--;
  980. if (bulkfree_pcp_prepare(page))
  981. continue;
  982. list_add_tail(&page->lru, &head);
  983. /*
  984. * We are going to put the page back to the global
  985. * pool, prefetch its buddy to speed up later access
  986. * under zone->lock. It is believed the overhead of
  987. * an additional test and calculating buddy_pfn here
  988. * can be offset by reduced memory latency later. To
  989. * avoid excessive prefetching due to large count, only
  990. * prefetch buddy for the first pcp->batch nr of pages.
  991. */
  992. if (prefetch_nr++ < pcp->batch)
  993. prefetch_buddy(page);
  994. } while (--count && --batch_free && !list_empty(list));
  995. }
  996. spin_lock(&zone->lock);
  997. isolated_pageblocks = has_isolate_pageblock(zone);
  998. /*
  999. * Use safe version since after __free_one_page(),
  1000. * page->lru.next will not point to original list.
  1001. */
  1002. list_for_each_entry_safe(page, tmp, &head, lru) {
  1003. int mt = get_pcppage_migratetype(page);
  1004. /* MIGRATE_ISOLATE page should not go to pcplists */
  1005. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  1006. /* Pageblock could have been isolated meanwhile */
  1007. if (unlikely(isolated_pageblocks))
  1008. mt = get_pageblock_migratetype(page);
  1009. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  1010. trace_mm_page_pcpu_drain(page, 0, mt);
  1011. }
  1012. spin_unlock(&zone->lock);
  1013. }
  1014. static void free_one_page(struct zone *zone,
  1015. struct page *page, unsigned long pfn,
  1016. unsigned int order,
  1017. int migratetype)
  1018. {
  1019. spin_lock(&zone->lock);
  1020. if (unlikely(has_isolate_pageblock(zone) ||
  1021. is_migrate_isolate(migratetype))) {
  1022. migratetype = get_pfnblock_migratetype(page, pfn);
  1023. }
  1024. __free_one_page(page, pfn, zone, order, migratetype);
  1025. spin_unlock(&zone->lock);
  1026. }
  1027. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1028. unsigned long zone, int nid)
  1029. {
  1030. mm_zero_struct_page(page);
  1031. set_page_links(page, zone, nid, pfn);
  1032. init_page_count(page);
  1033. page_mapcount_reset(page);
  1034. page_cpupid_reset_last(page);
  1035. INIT_LIST_HEAD(&page->lru);
  1036. #ifdef WANT_PAGE_VIRTUAL
  1037. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1038. if (!is_highmem_idx(zone))
  1039. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1040. #endif
  1041. }
  1042. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1043. static void __meminit init_reserved_page(unsigned long pfn)
  1044. {
  1045. pg_data_t *pgdat;
  1046. int nid, zid;
  1047. if (!early_page_uninitialised(pfn))
  1048. return;
  1049. nid = early_pfn_to_nid(pfn);
  1050. pgdat = NODE_DATA(nid);
  1051. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1052. struct zone *zone = &pgdat->node_zones[zid];
  1053. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1054. break;
  1055. }
  1056. __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
  1057. }
  1058. #else
  1059. static inline void init_reserved_page(unsigned long pfn)
  1060. {
  1061. }
  1062. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1063. /*
  1064. * Initialised pages do not have PageReserved set. This function is
  1065. * called for each range allocated by the bootmem allocator and
  1066. * marks the pages PageReserved. The remaining valid pages are later
  1067. * sent to the buddy page allocator.
  1068. */
  1069. void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
  1070. {
  1071. unsigned long start_pfn = PFN_DOWN(start);
  1072. unsigned long end_pfn = PFN_UP(end);
  1073. for (; start_pfn < end_pfn; start_pfn++) {
  1074. if (pfn_valid(start_pfn)) {
  1075. struct page *page = pfn_to_page(start_pfn);
  1076. init_reserved_page(start_pfn);
  1077. /* Avoid false-positive PageTail() */
  1078. INIT_LIST_HEAD(&page->lru);
  1079. SetPageReserved(page);
  1080. }
  1081. }
  1082. }
  1083. static void __free_pages_ok(struct page *page, unsigned int order)
  1084. {
  1085. unsigned long flags;
  1086. int migratetype;
  1087. unsigned long pfn = page_to_pfn(page);
  1088. if (!free_pages_prepare(page, order, true))
  1089. return;
  1090. migratetype = get_pfnblock_migratetype(page, pfn);
  1091. local_irq_save(flags);
  1092. __count_vm_events(PGFREE, 1 << order);
  1093. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1094. local_irq_restore(flags);
  1095. }
  1096. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1097. {
  1098. unsigned int nr_pages = 1 << order;
  1099. struct page *p = page;
  1100. unsigned int loop;
  1101. prefetchw(p);
  1102. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1103. prefetchw(p + 1);
  1104. __ClearPageReserved(p);
  1105. set_page_count(p, 0);
  1106. }
  1107. __ClearPageReserved(p);
  1108. set_page_count(p, 0);
  1109. page_zone(page)->managed_pages += nr_pages;
  1110. set_page_refcounted(page);
  1111. __free_pages(page, order);
  1112. }
  1113. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1114. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1115. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1116. int __meminit early_pfn_to_nid(unsigned long pfn)
  1117. {
  1118. static DEFINE_SPINLOCK(early_pfn_lock);
  1119. int nid;
  1120. spin_lock(&early_pfn_lock);
  1121. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1122. if (nid < 0)
  1123. nid = first_online_node;
  1124. spin_unlock(&early_pfn_lock);
  1125. return nid;
  1126. }
  1127. #endif
  1128. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1129. static inline bool __meminit __maybe_unused
  1130. meminit_pfn_in_nid(unsigned long pfn, int node,
  1131. struct mminit_pfnnid_cache *state)
  1132. {
  1133. int nid;
  1134. nid = __early_pfn_to_nid(pfn, state);
  1135. if (nid >= 0 && nid != node)
  1136. return false;
  1137. return true;
  1138. }
  1139. /* Only safe to use early in boot when initialisation is single-threaded */
  1140. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1141. {
  1142. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1143. }
  1144. #else
  1145. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1146. {
  1147. return true;
  1148. }
  1149. static inline bool __meminit __maybe_unused
  1150. meminit_pfn_in_nid(unsigned long pfn, int node,
  1151. struct mminit_pfnnid_cache *state)
  1152. {
  1153. return true;
  1154. }
  1155. #endif
  1156. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1157. unsigned int order)
  1158. {
  1159. if (early_page_uninitialised(pfn))
  1160. return;
  1161. return __free_pages_boot_core(page, order);
  1162. }
  1163. /*
  1164. * Check that the whole (or subset of) a pageblock given by the interval of
  1165. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1166. * with the migration of free compaction scanner. The scanners then need to
  1167. * use only pfn_valid_within() check for arches that allow holes within
  1168. * pageblocks.
  1169. *
  1170. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1171. *
  1172. * It's possible on some configurations to have a setup like node0 node1 node0
  1173. * i.e. it's possible that all pages within a zones range of pages do not
  1174. * belong to a single zone. We assume that a border between node0 and node1
  1175. * can occur within a single pageblock, but not a node0 node1 node0
  1176. * interleaving within a single pageblock. It is therefore sufficient to check
  1177. * the first and last page of a pageblock and avoid checking each individual
  1178. * page in a pageblock.
  1179. */
  1180. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1181. unsigned long end_pfn, struct zone *zone)
  1182. {
  1183. struct page *start_page;
  1184. struct page *end_page;
  1185. /* end_pfn is one past the range we are checking */
  1186. end_pfn--;
  1187. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1188. return NULL;
  1189. start_page = pfn_to_online_page(start_pfn);
  1190. if (!start_page)
  1191. return NULL;
  1192. if (page_zone(start_page) != zone)
  1193. return NULL;
  1194. end_page = pfn_to_page(end_pfn);
  1195. /* This gives a shorter code than deriving page_zone(end_page) */
  1196. if (page_zone_id(start_page) != page_zone_id(end_page))
  1197. return NULL;
  1198. return start_page;
  1199. }
  1200. void set_zone_contiguous(struct zone *zone)
  1201. {
  1202. unsigned long block_start_pfn = zone->zone_start_pfn;
  1203. unsigned long block_end_pfn;
  1204. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1205. for (; block_start_pfn < zone_end_pfn(zone);
  1206. block_start_pfn = block_end_pfn,
  1207. block_end_pfn += pageblock_nr_pages) {
  1208. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1209. if (!__pageblock_pfn_to_page(block_start_pfn,
  1210. block_end_pfn, zone))
  1211. return;
  1212. }
  1213. /* We confirm that there is no hole */
  1214. zone->contiguous = true;
  1215. }
  1216. void clear_zone_contiguous(struct zone *zone)
  1217. {
  1218. zone->contiguous = false;
  1219. }
  1220. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1221. static void __init deferred_free_range(unsigned long pfn,
  1222. unsigned long nr_pages)
  1223. {
  1224. struct page *page;
  1225. unsigned long i;
  1226. if (!nr_pages)
  1227. return;
  1228. page = pfn_to_page(pfn);
  1229. /* Free a large naturally-aligned chunk if possible */
  1230. if (nr_pages == pageblock_nr_pages &&
  1231. (pfn & (pageblock_nr_pages - 1)) == 0) {
  1232. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1233. __free_pages_boot_core(page, pageblock_order);
  1234. return;
  1235. }
  1236. for (i = 0; i < nr_pages; i++, page++, pfn++) {
  1237. if ((pfn & (pageblock_nr_pages - 1)) == 0)
  1238. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1239. __free_pages_boot_core(page, 0);
  1240. }
  1241. }
  1242. /* Completion tracking for deferred_init_memmap() threads */
  1243. static atomic_t pgdat_init_n_undone __initdata;
  1244. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1245. static inline void __init pgdat_init_report_one_done(void)
  1246. {
  1247. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1248. complete(&pgdat_init_all_done_comp);
  1249. }
  1250. /*
  1251. * Returns true if page needs to be initialized or freed to buddy allocator.
  1252. *
  1253. * First we check if pfn is valid on architectures where it is possible to have
  1254. * holes within pageblock_nr_pages. On systems where it is not possible, this
  1255. * function is optimized out.
  1256. *
  1257. * Then, we check if a current large page is valid by only checking the validity
  1258. * of the head pfn.
  1259. *
  1260. * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
  1261. * within a node: a pfn is between start and end of a node, but does not belong
  1262. * to this memory node.
  1263. */
  1264. static inline bool __init
  1265. deferred_pfn_valid(int nid, unsigned long pfn,
  1266. struct mminit_pfnnid_cache *nid_init_state)
  1267. {
  1268. if (!pfn_valid_within(pfn))
  1269. return false;
  1270. if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
  1271. return false;
  1272. if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
  1273. return false;
  1274. return true;
  1275. }
  1276. /*
  1277. * Free pages to buddy allocator. Try to free aligned pages in
  1278. * pageblock_nr_pages sizes.
  1279. */
  1280. static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
  1281. unsigned long end_pfn)
  1282. {
  1283. struct mminit_pfnnid_cache nid_init_state = { };
  1284. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1285. unsigned long nr_free = 0;
  1286. for (; pfn < end_pfn; pfn++) {
  1287. if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
  1288. deferred_free_range(pfn - nr_free, nr_free);
  1289. nr_free = 0;
  1290. } else if (!(pfn & nr_pgmask)) {
  1291. deferred_free_range(pfn - nr_free, nr_free);
  1292. nr_free = 1;
  1293. touch_nmi_watchdog();
  1294. } else {
  1295. nr_free++;
  1296. }
  1297. }
  1298. /* Free the last block of pages to allocator */
  1299. deferred_free_range(pfn - nr_free, nr_free);
  1300. }
  1301. /*
  1302. * Initialize struct pages. We minimize pfn page lookups and scheduler checks
  1303. * by performing it only once every pageblock_nr_pages.
  1304. * Return number of pages initialized.
  1305. */
  1306. static unsigned long __init deferred_init_pages(int nid, int zid,
  1307. unsigned long pfn,
  1308. unsigned long end_pfn)
  1309. {
  1310. struct mminit_pfnnid_cache nid_init_state = { };
  1311. unsigned long nr_pgmask = pageblock_nr_pages - 1;
  1312. unsigned long nr_pages = 0;
  1313. struct page *page = NULL;
  1314. for (; pfn < end_pfn; pfn++) {
  1315. if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
  1316. page = NULL;
  1317. continue;
  1318. } else if (!page || !(pfn & nr_pgmask)) {
  1319. page = pfn_to_page(pfn);
  1320. touch_nmi_watchdog();
  1321. } else {
  1322. page++;
  1323. }
  1324. __init_single_page(page, pfn, zid, nid);
  1325. nr_pages++;
  1326. }
  1327. return (nr_pages);
  1328. }
  1329. /* Initialise remaining memory on a node */
  1330. static int __init deferred_init_memmap(void *data)
  1331. {
  1332. pg_data_t *pgdat = data;
  1333. int nid = pgdat->node_id;
  1334. unsigned long start = jiffies;
  1335. unsigned long nr_pages = 0;
  1336. unsigned long spfn, epfn, first_init_pfn, flags;
  1337. phys_addr_t spa, epa;
  1338. int zid;
  1339. struct zone *zone;
  1340. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1341. u64 i;
  1342. /* Bind memory initialisation thread to a local node if possible */
  1343. if (!cpumask_empty(cpumask))
  1344. set_cpus_allowed_ptr(current, cpumask);
  1345. pgdat_resize_lock(pgdat, &flags);
  1346. first_init_pfn = pgdat->first_deferred_pfn;
  1347. if (first_init_pfn == ULONG_MAX) {
  1348. pgdat_resize_unlock(pgdat, &flags);
  1349. pgdat_init_report_one_done();
  1350. return 0;
  1351. }
  1352. /* Sanity check boundaries */
  1353. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1354. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1355. pgdat->first_deferred_pfn = ULONG_MAX;
  1356. /* Only the highest zone is deferred so find it */
  1357. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1358. zone = pgdat->node_zones + zid;
  1359. if (first_init_pfn < zone_end_pfn(zone))
  1360. break;
  1361. }
  1362. first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
  1363. /*
  1364. * Initialize and free pages. We do it in two loops: first we initialize
  1365. * struct page, than free to buddy allocator, because while we are
  1366. * freeing pages we can access pages that are ahead (computing buddy
  1367. * page in __free_one_page()).
  1368. */
  1369. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1370. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1371. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1372. nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
  1373. }
  1374. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1375. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1376. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1377. deferred_free_pages(nid, zid, spfn, epfn);
  1378. }
  1379. pgdat_resize_unlock(pgdat, &flags);
  1380. /* Sanity check that the next zone really is unpopulated */
  1381. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1382. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1383. jiffies_to_msecs(jiffies - start));
  1384. pgdat_init_report_one_done();
  1385. return 0;
  1386. }
  1387. /*
  1388. * During boot we initialize deferred pages on-demand, as needed, but once
  1389. * page_alloc_init_late() has finished, the deferred pages are all initialized,
  1390. * and we can permanently disable that path.
  1391. */
  1392. static DEFINE_STATIC_KEY_TRUE(deferred_pages);
  1393. /*
  1394. * If this zone has deferred pages, try to grow it by initializing enough
  1395. * deferred pages to satisfy the allocation specified by order, rounded up to
  1396. * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
  1397. * of SECTION_SIZE bytes by initializing struct pages in increments of
  1398. * PAGES_PER_SECTION * sizeof(struct page) bytes.
  1399. *
  1400. * Return true when zone was grown, otherwise return false. We return true even
  1401. * when we grow less than requested, to let the caller decide if there are
  1402. * enough pages to satisfy the allocation.
  1403. *
  1404. * Note: We use noinline because this function is needed only during boot, and
  1405. * it is called from a __ref function _deferred_grow_zone. This way we are
  1406. * making sure that it is not inlined into permanent text section.
  1407. */
  1408. static noinline bool __init
  1409. deferred_grow_zone(struct zone *zone, unsigned int order)
  1410. {
  1411. int zid = zone_idx(zone);
  1412. int nid = zone_to_nid(zone);
  1413. pg_data_t *pgdat = NODE_DATA(nid);
  1414. unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
  1415. unsigned long nr_pages = 0;
  1416. unsigned long first_init_pfn, spfn, epfn, t, flags;
  1417. unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
  1418. phys_addr_t spa, epa;
  1419. u64 i;
  1420. /* Only the last zone may have deferred pages */
  1421. if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
  1422. return false;
  1423. pgdat_resize_lock(pgdat, &flags);
  1424. /*
  1425. * If deferred pages have been initialized while we were waiting for
  1426. * the lock, return true, as the zone was grown. The caller will retry
  1427. * this zone. We won't return to this function since the caller also
  1428. * has this static branch.
  1429. */
  1430. if (!static_branch_unlikely(&deferred_pages)) {
  1431. pgdat_resize_unlock(pgdat, &flags);
  1432. return true;
  1433. }
  1434. /*
  1435. * If someone grew this zone while we were waiting for spinlock, return
  1436. * true, as there might be enough pages already.
  1437. */
  1438. if (first_deferred_pfn != pgdat->first_deferred_pfn) {
  1439. pgdat_resize_unlock(pgdat, &flags);
  1440. return true;
  1441. }
  1442. first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
  1443. if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
  1444. pgdat_resize_unlock(pgdat, &flags);
  1445. return false;
  1446. }
  1447. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1448. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1449. epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
  1450. while (spfn < epfn && nr_pages < nr_pages_needed) {
  1451. t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
  1452. first_deferred_pfn = min(t, epfn);
  1453. nr_pages += deferred_init_pages(nid, zid, spfn,
  1454. first_deferred_pfn);
  1455. spfn = first_deferred_pfn;
  1456. }
  1457. if (nr_pages >= nr_pages_needed)
  1458. break;
  1459. }
  1460. for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
  1461. spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
  1462. epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
  1463. deferred_free_pages(nid, zid, spfn, epfn);
  1464. if (first_deferred_pfn == epfn)
  1465. break;
  1466. }
  1467. pgdat->first_deferred_pfn = first_deferred_pfn;
  1468. pgdat_resize_unlock(pgdat, &flags);
  1469. return nr_pages > 0;
  1470. }
  1471. /*
  1472. * deferred_grow_zone() is __init, but it is called from
  1473. * get_page_from_freelist() during early boot until deferred_pages permanently
  1474. * disables this call. This is why we have refdata wrapper to avoid warning,
  1475. * and to ensure that the function body gets unloaded.
  1476. */
  1477. static bool __ref
  1478. _deferred_grow_zone(struct zone *zone, unsigned int order)
  1479. {
  1480. return deferred_grow_zone(zone, order);
  1481. }
  1482. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1483. void __init page_alloc_init_late(void)
  1484. {
  1485. struct zone *zone;
  1486. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1487. int nid;
  1488. /* There will be num_node_state(N_MEMORY) threads */
  1489. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1490. for_each_node_state(nid, N_MEMORY) {
  1491. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1492. }
  1493. /* Block until all are initialised */
  1494. wait_for_completion(&pgdat_init_all_done_comp);
  1495. /*
  1496. * We initialized the rest of the deferred pages. Permanently disable
  1497. * on-demand struct page initialization.
  1498. */
  1499. static_branch_disable(&deferred_pages);
  1500. /* Reinit limits that are based on free pages after the kernel is up */
  1501. files_maxfiles_init();
  1502. #endif
  1503. #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
  1504. /* Discard memblock private memory */
  1505. memblock_discard();
  1506. #endif
  1507. for_each_populated_zone(zone)
  1508. set_zone_contiguous(zone);
  1509. }
  1510. #ifdef CONFIG_CMA
  1511. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1512. void __init init_cma_reserved_pageblock(struct page *page)
  1513. {
  1514. unsigned i = pageblock_nr_pages;
  1515. struct page *p = page;
  1516. do {
  1517. __ClearPageReserved(p);
  1518. set_page_count(p, 0);
  1519. } while (++p, --i);
  1520. set_pageblock_migratetype(page, MIGRATE_CMA);
  1521. if (pageblock_order >= MAX_ORDER) {
  1522. i = pageblock_nr_pages;
  1523. p = page;
  1524. do {
  1525. set_page_refcounted(p);
  1526. __free_pages(p, MAX_ORDER - 1);
  1527. p += MAX_ORDER_NR_PAGES;
  1528. } while (i -= MAX_ORDER_NR_PAGES);
  1529. } else {
  1530. set_page_refcounted(page);
  1531. __free_pages(page, pageblock_order);
  1532. }
  1533. adjust_managed_page_count(page, pageblock_nr_pages);
  1534. }
  1535. #endif
  1536. /*
  1537. * The order of subdivision here is critical for the IO subsystem.
  1538. * Please do not alter this order without good reasons and regression
  1539. * testing. Specifically, as large blocks of memory are subdivided,
  1540. * the order in which smaller blocks are delivered depends on the order
  1541. * they're subdivided in this function. This is the primary factor
  1542. * influencing the order in which pages are delivered to the IO
  1543. * subsystem according to empirical testing, and this is also justified
  1544. * by considering the behavior of a buddy system containing a single
  1545. * large block of memory acted on by a series of small allocations.
  1546. * This behavior is a critical factor in sglist merging's success.
  1547. *
  1548. * -- nyc
  1549. */
  1550. static inline void expand(struct zone *zone, struct page *page,
  1551. int low, int high, struct free_area *area,
  1552. int migratetype)
  1553. {
  1554. unsigned long size = 1 << high;
  1555. while (high > low) {
  1556. area--;
  1557. high--;
  1558. size >>= 1;
  1559. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1560. /*
  1561. * Mark as guard pages (or page), that will allow to
  1562. * merge back to allocator when buddy will be freed.
  1563. * Corresponding page table entries will not be touched,
  1564. * pages will stay not present in virtual address space
  1565. */
  1566. if (set_page_guard(zone, &page[size], high, migratetype))
  1567. continue;
  1568. list_add(&page[size].lru, &area->free_list[migratetype]);
  1569. area->nr_free++;
  1570. set_page_order(&page[size], high);
  1571. }
  1572. }
  1573. static void check_new_page_bad(struct page *page)
  1574. {
  1575. const char *bad_reason = NULL;
  1576. unsigned long bad_flags = 0;
  1577. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1578. bad_reason = "nonzero mapcount";
  1579. if (unlikely(page->mapping != NULL))
  1580. bad_reason = "non-NULL mapping";
  1581. if (unlikely(page_ref_count(page) != 0))
  1582. bad_reason = "nonzero _count";
  1583. if (unlikely(page->flags & __PG_HWPOISON)) {
  1584. bad_reason = "HWPoisoned (hardware-corrupted)";
  1585. bad_flags = __PG_HWPOISON;
  1586. /* Don't complain about hwpoisoned pages */
  1587. page_mapcount_reset(page); /* remove PageBuddy */
  1588. return;
  1589. }
  1590. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1591. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1592. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1593. }
  1594. #ifdef CONFIG_MEMCG
  1595. if (unlikely(page->mem_cgroup))
  1596. bad_reason = "page still charged to cgroup";
  1597. #endif
  1598. bad_page(page, bad_reason, bad_flags);
  1599. }
  1600. /*
  1601. * This page is about to be returned from the page allocator
  1602. */
  1603. static inline int check_new_page(struct page *page)
  1604. {
  1605. if (likely(page_expected_state(page,
  1606. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1607. return 0;
  1608. check_new_page_bad(page);
  1609. return 1;
  1610. }
  1611. static inline bool free_pages_prezeroed(void)
  1612. {
  1613. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1614. page_poisoning_enabled();
  1615. }
  1616. #ifdef CONFIG_DEBUG_VM
  1617. static bool check_pcp_refill(struct page *page)
  1618. {
  1619. return false;
  1620. }
  1621. static bool check_new_pcp(struct page *page)
  1622. {
  1623. return check_new_page(page);
  1624. }
  1625. #else
  1626. static bool check_pcp_refill(struct page *page)
  1627. {
  1628. return check_new_page(page);
  1629. }
  1630. static bool check_new_pcp(struct page *page)
  1631. {
  1632. return false;
  1633. }
  1634. #endif /* CONFIG_DEBUG_VM */
  1635. static bool check_new_pages(struct page *page, unsigned int order)
  1636. {
  1637. int i;
  1638. for (i = 0; i < (1 << order); i++) {
  1639. struct page *p = page + i;
  1640. if (unlikely(check_new_page(p)))
  1641. return true;
  1642. }
  1643. return false;
  1644. }
  1645. inline void post_alloc_hook(struct page *page, unsigned int order,
  1646. gfp_t gfp_flags)
  1647. {
  1648. set_page_private(page, 0);
  1649. set_page_refcounted(page);
  1650. arch_alloc_page(page, order);
  1651. kernel_map_pages(page, 1 << order, 1);
  1652. kernel_poison_pages(page, 1 << order, 1);
  1653. kasan_alloc_pages(page, order);
  1654. set_page_owner(page, order, gfp_flags);
  1655. }
  1656. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1657. unsigned int alloc_flags)
  1658. {
  1659. int i;
  1660. post_alloc_hook(page, order, gfp_flags);
  1661. if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
  1662. for (i = 0; i < (1 << order); i++)
  1663. clear_highpage(page + i);
  1664. if (order && (gfp_flags & __GFP_COMP))
  1665. prep_compound_page(page, order);
  1666. /*
  1667. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1668. * allocate the page. The expectation is that the caller is taking
  1669. * steps that will free more memory. The caller should avoid the page
  1670. * being used for !PFMEMALLOC purposes.
  1671. */
  1672. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1673. set_page_pfmemalloc(page);
  1674. else
  1675. clear_page_pfmemalloc(page);
  1676. }
  1677. /*
  1678. * Go through the free lists for the given migratetype and remove
  1679. * the smallest available page from the freelists
  1680. */
  1681. static __always_inline
  1682. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1683. int migratetype)
  1684. {
  1685. unsigned int current_order;
  1686. struct free_area *area;
  1687. struct page *page;
  1688. /* Find a page of the appropriate size in the preferred list */
  1689. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1690. area = &(zone->free_area[current_order]);
  1691. page = list_first_entry_or_null(&area->free_list[migratetype],
  1692. struct page, lru);
  1693. if (!page)
  1694. continue;
  1695. list_del(&page->lru);
  1696. rmv_page_order(page);
  1697. area->nr_free--;
  1698. expand(zone, page, order, current_order, area, migratetype);
  1699. set_pcppage_migratetype(page, migratetype);
  1700. return page;
  1701. }
  1702. return NULL;
  1703. }
  1704. /*
  1705. * This array describes the order lists are fallen back to when
  1706. * the free lists for the desirable migrate type are depleted
  1707. */
  1708. static int fallbacks[MIGRATE_TYPES][4] = {
  1709. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1710. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1711. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1712. #ifdef CONFIG_CMA
  1713. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1714. #endif
  1715. #ifdef CONFIG_MEMORY_ISOLATION
  1716. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1717. #endif
  1718. };
  1719. #ifdef CONFIG_CMA
  1720. static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1721. unsigned int order)
  1722. {
  1723. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1724. }
  1725. #else
  1726. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1727. unsigned int order) { return NULL; }
  1728. #endif
  1729. /*
  1730. * Move the free pages in a range to the free lists of the requested type.
  1731. * Note that start_page and end_pages are not aligned on a pageblock
  1732. * boundary. If alignment is required, use move_freepages_block()
  1733. */
  1734. static int move_freepages(struct zone *zone,
  1735. struct page *start_page, struct page *end_page,
  1736. int migratetype, int *num_movable)
  1737. {
  1738. struct page *page;
  1739. unsigned int order;
  1740. int pages_moved = 0;
  1741. #ifndef CONFIG_HOLES_IN_ZONE
  1742. /*
  1743. * page_zone is not safe to call in this context when
  1744. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1745. * anyway as we check zone boundaries in move_freepages_block().
  1746. * Remove at a later date when no bug reports exist related to
  1747. * grouping pages by mobility
  1748. */
  1749. VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
  1750. pfn_valid(page_to_pfn(end_page)) &&
  1751. page_zone(start_page) != page_zone(end_page));
  1752. #endif
  1753. if (num_movable)
  1754. *num_movable = 0;
  1755. for (page = start_page; page <= end_page;) {
  1756. if (!pfn_valid_within(page_to_pfn(page))) {
  1757. page++;
  1758. continue;
  1759. }
  1760. /* Make sure we are not inadvertently changing nodes */
  1761. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1762. if (!PageBuddy(page)) {
  1763. /*
  1764. * We assume that pages that could be isolated for
  1765. * migration are movable. But we don't actually try
  1766. * isolating, as that would be expensive.
  1767. */
  1768. if (num_movable &&
  1769. (PageLRU(page) || __PageMovable(page)))
  1770. (*num_movable)++;
  1771. page++;
  1772. continue;
  1773. }
  1774. order = page_order(page);
  1775. list_move(&page->lru,
  1776. &zone->free_area[order].free_list[migratetype]);
  1777. page += 1 << order;
  1778. pages_moved += 1 << order;
  1779. }
  1780. return pages_moved;
  1781. }
  1782. int move_freepages_block(struct zone *zone, struct page *page,
  1783. int migratetype, int *num_movable)
  1784. {
  1785. unsigned long start_pfn, end_pfn;
  1786. struct page *start_page, *end_page;
  1787. start_pfn = page_to_pfn(page);
  1788. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1789. start_page = pfn_to_page(start_pfn);
  1790. end_page = start_page + pageblock_nr_pages - 1;
  1791. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1792. /* Do not cross zone boundaries */
  1793. if (!zone_spans_pfn(zone, start_pfn))
  1794. start_page = page;
  1795. if (!zone_spans_pfn(zone, end_pfn))
  1796. return 0;
  1797. return move_freepages(zone, start_page, end_page, migratetype,
  1798. num_movable);
  1799. }
  1800. static void change_pageblock_range(struct page *pageblock_page,
  1801. int start_order, int migratetype)
  1802. {
  1803. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1804. while (nr_pageblocks--) {
  1805. set_pageblock_migratetype(pageblock_page, migratetype);
  1806. pageblock_page += pageblock_nr_pages;
  1807. }
  1808. }
  1809. /*
  1810. * When we are falling back to another migratetype during allocation, try to
  1811. * steal extra free pages from the same pageblocks to satisfy further
  1812. * allocations, instead of polluting multiple pageblocks.
  1813. *
  1814. * If we are stealing a relatively large buddy page, it is likely there will
  1815. * be more free pages in the pageblock, so try to steal them all. For
  1816. * reclaimable and unmovable allocations, we steal regardless of page size,
  1817. * as fragmentation caused by those allocations polluting movable pageblocks
  1818. * is worse than movable allocations stealing from unmovable and reclaimable
  1819. * pageblocks.
  1820. */
  1821. static bool can_steal_fallback(unsigned int order, int start_mt)
  1822. {
  1823. /*
  1824. * Leaving this order check is intended, although there is
  1825. * relaxed order check in next check. The reason is that
  1826. * we can actually steal whole pageblock if this condition met,
  1827. * but, below check doesn't guarantee it and that is just heuristic
  1828. * so could be changed anytime.
  1829. */
  1830. if (order >= pageblock_order)
  1831. return true;
  1832. if (order >= pageblock_order / 2 ||
  1833. start_mt == MIGRATE_RECLAIMABLE ||
  1834. start_mt == MIGRATE_UNMOVABLE ||
  1835. page_group_by_mobility_disabled)
  1836. return true;
  1837. return false;
  1838. }
  1839. /*
  1840. * This function implements actual steal behaviour. If order is large enough,
  1841. * we can steal whole pageblock. If not, we first move freepages in this
  1842. * pageblock to our migratetype and determine how many already-allocated pages
  1843. * are there in the pageblock with a compatible migratetype. If at least half
  1844. * of pages are free or compatible, we can change migratetype of the pageblock
  1845. * itself, so pages freed in the future will be put on the correct free list.
  1846. */
  1847. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1848. int start_type, bool whole_block)
  1849. {
  1850. unsigned int current_order = page_order(page);
  1851. struct free_area *area;
  1852. int free_pages, movable_pages, alike_pages;
  1853. int old_block_type;
  1854. old_block_type = get_pageblock_migratetype(page);
  1855. /*
  1856. * This can happen due to races and we want to prevent broken
  1857. * highatomic accounting.
  1858. */
  1859. if (is_migrate_highatomic(old_block_type))
  1860. goto single_page;
  1861. /* Take ownership for orders >= pageblock_order */
  1862. if (current_order >= pageblock_order) {
  1863. change_pageblock_range(page, current_order, start_type);
  1864. goto single_page;
  1865. }
  1866. /* We are not allowed to try stealing from the whole block */
  1867. if (!whole_block)
  1868. goto single_page;
  1869. free_pages = move_freepages_block(zone, page, start_type,
  1870. &movable_pages);
  1871. /*
  1872. * Determine how many pages are compatible with our allocation.
  1873. * For movable allocation, it's the number of movable pages which
  1874. * we just obtained. For other types it's a bit more tricky.
  1875. */
  1876. if (start_type == MIGRATE_MOVABLE) {
  1877. alike_pages = movable_pages;
  1878. } else {
  1879. /*
  1880. * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
  1881. * to MOVABLE pageblock, consider all non-movable pages as
  1882. * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
  1883. * vice versa, be conservative since we can't distinguish the
  1884. * exact migratetype of non-movable pages.
  1885. */
  1886. if (old_block_type == MIGRATE_MOVABLE)
  1887. alike_pages = pageblock_nr_pages
  1888. - (free_pages + movable_pages);
  1889. else
  1890. alike_pages = 0;
  1891. }
  1892. /* moving whole block can fail due to zone boundary conditions */
  1893. if (!free_pages)
  1894. goto single_page;
  1895. /*
  1896. * If a sufficient number of pages in the block are either free or of
  1897. * comparable migratability as our allocation, claim the whole block.
  1898. */
  1899. if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
  1900. page_group_by_mobility_disabled)
  1901. set_pageblock_migratetype(page, start_type);
  1902. return;
  1903. single_page:
  1904. area = &zone->free_area[current_order];
  1905. list_move(&page->lru, &area->free_list[start_type]);
  1906. }
  1907. /*
  1908. * Check whether there is a suitable fallback freepage with requested order.
  1909. * If only_stealable is true, this function returns fallback_mt only if
  1910. * we can steal other freepages all together. This would help to reduce
  1911. * fragmentation due to mixed migratetype pages in one pageblock.
  1912. */
  1913. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1914. int migratetype, bool only_stealable, bool *can_steal)
  1915. {
  1916. int i;
  1917. int fallback_mt;
  1918. if (area->nr_free == 0)
  1919. return -1;
  1920. *can_steal = false;
  1921. for (i = 0;; i++) {
  1922. fallback_mt = fallbacks[migratetype][i];
  1923. if (fallback_mt == MIGRATE_TYPES)
  1924. break;
  1925. if (list_empty(&area->free_list[fallback_mt]))
  1926. continue;
  1927. if (can_steal_fallback(order, migratetype))
  1928. *can_steal = true;
  1929. if (!only_stealable)
  1930. return fallback_mt;
  1931. if (*can_steal)
  1932. return fallback_mt;
  1933. }
  1934. return -1;
  1935. }
  1936. /*
  1937. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1938. * there are no empty page blocks that contain a page with a suitable order
  1939. */
  1940. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1941. unsigned int alloc_order)
  1942. {
  1943. int mt;
  1944. unsigned long max_managed, flags;
  1945. /*
  1946. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1947. * Check is race-prone but harmless.
  1948. */
  1949. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1950. if (zone->nr_reserved_highatomic >= max_managed)
  1951. return;
  1952. spin_lock_irqsave(&zone->lock, flags);
  1953. /* Recheck the nr_reserved_highatomic limit under the lock */
  1954. if (zone->nr_reserved_highatomic >= max_managed)
  1955. goto out_unlock;
  1956. /* Yoink! */
  1957. mt = get_pageblock_migratetype(page);
  1958. if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
  1959. && !is_migrate_cma(mt)) {
  1960. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1961. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1962. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
  1963. }
  1964. out_unlock:
  1965. spin_unlock_irqrestore(&zone->lock, flags);
  1966. }
  1967. /*
  1968. * Used when an allocation is about to fail under memory pressure. This
  1969. * potentially hurts the reliability of high-order allocations when under
  1970. * intense memory pressure but failed atomic allocations should be easier
  1971. * to recover from than an OOM.
  1972. *
  1973. * If @force is true, try to unreserve a pageblock even though highatomic
  1974. * pageblock is exhausted.
  1975. */
  1976. static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
  1977. bool force)
  1978. {
  1979. struct zonelist *zonelist = ac->zonelist;
  1980. unsigned long flags;
  1981. struct zoneref *z;
  1982. struct zone *zone;
  1983. struct page *page;
  1984. int order;
  1985. bool ret;
  1986. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1987. ac->nodemask) {
  1988. /*
  1989. * Preserve at least one pageblock unless memory pressure
  1990. * is really high.
  1991. */
  1992. if (!force && zone->nr_reserved_highatomic <=
  1993. pageblock_nr_pages)
  1994. continue;
  1995. spin_lock_irqsave(&zone->lock, flags);
  1996. for (order = 0; order < MAX_ORDER; order++) {
  1997. struct free_area *area = &(zone->free_area[order]);
  1998. page = list_first_entry_or_null(
  1999. &area->free_list[MIGRATE_HIGHATOMIC],
  2000. struct page, lru);
  2001. if (!page)
  2002. continue;
  2003. /*
  2004. * In page freeing path, migratetype change is racy so
  2005. * we can counter several free pages in a pageblock
  2006. * in this loop althoug we changed the pageblock type
  2007. * from highatomic to ac->migratetype. So we should
  2008. * adjust the count once.
  2009. */
  2010. if (is_migrate_highatomic_page(page)) {
  2011. /*
  2012. * It should never happen but changes to
  2013. * locking could inadvertently allow a per-cpu
  2014. * drain to add pages to MIGRATE_HIGHATOMIC
  2015. * while unreserving so be safe and watch for
  2016. * underflows.
  2017. */
  2018. zone->nr_reserved_highatomic -= min(
  2019. pageblock_nr_pages,
  2020. zone->nr_reserved_highatomic);
  2021. }
  2022. /*
  2023. * Convert to ac->migratetype and avoid the normal
  2024. * pageblock stealing heuristics. Minimally, the caller
  2025. * is doing the work and needs the pages. More
  2026. * importantly, if the block was always converted to
  2027. * MIGRATE_UNMOVABLE or another type then the number
  2028. * of pageblocks that cannot be completely freed
  2029. * may increase.
  2030. */
  2031. set_pageblock_migratetype(page, ac->migratetype);
  2032. ret = move_freepages_block(zone, page, ac->migratetype,
  2033. NULL);
  2034. if (ret) {
  2035. spin_unlock_irqrestore(&zone->lock, flags);
  2036. return ret;
  2037. }
  2038. }
  2039. spin_unlock_irqrestore(&zone->lock, flags);
  2040. }
  2041. return false;
  2042. }
  2043. /*
  2044. * Try finding a free buddy page on the fallback list and put it on the free
  2045. * list of requested migratetype, possibly along with other pages from the same
  2046. * block, depending on fragmentation avoidance heuristics. Returns true if
  2047. * fallback was found so that __rmqueue_smallest() can grab it.
  2048. *
  2049. * The use of signed ints for order and current_order is a deliberate
  2050. * deviation from the rest of this file, to make the for loop
  2051. * condition simpler.
  2052. */
  2053. static __always_inline bool
  2054. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  2055. {
  2056. struct free_area *area;
  2057. int current_order;
  2058. struct page *page;
  2059. int fallback_mt;
  2060. bool can_steal;
  2061. /*
  2062. * Find the largest available free page in the other list. This roughly
  2063. * approximates finding the pageblock with the most free pages, which
  2064. * would be too costly to do exactly.
  2065. */
  2066. for (current_order = MAX_ORDER - 1; current_order >= order;
  2067. --current_order) {
  2068. area = &(zone->free_area[current_order]);
  2069. fallback_mt = find_suitable_fallback(area, current_order,
  2070. start_migratetype, false, &can_steal);
  2071. if (fallback_mt == -1)
  2072. continue;
  2073. /*
  2074. * We cannot steal all free pages from the pageblock and the
  2075. * requested migratetype is movable. In that case it's better to
  2076. * steal and split the smallest available page instead of the
  2077. * largest available page, because even if the next movable
  2078. * allocation falls back into a different pageblock than this
  2079. * one, it won't cause permanent fragmentation.
  2080. */
  2081. if (!can_steal && start_migratetype == MIGRATE_MOVABLE
  2082. && current_order > order)
  2083. goto find_smallest;
  2084. goto do_steal;
  2085. }
  2086. return false;
  2087. find_smallest:
  2088. for (current_order = order; current_order < MAX_ORDER;
  2089. current_order++) {
  2090. area = &(zone->free_area[current_order]);
  2091. fallback_mt = find_suitable_fallback(area, current_order,
  2092. start_migratetype, false, &can_steal);
  2093. if (fallback_mt != -1)
  2094. break;
  2095. }
  2096. /*
  2097. * This should not happen - we already found a suitable fallback
  2098. * when looking for the largest page.
  2099. */
  2100. VM_BUG_ON(current_order == MAX_ORDER);
  2101. do_steal:
  2102. page = list_first_entry(&area->free_list[fallback_mt],
  2103. struct page, lru);
  2104. steal_suitable_fallback(zone, page, start_migratetype, can_steal);
  2105. trace_mm_page_alloc_extfrag(page, order, current_order,
  2106. start_migratetype, fallback_mt);
  2107. return true;
  2108. }
  2109. /*
  2110. * Do the hard work of removing an element from the buddy allocator.
  2111. * Call me with the zone->lock already held.
  2112. */
  2113. static __always_inline struct page *
  2114. __rmqueue(struct zone *zone, unsigned int order, int migratetype)
  2115. {
  2116. struct page *page;
  2117. retry:
  2118. page = __rmqueue_smallest(zone, order, migratetype);
  2119. if (unlikely(!page)) {
  2120. if (migratetype == MIGRATE_MOVABLE)
  2121. page = __rmqueue_cma_fallback(zone, order);
  2122. if (!page && __rmqueue_fallback(zone, order, migratetype))
  2123. goto retry;
  2124. }
  2125. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2126. return page;
  2127. }
  2128. /*
  2129. * Obtain a specified number of elements from the buddy allocator, all under
  2130. * a single hold of the lock, for efficiency. Add them to the supplied list.
  2131. * Returns the number of new pages which were placed at *list.
  2132. */
  2133. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  2134. unsigned long count, struct list_head *list,
  2135. int migratetype)
  2136. {
  2137. int i, alloced = 0;
  2138. spin_lock(&zone->lock);
  2139. for (i = 0; i < count; ++i) {
  2140. struct page *page = __rmqueue(zone, order, migratetype);
  2141. if (unlikely(page == NULL))
  2142. break;
  2143. if (unlikely(check_pcp_refill(page)))
  2144. continue;
  2145. /*
  2146. * Split buddy pages returned by expand() are received here in
  2147. * physical page order. The page is added to the tail of
  2148. * caller's list. From the callers perspective, the linked list
  2149. * is ordered by page number under some conditions. This is
  2150. * useful for IO devices that can forward direction from the
  2151. * head, thus also in the physical page order. This is useful
  2152. * for IO devices that can merge IO requests if the physical
  2153. * pages are ordered properly.
  2154. */
  2155. list_add_tail(&page->lru, list);
  2156. alloced++;
  2157. if (is_migrate_cma(get_pcppage_migratetype(page)))
  2158. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  2159. -(1 << order));
  2160. }
  2161. /*
  2162. * i pages were removed from the buddy list even if some leak due
  2163. * to check_pcp_refill failing so adjust NR_FREE_PAGES based
  2164. * on i. Do not confuse with 'alloced' which is the number of
  2165. * pages added to the pcp list.
  2166. */
  2167. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  2168. spin_unlock(&zone->lock);
  2169. return alloced;
  2170. }
  2171. #ifdef CONFIG_NUMA
  2172. /*
  2173. * Called from the vmstat counter updater to drain pagesets of this
  2174. * currently executing processor on remote nodes after they have
  2175. * expired.
  2176. *
  2177. * Note that this function must be called with the thread pinned to
  2178. * a single processor.
  2179. */
  2180. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  2181. {
  2182. unsigned long flags;
  2183. int to_drain, batch;
  2184. local_irq_save(flags);
  2185. batch = READ_ONCE(pcp->batch);
  2186. to_drain = min(pcp->count, batch);
  2187. if (to_drain > 0)
  2188. free_pcppages_bulk(zone, to_drain, pcp);
  2189. local_irq_restore(flags);
  2190. }
  2191. #endif
  2192. /*
  2193. * Drain pcplists of the indicated processor and zone.
  2194. *
  2195. * The processor must either be the current processor and the
  2196. * thread pinned to the current processor or a processor that
  2197. * is not online.
  2198. */
  2199. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  2200. {
  2201. unsigned long flags;
  2202. struct per_cpu_pageset *pset;
  2203. struct per_cpu_pages *pcp;
  2204. local_irq_save(flags);
  2205. pset = per_cpu_ptr(zone->pageset, cpu);
  2206. pcp = &pset->pcp;
  2207. if (pcp->count)
  2208. free_pcppages_bulk(zone, pcp->count, pcp);
  2209. local_irq_restore(flags);
  2210. }
  2211. /*
  2212. * Drain pcplists of all zones on the indicated processor.
  2213. *
  2214. * The processor must either be the current processor and the
  2215. * thread pinned to the current processor or a processor that
  2216. * is not online.
  2217. */
  2218. static void drain_pages(unsigned int cpu)
  2219. {
  2220. struct zone *zone;
  2221. for_each_populated_zone(zone) {
  2222. drain_pages_zone(cpu, zone);
  2223. }
  2224. }
  2225. /*
  2226. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  2227. *
  2228. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  2229. * the single zone's pages.
  2230. */
  2231. void drain_local_pages(struct zone *zone)
  2232. {
  2233. int cpu = smp_processor_id();
  2234. if (zone)
  2235. drain_pages_zone(cpu, zone);
  2236. else
  2237. drain_pages(cpu);
  2238. }
  2239. static void drain_local_pages_wq(struct work_struct *work)
  2240. {
  2241. /*
  2242. * drain_all_pages doesn't use proper cpu hotplug protection so
  2243. * we can race with cpu offline when the WQ can move this from
  2244. * a cpu pinned worker to an unbound one. We can operate on a different
  2245. * cpu which is allright but we also have to make sure to not move to
  2246. * a different one.
  2247. */
  2248. preempt_disable();
  2249. drain_local_pages(NULL);
  2250. preempt_enable();
  2251. }
  2252. /*
  2253. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  2254. *
  2255. * When zone parameter is non-NULL, spill just the single zone's pages.
  2256. *
  2257. * Note that this can be extremely slow as the draining happens in a workqueue.
  2258. */
  2259. void drain_all_pages(struct zone *zone)
  2260. {
  2261. int cpu;
  2262. /*
  2263. * Allocate in the BSS so we wont require allocation in
  2264. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  2265. */
  2266. static cpumask_t cpus_with_pcps;
  2267. /*
  2268. * Make sure nobody triggers this path before mm_percpu_wq is fully
  2269. * initialized.
  2270. */
  2271. if (WARN_ON_ONCE(!mm_percpu_wq))
  2272. return;
  2273. /*
  2274. * Do not drain if one is already in progress unless it's specific to
  2275. * a zone. Such callers are primarily CMA and memory hotplug and need
  2276. * the drain to be complete when the call returns.
  2277. */
  2278. if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
  2279. if (!zone)
  2280. return;
  2281. mutex_lock(&pcpu_drain_mutex);
  2282. }
  2283. /*
  2284. * We don't care about racing with CPU hotplug event
  2285. * as offline notification will cause the notified
  2286. * cpu to drain that CPU pcps and on_each_cpu_mask
  2287. * disables preemption as part of its processing
  2288. */
  2289. for_each_online_cpu(cpu) {
  2290. struct per_cpu_pageset *pcp;
  2291. struct zone *z;
  2292. bool has_pcps = false;
  2293. if (zone) {
  2294. pcp = per_cpu_ptr(zone->pageset, cpu);
  2295. if (pcp->pcp.count)
  2296. has_pcps = true;
  2297. } else {
  2298. for_each_populated_zone(z) {
  2299. pcp = per_cpu_ptr(z->pageset, cpu);
  2300. if (pcp->pcp.count) {
  2301. has_pcps = true;
  2302. break;
  2303. }
  2304. }
  2305. }
  2306. if (has_pcps)
  2307. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2308. else
  2309. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2310. }
  2311. for_each_cpu(cpu, &cpus_with_pcps) {
  2312. struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
  2313. INIT_WORK(work, drain_local_pages_wq);
  2314. queue_work_on(cpu, mm_percpu_wq, work);
  2315. }
  2316. for_each_cpu(cpu, &cpus_with_pcps)
  2317. flush_work(per_cpu_ptr(&pcpu_drain, cpu));
  2318. mutex_unlock(&pcpu_drain_mutex);
  2319. }
  2320. #ifdef CONFIG_HIBERNATION
  2321. /*
  2322. * Touch the watchdog for every WD_PAGE_COUNT pages.
  2323. */
  2324. #define WD_PAGE_COUNT (128*1024)
  2325. void mark_free_pages(struct zone *zone)
  2326. {
  2327. unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
  2328. unsigned long flags;
  2329. unsigned int order, t;
  2330. struct page *page;
  2331. if (zone_is_empty(zone))
  2332. return;
  2333. spin_lock_irqsave(&zone->lock, flags);
  2334. max_zone_pfn = zone_end_pfn(zone);
  2335. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2336. if (pfn_valid(pfn)) {
  2337. page = pfn_to_page(pfn);
  2338. if (!--page_count) {
  2339. touch_nmi_watchdog();
  2340. page_count = WD_PAGE_COUNT;
  2341. }
  2342. if (page_zone(page) != zone)
  2343. continue;
  2344. if (!swsusp_page_is_forbidden(page))
  2345. swsusp_unset_page_free(page);
  2346. }
  2347. for_each_migratetype_order(order, t) {
  2348. list_for_each_entry(page,
  2349. &zone->free_area[order].free_list[t], lru) {
  2350. unsigned long i;
  2351. pfn = page_to_pfn(page);
  2352. for (i = 0; i < (1UL << order); i++) {
  2353. if (!--page_count) {
  2354. touch_nmi_watchdog();
  2355. page_count = WD_PAGE_COUNT;
  2356. }
  2357. swsusp_set_page_free(pfn_to_page(pfn + i));
  2358. }
  2359. }
  2360. }
  2361. spin_unlock_irqrestore(&zone->lock, flags);
  2362. }
  2363. #endif /* CONFIG_PM */
  2364. static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
  2365. {
  2366. int migratetype;
  2367. if (!free_pcp_prepare(page))
  2368. return false;
  2369. migratetype = get_pfnblock_migratetype(page, pfn);
  2370. set_pcppage_migratetype(page, migratetype);
  2371. return true;
  2372. }
  2373. static void free_unref_page_commit(struct page *page, unsigned long pfn)
  2374. {
  2375. struct zone *zone = page_zone(page);
  2376. struct per_cpu_pages *pcp;
  2377. int migratetype;
  2378. migratetype = get_pcppage_migratetype(page);
  2379. __count_vm_event(PGFREE);
  2380. /*
  2381. * We only track unmovable, reclaimable and movable on pcp lists.
  2382. * Free ISOLATE pages back to the allocator because they are being
  2383. * offlined but treat HIGHATOMIC as movable pages so we can get those
  2384. * areas back if necessary. Otherwise, we may have to free
  2385. * excessively into the page allocator
  2386. */
  2387. if (migratetype >= MIGRATE_PCPTYPES) {
  2388. if (unlikely(is_migrate_isolate(migratetype))) {
  2389. free_one_page(zone, page, pfn, 0, migratetype);
  2390. return;
  2391. }
  2392. migratetype = MIGRATE_MOVABLE;
  2393. }
  2394. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2395. list_add(&page->lru, &pcp->lists[migratetype]);
  2396. pcp->count++;
  2397. if (pcp->count >= pcp->high) {
  2398. unsigned long batch = READ_ONCE(pcp->batch);
  2399. free_pcppages_bulk(zone, batch, pcp);
  2400. }
  2401. }
  2402. /*
  2403. * Free a 0-order page
  2404. */
  2405. void free_unref_page(struct page *page)
  2406. {
  2407. unsigned long flags;
  2408. unsigned long pfn = page_to_pfn(page);
  2409. if (!free_unref_page_prepare(page, pfn))
  2410. return;
  2411. local_irq_save(flags);
  2412. free_unref_page_commit(page, pfn);
  2413. local_irq_restore(flags);
  2414. }
  2415. /*
  2416. * Free a list of 0-order pages
  2417. */
  2418. void free_unref_page_list(struct list_head *list)
  2419. {
  2420. struct page *page, *next;
  2421. unsigned long flags, pfn;
  2422. int batch_count = 0;
  2423. /* Prepare pages for freeing */
  2424. list_for_each_entry_safe(page, next, list, lru) {
  2425. pfn = page_to_pfn(page);
  2426. if (!free_unref_page_prepare(page, pfn))
  2427. list_del(&page->lru);
  2428. set_page_private(page, pfn);
  2429. }
  2430. local_irq_save(flags);
  2431. list_for_each_entry_safe(page, next, list, lru) {
  2432. unsigned long pfn = page_private(page);
  2433. set_page_private(page, 0);
  2434. trace_mm_page_free_batched(page);
  2435. free_unref_page_commit(page, pfn);
  2436. /*
  2437. * Guard against excessive IRQ disabled times when we get
  2438. * a large list of pages to free.
  2439. */
  2440. if (++batch_count == SWAP_CLUSTER_MAX) {
  2441. local_irq_restore(flags);
  2442. batch_count = 0;
  2443. local_irq_save(flags);
  2444. }
  2445. }
  2446. local_irq_restore(flags);
  2447. }
  2448. /*
  2449. * split_page takes a non-compound higher-order page, and splits it into
  2450. * n (1<<order) sub-pages: page[0..n]
  2451. * Each sub-page must be freed individually.
  2452. *
  2453. * Note: this is probably too low level an operation for use in drivers.
  2454. * Please consult with lkml before using this in your driver.
  2455. */
  2456. void split_page(struct page *page, unsigned int order)
  2457. {
  2458. int i;
  2459. VM_BUG_ON_PAGE(PageCompound(page), page);
  2460. VM_BUG_ON_PAGE(!page_count(page), page);
  2461. for (i = 1; i < (1 << order); i++)
  2462. set_page_refcounted(page + i);
  2463. split_page_owner(page, order);
  2464. }
  2465. EXPORT_SYMBOL_GPL(split_page);
  2466. int __isolate_free_page(struct page *page, unsigned int order)
  2467. {
  2468. unsigned long watermark;
  2469. struct zone *zone;
  2470. int mt;
  2471. BUG_ON(!PageBuddy(page));
  2472. zone = page_zone(page);
  2473. mt = get_pageblock_migratetype(page);
  2474. if (!is_migrate_isolate(mt)) {
  2475. /*
  2476. * Obey watermarks as if the page was being allocated. We can
  2477. * emulate a high-order watermark check with a raised order-0
  2478. * watermark, because we already know our high-order page
  2479. * exists.
  2480. */
  2481. watermark = min_wmark_pages(zone) + (1UL << order);
  2482. if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
  2483. return 0;
  2484. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2485. }
  2486. /* Remove page from free list */
  2487. list_del(&page->lru);
  2488. zone->free_area[order].nr_free--;
  2489. rmv_page_order(page);
  2490. /*
  2491. * Set the pageblock if the isolated page is at least half of a
  2492. * pageblock
  2493. */
  2494. if (order >= pageblock_order - 1) {
  2495. struct page *endpage = page + (1 << order) - 1;
  2496. for (; page < endpage; page += pageblock_nr_pages) {
  2497. int mt = get_pageblock_migratetype(page);
  2498. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
  2499. && !is_migrate_highatomic(mt))
  2500. set_pageblock_migratetype(page,
  2501. MIGRATE_MOVABLE);
  2502. }
  2503. }
  2504. return 1UL << order;
  2505. }
  2506. /*
  2507. * Update NUMA hit/miss statistics
  2508. *
  2509. * Must be called with interrupts disabled.
  2510. */
  2511. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
  2512. {
  2513. #ifdef CONFIG_NUMA
  2514. enum numa_stat_item local_stat = NUMA_LOCAL;
  2515. /* skip numa counters update if numa stats is disabled */
  2516. if (!static_branch_likely(&vm_numa_stat_key))
  2517. return;
  2518. if (z->node != numa_node_id())
  2519. local_stat = NUMA_OTHER;
  2520. if (z->node == preferred_zone->node)
  2521. __inc_numa_state(z, NUMA_HIT);
  2522. else {
  2523. __inc_numa_state(z, NUMA_MISS);
  2524. __inc_numa_state(preferred_zone, NUMA_FOREIGN);
  2525. }
  2526. __inc_numa_state(z, local_stat);
  2527. #endif
  2528. }
  2529. /* Remove page from the per-cpu list, caller must protect the list */
  2530. static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
  2531. struct per_cpu_pages *pcp,
  2532. struct list_head *list)
  2533. {
  2534. struct page *page;
  2535. do {
  2536. if (list_empty(list)) {
  2537. pcp->count += rmqueue_bulk(zone, 0,
  2538. pcp->batch, list,
  2539. migratetype);
  2540. if (unlikely(list_empty(list)))
  2541. return NULL;
  2542. }
  2543. page = list_first_entry(list, struct page, lru);
  2544. list_del(&page->lru);
  2545. pcp->count--;
  2546. } while (check_new_pcp(page));
  2547. return page;
  2548. }
  2549. /* Lock and remove page from the per-cpu list */
  2550. static struct page *rmqueue_pcplist(struct zone *preferred_zone,
  2551. struct zone *zone, unsigned int order,
  2552. gfp_t gfp_flags, int migratetype)
  2553. {
  2554. struct per_cpu_pages *pcp;
  2555. struct list_head *list;
  2556. struct page *page;
  2557. unsigned long flags;
  2558. local_irq_save(flags);
  2559. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2560. list = &pcp->lists[migratetype];
  2561. page = __rmqueue_pcplist(zone, migratetype, pcp, list);
  2562. if (page) {
  2563. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2564. zone_statistics(preferred_zone, zone);
  2565. }
  2566. local_irq_restore(flags);
  2567. return page;
  2568. }
  2569. /*
  2570. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2571. */
  2572. static inline
  2573. struct page *rmqueue(struct zone *preferred_zone,
  2574. struct zone *zone, unsigned int order,
  2575. gfp_t gfp_flags, unsigned int alloc_flags,
  2576. int migratetype)
  2577. {
  2578. unsigned long flags;
  2579. struct page *page;
  2580. if (likely(order == 0)) {
  2581. page = rmqueue_pcplist(preferred_zone, zone, order,
  2582. gfp_flags, migratetype);
  2583. goto out;
  2584. }
  2585. /*
  2586. * We most definitely don't want callers attempting to
  2587. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2588. */
  2589. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2590. spin_lock_irqsave(&zone->lock, flags);
  2591. do {
  2592. page = NULL;
  2593. if (alloc_flags & ALLOC_HARDER) {
  2594. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2595. if (page)
  2596. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2597. }
  2598. if (!page)
  2599. page = __rmqueue(zone, order, migratetype);
  2600. } while (page && check_new_pages(page, order));
  2601. spin_unlock(&zone->lock);
  2602. if (!page)
  2603. goto failed;
  2604. __mod_zone_freepage_state(zone, -(1 << order),
  2605. get_pcppage_migratetype(page));
  2606. __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
  2607. zone_statistics(preferred_zone, zone);
  2608. local_irq_restore(flags);
  2609. out:
  2610. VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
  2611. return page;
  2612. failed:
  2613. local_irq_restore(flags);
  2614. return NULL;
  2615. }
  2616. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2617. static struct {
  2618. struct fault_attr attr;
  2619. bool ignore_gfp_highmem;
  2620. bool ignore_gfp_reclaim;
  2621. u32 min_order;
  2622. } fail_page_alloc = {
  2623. .attr = FAULT_ATTR_INITIALIZER,
  2624. .ignore_gfp_reclaim = true,
  2625. .ignore_gfp_highmem = true,
  2626. .min_order = 1,
  2627. };
  2628. static int __init setup_fail_page_alloc(char *str)
  2629. {
  2630. return setup_fault_attr(&fail_page_alloc.attr, str);
  2631. }
  2632. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2633. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2634. {
  2635. if (order < fail_page_alloc.min_order)
  2636. return false;
  2637. if (gfp_mask & __GFP_NOFAIL)
  2638. return false;
  2639. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2640. return false;
  2641. if (fail_page_alloc.ignore_gfp_reclaim &&
  2642. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2643. return false;
  2644. return should_fail(&fail_page_alloc.attr, 1 << order);
  2645. }
  2646. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2647. static int __init fail_page_alloc_debugfs(void)
  2648. {
  2649. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2650. struct dentry *dir;
  2651. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2652. &fail_page_alloc.attr);
  2653. if (IS_ERR(dir))
  2654. return PTR_ERR(dir);
  2655. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2656. &fail_page_alloc.ignore_gfp_reclaim))
  2657. goto fail;
  2658. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2659. &fail_page_alloc.ignore_gfp_highmem))
  2660. goto fail;
  2661. if (!debugfs_create_u32("min-order", mode, dir,
  2662. &fail_page_alloc.min_order))
  2663. goto fail;
  2664. return 0;
  2665. fail:
  2666. debugfs_remove_recursive(dir);
  2667. return -ENOMEM;
  2668. }
  2669. late_initcall(fail_page_alloc_debugfs);
  2670. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2671. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2672. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2673. {
  2674. return false;
  2675. }
  2676. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2677. /*
  2678. * Return true if free base pages are above 'mark'. For high-order checks it
  2679. * will return true of the order-0 watermark is reached and there is at least
  2680. * one free page of a suitable size. Checking now avoids taking the zone lock
  2681. * to check in the allocation paths if no pages are free.
  2682. */
  2683. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2684. int classzone_idx, unsigned int alloc_flags,
  2685. long free_pages)
  2686. {
  2687. long min = mark;
  2688. int o;
  2689. const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
  2690. /* free_pages may go negative - that's OK */
  2691. free_pages -= (1 << order) - 1;
  2692. if (alloc_flags & ALLOC_HIGH)
  2693. min -= min / 2;
  2694. /*
  2695. * If the caller does not have rights to ALLOC_HARDER then subtract
  2696. * the high-atomic reserves. This will over-estimate the size of the
  2697. * atomic reserve but it avoids a search.
  2698. */
  2699. if (likely(!alloc_harder)) {
  2700. free_pages -= z->nr_reserved_highatomic;
  2701. } else {
  2702. /*
  2703. * OOM victims can try even harder than normal ALLOC_HARDER
  2704. * users on the grounds that it's definitely going to be in
  2705. * the exit path shortly and free memory. Any allocation it
  2706. * makes during the free path will be small and short-lived.
  2707. */
  2708. if (alloc_flags & ALLOC_OOM)
  2709. min -= min / 2;
  2710. else
  2711. min -= min / 4;
  2712. }
  2713. #ifdef CONFIG_CMA
  2714. /* If allocation can't use CMA areas don't use free CMA pages */
  2715. if (!(alloc_flags & ALLOC_CMA))
  2716. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2717. #endif
  2718. /*
  2719. * Check watermarks for an order-0 allocation request. If these
  2720. * are not met, then a high-order request also cannot go ahead
  2721. * even if a suitable page happened to be free.
  2722. */
  2723. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2724. return false;
  2725. /* If this is an order-0 request then the watermark is fine */
  2726. if (!order)
  2727. return true;
  2728. /* For a high-order request, check at least one suitable page is free */
  2729. for (o = order; o < MAX_ORDER; o++) {
  2730. struct free_area *area = &z->free_area[o];
  2731. int mt;
  2732. if (!area->nr_free)
  2733. continue;
  2734. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2735. if (!list_empty(&area->free_list[mt]))
  2736. return true;
  2737. }
  2738. #ifdef CONFIG_CMA
  2739. if ((alloc_flags & ALLOC_CMA) &&
  2740. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2741. return true;
  2742. }
  2743. #endif
  2744. if (alloc_harder &&
  2745. !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
  2746. return true;
  2747. }
  2748. return false;
  2749. }
  2750. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2751. int classzone_idx, unsigned int alloc_flags)
  2752. {
  2753. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2754. zone_page_state(z, NR_FREE_PAGES));
  2755. }
  2756. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2757. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2758. {
  2759. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2760. long cma_pages = 0;
  2761. #ifdef CONFIG_CMA
  2762. /* If allocation can't use CMA areas don't use free CMA pages */
  2763. if (!(alloc_flags & ALLOC_CMA))
  2764. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2765. #endif
  2766. /*
  2767. * Fast check for order-0 only. If this fails then the reserves
  2768. * need to be calculated. There is a corner case where the check
  2769. * passes but only the high-order atomic reserve are free. If
  2770. * the caller is !atomic then it'll uselessly search the free
  2771. * list. That corner case is then slower but it is harmless.
  2772. */
  2773. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2774. return true;
  2775. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2776. free_pages);
  2777. }
  2778. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2779. unsigned long mark, int classzone_idx)
  2780. {
  2781. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2782. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2783. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2784. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2785. free_pages);
  2786. }
  2787. #ifdef CONFIG_NUMA
  2788. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2789. {
  2790. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
  2791. RECLAIM_DISTANCE;
  2792. }
  2793. #else /* CONFIG_NUMA */
  2794. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2795. {
  2796. return true;
  2797. }
  2798. #endif /* CONFIG_NUMA */
  2799. /*
  2800. * get_page_from_freelist goes through the zonelist trying to allocate
  2801. * a page.
  2802. */
  2803. static struct page *
  2804. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2805. const struct alloc_context *ac)
  2806. {
  2807. struct zoneref *z = ac->preferred_zoneref;
  2808. struct zone *zone;
  2809. struct pglist_data *last_pgdat_dirty_limit = NULL;
  2810. /*
  2811. * Scan zonelist, looking for a zone with enough free.
  2812. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2813. */
  2814. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2815. ac->nodemask) {
  2816. struct page *page;
  2817. unsigned long mark;
  2818. if (cpusets_enabled() &&
  2819. (alloc_flags & ALLOC_CPUSET) &&
  2820. !__cpuset_zone_allowed(zone, gfp_mask))
  2821. continue;
  2822. /*
  2823. * When allocating a page cache page for writing, we
  2824. * want to get it from a node that is within its dirty
  2825. * limit, such that no single node holds more than its
  2826. * proportional share of globally allowed dirty pages.
  2827. * The dirty limits take into account the node's
  2828. * lowmem reserves and high watermark so that kswapd
  2829. * should be able to balance it without having to
  2830. * write pages from its LRU list.
  2831. *
  2832. * XXX: For now, allow allocations to potentially
  2833. * exceed the per-node dirty limit in the slowpath
  2834. * (spread_dirty_pages unset) before going into reclaim,
  2835. * which is important when on a NUMA setup the allowed
  2836. * nodes are together not big enough to reach the
  2837. * global limit. The proper fix for these situations
  2838. * will require awareness of nodes in the
  2839. * dirty-throttling and the flusher threads.
  2840. */
  2841. if (ac->spread_dirty_pages) {
  2842. if (last_pgdat_dirty_limit == zone->zone_pgdat)
  2843. continue;
  2844. if (!node_dirty_ok(zone->zone_pgdat)) {
  2845. last_pgdat_dirty_limit = zone->zone_pgdat;
  2846. continue;
  2847. }
  2848. }
  2849. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2850. if (!zone_watermark_fast(zone, order, mark,
  2851. ac_classzone_idx(ac), alloc_flags)) {
  2852. int ret;
  2853. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  2854. /*
  2855. * Watermark failed for this zone, but see if we can
  2856. * grow this zone if it contains deferred pages.
  2857. */
  2858. if (static_branch_unlikely(&deferred_pages)) {
  2859. if (_deferred_grow_zone(zone, order))
  2860. goto try_this_zone;
  2861. }
  2862. #endif
  2863. /* Checked here to keep the fast path fast */
  2864. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2865. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2866. goto try_this_zone;
  2867. if (node_reclaim_mode == 0 ||
  2868. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2869. continue;
  2870. ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
  2871. switch (ret) {
  2872. case NODE_RECLAIM_NOSCAN:
  2873. /* did not scan */
  2874. continue;
  2875. case NODE_RECLAIM_FULL:
  2876. /* scanned but unreclaimable */
  2877. continue;
  2878. default:
  2879. /* did we reclaim enough */
  2880. if (zone_watermark_ok(zone, order, mark,
  2881. ac_classzone_idx(ac), alloc_flags))
  2882. goto try_this_zone;
  2883. continue;
  2884. }
  2885. }
  2886. try_this_zone:
  2887. page = rmqueue(ac->preferred_zoneref->zone, zone, order,
  2888. gfp_mask, alloc_flags, ac->migratetype);
  2889. if (page) {
  2890. prep_new_page(page, order, gfp_mask, alloc_flags);
  2891. /*
  2892. * If this is a high-order atomic allocation then check
  2893. * if the pageblock should be reserved for the future
  2894. */
  2895. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2896. reserve_highatomic_pageblock(page, zone, order);
  2897. return page;
  2898. } else {
  2899. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  2900. /* Try again if zone has deferred pages */
  2901. if (static_branch_unlikely(&deferred_pages)) {
  2902. if (_deferred_grow_zone(zone, order))
  2903. goto try_this_zone;
  2904. }
  2905. #endif
  2906. }
  2907. }
  2908. return NULL;
  2909. }
  2910. /*
  2911. * Large machines with many possible nodes should not always dump per-node
  2912. * meminfo in irq context.
  2913. */
  2914. static inline bool should_suppress_show_mem(void)
  2915. {
  2916. bool ret = false;
  2917. #if NODES_SHIFT > 8
  2918. ret = in_interrupt();
  2919. #endif
  2920. return ret;
  2921. }
  2922. static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
  2923. {
  2924. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2925. static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
  2926. if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
  2927. return;
  2928. /*
  2929. * This documents exceptions given to allocations in certain
  2930. * contexts that are allowed to allocate outside current's set
  2931. * of allowed nodes.
  2932. */
  2933. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2934. if (tsk_is_oom_victim(current) ||
  2935. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2936. filter &= ~SHOW_MEM_FILTER_NODES;
  2937. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2938. filter &= ~SHOW_MEM_FILTER_NODES;
  2939. show_mem(filter, nodemask);
  2940. }
  2941. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
  2942. {
  2943. struct va_format vaf;
  2944. va_list args;
  2945. static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
  2946. DEFAULT_RATELIMIT_BURST);
  2947. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
  2948. return;
  2949. va_start(args, fmt);
  2950. vaf.fmt = fmt;
  2951. vaf.va = &args;
  2952. pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
  2953. current->comm, &vaf, gfp_mask, &gfp_mask,
  2954. nodemask_pr_args(nodemask));
  2955. va_end(args);
  2956. cpuset_print_current_mems_allowed();
  2957. dump_stack();
  2958. warn_alloc_show_mem(gfp_mask, nodemask);
  2959. }
  2960. static inline struct page *
  2961. __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
  2962. unsigned int alloc_flags,
  2963. const struct alloc_context *ac)
  2964. {
  2965. struct page *page;
  2966. page = get_page_from_freelist(gfp_mask, order,
  2967. alloc_flags|ALLOC_CPUSET, ac);
  2968. /*
  2969. * fallback to ignore cpuset restriction if our nodes
  2970. * are depleted
  2971. */
  2972. if (!page)
  2973. page = get_page_from_freelist(gfp_mask, order,
  2974. alloc_flags, ac);
  2975. return page;
  2976. }
  2977. static inline struct page *
  2978. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2979. const struct alloc_context *ac, unsigned long *did_some_progress)
  2980. {
  2981. struct oom_control oc = {
  2982. .zonelist = ac->zonelist,
  2983. .nodemask = ac->nodemask,
  2984. .memcg = NULL,
  2985. .gfp_mask = gfp_mask,
  2986. .order = order,
  2987. };
  2988. struct page *page;
  2989. *did_some_progress = 0;
  2990. /*
  2991. * Acquire the oom lock. If that fails, somebody else is
  2992. * making progress for us.
  2993. */
  2994. if (!mutex_trylock(&oom_lock)) {
  2995. *did_some_progress = 1;
  2996. schedule_timeout_uninterruptible(1);
  2997. return NULL;
  2998. }
  2999. /*
  3000. * Go through the zonelist yet one more time, keep very high watermark
  3001. * here, this is only to catch a parallel oom killing, we must fail if
  3002. * we're still under heavy pressure. But make sure that this reclaim
  3003. * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
  3004. * allocation which will never fail due to oom_lock already held.
  3005. */
  3006. page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
  3007. ~__GFP_DIRECT_RECLAIM, order,
  3008. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  3009. if (page)
  3010. goto out;
  3011. /* Coredumps can quickly deplete all memory reserves */
  3012. if (current->flags & PF_DUMPCORE)
  3013. goto out;
  3014. /* The OOM killer will not help higher order allocs */
  3015. if (order > PAGE_ALLOC_COSTLY_ORDER)
  3016. goto out;
  3017. /*
  3018. * We have already exhausted all our reclaim opportunities without any
  3019. * success so it is time to admit defeat. We will skip the OOM killer
  3020. * because it is very likely that the caller has a more reasonable
  3021. * fallback than shooting a random task.
  3022. */
  3023. if (gfp_mask & __GFP_RETRY_MAYFAIL)
  3024. goto out;
  3025. /* The OOM killer does not needlessly kill tasks for lowmem */
  3026. if (ac->high_zoneidx < ZONE_NORMAL)
  3027. goto out;
  3028. if (pm_suspended_storage())
  3029. goto out;
  3030. /*
  3031. * XXX: GFP_NOFS allocations should rather fail than rely on
  3032. * other request to make a forward progress.
  3033. * We are in an unfortunate situation where out_of_memory cannot
  3034. * do much for this context but let's try it to at least get
  3035. * access to memory reserved if the current task is killed (see
  3036. * out_of_memory). Once filesystems are ready to handle allocation
  3037. * failures more gracefully we should just bail out here.
  3038. */
  3039. /* The OOM killer may not free memory on a specific node */
  3040. if (gfp_mask & __GFP_THISNODE)
  3041. goto out;
  3042. /* Exhausted what can be done so it's blame time */
  3043. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3044. *did_some_progress = 1;
  3045. /*
  3046. * Help non-failing allocations by giving them access to memory
  3047. * reserves
  3048. */
  3049. if (gfp_mask & __GFP_NOFAIL)
  3050. page = __alloc_pages_cpuset_fallback(gfp_mask, order,
  3051. ALLOC_NO_WATERMARKS, ac);
  3052. }
  3053. out:
  3054. mutex_unlock(&oom_lock);
  3055. return page;
  3056. }
  3057. /*
  3058. * Maximum number of compaction retries wit a progress before OOM
  3059. * killer is consider as the only way to move forward.
  3060. */
  3061. #define MAX_COMPACT_RETRIES 16
  3062. #ifdef CONFIG_COMPACTION
  3063. /* Try memory compaction for high-order allocations before reclaim */
  3064. static struct page *
  3065. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  3066. unsigned int alloc_flags, const struct alloc_context *ac,
  3067. enum compact_priority prio, enum compact_result *compact_result)
  3068. {
  3069. struct page *page;
  3070. unsigned int noreclaim_flag;
  3071. if (!order)
  3072. return NULL;
  3073. noreclaim_flag = memalloc_noreclaim_save();
  3074. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  3075. prio);
  3076. memalloc_noreclaim_restore(noreclaim_flag);
  3077. if (*compact_result <= COMPACT_INACTIVE)
  3078. return NULL;
  3079. /*
  3080. * At least in one zone compaction wasn't deferred or skipped, so let's
  3081. * count a compaction stall
  3082. */
  3083. count_vm_event(COMPACTSTALL);
  3084. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3085. if (page) {
  3086. struct zone *zone = page_zone(page);
  3087. zone->compact_blockskip_flush = false;
  3088. compaction_defer_reset(zone, order, true);
  3089. count_vm_event(COMPACTSUCCESS);
  3090. return page;
  3091. }
  3092. /*
  3093. * It's bad if compaction run occurs and fails. The most likely reason
  3094. * is that pages exist, but not enough to satisfy watermarks.
  3095. */
  3096. count_vm_event(COMPACTFAIL);
  3097. cond_resched();
  3098. return NULL;
  3099. }
  3100. static inline bool
  3101. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  3102. enum compact_result compact_result,
  3103. enum compact_priority *compact_priority,
  3104. int *compaction_retries)
  3105. {
  3106. int max_retries = MAX_COMPACT_RETRIES;
  3107. int min_priority;
  3108. bool ret = false;
  3109. int retries = *compaction_retries;
  3110. enum compact_priority priority = *compact_priority;
  3111. if (!order)
  3112. return false;
  3113. if (compaction_made_progress(compact_result))
  3114. (*compaction_retries)++;
  3115. /*
  3116. * compaction considers all the zone as desperately out of memory
  3117. * so it doesn't really make much sense to retry except when the
  3118. * failure could be caused by insufficient priority
  3119. */
  3120. if (compaction_failed(compact_result))
  3121. goto check_priority;
  3122. /*
  3123. * make sure the compaction wasn't deferred or didn't bail out early
  3124. * due to locks contention before we declare that we should give up.
  3125. * But do not retry if the given zonelist is not suitable for
  3126. * compaction.
  3127. */
  3128. if (compaction_withdrawn(compact_result)) {
  3129. ret = compaction_zonelist_suitable(ac, order, alloc_flags);
  3130. goto out;
  3131. }
  3132. /*
  3133. * !costly requests are much more important than __GFP_RETRY_MAYFAIL
  3134. * costly ones because they are de facto nofail and invoke OOM
  3135. * killer to move on while costly can fail and users are ready
  3136. * to cope with that. 1/4 retries is rather arbitrary but we
  3137. * would need much more detailed feedback from compaction to
  3138. * make a better decision.
  3139. */
  3140. if (order > PAGE_ALLOC_COSTLY_ORDER)
  3141. max_retries /= 4;
  3142. if (*compaction_retries <= max_retries) {
  3143. ret = true;
  3144. goto out;
  3145. }
  3146. /*
  3147. * Make sure there are attempts at the highest priority if we exhausted
  3148. * all retries or failed at the lower priorities.
  3149. */
  3150. check_priority:
  3151. min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
  3152. MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
  3153. if (*compact_priority > min_priority) {
  3154. (*compact_priority)--;
  3155. *compaction_retries = 0;
  3156. ret = true;
  3157. }
  3158. out:
  3159. trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
  3160. return ret;
  3161. }
  3162. #else
  3163. static inline struct page *
  3164. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  3165. unsigned int alloc_flags, const struct alloc_context *ac,
  3166. enum compact_priority prio, enum compact_result *compact_result)
  3167. {
  3168. *compact_result = COMPACT_SKIPPED;
  3169. return NULL;
  3170. }
  3171. static inline bool
  3172. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  3173. enum compact_result compact_result,
  3174. enum compact_priority *compact_priority,
  3175. int *compaction_retries)
  3176. {
  3177. struct zone *zone;
  3178. struct zoneref *z;
  3179. if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
  3180. return false;
  3181. /*
  3182. * There are setups with compaction disabled which would prefer to loop
  3183. * inside the allocator rather than hit the oom killer prematurely.
  3184. * Let's give them a good hope and keep retrying while the order-0
  3185. * watermarks are OK.
  3186. */
  3187. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3188. ac->nodemask) {
  3189. if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
  3190. ac_classzone_idx(ac), alloc_flags))
  3191. return true;
  3192. }
  3193. return false;
  3194. }
  3195. #endif /* CONFIG_COMPACTION */
  3196. #ifdef CONFIG_LOCKDEP
  3197. struct lockdep_map __fs_reclaim_map =
  3198. STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
  3199. static bool __need_fs_reclaim(gfp_t gfp_mask)
  3200. {
  3201. gfp_mask = current_gfp_context(gfp_mask);
  3202. /* no reclaim without waiting on it */
  3203. if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
  3204. return false;
  3205. /* this guy won't enter reclaim */
  3206. if (current->flags & PF_MEMALLOC)
  3207. return false;
  3208. /* We're only interested __GFP_FS allocations for now */
  3209. if (!(gfp_mask & __GFP_FS))
  3210. return false;
  3211. if (gfp_mask & __GFP_NOLOCKDEP)
  3212. return false;
  3213. return true;
  3214. }
  3215. void fs_reclaim_acquire(gfp_t gfp_mask)
  3216. {
  3217. if (__need_fs_reclaim(gfp_mask))
  3218. lock_map_acquire(&__fs_reclaim_map);
  3219. }
  3220. EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
  3221. void fs_reclaim_release(gfp_t gfp_mask)
  3222. {
  3223. if (__need_fs_reclaim(gfp_mask))
  3224. lock_map_release(&__fs_reclaim_map);
  3225. }
  3226. EXPORT_SYMBOL_GPL(fs_reclaim_release);
  3227. #endif
  3228. /* Perform direct synchronous page reclaim */
  3229. static int
  3230. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  3231. const struct alloc_context *ac)
  3232. {
  3233. struct reclaim_state reclaim_state;
  3234. int progress;
  3235. unsigned int noreclaim_flag;
  3236. cond_resched();
  3237. /* We now go into synchronous reclaim */
  3238. cpuset_memory_pressure_bump();
  3239. noreclaim_flag = memalloc_noreclaim_save();
  3240. fs_reclaim_acquire(gfp_mask);
  3241. reclaim_state.reclaimed_slab = 0;
  3242. current->reclaim_state = &reclaim_state;
  3243. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  3244. ac->nodemask);
  3245. current->reclaim_state = NULL;
  3246. fs_reclaim_release(gfp_mask);
  3247. memalloc_noreclaim_restore(noreclaim_flag);
  3248. cond_resched();
  3249. return progress;
  3250. }
  3251. /* The really slow allocator path where we enter direct reclaim */
  3252. static inline struct page *
  3253. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  3254. unsigned int alloc_flags, const struct alloc_context *ac,
  3255. unsigned long *did_some_progress)
  3256. {
  3257. struct page *page = NULL;
  3258. bool drained = false;
  3259. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  3260. if (unlikely(!(*did_some_progress)))
  3261. return NULL;
  3262. retry:
  3263. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3264. /*
  3265. * If an allocation failed after direct reclaim, it could be because
  3266. * pages are pinned on the per-cpu lists or in high alloc reserves.
  3267. * Shrink them them and try again
  3268. */
  3269. if (!page && !drained) {
  3270. unreserve_highatomic_pageblock(ac, false);
  3271. drain_all_pages(NULL);
  3272. drained = true;
  3273. goto retry;
  3274. }
  3275. return page;
  3276. }
  3277. static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
  3278. const struct alloc_context *ac)
  3279. {
  3280. struct zoneref *z;
  3281. struct zone *zone;
  3282. pg_data_t *last_pgdat = NULL;
  3283. enum zone_type high_zoneidx = ac->high_zoneidx;
  3284. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
  3285. ac->nodemask) {
  3286. if (last_pgdat != zone->zone_pgdat)
  3287. wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
  3288. last_pgdat = zone->zone_pgdat;
  3289. }
  3290. }
  3291. static inline unsigned int
  3292. gfp_to_alloc_flags(gfp_t gfp_mask)
  3293. {
  3294. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  3295. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  3296. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  3297. /*
  3298. * The caller may dip into page reserves a bit more if the caller
  3299. * cannot run direct reclaim, or if the caller has realtime scheduling
  3300. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  3301. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  3302. */
  3303. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  3304. if (gfp_mask & __GFP_ATOMIC) {
  3305. /*
  3306. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  3307. * if it can't schedule.
  3308. */
  3309. if (!(gfp_mask & __GFP_NOMEMALLOC))
  3310. alloc_flags |= ALLOC_HARDER;
  3311. /*
  3312. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  3313. * comment for __cpuset_node_allowed().
  3314. */
  3315. alloc_flags &= ~ALLOC_CPUSET;
  3316. } else if (unlikely(rt_task(current)) && !in_interrupt())
  3317. alloc_flags |= ALLOC_HARDER;
  3318. #ifdef CONFIG_CMA
  3319. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  3320. alloc_flags |= ALLOC_CMA;
  3321. #endif
  3322. return alloc_flags;
  3323. }
  3324. static bool oom_reserves_allowed(struct task_struct *tsk)
  3325. {
  3326. if (!tsk_is_oom_victim(tsk))
  3327. return false;
  3328. /*
  3329. * !MMU doesn't have oom reaper so give access to memory reserves
  3330. * only to the thread with TIF_MEMDIE set
  3331. */
  3332. if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
  3333. return false;
  3334. return true;
  3335. }
  3336. /*
  3337. * Distinguish requests which really need access to full memory
  3338. * reserves from oom victims which can live with a portion of it
  3339. */
  3340. static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
  3341. {
  3342. if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
  3343. return 0;
  3344. if (gfp_mask & __GFP_MEMALLOC)
  3345. return ALLOC_NO_WATERMARKS;
  3346. if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  3347. return ALLOC_NO_WATERMARKS;
  3348. if (!in_interrupt()) {
  3349. if (current->flags & PF_MEMALLOC)
  3350. return ALLOC_NO_WATERMARKS;
  3351. else if (oom_reserves_allowed(current))
  3352. return ALLOC_OOM;
  3353. }
  3354. return 0;
  3355. }
  3356. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  3357. {
  3358. return !!__gfp_pfmemalloc_flags(gfp_mask);
  3359. }
  3360. /*
  3361. * Checks whether it makes sense to retry the reclaim to make a forward progress
  3362. * for the given allocation request.
  3363. *
  3364. * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
  3365. * without success, or when we couldn't even meet the watermark if we
  3366. * reclaimed all remaining pages on the LRU lists.
  3367. *
  3368. * Returns true if a retry is viable or false to enter the oom path.
  3369. */
  3370. static inline bool
  3371. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  3372. struct alloc_context *ac, int alloc_flags,
  3373. bool did_some_progress, int *no_progress_loops)
  3374. {
  3375. struct zone *zone;
  3376. struct zoneref *z;
  3377. /*
  3378. * Costly allocations might have made a progress but this doesn't mean
  3379. * their order will become available due to high fragmentation so
  3380. * always increment the no progress counter for them
  3381. */
  3382. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3383. *no_progress_loops = 0;
  3384. else
  3385. (*no_progress_loops)++;
  3386. /*
  3387. * Make sure we converge to OOM if we cannot make any progress
  3388. * several times in the row.
  3389. */
  3390. if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
  3391. /* Before OOM, exhaust highatomic_reserve */
  3392. return unreserve_highatomic_pageblock(ac, true);
  3393. }
  3394. /*
  3395. * Keep reclaiming pages while there is a chance this will lead
  3396. * somewhere. If none of the target zones can satisfy our allocation
  3397. * request even if all reclaimable pages are considered then we are
  3398. * screwed and have to go OOM.
  3399. */
  3400. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  3401. ac->nodemask) {
  3402. unsigned long available;
  3403. unsigned long reclaimable;
  3404. unsigned long min_wmark = min_wmark_pages(zone);
  3405. bool wmark;
  3406. available = reclaimable = zone_reclaimable_pages(zone);
  3407. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3408. /*
  3409. * Would the allocation succeed if we reclaimed all
  3410. * reclaimable pages?
  3411. */
  3412. wmark = __zone_watermark_ok(zone, order, min_wmark,
  3413. ac_classzone_idx(ac), alloc_flags, available);
  3414. trace_reclaim_retry_zone(z, order, reclaimable,
  3415. available, min_wmark, *no_progress_loops, wmark);
  3416. if (wmark) {
  3417. /*
  3418. * If we didn't make any progress and have a lot of
  3419. * dirty + writeback pages then we should wait for
  3420. * an IO to complete to slow down the reclaim and
  3421. * prevent from pre mature OOM
  3422. */
  3423. if (!did_some_progress) {
  3424. unsigned long write_pending;
  3425. write_pending = zone_page_state_snapshot(zone,
  3426. NR_ZONE_WRITE_PENDING);
  3427. if (2 * write_pending > reclaimable) {
  3428. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3429. return true;
  3430. }
  3431. }
  3432. /*
  3433. * Memory allocation/reclaim might be called from a WQ
  3434. * context and the current implementation of the WQ
  3435. * concurrency control doesn't recognize that
  3436. * a particular WQ is congested if the worker thread is
  3437. * looping without ever sleeping. Therefore we have to
  3438. * do a short sleep here rather than calling
  3439. * cond_resched().
  3440. */
  3441. if (current->flags & PF_WQ_WORKER)
  3442. schedule_timeout_uninterruptible(1);
  3443. else
  3444. cond_resched();
  3445. return true;
  3446. }
  3447. }
  3448. return false;
  3449. }
  3450. static inline bool
  3451. check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
  3452. {
  3453. /*
  3454. * It's possible that cpuset's mems_allowed and the nodemask from
  3455. * mempolicy don't intersect. This should be normally dealt with by
  3456. * policy_nodemask(), but it's possible to race with cpuset update in
  3457. * such a way the check therein was true, and then it became false
  3458. * before we got our cpuset_mems_cookie here.
  3459. * This assumes that for all allocations, ac->nodemask can come only
  3460. * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
  3461. * when it does not intersect with the cpuset restrictions) or the
  3462. * caller can deal with a violated nodemask.
  3463. */
  3464. if (cpusets_enabled() && ac->nodemask &&
  3465. !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
  3466. ac->nodemask = NULL;
  3467. return true;
  3468. }
  3469. /*
  3470. * When updating a task's mems_allowed or mempolicy nodemask, it is
  3471. * possible to race with parallel threads in such a way that our
  3472. * allocation can fail while the mask is being updated. If we are about
  3473. * to fail, check if the cpuset changed during allocation and if so,
  3474. * retry.
  3475. */
  3476. if (read_mems_allowed_retry(cpuset_mems_cookie))
  3477. return true;
  3478. return false;
  3479. }
  3480. static inline struct page *
  3481. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3482. struct alloc_context *ac)
  3483. {
  3484. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3485. const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
  3486. struct page *page = NULL;
  3487. unsigned int alloc_flags;
  3488. unsigned long did_some_progress;
  3489. enum compact_priority compact_priority;
  3490. enum compact_result compact_result;
  3491. int compaction_retries;
  3492. int no_progress_loops;
  3493. unsigned int cpuset_mems_cookie;
  3494. int reserve_flags;
  3495. /*
  3496. * In the slowpath, we sanity check order to avoid ever trying to
  3497. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3498. * be using allocators in order of preference for an area that is
  3499. * too large.
  3500. */
  3501. if (order >= MAX_ORDER) {
  3502. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3503. return NULL;
  3504. }
  3505. /*
  3506. * We also sanity check to catch abuse of atomic reserves being used by
  3507. * callers that are not in atomic context.
  3508. */
  3509. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3510. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3511. gfp_mask &= ~__GFP_ATOMIC;
  3512. retry_cpuset:
  3513. compaction_retries = 0;
  3514. no_progress_loops = 0;
  3515. compact_priority = DEF_COMPACT_PRIORITY;
  3516. cpuset_mems_cookie = read_mems_allowed_begin();
  3517. /*
  3518. * The fast path uses conservative alloc_flags to succeed only until
  3519. * kswapd needs to be woken up, and to avoid the cost of setting up
  3520. * alloc_flags precisely. So we do that now.
  3521. */
  3522. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3523. /*
  3524. * We need to recalculate the starting point for the zonelist iterator
  3525. * because we might have used different nodemask in the fast path, or
  3526. * there was a cpuset modification and we are retrying - otherwise we
  3527. * could end up iterating over non-eligible zones endlessly.
  3528. */
  3529. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3530. ac->high_zoneidx, ac->nodemask);
  3531. if (!ac->preferred_zoneref->zone)
  3532. goto nopage;
  3533. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3534. wake_all_kswapds(order, gfp_mask, ac);
  3535. /*
  3536. * The adjusted alloc_flags might result in immediate success, so try
  3537. * that first
  3538. */
  3539. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3540. if (page)
  3541. goto got_pg;
  3542. /*
  3543. * For costly allocations, try direct compaction first, as it's likely
  3544. * that we have enough base pages and don't need to reclaim. For non-
  3545. * movable high-order allocations, do that as well, as compaction will
  3546. * try prevent permanent fragmentation by migrating from blocks of the
  3547. * same migratetype.
  3548. * Don't try this for allocations that are allowed to ignore
  3549. * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
  3550. */
  3551. if (can_direct_reclaim &&
  3552. (costly_order ||
  3553. (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
  3554. && !gfp_pfmemalloc_allowed(gfp_mask)) {
  3555. page = __alloc_pages_direct_compact(gfp_mask, order,
  3556. alloc_flags, ac,
  3557. INIT_COMPACT_PRIORITY,
  3558. &compact_result);
  3559. if (page)
  3560. goto got_pg;
  3561. /*
  3562. * Checks for costly allocations with __GFP_NORETRY, which
  3563. * includes THP page fault allocations
  3564. */
  3565. if (costly_order && (gfp_mask & __GFP_NORETRY)) {
  3566. /*
  3567. * If compaction is deferred for high-order allocations,
  3568. * it is because sync compaction recently failed. If
  3569. * this is the case and the caller requested a THP
  3570. * allocation, we do not want to heavily disrupt the
  3571. * system, so we fail the allocation instead of entering
  3572. * direct reclaim.
  3573. */
  3574. if (compact_result == COMPACT_DEFERRED)
  3575. goto nopage;
  3576. /*
  3577. * Looks like reclaim/compaction is worth trying, but
  3578. * sync compaction could be very expensive, so keep
  3579. * using async compaction.
  3580. */
  3581. compact_priority = INIT_COMPACT_PRIORITY;
  3582. }
  3583. }
  3584. retry:
  3585. /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
  3586. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3587. wake_all_kswapds(order, gfp_mask, ac);
  3588. reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
  3589. if (reserve_flags)
  3590. alloc_flags = reserve_flags;
  3591. /*
  3592. * Reset the zonelist iterators if memory policies can be ignored.
  3593. * These allocations are high priority and system rather than user
  3594. * orientated.
  3595. */
  3596. if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
  3597. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3598. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3599. ac->high_zoneidx, ac->nodemask);
  3600. }
  3601. /* Attempt with potentially adjusted zonelist and alloc_flags */
  3602. page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
  3603. if (page)
  3604. goto got_pg;
  3605. /* Caller is not willing to reclaim, we can't balance anything */
  3606. if (!can_direct_reclaim)
  3607. goto nopage;
  3608. /* Avoid recursion of direct reclaim */
  3609. if (current->flags & PF_MEMALLOC)
  3610. goto nopage;
  3611. /* Try direct reclaim and then allocating */
  3612. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3613. &did_some_progress);
  3614. if (page)
  3615. goto got_pg;
  3616. /* Try direct compaction and then allocating */
  3617. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3618. compact_priority, &compact_result);
  3619. if (page)
  3620. goto got_pg;
  3621. /* Do not loop if specifically requested */
  3622. if (gfp_mask & __GFP_NORETRY)
  3623. goto nopage;
  3624. /*
  3625. * Do not retry costly high order allocations unless they are
  3626. * __GFP_RETRY_MAYFAIL
  3627. */
  3628. if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
  3629. goto nopage;
  3630. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3631. did_some_progress > 0, &no_progress_loops))
  3632. goto retry;
  3633. /*
  3634. * It doesn't make any sense to retry for the compaction if the order-0
  3635. * reclaim is not able to make any progress because the current
  3636. * implementation of the compaction depends on the sufficient amount
  3637. * of free memory (see __compaction_suitable)
  3638. */
  3639. if (did_some_progress > 0 &&
  3640. should_compact_retry(ac, order, alloc_flags,
  3641. compact_result, &compact_priority,
  3642. &compaction_retries))
  3643. goto retry;
  3644. /* Deal with possible cpuset update races before we start OOM killing */
  3645. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3646. goto retry_cpuset;
  3647. /* Reclaim has failed us, start killing things */
  3648. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3649. if (page)
  3650. goto got_pg;
  3651. /* Avoid allocations with no watermarks from looping endlessly */
  3652. if (tsk_is_oom_victim(current) &&
  3653. (alloc_flags == ALLOC_OOM ||
  3654. (gfp_mask & __GFP_NOMEMALLOC)))
  3655. goto nopage;
  3656. /* Retry as long as the OOM killer is making progress */
  3657. if (did_some_progress) {
  3658. no_progress_loops = 0;
  3659. goto retry;
  3660. }
  3661. nopage:
  3662. /* Deal with possible cpuset update races before we fail */
  3663. if (check_retry_cpuset(cpuset_mems_cookie, ac))
  3664. goto retry_cpuset;
  3665. /*
  3666. * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
  3667. * we always retry
  3668. */
  3669. if (gfp_mask & __GFP_NOFAIL) {
  3670. /*
  3671. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3672. * of any new users that actually require GFP_NOWAIT
  3673. */
  3674. if (WARN_ON_ONCE(!can_direct_reclaim))
  3675. goto fail;
  3676. /*
  3677. * PF_MEMALLOC request from this context is rather bizarre
  3678. * because we cannot reclaim anything and only can loop waiting
  3679. * for somebody to do a work for us
  3680. */
  3681. WARN_ON_ONCE(current->flags & PF_MEMALLOC);
  3682. /*
  3683. * non failing costly orders are a hard requirement which we
  3684. * are not prepared for much so let's warn about these users
  3685. * so that we can identify them and convert them to something
  3686. * else.
  3687. */
  3688. WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
  3689. /*
  3690. * Help non-failing allocations by giving them access to memory
  3691. * reserves but do not use ALLOC_NO_WATERMARKS because this
  3692. * could deplete whole memory reserves which would just make
  3693. * the situation worse
  3694. */
  3695. page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
  3696. if (page)
  3697. goto got_pg;
  3698. cond_resched();
  3699. goto retry;
  3700. }
  3701. fail:
  3702. warn_alloc(gfp_mask, ac->nodemask,
  3703. "page allocation failure: order:%u", order);
  3704. got_pg:
  3705. return page;
  3706. }
  3707. static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
  3708. int preferred_nid, nodemask_t *nodemask,
  3709. struct alloc_context *ac, gfp_t *alloc_mask,
  3710. unsigned int *alloc_flags)
  3711. {
  3712. ac->high_zoneidx = gfp_zone(gfp_mask);
  3713. ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
  3714. ac->nodemask = nodemask;
  3715. ac->migratetype = gfpflags_to_migratetype(gfp_mask);
  3716. if (cpusets_enabled()) {
  3717. *alloc_mask |= __GFP_HARDWALL;
  3718. if (!ac->nodemask)
  3719. ac->nodemask = &cpuset_current_mems_allowed;
  3720. else
  3721. *alloc_flags |= ALLOC_CPUSET;
  3722. }
  3723. fs_reclaim_acquire(gfp_mask);
  3724. fs_reclaim_release(gfp_mask);
  3725. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3726. if (should_fail_alloc_page(gfp_mask, order))
  3727. return false;
  3728. if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
  3729. *alloc_flags |= ALLOC_CMA;
  3730. return true;
  3731. }
  3732. /* Determine whether to spread dirty pages and what the first usable zone */
  3733. static inline void finalise_ac(gfp_t gfp_mask,
  3734. unsigned int order, struct alloc_context *ac)
  3735. {
  3736. /* Dirty zone balancing only done in the fast path */
  3737. ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3738. /*
  3739. * The preferred zone is used for statistics but crucially it is
  3740. * also used as the starting point for the zonelist iterator. It
  3741. * may get reset for allocations that ignore memory policies.
  3742. */
  3743. ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
  3744. ac->high_zoneidx, ac->nodemask);
  3745. }
  3746. /*
  3747. * This is the 'heart' of the zoned buddy allocator.
  3748. */
  3749. struct page *
  3750. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
  3751. nodemask_t *nodemask)
  3752. {
  3753. struct page *page;
  3754. unsigned int alloc_flags = ALLOC_WMARK_LOW;
  3755. gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
  3756. struct alloc_context ac = { };
  3757. gfp_mask &= gfp_allowed_mask;
  3758. alloc_mask = gfp_mask;
  3759. if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
  3760. return NULL;
  3761. finalise_ac(gfp_mask, order, &ac);
  3762. /* First allocation attempt */
  3763. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3764. if (likely(page))
  3765. goto out;
  3766. /*
  3767. * Apply scoped allocation constraints. This is mainly about GFP_NOFS
  3768. * resp. GFP_NOIO which has to be inherited for all allocation requests
  3769. * from a particular context which has been marked by
  3770. * memalloc_no{fs,io}_{save,restore}.
  3771. */
  3772. alloc_mask = current_gfp_context(gfp_mask);
  3773. ac.spread_dirty_pages = false;
  3774. /*
  3775. * Restore the original nodemask if it was potentially replaced with
  3776. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3777. */
  3778. if (unlikely(ac.nodemask != nodemask))
  3779. ac.nodemask = nodemask;
  3780. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3781. out:
  3782. if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
  3783. unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
  3784. __free_pages(page, order);
  3785. page = NULL;
  3786. }
  3787. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3788. return page;
  3789. }
  3790. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3791. /*
  3792. * Common helper functions.
  3793. */
  3794. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3795. {
  3796. struct page *page;
  3797. /*
  3798. * __get_free_pages() returns a virtual address, which cannot represent
  3799. * a highmem page
  3800. */
  3801. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3802. page = alloc_pages(gfp_mask, order);
  3803. if (!page)
  3804. return 0;
  3805. return (unsigned long) page_address(page);
  3806. }
  3807. EXPORT_SYMBOL(__get_free_pages);
  3808. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3809. {
  3810. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3811. }
  3812. EXPORT_SYMBOL(get_zeroed_page);
  3813. void __free_pages(struct page *page, unsigned int order)
  3814. {
  3815. if (put_page_testzero(page)) {
  3816. if (order == 0)
  3817. free_unref_page(page);
  3818. else
  3819. __free_pages_ok(page, order);
  3820. }
  3821. }
  3822. EXPORT_SYMBOL(__free_pages);
  3823. void free_pages(unsigned long addr, unsigned int order)
  3824. {
  3825. if (addr != 0) {
  3826. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3827. __free_pages(virt_to_page((void *)addr), order);
  3828. }
  3829. }
  3830. EXPORT_SYMBOL(free_pages);
  3831. /*
  3832. * Page Fragment:
  3833. * An arbitrary-length arbitrary-offset area of memory which resides
  3834. * within a 0 or higher order page. Multiple fragments within that page
  3835. * are individually refcounted, in the page's reference counter.
  3836. *
  3837. * The page_frag functions below provide a simple allocation framework for
  3838. * page fragments. This is used by the network stack and network device
  3839. * drivers to provide a backing region of memory for use as either an
  3840. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3841. */
  3842. static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
  3843. gfp_t gfp_mask)
  3844. {
  3845. struct page *page = NULL;
  3846. gfp_t gfp = gfp_mask;
  3847. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3848. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3849. __GFP_NOMEMALLOC;
  3850. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3851. PAGE_FRAG_CACHE_MAX_ORDER);
  3852. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3853. #endif
  3854. if (unlikely(!page))
  3855. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3856. nc->va = page ? page_address(page) : NULL;
  3857. return page;
  3858. }
  3859. void __page_frag_cache_drain(struct page *page, unsigned int count)
  3860. {
  3861. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  3862. if (page_ref_sub_and_test(page, count)) {
  3863. unsigned int order = compound_order(page);
  3864. if (order == 0)
  3865. free_unref_page(page);
  3866. else
  3867. __free_pages_ok(page, order);
  3868. }
  3869. }
  3870. EXPORT_SYMBOL(__page_frag_cache_drain);
  3871. void *page_frag_alloc(struct page_frag_cache *nc,
  3872. unsigned int fragsz, gfp_t gfp_mask)
  3873. {
  3874. unsigned int size = PAGE_SIZE;
  3875. struct page *page;
  3876. int offset;
  3877. if (unlikely(!nc->va)) {
  3878. refill:
  3879. page = __page_frag_cache_refill(nc, gfp_mask);
  3880. if (!page)
  3881. return NULL;
  3882. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3883. /* if size can vary use size else just use PAGE_SIZE */
  3884. size = nc->size;
  3885. #endif
  3886. /* Even if we own the page, we do not use atomic_set().
  3887. * This would break get_page_unless_zero() users.
  3888. */
  3889. page_ref_add(page, size - 1);
  3890. /* reset page count bias and offset to start of new frag */
  3891. nc->pfmemalloc = page_is_pfmemalloc(page);
  3892. nc->pagecnt_bias = size;
  3893. nc->offset = size;
  3894. }
  3895. offset = nc->offset - fragsz;
  3896. if (unlikely(offset < 0)) {
  3897. page = virt_to_page(nc->va);
  3898. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3899. goto refill;
  3900. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3901. /* if size can vary use size else just use PAGE_SIZE */
  3902. size = nc->size;
  3903. #endif
  3904. /* OK, page count is 0, we can safely set it */
  3905. set_page_count(page, size);
  3906. /* reset page count bias and offset to start of new frag */
  3907. nc->pagecnt_bias = size;
  3908. offset = size - fragsz;
  3909. }
  3910. nc->pagecnt_bias--;
  3911. nc->offset = offset;
  3912. return nc->va + offset;
  3913. }
  3914. EXPORT_SYMBOL(page_frag_alloc);
  3915. /*
  3916. * Frees a page fragment allocated out of either a compound or order 0 page.
  3917. */
  3918. void page_frag_free(void *addr)
  3919. {
  3920. struct page *page = virt_to_head_page(addr);
  3921. if (unlikely(put_page_testzero(page)))
  3922. __free_pages_ok(page, compound_order(page));
  3923. }
  3924. EXPORT_SYMBOL(page_frag_free);
  3925. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3926. size_t size)
  3927. {
  3928. if (addr) {
  3929. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3930. unsigned long used = addr + PAGE_ALIGN(size);
  3931. split_page(virt_to_page((void *)addr), order);
  3932. while (used < alloc_end) {
  3933. free_page(used);
  3934. used += PAGE_SIZE;
  3935. }
  3936. }
  3937. return (void *)addr;
  3938. }
  3939. /**
  3940. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3941. * @size: the number of bytes to allocate
  3942. * @gfp_mask: GFP flags for the allocation
  3943. *
  3944. * This function is similar to alloc_pages(), except that it allocates the
  3945. * minimum number of pages to satisfy the request. alloc_pages() can only
  3946. * allocate memory in power-of-two pages.
  3947. *
  3948. * This function is also limited by MAX_ORDER.
  3949. *
  3950. * Memory allocated by this function must be released by free_pages_exact().
  3951. */
  3952. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3953. {
  3954. unsigned int order = get_order(size);
  3955. unsigned long addr;
  3956. addr = __get_free_pages(gfp_mask, order);
  3957. return make_alloc_exact(addr, order, size);
  3958. }
  3959. EXPORT_SYMBOL(alloc_pages_exact);
  3960. /**
  3961. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3962. * pages on a node.
  3963. * @nid: the preferred node ID where memory should be allocated
  3964. * @size: the number of bytes to allocate
  3965. * @gfp_mask: GFP flags for the allocation
  3966. *
  3967. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3968. * back.
  3969. */
  3970. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3971. {
  3972. unsigned int order = get_order(size);
  3973. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3974. if (!p)
  3975. return NULL;
  3976. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3977. }
  3978. /**
  3979. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3980. * @virt: the value returned by alloc_pages_exact.
  3981. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3982. *
  3983. * Release the memory allocated by a previous call to alloc_pages_exact.
  3984. */
  3985. void free_pages_exact(void *virt, size_t size)
  3986. {
  3987. unsigned long addr = (unsigned long)virt;
  3988. unsigned long end = addr + PAGE_ALIGN(size);
  3989. while (addr < end) {
  3990. free_page(addr);
  3991. addr += PAGE_SIZE;
  3992. }
  3993. }
  3994. EXPORT_SYMBOL(free_pages_exact);
  3995. /**
  3996. * nr_free_zone_pages - count number of pages beyond high watermark
  3997. * @offset: The zone index of the highest zone
  3998. *
  3999. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  4000. * high watermark within all zones at or below a given zone index. For each
  4001. * zone, the number of pages is calculated as:
  4002. *
  4003. * nr_free_zone_pages = managed_pages - high_pages
  4004. */
  4005. static unsigned long nr_free_zone_pages(int offset)
  4006. {
  4007. struct zoneref *z;
  4008. struct zone *zone;
  4009. /* Just pick one node, since fallback list is circular */
  4010. unsigned long sum = 0;
  4011. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  4012. for_each_zone_zonelist(zone, z, zonelist, offset) {
  4013. unsigned long size = zone->managed_pages;
  4014. unsigned long high = high_wmark_pages(zone);
  4015. if (size > high)
  4016. sum += size - high;
  4017. }
  4018. return sum;
  4019. }
  4020. /**
  4021. * nr_free_buffer_pages - count number of pages beyond high watermark
  4022. *
  4023. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  4024. * watermark within ZONE_DMA and ZONE_NORMAL.
  4025. */
  4026. unsigned long nr_free_buffer_pages(void)
  4027. {
  4028. return nr_free_zone_pages(gfp_zone(GFP_USER));
  4029. }
  4030. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  4031. /**
  4032. * nr_free_pagecache_pages - count number of pages beyond high watermark
  4033. *
  4034. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  4035. * high watermark within all zones.
  4036. */
  4037. unsigned long nr_free_pagecache_pages(void)
  4038. {
  4039. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  4040. }
  4041. static inline void show_node(struct zone *zone)
  4042. {
  4043. if (IS_ENABLED(CONFIG_NUMA))
  4044. printk("Node %d ", zone_to_nid(zone));
  4045. }
  4046. long si_mem_available(void)
  4047. {
  4048. long available;
  4049. unsigned long pagecache;
  4050. unsigned long wmark_low = 0;
  4051. unsigned long pages[NR_LRU_LISTS];
  4052. struct zone *zone;
  4053. int lru;
  4054. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  4055. pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
  4056. for_each_zone(zone)
  4057. wmark_low += zone->watermark[WMARK_LOW];
  4058. /*
  4059. * Estimate the amount of memory available for userspace allocations,
  4060. * without causing swapping.
  4061. */
  4062. available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
  4063. /*
  4064. * Not all the page cache can be freed, otherwise the system will
  4065. * start swapping. Assume at least half of the page cache, or the
  4066. * low watermark worth of cache, needs to stay.
  4067. */
  4068. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  4069. pagecache -= min(pagecache / 2, wmark_low);
  4070. available += pagecache;
  4071. /*
  4072. * Part of the reclaimable slab consists of items that are in use,
  4073. * and cannot be freed. Cap this estimate at the low watermark.
  4074. */
  4075. available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
  4076. min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
  4077. wmark_low);
  4078. if (available < 0)
  4079. available = 0;
  4080. return available;
  4081. }
  4082. EXPORT_SYMBOL_GPL(si_mem_available);
  4083. void si_meminfo(struct sysinfo *val)
  4084. {
  4085. val->totalram = totalram_pages;
  4086. val->sharedram = global_node_page_state(NR_SHMEM);
  4087. val->freeram = global_zone_page_state(NR_FREE_PAGES);
  4088. val->bufferram = nr_blockdev_pages();
  4089. val->totalhigh = totalhigh_pages;
  4090. val->freehigh = nr_free_highpages();
  4091. val->mem_unit = PAGE_SIZE;
  4092. }
  4093. EXPORT_SYMBOL(si_meminfo);
  4094. #ifdef CONFIG_NUMA
  4095. void si_meminfo_node(struct sysinfo *val, int nid)
  4096. {
  4097. int zone_type; /* needs to be signed */
  4098. unsigned long managed_pages = 0;
  4099. unsigned long managed_highpages = 0;
  4100. unsigned long free_highpages = 0;
  4101. pg_data_t *pgdat = NODE_DATA(nid);
  4102. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  4103. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  4104. val->totalram = managed_pages;
  4105. val->sharedram = node_page_state(pgdat, NR_SHMEM);
  4106. val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
  4107. #ifdef CONFIG_HIGHMEM
  4108. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  4109. struct zone *zone = &pgdat->node_zones[zone_type];
  4110. if (is_highmem(zone)) {
  4111. managed_highpages += zone->managed_pages;
  4112. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  4113. }
  4114. }
  4115. val->totalhigh = managed_highpages;
  4116. val->freehigh = free_highpages;
  4117. #else
  4118. val->totalhigh = managed_highpages;
  4119. val->freehigh = free_highpages;
  4120. #endif
  4121. val->mem_unit = PAGE_SIZE;
  4122. }
  4123. #endif
  4124. /*
  4125. * Determine whether the node should be displayed or not, depending on whether
  4126. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  4127. */
  4128. static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
  4129. {
  4130. if (!(flags & SHOW_MEM_FILTER_NODES))
  4131. return false;
  4132. /*
  4133. * no node mask - aka implicit memory numa policy. Do not bother with
  4134. * the synchronization - read_mems_allowed_begin - because we do not
  4135. * have to be precise here.
  4136. */
  4137. if (!nodemask)
  4138. nodemask = &cpuset_current_mems_allowed;
  4139. return !node_isset(nid, *nodemask);
  4140. }
  4141. #define K(x) ((x) << (PAGE_SHIFT-10))
  4142. static void show_migration_types(unsigned char type)
  4143. {
  4144. static const char types[MIGRATE_TYPES] = {
  4145. [MIGRATE_UNMOVABLE] = 'U',
  4146. [MIGRATE_MOVABLE] = 'M',
  4147. [MIGRATE_RECLAIMABLE] = 'E',
  4148. [MIGRATE_HIGHATOMIC] = 'H',
  4149. #ifdef CONFIG_CMA
  4150. [MIGRATE_CMA] = 'C',
  4151. #endif
  4152. #ifdef CONFIG_MEMORY_ISOLATION
  4153. [MIGRATE_ISOLATE] = 'I',
  4154. #endif
  4155. };
  4156. char tmp[MIGRATE_TYPES + 1];
  4157. char *p = tmp;
  4158. int i;
  4159. for (i = 0; i < MIGRATE_TYPES; i++) {
  4160. if (type & (1 << i))
  4161. *p++ = types[i];
  4162. }
  4163. *p = '\0';
  4164. printk(KERN_CONT "(%s) ", tmp);
  4165. }
  4166. /*
  4167. * Show free area list (used inside shift_scroll-lock stuff)
  4168. * We also calculate the percentage fragmentation. We do this by counting the
  4169. * memory on each free list with the exception of the first item on the list.
  4170. *
  4171. * Bits in @filter:
  4172. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  4173. * cpuset.
  4174. */
  4175. void show_free_areas(unsigned int filter, nodemask_t *nodemask)
  4176. {
  4177. unsigned long free_pcp = 0;
  4178. int cpu;
  4179. struct zone *zone;
  4180. pg_data_t *pgdat;
  4181. for_each_populated_zone(zone) {
  4182. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4183. continue;
  4184. for_each_online_cpu(cpu)
  4185. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4186. }
  4187. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  4188. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  4189. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  4190. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  4191. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  4192. " free:%lu free_pcp:%lu free_cma:%lu\n",
  4193. global_node_page_state(NR_ACTIVE_ANON),
  4194. global_node_page_state(NR_INACTIVE_ANON),
  4195. global_node_page_state(NR_ISOLATED_ANON),
  4196. global_node_page_state(NR_ACTIVE_FILE),
  4197. global_node_page_state(NR_INACTIVE_FILE),
  4198. global_node_page_state(NR_ISOLATED_FILE),
  4199. global_node_page_state(NR_UNEVICTABLE),
  4200. global_node_page_state(NR_FILE_DIRTY),
  4201. global_node_page_state(NR_WRITEBACK),
  4202. global_node_page_state(NR_UNSTABLE_NFS),
  4203. global_node_page_state(NR_SLAB_RECLAIMABLE),
  4204. global_node_page_state(NR_SLAB_UNRECLAIMABLE),
  4205. global_node_page_state(NR_FILE_MAPPED),
  4206. global_node_page_state(NR_SHMEM),
  4207. global_zone_page_state(NR_PAGETABLE),
  4208. global_zone_page_state(NR_BOUNCE),
  4209. global_zone_page_state(NR_FREE_PAGES),
  4210. free_pcp,
  4211. global_zone_page_state(NR_FREE_CMA_PAGES));
  4212. for_each_online_pgdat(pgdat) {
  4213. if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
  4214. continue;
  4215. printk("Node %d"
  4216. " active_anon:%lukB"
  4217. " inactive_anon:%lukB"
  4218. " active_file:%lukB"
  4219. " inactive_file:%lukB"
  4220. " unevictable:%lukB"
  4221. " isolated(anon):%lukB"
  4222. " isolated(file):%lukB"
  4223. " mapped:%lukB"
  4224. " dirty:%lukB"
  4225. " writeback:%lukB"
  4226. " shmem:%lukB"
  4227. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4228. " shmem_thp: %lukB"
  4229. " shmem_pmdmapped: %lukB"
  4230. " anon_thp: %lukB"
  4231. #endif
  4232. " writeback_tmp:%lukB"
  4233. " unstable:%lukB"
  4234. " all_unreclaimable? %s"
  4235. "\n",
  4236. pgdat->node_id,
  4237. K(node_page_state(pgdat, NR_ACTIVE_ANON)),
  4238. K(node_page_state(pgdat, NR_INACTIVE_ANON)),
  4239. K(node_page_state(pgdat, NR_ACTIVE_FILE)),
  4240. K(node_page_state(pgdat, NR_INACTIVE_FILE)),
  4241. K(node_page_state(pgdat, NR_UNEVICTABLE)),
  4242. K(node_page_state(pgdat, NR_ISOLATED_ANON)),
  4243. K(node_page_state(pgdat, NR_ISOLATED_FILE)),
  4244. K(node_page_state(pgdat, NR_FILE_MAPPED)),
  4245. K(node_page_state(pgdat, NR_FILE_DIRTY)),
  4246. K(node_page_state(pgdat, NR_WRITEBACK)),
  4247. K(node_page_state(pgdat, NR_SHMEM)),
  4248. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4249. K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
  4250. K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
  4251. * HPAGE_PMD_NR),
  4252. K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
  4253. #endif
  4254. K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
  4255. K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
  4256. pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
  4257. "yes" : "no");
  4258. }
  4259. for_each_populated_zone(zone) {
  4260. int i;
  4261. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4262. continue;
  4263. free_pcp = 0;
  4264. for_each_online_cpu(cpu)
  4265. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  4266. show_node(zone);
  4267. printk(KERN_CONT
  4268. "%s"
  4269. " free:%lukB"
  4270. " min:%lukB"
  4271. " low:%lukB"
  4272. " high:%lukB"
  4273. " active_anon:%lukB"
  4274. " inactive_anon:%lukB"
  4275. " active_file:%lukB"
  4276. " inactive_file:%lukB"
  4277. " unevictable:%lukB"
  4278. " writepending:%lukB"
  4279. " present:%lukB"
  4280. " managed:%lukB"
  4281. " mlocked:%lukB"
  4282. " kernel_stack:%lukB"
  4283. " pagetables:%lukB"
  4284. " bounce:%lukB"
  4285. " free_pcp:%lukB"
  4286. " local_pcp:%ukB"
  4287. " free_cma:%lukB"
  4288. "\n",
  4289. zone->name,
  4290. K(zone_page_state(zone, NR_FREE_PAGES)),
  4291. K(min_wmark_pages(zone)),
  4292. K(low_wmark_pages(zone)),
  4293. K(high_wmark_pages(zone)),
  4294. K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
  4295. K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
  4296. K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
  4297. K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
  4298. K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
  4299. K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
  4300. K(zone->present_pages),
  4301. K(zone->managed_pages),
  4302. K(zone_page_state(zone, NR_MLOCK)),
  4303. zone_page_state(zone, NR_KERNEL_STACK_KB),
  4304. K(zone_page_state(zone, NR_PAGETABLE)),
  4305. K(zone_page_state(zone, NR_BOUNCE)),
  4306. K(free_pcp),
  4307. K(this_cpu_read(zone->pageset->pcp.count)),
  4308. K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
  4309. printk("lowmem_reserve[]:");
  4310. for (i = 0; i < MAX_NR_ZONES; i++)
  4311. printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
  4312. printk(KERN_CONT "\n");
  4313. }
  4314. for_each_populated_zone(zone) {
  4315. unsigned int order;
  4316. unsigned long nr[MAX_ORDER], flags, total = 0;
  4317. unsigned char types[MAX_ORDER];
  4318. if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
  4319. continue;
  4320. show_node(zone);
  4321. printk(KERN_CONT "%s: ", zone->name);
  4322. spin_lock_irqsave(&zone->lock, flags);
  4323. for (order = 0; order < MAX_ORDER; order++) {
  4324. struct free_area *area = &zone->free_area[order];
  4325. int type;
  4326. nr[order] = area->nr_free;
  4327. total += nr[order] << order;
  4328. types[order] = 0;
  4329. for (type = 0; type < MIGRATE_TYPES; type++) {
  4330. if (!list_empty(&area->free_list[type]))
  4331. types[order] |= 1 << type;
  4332. }
  4333. }
  4334. spin_unlock_irqrestore(&zone->lock, flags);
  4335. for (order = 0; order < MAX_ORDER; order++) {
  4336. printk(KERN_CONT "%lu*%lukB ",
  4337. nr[order], K(1UL) << order);
  4338. if (nr[order])
  4339. show_migration_types(types[order]);
  4340. }
  4341. printk(KERN_CONT "= %lukB\n", K(total));
  4342. }
  4343. hugetlb_show_meminfo();
  4344. printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
  4345. show_swap_cache_info();
  4346. }
  4347. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  4348. {
  4349. zoneref->zone = zone;
  4350. zoneref->zone_idx = zone_idx(zone);
  4351. }
  4352. /*
  4353. * Builds allocation fallback zone lists.
  4354. *
  4355. * Add all populated zones of a node to the zonelist.
  4356. */
  4357. static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
  4358. {
  4359. struct zone *zone;
  4360. enum zone_type zone_type = MAX_NR_ZONES;
  4361. int nr_zones = 0;
  4362. do {
  4363. zone_type--;
  4364. zone = pgdat->node_zones + zone_type;
  4365. if (managed_zone(zone)) {
  4366. zoneref_set_zone(zone, &zonerefs[nr_zones++]);
  4367. check_highest_zone(zone_type);
  4368. }
  4369. } while (zone_type);
  4370. return nr_zones;
  4371. }
  4372. #ifdef CONFIG_NUMA
  4373. static int __parse_numa_zonelist_order(char *s)
  4374. {
  4375. /*
  4376. * We used to support different zonlists modes but they turned
  4377. * out to be just not useful. Let's keep the warning in place
  4378. * if somebody still use the cmd line parameter so that we do
  4379. * not fail it silently
  4380. */
  4381. if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
  4382. pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
  4383. return -EINVAL;
  4384. }
  4385. return 0;
  4386. }
  4387. static __init int setup_numa_zonelist_order(char *s)
  4388. {
  4389. if (!s)
  4390. return 0;
  4391. return __parse_numa_zonelist_order(s);
  4392. }
  4393. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  4394. char numa_zonelist_order[] = "Node";
  4395. /*
  4396. * sysctl handler for numa_zonelist_order
  4397. */
  4398. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  4399. void __user *buffer, size_t *length,
  4400. loff_t *ppos)
  4401. {
  4402. char *str;
  4403. int ret;
  4404. if (!write)
  4405. return proc_dostring(table, write, buffer, length, ppos);
  4406. str = memdup_user_nul(buffer, 16);
  4407. if (IS_ERR(str))
  4408. return PTR_ERR(str);
  4409. ret = __parse_numa_zonelist_order(str);
  4410. kfree(str);
  4411. return ret;
  4412. }
  4413. #define MAX_NODE_LOAD (nr_online_nodes)
  4414. static int node_load[MAX_NUMNODES];
  4415. /**
  4416. * find_next_best_node - find the next node that should appear in a given node's fallback list
  4417. * @node: node whose fallback list we're appending
  4418. * @used_node_mask: nodemask_t of already used nodes
  4419. *
  4420. * We use a number of factors to determine which is the next node that should
  4421. * appear on a given node's fallback list. The node should not have appeared
  4422. * already in @node's fallback list, and it should be the next closest node
  4423. * according to the distance array (which contains arbitrary distance values
  4424. * from each node to each node in the system), and should also prefer nodes
  4425. * with no CPUs, since presumably they'll have very little allocation pressure
  4426. * on them otherwise.
  4427. * It returns -1 if no node is found.
  4428. */
  4429. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4430. {
  4431. int n, val;
  4432. int min_val = INT_MAX;
  4433. int best_node = NUMA_NO_NODE;
  4434. const struct cpumask *tmp = cpumask_of_node(0);
  4435. /* Use the local node if we haven't already */
  4436. if (!node_isset(node, *used_node_mask)) {
  4437. node_set(node, *used_node_mask);
  4438. return node;
  4439. }
  4440. for_each_node_state(n, N_MEMORY) {
  4441. /* Don't want a node to appear more than once */
  4442. if (node_isset(n, *used_node_mask))
  4443. continue;
  4444. /* Use the distance array to find the distance */
  4445. val = node_distance(node, n);
  4446. /* Penalize nodes under us ("prefer the next node") */
  4447. val += (n < node);
  4448. /* Give preference to headless and unused nodes */
  4449. tmp = cpumask_of_node(n);
  4450. if (!cpumask_empty(tmp))
  4451. val += PENALTY_FOR_NODE_WITH_CPUS;
  4452. /* Slight preference for less loaded node */
  4453. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4454. val += node_load[n];
  4455. if (val < min_val) {
  4456. min_val = val;
  4457. best_node = n;
  4458. }
  4459. }
  4460. if (best_node >= 0)
  4461. node_set(best_node, *used_node_mask);
  4462. return best_node;
  4463. }
  4464. /*
  4465. * Build zonelists ordered by node and zones within node.
  4466. * This results in maximum locality--normal zone overflows into local
  4467. * DMA zone, if any--but risks exhausting DMA zone.
  4468. */
  4469. static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
  4470. unsigned nr_nodes)
  4471. {
  4472. struct zoneref *zonerefs;
  4473. int i;
  4474. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4475. for (i = 0; i < nr_nodes; i++) {
  4476. int nr_zones;
  4477. pg_data_t *node = NODE_DATA(node_order[i]);
  4478. nr_zones = build_zonerefs_node(node, zonerefs);
  4479. zonerefs += nr_zones;
  4480. }
  4481. zonerefs->zone = NULL;
  4482. zonerefs->zone_idx = 0;
  4483. }
  4484. /*
  4485. * Build gfp_thisnode zonelists
  4486. */
  4487. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4488. {
  4489. struct zoneref *zonerefs;
  4490. int nr_zones;
  4491. zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
  4492. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4493. zonerefs += nr_zones;
  4494. zonerefs->zone = NULL;
  4495. zonerefs->zone_idx = 0;
  4496. }
  4497. /*
  4498. * Build zonelists ordered by zone and nodes within zones.
  4499. * This results in conserving DMA zone[s] until all Normal memory is
  4500. * exhausted, but results in overflowing to remote node while memory
  4501. * may still exist in local DMA zone.
  4502. */
  4503. static void build_zonelists(pg_data_t *pgdat)
  4504. {
  4505. static int node_order[MAX_NUMNODES];
  4506. int node, load, nr_nodes = 0;
  4507. nodemask_t used_mask;
  4508. int local_node, prev_node;
  4509. /* NUMA-aware ordering of nodes */
  4510. local_node = pgdat->node_id;
  4511. load = nr_online_nodes;
  4512. prev_node = local_node;
  4513. nodes_clear(used_mask);
  4514. memset(node_order, 0, sizeof(node_order));
  4515. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4516. /*
  4517. * We don't want to pressure a particular node.
  4518. * So adding penalty to the first node in same
  4519. * distance group to make it round-robin.
  4520. */
  4521. if (node_distance(local_node, node) !=
  4522. node_distance(local_node, prev_node))
  4523. node_load[node] = load;
  4524. node_order[nr_nodes++] = node;
  4525. prev_node = node;
  4526. load--;
  4527. }
  4528. build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
  4529. build_thisnode_zonelists(pgdat);
  4530. }
  4531. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4532. /*
  4533. * Return node id of node used for "local" allocations.
  4534. * I.e., first node id of first zone in arg node's generic zonelist.
  4535. * Used for initializing percpu 'numa_mem', which is used primarily
  4536. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4537. */
  4538. int local_memory_node(int node)
  4539. {
  4540. struct zoneref *z;
  4541. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4542. gfp_zone(GFP_KERNEL),
  4543. NULL);
  4544. return z->zone->node;
  4545. }
  4546. #endif
  4547. static void setup_min_unmapped_ratio(void);
  4548. static void setup_min_slab_ratio(void);
  4549. #else /* CONFIG_NUMA */
  4550. static void build_zonelists(pg_data_t *pgdat)
  4551. {
  4552. int node, local_node;
  4553. struct zoneref *zonerefs;
  4554. int nr_zones;
  4555. local_node = pgdat->node_id;
  4556. zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
  4557. nr_zones = build_zonerefs_node(pgdat, zonerefs);
  4558. zonerefs += nr_zones;
  4559. /*
  4560. * Now we build the zonelist so that it contains the zones
  4561. * of all the other nodes.
  4562. * We don't want to pressure a particular node, so when
  4563. * building the zones for node N, we make sure that the
  4564. * zones coming right after the local ones are those from
  4565. * node N+1 (modulo N)
  4566. */
  4567. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4568. if (!node_online(node))
  4569. continue;
  4570. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4571. zonerefs += nr_zones;
  4572. }
  4573. for (node = 0; node < local_node; node++) {
  4574. if (!node_online(node))
  4575. continue;
  4576. nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
  4577. zonerefs += nr_zones;
  4578. }
  4579. zonerefs->zone = NULL;
  4580. zonerefs->zone_idx = 0;
  4581. }
  4582. #endif /* CONFIG_NUMA */
  4583. /*
  4584. * Boot pageset table. One per cpu which is going to be used for all
  4585. * zones and all nodes. The parameters will be set in such a way
  4586. * that an item put on a list will immediately be handed over to
  4587. * the buddy list. This is safe since pageset manipulation is done
  4588. * with interrupts disabled.
  4589. *
  4590. * The boot_pagesets must be kept even after bootup is complete for
  4591. * unused processors and/or zones. They do play a role for bootstrapping
  4592. * hotplugged processors.
  4593. *
  4594. * zoneinfo_show() and maybe other functions do
  4595. * not check if the processor is online before following the pageset pointer.
  4596. * Other parts of the kernel may not check if the zone is available.
  4597. */
  4598. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4599. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4600. static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
  4601. static void __build_all_zonelists(void *data)
  4602. {
  4603. int nid;
  4604. int __maybe_unused cpu;
  4605. pg_data_t *self = data;
  4606. static DEFINE_SPINLOCK(lock);
  4607. spin_lock(&lock);
  4608. #ifdef CONFIG_NUMA
  4609. memset(node_load, 0, sizeof(node_load));
  4610. #endif
  4611. /*
  4612. * This node is hotadded and no memory is yet present. So just
  4613. * building zonelists is fine - no need to touch other nodes.
  4614. */
  4615. if (self && !node_online(self->node_id)) {
  4616. build_zonelists(self);
  4617. } else {
  4618. for_each_online_node(nid) {
  4619. pg_data_t *pgdat = NODE_DATA(nid);
  4620. build_zonelists(pgdat);
  4621. }
  4622. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4623. /*
  4624. * We now know the "local memory node" for each node--
  4625. * i.e., the node of the first zone in the generic zonelist.
  4626. * Set up numa_mem percpu variable for on-line cpus. During
  4627. * boot, only the boot cpu should be on-line; we'll init the
  4628. * secondary cpus' numa_mem as they come on-line. During
  4629. * node/memory hotplug, we'll fixup all on-line cpus.
  4630. */
  4631. for_each_online_cpu(cpu)
  4632. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4633. #endif
  4634. }
  4635. spin_unlock(&lock);
  4636. }
  4637. static noinline void __init
  4638. build_all_zonelists_init(void)
  4639. {
  4640. int cpu;
  4641. __build_all_zonelists(NULL);
  4642. /*
  4643. * Initialize the boot_pagesets that are going to be used
  4644. * for bootstrapping processors. The real pagesets for
  4645. * each zone will be allocated later when the per cpu
  4646. * allocator is available.
  4647. *
  4648. * boot_pagesets are used also for bootstrapping offline
  4649. * cpus if the system is already booted because the pagesets
  4650. * are needed to initialize allocators on a specific cpu too.
  4651. * F.e. the percpu allocator needs the page allocator which
  4652. * needs the percpu allocator in order to allocate its pagesets
  4653. * (a chicken-egg dilemma).
  4654. */
  4655. for_each_possible_cpu(cpu)
  4656. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4657. mminit_verify_zonelist();
  4658. cpuset_init_current_mems_allowed();
  4659. }
  4660. /*
  4661. * unless system_state == SYSTEM_BOOTING.
  4662. *
  4663. * __ref due to call of __init annotated helper build_all_zonelists_init
  4664. * [protected by SYSTEM_BOOTING].
  4665. */
  4666. void __ref build_all_zonelists(pg_data_t *pgdat)
  4667. {
  4668. if (system_state == SYSTEM_BOOTING) {
  4669. build_all_zonelists_init();
  4670. } else {
  4671. __build_all_zonelists(pgdat);
  4672. /* cpuset refresh routine should be here */
  4673. }
  4674. vm_total_pages = nr_free_pagecache_pages();
  4675. /*
  4676. * Disable grouping by mobility if the number of pages in the
  4677. * system is too low to allow the mechanism to work. It would be
  4678. * more accurate, but expensive to check per-zone. This check is
  4679. * made on memory-hotadd so a system can start with mobility
  4680. * disabled and enable it later
  4681. */
  4682. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4683. page_group_by_mobility_disabled = 1;
  4684. else
  4685. page_group_by_mobility_disabled = 0;
  4686. pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
  4687. nr_online_nodes,
  4688. page_group_by_mobility_disabled ? "off" : "on",
  4689. vm_total_pages);
  4690. #ifdef CONFIG_NUMA
  4691. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4692. #endif
  4693. }
  4694. /*
  4695. * Initially all pages are reserved - free ones are freed
  4696. * up by free_all_bootmem() once the early boot process is
  4697. * done. Non-atomic initialization, single-pass.
  4698. */
  4699. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4700. unsigned long start_pfn, enum memmap_context context,
  4701. struct vmem_altmap *altmap)
  4702. {
  4703. unsigned long end_pfn = start_pfn + size;
  4704. pg_data_t *pgdat = NODE_DATA(nid);
  4705. unsigned long pfn;
  4706. unsigned long nr_initialised = 0;
  4707. struct page *page;
  4708. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4709. struct memblock_region *r = NULL, *tmp;
  4710. #endif
  4711. if (highest_memmap_pfn < end_pfn - 1)
  4712. highest_memmap_pfn = end_pfn - 1;
  4713. /*
  4714. * Honor reservation requested by the driver for this ZONE_DEVICE
  4715. * memory
  4716. */
  4717. if (altmap && start_pfn == altmap->base_pfn)
  4718. start_pfn += altmap->reserve;
  4719. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4720. /*
  4721. * There can be holes in boot-time mem_map[]s handed to this
  4722. * function. They do not exist on hotplugged memory.
  4723. */
  4724. if (context != MEMMAP_EARLY)
  4725. goto not_early;
  4726. if (!early_pfn_valid(pfn))
  4727. continue;
  4728. if (!early_pfn_in_nid(pfn, nid))
  4729. continue;
  4730. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4731. break;
  4732. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4733. /*
  4734. * Check given memblock attribute by firmware which can affect
  4735. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4736. * mirrored, it's an overlapped memmap init. skip it.
  4737. */
  4738. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4739. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4740. for_each_memblock(memory, tmp)
  4741. if (pfn < memblock_region_memory_end_pfn(tmp))
  4742. break;
  4743. r = tmp;
  4744. }
  4745. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4746. memblock_is_mirror(r)) {
  4747. /* already initialized as NORMAL */
  4748. pfn = memblock_region_memory_end_pfn(r);
  4749. continue;
  4750. }
  4751. }
  4752. #endif
  4753. not_early:
  4754. page = pfn_to_page(pfn);
  4755. __init_single_page(page, pfn, zone, nid);
  4756. if (context == MEMMAP_HOTPLUG)
  4757. SetPageReserved(page);
  4758. /*
  4759. * Mark the block movable so that blocks are reserved for
  4760. * movable at startup. This will force kernel allocations
  4761. * to reserve their blocks rather than leaking throughout
  4762. * the address space during boot when many long-lived
  4763. * kernel allocations are made.
  4764. *
  4765. * bitmap is created for zone's valid pfn range. but memmap
  4766. * can be created for invalid pages (for alignment)
  4767. * check here not to call set_pageblock_migratetype() against
  4768. * pfn out of zone.
  4769. *
  4770. * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
  4771. * because this is done early in sparse_add_one_section
  4772. */
  4773. if (!(pfn & (pageblock_nr_pages - 1))) {
  4774. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4775. cond_resched();
  4776. }
  4777. }
  4778. }
  4779. static void __meminit zone_init_free_lists(struct zone *zone)
  4780. {
  4781. unsigned int order, t;
  4782. for_each_migratetype_order(order, t) {
  4783. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4784. zone->free_area[order].nr_free = 0;
  4785. }
  4786. }
  4787. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4788. #define memmap_init(size, nid, zone, start_pfn) \
  4789. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
  4790. #endif
  4791. static int zone_batchsize(struct zone *zone)
  4792. {
  4793. #ifdef CONFIG_MMU
  4794. int batch;
  4795. /*
  4796. * The per-cpu-pages pools are set to around 1000th of the
  4797. * size of the zone. But no more than 1/2 of a meg.
  4798. *
  4799. * OK, so we don't know how big the cache is. So guess.
  4800. */
  4801. batch = zone->managed_pages / 1024;
  4802. if (batch * PAGE_SIZE > 512 * 1024)
  4803. batch = (512 * 1024) / PAGE_SIZE;
  4804. batch /= 4; /* We effectively *= 4 below */
  4805. if (batch < 1)
  4806. batch = 1;
  4807. /*
  4808. * Clamp the batch to a 2^n - 1 value. Having a power
  4809. * of 2 value was found to be more likely to have
  4810. * suboptimal cache aliasing properties in some cases.
  4811. *
  4812. * For example if 2 tasks are alternately allocating
  4813. * batches of pages, one task can end up with a lot
  4814. * of pages of one half of the possible page colors
  4815. * and the other with pages of the other colors.
  4816. */
  4817. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4818. return batch;
  4819. #else
  4820. /* The deferral and batching of frees should be suppressed under NOMMU
  4821. * conditions.
  4822. *
  4823. * The problem is that NOMMU needs to be able to allocate large chunks
  4824. * of contiguous memory as there's no hardware page translation to
  4825. * assemble apparent contiguous memory from discontiguous pages.
  4826. *
  4827. * Queueing large contiguous runs of pages for batching, however,
  4828. * causes the pages to actually be freed in smaller chunks. As there
  4829. * can be a significant delay between the individual batches being
  4830. * recycled, this leads to the once large chunks of space being
  4831. * fragmented and becoming unavailable for high-order allocations.
  4832. */
  4833. return 0;
  4834. #endif
  4835. }
  4836. /*
  4837. * pcp->high and pcp->batch values are related and dependent on one another:
  4838. * ->batch must never be higher then ->high.
  4839. * The following function updates them in a safe manner without read side
  4840. * locking.
  4841. *
  4842. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4843. * those fields changing asynchronously (acording the the above rule).
  4844. *
  4845. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4846. * outside of boot time (or some other assurance that no concurrent updaters
  4847. * exist).
  4848. */
  4849. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4850. unsigned long batch)
  4851. {
  4852. /* start with a fail safe value for batch */
  4853. pcp->batch = 1;
  4854. smp_wmb();
  4855. /* Update high, then batch, in order */
  4856. pcp->high = high;
  4857. smp_wmb();
  4858. pcp->batch = batch;
  4859. }
  4860. /* a companion to pageset_set_high() */
  4861. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4862. {
  4863. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4864. }
  4865. static void pageset_init(struct per_cpu_pageset *p)
  4866. {
  4867. struct per_cpu_pages *pcp;
  4868. int migratetype;
  4869. memset(p, 0, sizeof(*p));
  4870. pcp = &p->pcp;
  4871. pcp->count = 0;
  4872. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4873. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4874. }
  4875. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4876. {
  4877. pageset_init(p);
  4878. pageset_set_batch(p, batch);
  4879. }
  4880. /*
  4881. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4882. * to the value high for the pageset p.
  4883. */
  4884. static void pageset_set_high(struct per_cpu_pageset *p,
  4885. unsigned long high)
  4886. {
  4887. unsigned long batch = max(1UL, high / 4);
  4888. if ((high / 4) > (PAGE_SHIFT * 8))
  4889. batch = PAGE_SHIFT * 8;
  4890. pageset_update(&p->pcp, high, batch);
  4891. }
  4892. static void pageset_set_high_and_batch(struct zone *zone,
  4893. struct per_cpu_pageset *pcp)
  4894. {
  4895. if (percpu_pagelist_fraction)
  4896. pageset_set_high(pcp,
  4897. (zone->managed_pages /
  4898. percpu_pagelist_fraction));
  4899. else
  4900. pageset_set_batch(pcp, zone_batchsize(zone));
  4901. }
  4902. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4903. {
  4904. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4905. pageset_init(pcp);
  4906. pageset_set_high_and_batch(zone, pcp);
  4907. }
  4908. void __meminit setup_zone_pageset(struct zone *zone)
  4909. {
  4910. int cpu;
  4911. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4912. for_each_possible_cpu(cpu)
  4913. zone_pageset_init(zone, cpu);
  4914. }
  4915. /*
  4916. * Allocate per cpu pagesets and initialize them.
  4917. * Before this call only boot pagesets were available.
  4918. */
  4919. void __init setup_per_cpu_pageset(void)
  4920. {
  4921. struct pglist_data *pgdat;
  4922. struct zone *zone;
  4923. for_each_populated_zone(zone)
  4924. setup_zone_pageset(zone);
  4925. for_each_online_pgdat(pgdat)
  4926. pgdat->per_cpu_nodestats =
  4927. alloc_percpu(struct per_cpu_nodestat);
  4928. }
  4929. static __meminit void zone_pcp_init(struct zone *zone)
  4930. {
  4931. /*
  4932. * per cpu subsystem is not up at this point. The following code
  4933. * relies on the ability of the linker to provide the
  4934. * offset of a (static) per cpu variable into the per cpu area.
  4935. */
  4936. zone->pageset = &boot_pageset;
  4937. if (populated_zone(zone))
  4938. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4939. zone->name, zone->present_pages,
  4940. zone_batchsize(zone));
  4941. }
  4942. void __meminit init_currently_empty_zone(struct zone *zone,
  4943. unsigned long zone_start_pfn,
  4944. unsigned long size)
  4945. {
  4946. struct pglist_data *pgdat = zone->zone_pgdat;
  4947. pgdat->nr_zones = zone_idx(zone) + 1;
  4948. zone->zone_start_pfn = zone_start_pfn;
  4949. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4950. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4951. pgdat->node_id,
  4952. (unsigned long)zone_idx(zone),
  4953. zone_start_pfn, (zone_start_pfn + size));
  4954. zone_init_free_lists(zone);
  4955. zone->initialized = 1;
  4956. }
  4957. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4958. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4959. /*
  4960. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4961. */
  4962. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4963. struct mminit_pfnnid_cache *state)
  4964. {
  4965. unsigned long start_pfn, end_pfn;
  4966. int nid;
  4967. if (state->last_start <= pfn && pfn < state->last_end)
  4968. return state->last_nid;
  4969. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4970. if (nid != -1) {
  4971. state->last_start = start_pfn;
  4972. state->last_end = end_pfn;
  4973. state->last_nid = nid;
  4974. }
  4975. return nid;
  4976. }
  4977. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4978. /**
  4979. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4980. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4981. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4982. *
  4983. * If an architecture guarantees that all ranges registered contain no holes
  4984. * and may be freed, this this function may be used instead of calling
  4985. * memblock_free_early_nid() manually.
  4986. */
  4987. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4988. {
  4989. unsigned long start_pfn, end_pfn;
  4990. int i, this_nid;
  4991. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4992. start_pfn = min(start_pfn, max_low_pfn);
  4993. end_pfn = min(end_pfn, max_low_pfn);
  4994. if (start_pfn < end_pfn)
  4995. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4996. (end_pfn - start_pfn) << PAGE_SHIFT,
  4997. this_nid);
  4998. }
  4999. }
  5000. /**
  5001. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  5002. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  5003. *
  5004. * If an architecture guarantees that all ranges registered contain no holes and may
  5005. * be freed, this function may be used instead of calling memory_present() manually.
  5006. */
  5007. void __init sparse_memory_present_with_active_regions(int nid)
  5008. {
  5009. unsigned long start_pfn, end_pfn;
  5010. int i, this_nid;
  5011. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  5012. memory_present(this_nid, start_pfn, end_pfn);
  5013. }
  5014. /**
  5015. * get_pfn_range_for_nid - Return the start and end page frames for a node
  5016. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  5017. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  5018. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  5019. *
  5020. * It returns the start and end page frame of a node based on information
  5021. * provided by memblock_set_node(). If called for a node
  5022. * with no available memory, a warning is printed and the start and end
  5023. * PFNs will be 0.
  5024. */
  5025. void __meminit get_pfn_range_for_nid(unsigned int nid,
  5026. unsigned long *start_pfn, unsigned long *end_pfn)
  5027. {
  5028. unsigned long this_start_pfn, this_end_pfn;
  5029. int i;
  5030. *start_pfn = -1UL;
  5031. *end_pfn = 0;
  5032. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  5033. *start_pfn = min(*start_pfn, this_start_pfn);
  5034. *end_pfn = max(*end_pfn, this_end_pfn);
  5035. }
  5036. if (*start_pfn == -1UL)
  5037. *start_pfn = 0;
  5038. }
  5039. /*
  5040. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  5041. * assumption is made that zones within a node are ordered in monotonic
  5042. * increasing memory addresses so that the "highest" populated zone is used
  5043. */
  5044. static void __init find_usable_zone_for_movable(void)
  5045. {
  5046. int zone_index;
  5047. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  5048. if (zone_index == ZONE_MOVABLE)
  5049. continue;
  5050. if (arch_zone_highest_possible_pfn[zone_index] >
  5051. arch_zone_lowest_possible_pfn[zone_index])
  5052. break;
  5053. }
  5054. VM_BUG_ON(zone_index == -1);
  5055. movable_zone = zone_index;
  5056. }
  5057. /*
  5058. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  5059. * because it is sized independent of architecture. Unlike the other zones,
  5060. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  5061. * in each node depending on the size of each node and how evenly kernelcore
  5062. * is distributed. This helper function adjusts the zone ranges
  5063. * provided by the architecture for a given node by using the end of the
  5064. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  5065. * zones within a node are in order of monotonic increases memory addresses
  5066. */
  5067. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  5068. unsigned long zone_type,
  5069. unsigned long node_start_pfn,
  5070. unsigned long node_end_pfn,
  5071. unsigned long *zone_start_pfn,
  5072. unsigned long *zone_end_pfn)
  5073. {
  5074. /* Only adjust if ZONE_MOVABLE is on this node */
  5075. if (zone_movable_pfn[nid]) {
  5076. /* Size ZONE_MOVABLE */
  5077. if (zone_type == ZONE_MOVABLE) {
  5078. *zone_start_pfn = zone_movable_pfn[nid];
  5079. *zone_end_pfn = min(node_end_pfn,
  5080. arch_zone_highest_possible_pfn[movable_zone]);
  5081. /* Adjust for ZONE_MOVABLE starting within this range */
  5082. } else if (!mirrored_kernelcore &&
  5083. *zone_start_pfn < zone_movable_pfn[nid] &&
  5084. *zone_end_pfn > zone_movable_pfn[nid]) {
  5085. *zone_end_pfn = zone_movable_pfn[nid];
  5086. /* Check if this whole range is within ZONE_MOVABLE */
  5087. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  5088. *zone_start_pfn = *zone_end_pfn;
  5089. }
  5090. }
  5091. /*
  5092. * Return the number of pages a zone spans in a node, including holes
  5093. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  5094. */
  5095. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  5096. unsigned long zone_type,
  5097. unsigned long node_start_pfn,
  5098. unsigned long node_end_pfn,
  5099. unsigned long *zone_start_pfn,
  5100. unsigned long *zone_end_pfn,
  5101. unsigned long *ignored)
  5102. {
  5103. /* When hotadd a new node from cpu_up(), the node should be empty */
  5104. if (!node_start_pfn && !node_end_pfn)
  5105. return 0;
  5106. /* Get the start and end of the zone */
  5107. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  5108. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  5109. adjust_zone_range_for_zone_movable(nid, zone_type,
  5110. node_start_pfn, node_end_pfn,
  5111. zone_start_pfn, zone_end_pfn);
  5112. /* Check that this node has pages within the zone's required range */
  5113. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  5114. return 0;
  5115. /* Move the zone boundaries inside the node if necessary */
  5116. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  5117. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  5118. /* Return the spanned pages */
  5119. return *zone_end_pfn - *zone_start_pfn;
  5120. }
  5121. /*
  5122. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  5123. * then all holes in the requested range will be accounted for.
  5124. */
  5125. unsigned long __meminit __absent_pages_in_range(int nid,
  5126. unsigned long range_start_pfn,
  5127. unsigned long range_end_pfn)
  5128. {
  5129. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  5130. unsigned long start_pfn, end_pfn;
  5131. int i;
  5132. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5133. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  5134. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  5135. nr_absent -= end_pfn - start_pfn;
  5136. }
  5137. return nr_absent;
  5138. }
  5139. /**
  5140. * absent_pages_in_range - Return number of page frames in holes within a range
  5141. * @start_pfn: The start PFN to start searching for holes
  5142. * @end_pfn: The end PFN to stop searching for holes
  5143. *
  5144. * It returns the number of pages frames in memory holes within a range.
  5145. */
  5146. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  5147. unsigned long end_pfn)
  5148. {
  5149. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  5150. }
  5151. /* Return the number of page frames in holes in a zone on a node */
  5152. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  5153. unsigned long zone_type,
  5154. unsigned long node_start_pfn,
  5155. unsigned long node_end_pfn,
  5156. unsigned long *ignored)
  5157. {
  5158. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  5159. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  5160. unsigned long zone_start_pfn, zone_end_pfn;
  5161. unsigned long nr_absent;
  5162. /* When hotadd a new node from cpu_up(), the node should be empty */
  5163. if (!node_start_pfn && !node_end_pfn)
  5164. return 0;
  5165. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  5166. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  5167. adjust_zone_range_for_zone_movable(nid, zone_type,
  5168. node_start_pfn, node_end_pfn,
  5169. &zone_start_pfn, &zone_end_pfn);
  5170. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  5171. /*
  5172. * ZONE_MOVABLE handling.
  5173. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  5174. * and vice versa.
  5175. */
  5176. if (mirrored_kernelcore && zone_movable_pfn[nid]) {
  5177. unsigned long start_pfn, end_pfn;
  5178. struct memblock_region *r;
  5179. for_each_memblock(memory, r) {
  5180. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  5181. zone_start_pfn, zone_end_pfn);
  5182. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  5183. zone_start_pfn, zone_end_pfn);
  5184. if (zone_type == ZONE_MOVABLE &&
  5185. memblock_is_mirror(r))
  5186. nr_absent += end_pfn - start_pfn;
  5187. if (zone_type == ZONE_NORMAL &&
  5188. !memblock_is_mirror(r))
  5189. nr_absent += end_pfn - start_pfn;
  5190. }
  5191. }
  5192. return nr_absent;
  5193. }
  5194. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5195. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  5196. unsigned long zone_type,
  5197. unsigned long node_start_pfn,
  5198. unsigned long node_end_pfn,
  5199. unsigned long *zone_start_pfn,
  5200. unsigned long *zone_end_pfn,
  5201. unsigned long *zones_size)
  5202. {
  5203. unsigned int zone;
  5204. *zone_start_pfn = node_start_pfn;
  5205. for (zone = 0; zone < zone_type; zone++)
  5206. *zone_start_pfn += zones_size[zone];
  5207. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  5208. return zones_size[zone_type];
  5209. }
  5210. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  5211. unsigned long zone_type,
  5212. unsigned long node_start_pfn,
  5213. unsigned long node_end_pfn,
  5214. unsigned long *zholes_size)
  5215. {
  5216. if (!zholes_size)
  5217. return 0;
  5218. return zholes_size[zone_type];
  5219. }
  5220. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5221. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  5222. unsigned long node_start_pfn,
  5223. unsigned long node_end_pfn,
  5224. unsigned long *zones_size,
  5225. unsigned long *zholes_size)
  5226. {
  5227. unsigned long realtotalpages = 0, totalpages = 0;
  5228. enum zone_type i;
  5229. for (i = 0; i < MAX_NR_ZONES; i++) {
  5230. struct zone *zone = pgdat->node_zones + i;
  5231. unsigned long zone_start_pfn, zone_end_pfn;
  5232. unsigned long size, real_size;
  5233. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  5234. node_start_pfn,
  5235. node_end_pfn,
  5236. &zone_start_pfn,
  5237. &zone_end_pfn,
  5238. zones_size);
  5239. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  5240. node_start_pfn, node_end_pfn,
  5241. zholes_size);
  5242. if (size)
  5243. zone->zone_start_pfn = zone_start_pfn;
  5244. else
  5245. zone->zone_start_pfn = 0;
  5246. zone->spanned_pages = size;
  5247. zone->present_pages = real_size;
  5248. totalpages += size;
  5249. realtotalpages += real_size;
  5250. }
  5251. pgdat->node_spanned_pages = totalpages;
  5252. pgdat->node_present_pages = realtotalpages;
  5253. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5254. realtotalpages);
  5255. }
  5256. #ifndef CONFIG_SPARSEMEM
  5257. /*
  5258. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5259. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5260. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5261. * round what is now in bits to nearest long in bits, then return it in
  5262. * bytes.
  5263. */
  5264. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5265. {
  5266. unsigned long usemapsize;
  5267. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5268. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5269. usemapsize = usemapsize >> pageblock_order;
  5270. usemapsize *= NR_PAGEBLOCK_BITS;
  5271. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5272. return usemapsize / 8;
  5273. }
  5274. static void __init setup_usemap(struct pglist_data *pgdat,
  5275. struct zone *zone,
  5276. unsigned long zone_start_pfn,
  5277. unsigned long zonesize)
  5278. {
  5279. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5280. zone->pageblock_flags = NULL;
  5281. if (usemapsize)
  5282. zone->pageblock_flags =
  5283. memblock_virt_alloc_node_nopanic(usemapsize,
  5284. pgdat->node_id);
  5285. }
  5286. #else
  5287. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5288. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5289. #endif /* CONFIG_SPARSEMEM */
  5290. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5291. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5292. void __paginginit set_pageblock_order(void)
  5293. {
  5294. unsigned int order;
  5295. /* Check that pageblock_nr_pages has not already been setup */
  5296. if (pageblock_order)
  5297. return;
  5298. if (HPAGE_SHIFT > PAGE_SHIFT)
  5299. order = HUGETLB_PAGE_ORDER;
  5300. else
  5301. order = MAX_ORDER - 1;
  5302. /*
  5303. * Assume the largest contiguous order of interest is a huge page.
  5304. * This value may be variable depending on boot parameters on IA64 and
  5305. * powerpc.
  5306. */
  5307. pageblock_order = order;
  5308. }
  5309. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5310. /*
  5311. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5312. * is unused as pageblock_order is set at compile-time. See
  5313. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5314. * the kernel config
  5315. */
  5316. void __paginginit set_pageblock_order(void)
  5317. {
  5318. }
  5319. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5320. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5321. unsigned long present_pages)
  5322. {
  5323. unsigned long pages = spanned_pages;
  5324. /*
  5325. * Provide a more accurate estimation if there are holes within
  5326. * the zone and SPARSEMEM is in use. If there are holes within the
  5327. * zone, each populated memory region may cost us one or two extra
  5328. * memmap pages due to alignment because memmap pages for each
  5329. * populated regions may not be naturally aligned on page boundary.
  5330. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5331. */
  5332. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5333. IS_ENABLED(CONFIG_SPARSEMEM))
  5334. pages = present_pages;
  5335. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5336. }
  5337. /*
  5338. * Set up the zone data structures:
  5339. * - mark all pages reserved
  5340. * - mark all memory queues empty
  5341. * - clear the memory bitmaps
  5342. *
  5343. * NOTE: pgdat should get zeroed by caller.
  5344. */
  5345. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5346. {
  5347. enum zone_type j;
  5348. int nid = pgdat->node_id;
  5349. pgdat_resize_init(pgdat);
  5350. #ifdef CONFIG_NUMA_BALANCING
  5351. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5352. pgdat->numabalancing_migrate_nr_pages = 0;
  5353. pgdat->numabalancing_migrate_next_window = jiffies;
  5354. #endif
  5355. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5356. spin_lock_init(&pgdat->split_queue_lock);
  5357. INIT_LIST_HEAD(&pgdat->split_queue);
  5358. pgdat->split_queue_len = 0;
  5359. #endif
  5360. init_waitqueue_head(&pgdat->kswapd_wait);
  5361. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5362. #ifdef CONFIG_COMPACTION
  5363. init_waitqueue_head(&pgdat->kcompactd_wait);
  5364. #endif
  5365. pgdat_page_ext_init(pgdat);
  5366. spin_lock_init(&pgdat->lru_lock);
  5367. lruvec_init(node_lruvec(pgdat));
  5368. pgdat->per_cpu_nodestats = &boot_nodestats;
  5369. for (j = 0; j < MAX_NR_ZONES; j++) {
  5370. struct zone *zone = pgdat->node_zones + j;
  5371. unsigned long size, realsize, freesize, memmap_pages;
  5372. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5373. size = zone->spanned_pages;
  5374. realsize = freesize = zone->present_pages;
  5375. /*
  5376. * Adjust freesize so that it accounts for how much memory
  5377. * is used by this zone for memmap. This affects the watermark
  5378. * and per-cpu initialisations
  5379. */
  5380. memmap_pages = calc_memmap_size(size, realsize);
  5381. if (!is_highmem_idx(j)) {
  5382. if (freesize >= memmap_pages) {
  5383. freesize -= memmap_pages;
  5384. if (memmap_pages)
  5385. printk(KERN_DEBUG
  5386. " %s zone: %lu pages used for memmap\n",
  5387. zone_names[j], memmap_pages);
  5388. } else
  5389. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5390. zone_names[j], memmap_pages, freesize);
  5391. }
  5392. /* Account for reserved pages */
  5393. if (j == 0 && freesize > dma_reserve) {
  5394. freesize -= dma_reserve;
  5395. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5396. zone_names[0], dma_reserve);
  5397. }
  5398. if (!is_highmem_idx(j))
  5399. nr_kernel_pages += freesize;
  5400. /* Charge for highmem memmap if there are enough kernel pages */
  5401. else if (nr_kernel_pages > memmap_pages * 2)
  5402. nr_kernel_pages -= memmap_pages;
  5403. nr_all_pages += freesize;
  5404. /*
  5405. * Set an approximate value for lowmem here, it will be adjusted
  5406. * when the bootmem allocator frees pages into the buddy system.
  5407. * And all highmem pages will be managed by the buddy system.
  5408. */
  5409. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5410. #ifdef CONFIG_NUMA
  5411. zone->node = nid;
  5412. #endif
  5413. zone->name = zone_names[j];
  5414. zone->zone_pgdat = pgdat;
  5415. spin_lock_init(&zone->lock);
  5416. zone_seqlock_init(zone);
  5417. zone_pcp_init(zone);
  5418. if (!size)
  5419. continue;
  5420. set_pageblock_order();
  5421. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5422. init_currently_empty_zone(zone, zone_start_pfn, size);
  5423. memmap_init(size, nid, j, zone_start_pfn);
  5424. }
  5425. }
  5426. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5427. static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
  5428. {
  5429. unsigned long __maybe_unused start = 0;
  5430. unsigned long __maybe_unused offset = 0;
  5431. /* Skip empty nodes */
  5432. if (!pgdat->node_spanned_pages)
  5433. return;
  5434. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5435. offset = pgdat->node_start_pfn - start;
  5436. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5437. if (!pgdat->node_mem_map) {
  5438. unsigned long size, end;
  5439. struct page *map;
  5440. /*
  5441. * The zone's endpoints aren't required to be MAX_ORDER
  5442. * aligned but the node_mem_map endpoints must be in order
  5443. * for the buddy allocator to function correctly.
  5444. */
  5445. end = pgdat_end_pfn(pgdat);
  5446. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5447. size = (end - start) * sizeof(struct page);
  5448. map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
  5449. pgdat->node_mem_map = map + offset;
  5450. }
  5451. pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5452. __func__, pgdat->node_id, (unsigned long)pgdat,
  5453. (unsigned long)pgdat->node_mem_map);
  5454. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5455. /*
  5456. * With no DISCONTIG, the global mem_map is just set as node 0's
  5457. */
  5458. if (pgdat == NODE_DATA(0)) {
  5459. mem_map = NODE_DATA(0)->node_mem_map;
  5460. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5461. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5462. mem_map -= offset;
  5463. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5464. }
  5465. #endif
  5466. }
  5467. #else
  5468. static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
  5469. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5470. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5471. unsigned long node_start_pfn, unsigned long *zholes_size)
  5472. {
  5473. pg_data_t *pgdat = NODE_DATA(nid);
  5474. unsigned long start_pfn = 0;
  5475. unsigned long end_pfn = 0;
  5476. /* pg_data_t should be reset to zero when it's allocated */
  5477. WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
  5478. pgdat->node_id = nid;
  5479. pgdat->node_start_pfn = node_start_pfn;
  5480. pgdat->per_cpu_nodestats = NULL;
  5481. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5482. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5483. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5484. (u64)start_pfn << PAGE_SHIFT,
  5485. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5486. #else
  5487. start_pfn = node_start_pfn;
  5488. #endif
  5489. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5490. zones_size, zholes_size);
  5491. alloc_node_mem_map(pgdat);
  5492. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  5493. /*
  5494. * We start only with one section of pages, more pages are added as
  5495. * needed until the rest of deferred pages are initialized.
  5496. */
  5497. pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
  5498. pgdat->node_spanned_pages);
  5499. pgdat->first_deferred_pfn = ULONG_MAX;
  5500. #endif
  5501. free_area_init_core(pgdat);
  5502. }
  5503. #ifdef CONFIG_HAVE_MEMBLOCK
  5504. /*
  5505. * Only struct pages that are backed by physical memory are zeroed and
  5506. * initialized by going through __init_single_page(). But, there are some
  5507. * struct pages which are reserved in memblock allocator and their fields
  5508. * may be accessed (for example page_to_pfn() on some configuration accesses
  5509. * flags). We must explicitly zero those struct pages.
  5510. */
  5511. void __paginginit zero_resv_unavail(void)
  5512. {
  5513. phys_addr_t start, end;
  5514. unsigned long pfn;
  5515. u64 i, pgcnt;
  5516. /*
  5517. * Loop through ranges that are reserved, but do not have reported
  5518. * physical memory backing.
  5519. */
  5520. pgcnt = 0;
  5521. for_each_resv_unavail_range(i, &start, &end) {
  5522. for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
  5523. if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
  5524. continue;
  5525. mm_zero_struct_page(pfn_to_page(pfn));
  5526. pgcnt++;
  5527. }
  5528. }
  5529. /*
  5530. * Struct pages that do not have backing memory. This could be because
  5531. * firmware is using some of this memory, or for some other reasons.
  5532. * Once memblock is changed so such behaviour is not allowed: i.e.
  5533. * list of "reserved" memory must be a subset of list of "memory", then
  5534. * this code can be removed.
  5535. */
  5536. if (pgcnt)
  5537. pr_info("Reserved but unavailable: %lld pages", pgcnt);
  5538. }
  5539. #endif /* CONFIG_HAVE_MEMBLOCK */
  5540. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5541. #if MAX_NUMNODES > 1
  5542. /*
  5543. * Figure out the number of possible node ids.
  5544. */
  5545. void __init setup_nr_node_ids(void)
  5546. {
  5547. unsigned int highest;
  5548. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5549. nr_node_ids = highest + 1;
  5550. }
  5551. #endif
  5552. /**
  5553. * node_map_pfn_alignment - determine the maximum internode alignment
  5554. *
  5555. * This function should be called after node map is populated and sorted.
  5556. * It calculates the maximum power of two alignment which can distinguish
  5557. * all the nodes.
  5558. *
  5559. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5560. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5561. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5562. * shifted, 1GiB is enough and this function will indicate so.
  5563. *
  5564. * This is used to test whether pfn -> nid mapping of the chosen memory
  5565. * model has fine enough granularity to avoid incorrect mapping for the
  5566. * populated node map.
  5567. *
  5568. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5569. * requirement (single node).
  5570. */
  5571. unsigned long __init node_map_pfn_alignment(void)
  5572. {
  5573. unsigned long accl_mask = 0, last_end = 0;
  5574. unsigned long start, end, mask;
  5575. int last_nid = -1;
  5576. int i, nid;
  5577. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5578. if (!start || last_nid < 0 || last_nid == nid) {
  5579. last_nid = nid;
  5580. last_end = end;
  5581. continue;
  5582. }
  5583. /*
  5584. * Start with a mask granular enough to pin-point to the
  5585. * start pfn and tick off bits one-by-one until it becomes
  5586. * too coarse to separate the current node from the last.
  5587. */
  5588. mask = ~((1 << __ffs(start)) - 1);
  5589. while (mask && last_end <= (start & (mask << 1)))
  5590. mask <<= 1;
  5591. /* accumulate all internode masks */
  5592. accl_mask |= mask;
  5593. }
  5594. /* convert mask to number of pages */
  5595. return ~accl_mask + 1;
  5596. }
  5597. /* Find the lowest pfn for a node */
  5598. static unsigned long __init find_min_pfn_for_node(int nid)
  5599. {
  5600. unsigned long min_pfn = ULONG_MAX;
  5601. unsigned long start_pfn;
  5602. int i;
  5603. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5604. min_pfn = min(min_pfn, start_pfn);
  5605. if (min_pfn == ULONG_MAX) {
  5606. pr_warn("Could not find start_pfn for node %d\n", nid);
  5607. return 0;
  5608. }
  5609. return min_pfn;
  5610. }
  5611. /**
  5612. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5613. *
  5614. * It returns the minimum PFN based on information provided via
  5615. * memblock_set_node().
  5616. */
  5617. unsigned long __init find_min_pfn_with_active_regions(void)
  5618. {
  5619. return find_min_pfn_for_node(MAX_NUMNODES);
  5620. }
  5621. /*
  5622. * early_calculate_totalpages()
  5623. * Sum pages in active regions for movable zone.
  5624. * Populate N_MEMORY for calculating usable_nodes.
  5625. */
  5626. static unsigned long __init early_calculate_totalpages(void)
  5627. {
  5628. unsigned long totalpages = 0;
  5629. unsigned long start_pfn, end_pfn;
  5630. int i, nid;
  5631. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5632. unsigned long pages = end_pfn - start_pfn;
  5633. totalpages += pages;
  5634. if (pages)
  5635. node_set_state(nid, N_MEMORY);
  5636. }
  5637. return totalpages;
  5638. }
  5639. /*
  5640. * Find the PFN the Movable zone begins in each node. Kernel memory
  5641. * is spread evenly between nodes as long as the nodes have enough
  5642. * memory. When they don't, some nodes will have more kernelcore than
  5643. * others
  5644. */
  5645. static void __init find_zone_movable_pfns_for_nodes(void)
  5646. {
  5647. int i, nid;
  5648. unsigned long usable_startpfn;
  5649. unsigned long kernelcore_node, kernelcore_remaining;
  5650. /* save the state before borrow the nodemask */
  5651. nodemask_t saved_node_state = node_states[N_MEMORY];
  5652. unsigned long totalpages = early_calculate_totalpages();
  5653. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5654. struct memblock_region *r;
  5655. /* Need to find movable_zone earlier when movable_node is specified. */
  5656. find_usable_zone_for_movable();
  5657. /*
  5658. * If movable_node is specified, ignore kernelcore and movablecore
  5659. * options.
  5660. */
  5661. if (movable_node_is_enabled()) {
  5662. for_each_memblock(memory, r) {
  5663. if (!memblock_is_hotpluggable(r))
  5664. continue;
  5665. nid = r->nid;
  5666. usable_startpfn = PFN_DOWN(r->base);
  5667. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5668. min(usable_startpfn, zone_movable_pfn[nid]) :
  5669. usable_startpfn;
  5670. }
  5671. goto out2;
  5672. }
  5673. /*
  5674. * If kernelcore=mirror is specified, ignore movablecore option
  5675. */
  5676. if (mirrored_kernelcore) {
  5677. bool mem_below_4gb_not_mirrored = false;
  5678. for_each_memblock(memory, r) {
  5679. if (memblock_is_mirror(r))
  5680. continue;
  5681. nid = r->nid;
  5682. usable_startpfn = memblock_region_memory_base_pfn(r);
  5683. if (usable_startpfn < 0x100000) {
  5684. mem_below_4gb_not_mirrored = true;
  5685. continue;
  5686. }
  5687. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5688. min(usable_startpfn, zone_movable_pfn[nid]) :
  5689. usable_startpfn;
  5690. }
  5691. if (mem_below_4gb_not_mirrored)
  5692. pr_warn("This configuration results in unmirrored kernel memory.");
  5693. goto out2;
  5694. }
  5695. /*
  5696. * If kernelcore=nn% or movablecore=nn% was specified, calculate the
  5697. * amount of necessary memory.
  5698. */
  5699. if (required_kernelcore_percent)
  5700. required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
  5701. 10000UL;
  5702. if (required_movablecore_percent)
  5703. required_movablecore = (totalpages * 100 * required_movablecore_percent) /
  5704. 10000UL;
  5705. /*
  5706. * If movablecore= was specified, calculate what size of
  5707. * kernelcore that corresponds so that memory usable for
  5708. * any allocation type is evenly spread. If both kernelcore
  5709. * and movablecore are specified, then the value of kernelcore
  5710. * will be used for required_kernelcore if it's greater than
  5711. * what movablecore would have allowed.
  5712. */
  5713. if (required_movablecore) {
  5714. unsigned long corepages;
  5715. /*
  5716. * Round-up so that ZONE_MOVABLE is at least as large as what
  5717. * was requested by the user
  5718. */
  5719. required_movablecore =
  5720. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5721. required_movablecore = min(totalpages, required_movablecore);
  5722. corepages = totalpages - required_movablecore;
  5723. required_kernelcore = max(required_kernelcore, corepages);
  5724. }
  5725. /*
  5726. * If kernelcore was not specified or kernelcore size is larger
  5727. * than totalpages, there is no ZONE_MOVABLE.
  5728. */
  5729. if (!required_kernelcore || required_kernelcore >= totalpages)
  5730. goto out;
  5731. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5732. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5733. restart:
  5734. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5735. kernelcore_node = required_kernelcore / usable_nodes;
  5736. for_each_node_state(nid, N_MEMORY) {
  5737. unsigned long start_pfn, end_pfn;
  5738. /*
  5739. * Recalculate kernelcore_node if the division per node
  5740. * now exceeds what is necessary to satisfy the requested
  5741. * amount of memory for the kernel
  5742. */
  5743. if (required_kernelcore < kernelcore_node)
  5744. kernelcore_node = required_kernelcore / usable_nodes;
  5745. /*
  5746. * As the map is walked, we track how much memory is usable
  5747. * by the kernel using kernelcore_remaining. When it is
  5748. * 0, the rest of the node is usable by ZONE_MOVABLE
  5749. */
  5750. kernelcore_remaining = kernelcore_node;
  5751. /* Go through each range of PFNs within this node */
  5752. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5753. unsigned long size_pages;
  5754. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5755. if (start_pfn >= end_pfn)
  5756. continue;
  5757. /* Account for what is only usable for kernelcore */
  5758. if (start_pfn < usable_startpfn) {
  5759. unsigned long kernel_pages;
  5760. kernel_pages = min(end_pfn, usable_startpfn)
  5761. - start_pfn;
  5762. kernelcore_remaining -= min(kernel_pages,
  5763. kernelcore_remaining);
  5764. required_kernelcore -= min(kernel_pages,
  5765. required_kernelcore);
  5766. /* Continue if range is now fully accounted */
  5767. if (end_pfn <= usable_startpfn) {
  5768. /*
  5769. * Push zone_movable_pfn to the end so
  5770. * that if we have to rebalance
  5771. * kernelcore across nodes, we will
  5772. * not double account here
  5773. */
  5774. zone_movable_pfn[nid] = end_pfn;
  5775. continue;
  5776. }
  5777. start_pfn = usable_startpfn;
  5778. }
  5779. /*
  5780. * The usable PFN range for ZONE_MOVABLE is from
  5781. * start_pfn->end_pfn. Calculate size_pages as the
  5782. * number of pages used as kernelcore
  5783. */
  5784. size_pages = end_pfn - start_pfn;
  5785. if (size_pages > kernelcore_remaining)
  5786. size_pages = kernelcore_remaining;
  5787. zone_movable_pfn[nid] = start_pfn + size_pages;
  5788. /*
  5789. * Some kernelcore has been met, update counts and
  5790. * break if the kernelcore for this node has been
  5791. * satisfied
  5792. */
  5793. required_kernelcore -= min(required_kernelcore,
  5794. size_pages);
  5795. kernelcore_remaining -= size_pages;
  5796. if (!kernelcore_remaining)
  5797. break;
  5798. }
  5799. }
  5800. /*
  5801. * If there is still required_kernelcore, we do another pass with one
  5802. * less node in the count. This will push zone_movable_pfn[nid] further
  5803. * along on the nodes that still have memory until kernelcore is
  5804. * satisfied
  5805. */
  5806. usable_nodes--;
  5807. if (usable_nodes && required_kernelcore > usable_nodes)
  5808. goto restart;
  5809. out2:
  5810. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5811. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5812. zone_movable_pfn[nid] =
  5813. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5814. out:
  5815. /* restore the node_state */
  5816. node_states[N_MEMORY] = saved_node_state;
  5817. }
  5818. /* Any regular or high memory on that node ? */
  5819. static void check_for_memory(pg_data_t *pgdat, int nid)
  5820. {
  5821. enum zone_type zone_type;
  5822. if (N_MEMORY == N_NORMAL_MEMORY)
  5823. return;
  5824. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5825. struct zone *zone = &pgdat->node_zones[zone_type];
  5826. if (populated_zone(zone)) {
  5827. node_set_state(nid, N_HIGH_MEMORY);
  5828. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5829. zone_type <= ZONE_NORMAL)
  5830. node_set_state(nid, N_NORMAL_MEMORY);
  5831. break;
  5832. }
  5833. }
  5834. }
  5835. /**
  5836. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5837. * @max_zone_pfn: an array of max PFNs for each zone
  5838. *
  5839. * This will call free_area_init_node() for each active node in the system.
  5840. * Using the page ranges provided by memblock_set_node(), the size of each
  5841. * zone in each node and their holes is calculated. If the maximum PFN
  5842. * between two adjacent zones match, it is assumed that the zone is empty.
  5843. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5844. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5845. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5846. * at arch_max_dma_pfn.
  5847. */
  5848. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5849. {
  5850. unsigned long start_pfn, end_pfn;
  5851. int i, nid;
  5852. /* Record where the zone boundaries are */
  5853. memset(arch_zone_lowest_possible_pfn, 0,
  5854. sizeof(arch_zone_lowest_possible_pfn));
  5855. memset(arch_zone_highest_possible_pfn, 0,
  5856. sizeof(arch_zone_highest_possible_pfn));
  5857. start_pfn = find_min_pfn_with_active_regions();
  5858. for (i = 0; i < MAX_NR_ZONES; i++) {
  5859. if (i == ZONE_MOVABLE)
  5860. continue;
  5861. end_pfn = max(max_zone_pfn[i], start_pfn);
  5862. arch_zone_lowest_possible_pfn[i] = start_pfn;
  5863. arch_zone_highest_possible_pfn[i] = end_pfn;
  5864. start_pfn = end_pfn;
  5865. }
  5866. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5867. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5868. find_zone_movable_pfns_for_nodes();
  5869. /* Print out the zone ranges */
  5870. pr_info("Zone ranges:\n");
  5871. for (i = 0; i < MAX_NR_ZONES; i++) {
  5872. if (i == ZONE_MOVABLE)
  5873. continue;
  5874. pr_info(" %-8s ", zone_names[i]);
  5875. if (arch_zone_lowest_possible_pfn[i] ==
  5876. arch_zone_highest_possible_pfn[i])
  5877. pr_cont("empty\n");
  5878. else
  5879. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5880. (u64)arch_zone_lowest_possible_pfn[i]
  5881. << PAGE_SHIFT,
  5882. ((u64)arch_zone_highest_possible_pfn[i]
  5883. << PAGE_SHIFT) - 1);
  5884. }
  5885. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5886. pr_info("Movable zone start for each node\n");
  5887. for (i = 0; i < MAX_NUMNODES; i++) {
  5888. if (zone_movable_pfn[i])
  5889. pr_info(" Node %d: %#018Lx\n", i,
  5890. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5891. }
  5892. /* Print out the early node map */
  5893. pr_info("Early memory node ranges\n");
  5894. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5895. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5896. (u64)start_pfn << PAGE_SHIFT,
  5897. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5898. /* Initialise every node */
  5899. mminit_verify_pageflags_layout();
  5900. setup_nr_node_ids();
  5901. for_each_online_node(nid) {
  5902. pg_data_t *pgdat = NODE_DATA(nid);
  5903. free_area_init_node(nid, NULL,
  5904. find_min_pfn_for_node(nid), NULL);
  5905. /* Any memory on that node */
  5906. if (pgdat->node_present_pages)
  5907. node_set_state(nid, N_MEMORY);
  5908. check_for_memory(pgdat, nid);
  5909. }
  5910. zero_resv_unavail();
  5911. }
  5912. static int __init cmdline_parse_core(char *p, unsigned long *core,
  5913. unsigned long *percent)
  5914. {
  5915. unsigned long long coremem;
  5916. char *endptr;
  5917. if (!p)
  5918. return -EINVAL;
  5919. /* Value may be a percentage of total memory, otherwise bytes */
  5920. coremem = simple_strtoull(p, &endptr, 0);
  5921. if (*endptr == '%') {
  5922. /* Paranoid check for percent values greater than 100 */
  5923. WARN_ON(coremem > 100);
  5924. *percent = coremem;
  5925. } else {
  5926. coremem = memparse(p, &p);
  5927. /* Paranoid check that UL is enough for the coremem value */
  5928. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5929. *core = coremem >> PAGE_SHIFT;
  5930. *percent = 0UL;
  5931. }
  5932. return 0;
  5933. }
  5934. /*
  5935. * kernelcore=size sets the amount of memory for use for allocations that
  5936. * cannot be reclaimed or migrated.
  5937. */
  5938. static int __init cmdline_parse_kernelcore(char *p)
  5939. {
  5940. /* parse kernelcore=mirror */
  5941. if (parse_option_str(p, "mirror")) {
  5942. mirrored_kernelcore = true;
  5943. return 0;
  5944. }
  5945. return cmdline_parse_core(p, &required_kernelcore,
  5946. &required_kernelcore_percent);
  5947. }
  5948. /*
  5949. * movablecore=size sets the amount of memory for use for allocations that
  5950. * can be reclaimed or migrated.
  5951. */
  5952. static int __init cmdline_parse_movablecore(char *p)
  5953. {
  5954. return cmdline_parse_core(p, &required_movablecore,
  5955. &required_movablecore_percent);
  5956. }
  5957. early_param("kernelcore", cmdline_parse_kernelcore);
  5958. early_param("movablecore", cmdline_parse_movablecore);
  5959. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5960. void adjust_managed_page_count(struct page *page, long count)
  5961. {
  5962. spin_lock(&managed_page_count_lock);
  5963. page_zone(page)->managed_pages += count;
  5964. totalram_pages += count;
  5965. #ifdef CONFIG_HIGHMEM
  5966. if (PageHighMem(page))
  5967. totalhigh_pages += count;
  5968. #endif
  5969. spin_unlock(&managed_page_count_lock);
  5970. }
  5971. EXPORT_SYMBOL(adjust_managed_page_count);
  5972. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5973. {
  5974. void *pos;
  5975. unsigned long pages = 0;
  5976. start = (void *)PAGE_ALIGN((unsigned long)start);
  5977. end = (void *)((unsigned long)end & PAGE_MASK);
  5978. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5979. if ((unsigned int)poison <= 0xFF)
  5980. memset(pos, poison, PAGE_SIZE);
  5981. free_reserved_page(virt_to_page(pos));
  5982. }
  5983. if (pages && s)
  5984. pr_info("Freeing %s memory: %ldK\n",
  5985. s, pages << (PAGE_SHIFT - 10));
  5986. return pages;
  5987. }
  5988. EXPORT_SYMBOL(free_reserved_area);
  5989. #ifdef CONFIG_HIGHMEM
  5990. void free_highmem_page(struct page *page)
  5991. {
  5992. __free_reserved_page(page);
  5993. totalram_pages++;
  5994. page_zone(page)->managed_pages++;
  5995. totalhigh_pages++;
  5996. }
  5997. #endif
  5998. void __init mem_init_print_info(const char *str)
  5999. {
  6000. unsigned long physpages, codesize, datasize, rosize, bss_size;
  6001. unsigned long init_code_size, init_data_size;
  6002. physpages = get_num_physpages();
  6003. codesize = _etext - _stext;
  6004. datasize = _edata - _sdata;
  6005. rosize = __end_rodata - __start_rodata;
  6006. bss_size = __bss_stop - __bss_start;
  6007. init_data_size = __init_end - __init_begin;
  6008. init_code_size = _einittext - _sinittext;
  6009. /*
  6010. * Detect special cases and adjust section sizes accordingly:
  6011. * 1) .init.* may be embedded into .data sections
  6012. * 2) .init.text.* may be out of [__init_begin, __init_end],
  6013. * please refer to arch/tile/kernel/vmlinux.lds.S.
  6014. * 3) .rodata.* may be embedded into .text or .data sections.
  6015. */
  6016. #define adj_init_size(start, end, size, pos, adj) \
  6017. do { \
  6018. if (start <= pos && pos < end && size > adj) \
  6019. size -= adj; \
  6020. } while (0)
  6021. adj_init_size(__init_begin, __init_end, init_data_size,
  6022. _sinittext, init_code_size);
  6023. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  6024. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  6025. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  6026. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  6027. #undef adj_init_size
  6028. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  6029. #ifdef CONFIG_HIGHMEM
  6030. ", %luK highmem"
  6031. #endif
  6032. "%s%s)\n",
  6033. nr_free_pages() << (PAGE_SHIFT - 10),
  6034. physpages << (PAGE_SHIFT - 10),
  6035. codesize >> 10, datasize >> 10, rosize >> 10,
  6036. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  6037. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  6038. totalcma_pages << (PAGE_SHIFT - 10),
  6039. #ifdef CONFIG_HIGHMEM
  6040. totalhigh_pages << (PAGE_SHIFT - 10),
  6041. #endif
  6042. str ? ", " : "", str ? str : "");
  6043. }
  6044. /**
  6045. * set_dma_reserve - set the specified number of pages reserved in the first zone
  6046. * @new_dma_reserve: The number of pages to mark reserved
  6047. *
  6048. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  6049. * In the DMA zone, a significant percentage may be consumed by kernel image
  6050. * and other unfreeable allocations which can skew the watermarks badly. This
  6051. * function may optionally be used to account for unfreeable pages in the
  6052. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  6053. * smaller per-cpu batchsize.
  6054. */
  6055. void __init set_dma_reserve(unsigned long new_dma_reserve)
  6056. {
  6057. dma_reserve = new_dma_reserve;
  6058. }
  6059. void __init free_area_init(unsigned long *zones_size)
  6060. {
  6061. free_area_init_node(0, zones_size,
  6062. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  6063. zero_resv_unavail();
  6064. }
  6065. static int page_alloc_cpu_dead(unsigned int cpu)
  6066. {
  6067. lru_add_drain_cpu(cpu);
  6068. drain_pages(cpu);
  6069. /*
  6070. * Spill the event counters of the dead processor
  6071. * into the current processors event counters.
  6072. * This artificially elevates the count of the current
  6073. * processor.
  6074. */
  6075. vm_events_fold_cpu(cpu);
  6076. /*
  6077. * Zero the differential counters of the dead processor
  6078. * so that the vm statistics are consistent.
  6079. *
  6080. * This is only okay since the processor is dead and cannot
  6081. * race with what we are doing.
  6082. */
  6083. cpu_vm_stats_fold(cpu);
  6084. return 0;
  6085. }
  6086. void __init page_alloc_init(void)
  6087. {
  6088. int ret;
  6089. ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
  6090. "mm/page_alloc:dead", NULL,
  6091. page_alloc_cpu_dead);
  6092. WARN_ON(ret < 0);
  6093. }
  6094. /*
  6095. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  6096. * or min_free_kbytes changes.
  6097. */
  6098. static void calculate_totalreserve_pages(void)
  6099. {
  6100. struct pglist_data *pgdat;
  6101. unsigned long reserve_pages = 0;
  6102. enum zone_type i, j;
  6103. for_each_online_pgdat(pgdat) {
  6104. pgdat->totalreserve_pages = 0;
  6105. for (i = 0; i < MAX_NR_ZONES; i++) {
  6106. struct zone *zone = pgdat->node_zones + i;
  6107. long max = 0;
  6108. /* Find valid and maximum lowmem_reserve in the zone */
  6109. for (j = i; j < MAX_NR_ZONES; j++) {
  6110. if (zone->lowmem_reserve[j] > max)
  6111. max = zone->lowmem_reserve[j];
  6112. }
  6113. /* we treat the high watermark as reserved pages. */
  6114. max += high_wmark_pages(zone);
  6115. if (max > zone->managed_pages)
  6116. max = zone->managed_pages;
  6117. pgdat->totalreserve_pages += max;
  6118. reserve_pages += max;
  6119. }
  6120. }
  6121. totalreserve_pages = reserve_pages;
  6122. }
  6123. /*
  6124. * setup_per_zone_lowmem_reserve - called whenever
  6125. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  6126. * has a correct pages reserved value, so an adequate number of
  6127. * pages are left in the zone after a successful __alloc_pages().
  6128. */
  6129. static void setup_per_zone_lowmem_reserve(void)
  6130. {
  6131. struct pglist_data *pgdat;
  6132. enum zone_type j, idx;
  6133. for_each_online_pgdat(pgdat) {
  6134. for (j = 0; j < MAX_NR_ZONES; j++) {
  6135. struct zone *zone = pgdat->node_zones + j;
  6136. unsigned long managed_pages = zone->managed_pages;
  6137. zone->lowmem_reserve[j] = 0;
  6138. idx = j;
  6139. while (idx) {
  6140. struct zone *lower_zone;
  6141. idx--;
  6142. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  6143. sysctl_lowmem_reserve_ratio[idx] = 1;
  6144. lower_zone = pgdat->node_zones + idx;
  6145. lower_zone->lowmem_reserve[j] = managed_pages /
  6146. sysctl_lowmem_reserve_ratio[idx];
  6147. managed_pages += lower_zone->managed_pages;
  6148. }
  6149. }
  6150. }
  6151. /* update totalreserve_pages */
  6152. calculate_totalreserve_pages();
  6153. }
  6154. static void __setup_per_zone_wmarks(void)
  6155. {
  6156. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  6157. unsigned long lowmem_pages = 0;
  6158. struct zone *zone;
  6159. unsigned long flags;
  6160. /* Calculate total number of !ZONE_HIGHMEM pages */
  6161. for_each_zone(zone) {
  6162. if (!is_highmem(zone))
  6163. lowmem_pages += zone->managed_pages;
  6164. }
  6165. for_each_zone(zone) {
  6166. u64 tmp;
  6167. spin_lock_irqsave(&zone->lock, flags);
  6168. tmp = (u64)pages_min * zone->managed_pages;
  6169. do_div(tmp, lowmem_pages);
  6170. if (is_highmem(zone)) {
  6171. /*
  6172. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  6173. * need highmem pages, so cap pages_min to a small
  6174. * value here.
  6175. *
  6176. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  6177. * deltas control asynch page reclaim, and so should
  6178. * not be capped for highmem.
  6179. */
  6180. unsigned long min_pages;
  6181. min_pages = zone->managed_pages / 1024;
  6182. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  6183. zone->watermark[WMARK_MIN] = min_pages;
  6184. } else {
  6185. /*
  6186. * If it's a lowmem zone, reserve a number of pages
  6187. * proportionate to the zone's size.
  6188. */
  6189. zone->watermark[WMARK_MIN] = tmp;
  6190. }
  6191. /*
  6192. * Set the kswapd watermarks distance according to the
  6193. * scale factor in proportion to available memory, but
  6194. * ensure a minimum size on small systems.
  6195. */
  6196. tmp = max_t(u64, tmp >> 2,
  6197. mult_frac(zone->managed_pages,
  6198. watermark_scale_factor, 10000));
  6199. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  6200. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  6201. spin_unlock_irqrestore(&zone->lock, flags);
  6202. }
  6203. /* update totalreserve_pages */
  6204. calculate_totalreserve_pages();
  6205. }
  6206. /**
  6207. * setup_per_zone_wmarks - called when min_free_kbytes changes
  6208. * or when memory is hot-{added|removed}
  6209. *
  6210. * Ensures that the watermark[min,low,high] values for each zone are set
  6211. * correctly with respect to min_free_kbytes.
  6212. */
  6213. void setup_per_zone_wmarks(void)
  6214. {
  6215. static DEFINE_SPINLOCK(lock);
  6216. spin_lock(&lock);
  6217. __setup_per_zone_wmarks();
  6218. spin_unlock(&lock);
  6219. }
  6220. /*
  6221. * Initialise min_free_kbytes.
  6222. *
  6223. * For small machines we want it small (128k min). For large machines
  6224. * we want it large (64MB max). But it is not linear, because network
  6225. * bandwidth does not increase linearly with machine size. We use
  6226. *
  6227. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  6228. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  6229. *
  6230. * which yields
  6231. *
  6232. * 16MB: 512k
  6233. * 32MB: 724k
  6234. * 64MB: 1024k
  6235. * 128MB: 1448k
  6236. * 256MB: 2048k
  6237. * 512MB: 2896k
  6238. * 1024MB: 4096k
  6239. * 2048MB: 5792k
  6240. * 4096MB: 8192k
  6241. * 8192MB: 11584k
  6242. * 16384MB: 16384k
  6243. */
  6244. int __meminit init_per_zone_wmark_min(void)
  6245. {
  6246. unsigned long lowmem_kbytes;
  6247. int new_min_free_kbytes;
  6248. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  6249. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  6250. if (new_min_free_kbytes > user_min_free_kbytes) {
  6251. min_free_kbytes = new_min_free_kbytes;
  6252. if (min_free_kbytes < 128)
  6253. min_free_kbytes = 128;
  6254. if (min_free_kbytes > 65536)
  6255. min_free_kbytes = 65536;
  6256. } else {
  6257. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  6258. new_min_free_kbytes, user_min_free_kbytes);
  6259. }
  6260. setup_per_zone_wmarks();
  6261. refresh_zone_stat_thresholds();
  6262. setup_per_zone_lowmem_reserve();
  6263. #ifdef CONFIG_NUMA
  6264. setup_min_unmapped_ratio();
  6265. setup_min_slab_ratio();
  6266. #endif
  6267. return 0;
  6268. }
  6269. core_initcall(init_per_zone_wmark_min)
  6270. /*
  6271. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  6272. * that we can call two helper functions whenever min_free_kbytes
  6273. * changes.
  6274. */
  6275. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  6276. void __user *buffer, size_t *length, loff_t *ppos)
  6277. {
  6278. int rc;
  6279. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6280. if (rc)
  6281. return rc;
  6282. if (write) {
  6283. user_min_free_kbytes = min_free_kbytes;
  6284. setup_per_zone_wmarks();
  6285. }
  6286. return 0;
  6287. }
  6288. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  6289. void __user *buffer, size_t *length, loff_t *ppos)
  6290. {
  6291. int rc;
  6292. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6293. if (rc)
  6294. return rc;
  6295. if (write)
  6296. setup_per_zone_wmarks();
  6297. return 0;
  6298. }
  6299. #ifdef CONFIG_NUMA
  6300. static void setup_min_unmapped_ratio(void)
  6301. {
  6302. pg_data_t *pgdat;
  6303. struct zone *zone;
  6304. for_each_online_pgdat(pgdat)
  6305. pgdat->min_unmapped_pages = 0;
  6306. for_each_zone(zone)
  6307. zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
  6308. sysctl_min_unmapped_ratio) / 100;
  6309. }
  6310. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  6311. void __user *buffer, size_t *length, loff_t *ppos)
  6312. {
  6313. int rc;
  6314. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6315. if (rc)
  6316. return rc;
  6317. setup_min_unmapped_ratio();
  6318. return 0;
  6319. }
  6320. static void setup_min_slab_ratio(void)
  6321. {
  6322. pg_data_t *pgdat;
  6323. struct zone *zone;
  6324. for_each_online_pgdat(pgdat)
  6325. pgdat->min_slab_pages = 0;
  6326. for_each_zone(zone)
  6327. zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
  6328. sysctl_min_slab_ratio) / 100;
  6329. }
  6330. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6331. void __user *buffer, size_t *length, loff_t *ppos)
  6332. {
  6333. int rc;
  6334. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6335. if (rc)
  6336. return rc;
  6337. setup_min_slab_ratio();
  6338. return 0;
  6339. }
  6340. #endif
  6341. /*
  6342. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6343. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6344. * whenever sysctl_lowmem_reserve_ratio changes.
  6345. *
  6346. * The reserve ratio obviously has absolutely no relation with the
  6347. * minimum watermarks. The lowmem reserve ratio can only make sense
  6348. * if in function of the boot time zone sizes.
  6349. */
  6350. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6351. void __user *buffer, size_t *length, loff_t *ppos)
  6352. {
  6353. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6354. setup_per_zone_lowmem_reserve();
  6355. return 0;
  6356. }
  6357. /*
  6358. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6359. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6360. * pagelist can have before it gets flushed back to buddy allocator.
  6361. */
  6362. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6363. void __user *buffer, size_t *length, loff_t *ppos)
  6364. {
  6365. struct zone *zone;
  6366. int old_percpu_pagelist_fraction;
  6367. int ret;
  6368. mutex_lock(&pcp_batch_high_lock);
  6369. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6370. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6371. if (!write || ret < 0)
  6372. goto out;
  6373. /* Sanity checking to avoid pcp imbalance */
  6374. if (percpu_pagelist_fraction &&
  6375. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6376. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6377. ret = -EINVAL;
  6378. goto out;
  6379. }
  6380. /* No change? */
  6381. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6382. goto out;
  6383. for_each_populated_zone(zone) {
  6384. unsigned int cpu;
  6385. for_each_possible_cpu(cpu)
  6386. pageset_set_high_and_batch(zone,
  6387. per_cpu_ptr(zone->pageset, cpu));
  6388. }
  6389. out:
  6390. mutex_unlock(&pcp_batch_high_lock);
  6391. return ret;
  6392. }
  6393. #ifdef CONFIG_NUMA
  6394. int hashdist = HASHDIST_DEFAULT;
  6395. static int __init set_hashdist(char *str)
  6396. {
  6397. if (!str)
  6398. return 0;
  6399. hashdist = simple_strtoul(str, &str, 0);
  6400. return 1;
  6401. }
  6402. __setup("hashdist=", set_hashdist);
  6403. #endif
  6404. #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  6405. /*
  6406. * Returns the number of pages that arch has reserved but
  6407. * is not known to alloc_large_system_hash().
  6408. */
  6409. static unsigned long __init arch_reserved_kernel_pages(void)
  6410. {
  6411. return 0;
  6412. }
  6413. #endif
  6414. /*
  6415. * Adaptive scale is meant to reduce sizes of hash tables on large memory
  6416. * machines. As memory size is increased the scale is also increased but at
  6417. * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
  6418. * quadruples the scale is increased by one, which means the size of hash table
  6419. * only doubles, instead of quadrupling as well.
  6420. * Because 32-bit systems cannot have large physical memory, where this scaling
  6421. * makes sense, it is disabled on such platforms.
  6422. */
  6423. #if __BITS_PER_LONG > 32
  6424. #define ADAPT_SCALE_BASE (64ul << 30)
  6425. #define ADAPT_SCALE_SHIFT 2
  6426. #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
  6427. #endif
  6428. /*
  6429. * allocate a large system hash table from bootmem
  6430. * - it is assumed that the hash table must contain an exact power-of-2
  6431. * quantity of entries
  6432. * - limit is the number of hash buckets, not the total allocation size
  6433. */
  6434. void *__init alloc_large_system_hash(const char *tablename,
  6435. unsigned long bucketsize,
  6436. unsigned long numentries,
  6437. int scale,
  6438. int flags,
  6439. unsigned int *_hash_shift,
  6440. unsigned int *_hash_mask,
  6441. unsigned long low_limit,
  6442. unsigned long high_limit)
  6443. {
  6444. unsigned long long max = high_limit;
  6445. unsigned long log2qty, size;
  6446. void *table = NULL;
  6447. gfp_t gfp_flags;
  6448. /* allow the kernel cmdline to have a say */
  6449. if (!numentries) {
  6450. /* round applicable memory size up to nearest megabyte */
  6451. numentries = nr_kernel_pages;
  6452. numentries -= arch_reserved_kernel_pages();
  6453. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6454. if (PAGE_SHIFT < 20)
  6455. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6456. #if __BITS_PER_LONG > 32
  6457. if (!high_limit) {
  6458. unsigned long adapt;
  6459. for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
  6460. adapt <<= ADAPT_SCALE_SHIFT)
  6461. scale++;
  6462. }
  6463. #endif
  6464. /* limit to 1 bucket per 2^scale bytes of low memory */
  6465. if (scale > PAGE_SHIFT)
  6466. numentries >>= (scale - PAGE_SHIFT);
  6467. else
  6468. numentries <<= (PAGE_SHIFT - scale);
  6469. /* Make sure we've got at least a 0-order allocation.. */
  6470. if (unlikely(flags & HASH_SMALL)) {
  6471. /* Makes no sense without HASH_EARLY */
  6472. WARN_ON(!(flags & HASH_EARLY));
  6473. if (!(numentries >> *_hash_shift)) {
  6474. numentries = 1UL << *_hash_shift;
  6475. BUG_ON(!numentries);
  6476. }
  6477. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6478. numentries = PAGE_SIZE / bucketsize;
  6479. }
  6480. numentries = roundup_pow_of_two(numentries);
  6481. /* limit allocation size to 1/16 total memory by default */
  6482. if (max == 0) {
  6483. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6484. do_div(max, bucketsize);
  6485. }
  6486. max = min(max, 0x80000000ULL);
  6487. if (numentries < low_limit)
  6488. numentries = low_limit;
  6489. if (numentries > max)
  6490. numentries = max;
  6491. log2qty = ilog2(numentries);
  6492. gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
  6493. do {
  6494. size = bucketsize << log2qty;
  6495. if (flags & HASH_EARLY) {
  6496. if (flags & HASH_ZERO)
  6497. table = memblock_virt_alloc_nopanic(size, 0);
  6498. else
  6499. table = memblock_virt_alloc_raw(size, 0);
  6500. } else if (hashdist) {
  6501. table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
  6502. } else {
  6503. /*
  6504. * If bucketsize is not a power-of-two, we may free
  6505. * some pages at the end of hash table which
  6506. * alloc_pages_exact() automatically does
  6507. */
  6508. if (get_order(size) < MAX_ORDER) {
  6509. table = alloc_pages_exact(size, gfp_flags);
  6510. kmemleak_alloc(table, size, 1, gfp_flags);
  6511. }
  6512. }
  6513. } while (!table && size > PAGE_SIZE && --log2qty);
  6514. if (!table)
  6515. panic("Failed to allocate %s hash table\n", tablename);
  6516. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6517. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6518. if (_hash_shift)
  6519. *_hash_shift = log2qty;
  6520. if (_hash_mask)
  6521. *_hash_mask = (1 << log2qty) - 1;
  6522. return table;
  6523. }
  6524. /*
  6525. * This function checks whether pageblock includes unmovable pages or not.
  6526. * If @count is not zero, it is okay to include less @count unmovable pages
  6527. *
  6528. * PageLRU check without isolation or lru_lock could race so that
  6529. * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
  6530. * check without lock_page also may miss some movable non-lru pages at
  6531. * race condition. So you can't expect this function should be exact.
  6532. */
  6533. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6534. int migratetype,
  6535. bool skip_hwpoisoned_pages)
  6536. {
  6537. unsigned long pfn, iter, found;
  6538. /*
  6539. * For avoiding noise data, lru_add_drain_all() should be called
  6540. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6541. */
  6542. if (zone_idx(zone) == ZONE_MOVABLE)
  6543. return false;
  6544. /*
  6545. * CMA allocations (alloc_contig_range) really need to mark isolate
  6546. * CMA pageblocks even when they are not movable in fact so consider
  6547. * them movable here.
  6548. */
  6549. if (is_migrate_cma(migratetype) &&
  6550. is_migrate_cma(get_pageblock_migratetype(page)))
  6551. return false;
  6552. pfn = page_to_pfn(page);
  6553. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6554. unsigned long check = pfn + iter;
  6555. if (!pfn_valid_within(check))
  6556. continue;
  6557. page = pfn_to_page(check);
  6558. if (PageReserved(page))
  6559. return true;
  6560. /*
  6561. * Hugepages are not in LRU lists, but they're movable.
  6562. * We need not scan over tail pages bacause we don't
  6563. * handle each tail page individually in migration.
  6564. */
  6565. if (PageHuge(page)) {
  6566. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6567. continue;
  6568. }
  6569. /*
  6570. * We can't use page_count without pin a page
  6571. * because another CPU can free compound page.
  6572. * This check already skips compound tails of THP
  6573. * because their page->_refcount is zero at all time.
  6574. */
  6575. if (!page_ref_count(page)) {
  6576. if (PageBuddy(page))
  6577. iter += (1 << page_order(page)) - 1;
  6578. continue;
  6579. }
  6580. /*
  6581. * The HWPoisoned page may be not in buddy system, and
  6582. * page_count() is not 0.
  6583. */
  6584. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6585. continue;
  6586. if (__PageMovable(page))
  6587. continue;
  6588. if (!PageLRU(page))
  6589. found++;
  6590. /*
  6591. * If there are RECLAIMABLE pages, we need to check
  6592. * it. But now, memory offline itself doesn't call
  6593. * shrink_node_slabs() and it still to be fixed.
  6594. */
  6595. /*
  6596. * If the page is not RAM, page_count()should be 0.
  6597. * we don't need more check. This is an _used_ not-movable page.
  6598. *
  6599. * The problematic thing here is PG_reserved pages. PG_reserved
  6600. * is set to both of a memory hole page and a _used_ kernel
  6601. * page at boot.
  6602. */
  6603. if (found > count)
  6604. return true;
  6605. }
  6606. return false;
  6607. }
  6608. bool is_pageblock_removable_nolock(struct page *page)
  6609. {
  6610. struct zone *zone;
  6611. unsigned long pfn;
  6612. /*
  6613. * We have to be careful here because we are iterating over memory
  6614. * sections which are not zone aware so we might end up outside of
  6615. * the zone but still within the section.
  6616. * We have to take care about the node as well. If the node is offline
  6617. * its NODE_DATA will be NULL - see page_zone.
  6618. */
  6619. if (!node_online(page_to_nid(page)))
  6620. return false;
  6621. zone = page_zone(page);
  6622. pfn = page_to_pfn(page);
  6623. if (!zone_spans_pfn(zone, pfn))
  6624. return false;
  6625. return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
  6626. }
  6627. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6628. static unsigned long pfn_max_align_down(unsigned long pfn)
  6629. {
  6630. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6631. pageblock_nr_pages) - 1);
  6632. }
  6633. static unsigned long pfn_max_align_up(unsigned long pfn)
  6634. {
  6635. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6636. pageblock_nr_pages));
  6637. }
  6638. /* [start, end) must belong to a single zone. */
  6639. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6640. unsigned long start, unsigned long end)
  6641. {
  6642. /* This function is based on compact_zone() from compaction.c. */
  6643. unsigned long nr_reclaimed;
  6644. unsigned long pfn = start;
  6645. unsigned int tries = 0;
  6646. int ret = 0;
  6647. migrate_prep();
  6648. while (pfn < end || !list_empty(&cc->migratepages)) {
  6649. if (fatal_signal_pending(current)) {
  6650. ret = -EINTR;
  6651. break;
  6652. }
  6653. if (list_empty(&cc->migratepages)) {
  6654. cc->nr_migratepages = 0;
  6655. pfn = isolate_migratepages_range(cc, pfn, end);
  6656. if (!pfn) {
  6657. ret = -EINTR;
  6658. break;
  6659. }
  6660. tries = 0;
  6661. } else if (++tries == 5) {
  6662. ret = ret < 0 ? ret : -EBUSY;
  6663. break;
  6664. }
  6665. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6666. &cc->migratepages);
  6667. cc->nr_migratepages -= nr_reclaimed;
  6668. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6669. NULL, 0, cc->mode, MR_CONTIG_RANGE);
  6670. }
  6671. if (ret < 0) {
  6672. putback_movable_pages(&cc->migratepages);
  6673. return ret;
  6674. }
  6675. return 0;
  6676. }
  6677. /**
  6678. * alloc_contig_range() -- tries to allocate given range of pages
  6679. * @start: start PFN to allocate
  6680. * @end: one-past-the-last PFN to allocate
  6681. * @migratetype: migratetype of the underlaying pageblocks (either
  6682. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6683. * in range must have the same migratetype and it must
  6684. * be either of the two.
  6685. * @gfp_mask: GFP mask to use during compaction
  6686. *
  6687. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6688. * aligned, however it's the caller's responsibility to guarantee that
  6689. * we are the only thread that changes migrate type of pageblocks the
  6690. * pages fall in.
  6691. *
  6692. * The PFN range must belong to a single zone.
  6693. *
  6694. * Returns zero on success or negative error code. On success all
  6695. * pages which PFN is in [start, end) are allocated for the caller and
  6696. * need to be freed with free_contig_range().
  6697. */
  6698. int alloc_contig_range(unsigned long start, unsigned long end,
  6699. unsigned migratetype, gfp_t gfp_mask)
  6700. {
  6701. unsigned long outer_start, outer_end;
  6702. unsigned int order;
  6703. int ret = 0;
  6704. struct compact_control cc = {
  6705. .nr_migratepages = 0,
  6706. .order = -1,
  6707. .zone = page_zone(pfn_to_page(start)),
  6708. .mode = MIGRATE_SYNC,
  6709. .ignore_skip_hint = true,
  6710. .no_set_skip_hint = true,
  6711. .gfp_mask = current_gfp_context(gfp_mask),
  6712. };
  6713. INIT_LIST_HEAD(&cc.migratepages);
  6714. /*
  6715. * What we do here is we mark all pageblocks in range as
  6716. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6717. * have different sizes, and due to the way page allocator
  6718. * work, we align the range to biggest of the two pages so
  6719. * that page allocator won't try to merge buddies from
  6720. * different pageblocks and change MIGRATE_ISOLATE to some
  6721. * other migration type.
  6722. *
  6723. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6724. * migrate the pages from an unaligned range (ie. pages that
  6725. * we are interested in). This will put all the pages in
  6726. * range back to page allocator as MIGRATE_ISOLATE.
  6727. *
  6728. * When this is done, we take the pages in range from page
  6729. * allocator removing them from the buddy system. This way
  6730. * page allocator will never consider using them.
  6731. *
  6732. * This lets us mark the pageblocks back as
  6733. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6734. * aligned range but not in the unaligned, original range are
  6735. * put back to page allocator so that buddy can use them.
  6736. */
  6737. ret = start_isolate_page_range(pfn_max_align_down(start),
  6738. pfn_max_align_up(end), migratetype,
  6739. false);
  6740. if (ret)
  6741. return ret;
  6742. /*
  6743. * In case of -EBUSY, we'd like to know which page causes problem.
  6744. * So, just fall through. test_pages_isolated() has a tracepoint
  6745. * which will report the busy page.
  6746. *
  6747. * It is possible that busy pages could become available before
  6748. * the call to test_pages_isolated, and the range will actually be
  6749. * allocated. So, if we fall through be sure to clear ret so that
  6750. * -EBUSY is not accidentally used or returned to caller.
  6751. */
  6752. ret = __alloc_contig_migrate_range(&cc, start, end);
  6753. if (ret && ret != -EBUSY)
  6754. goto done;
  6755. ret =0;
  6756. /*
  6757. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6758. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6759. * more, all pages in [start, end) are free in page allocator.
  6760. * What we are going to do is to allocate all pages from
  6761. * [start, end) (that is remove them from page allocator).
  6762. *
  6763. * The only problem is that pages at the beginning and at the
  6764. * end of interesting range may be not aligned with pages that
  6765. * page allocator holds, ie. they can be part of higher order
  6766. * pages. Because of this, we reserve the bigger range and
  6767. * once this is done free the pages we are not interested in.
  6768. *
  6769. * We don't have to hold zone->lock here because the pages are
  6770. * isolated thus they won't get removed from buddy.
  6771. */
  6772. lru_add_drain_all();
  6773. drain_all_pages(cc.zone);
  6774. order = 0;
  6775. outer_start = start;
  6776. while (!PageBuddy(pfn_to_page(outer_start))) {
  6777. if (++order >= MAX_ORDER) {
  6778. outer_start = start;
  6779. break;
  6780. }
  6781. outer_start &= ~0UL << order;
  6782. }
  6783. if (outer_start != start) {
  6784. order = page_order(pfn_to_page(outer_start));
  6785. /*
  6786. * outer_start page could be small order buddy page and
  6787. * it doesn't include start page. Adjust outer_start
  6788. * in this case to report failed page properly
  6789. * on tracepoint in test_pages_isolated()
  6790. */
  6791. if (outer_start + (1UL << order) <= start)
  6792. outer_start = start;
  6793. }
  6794. /* Make sure the range is really isolated. */
  6795. if (test_pages_isolated(outer_start, end, false)) {
  6796. pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
  6797. __func__, outer_start, end);
  6798. ret = -EBUSY;
  6799. goto done;
  6800. }
  6801. /* Grab isolated pages from freelists. */
  6802. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6803. if (!outer_end) {
  6804. ret = -EBUSY;
  6805. goto done;
  6806. }
  6807. /* Free head and tail (if any) */
  6808. if (start != outer_start)
  6809. free_contig_range(outer_start, start - outer_start);
  6810. if (end != outer_end)
  6811. free_contig_range(end, outer_end - end);
  6812. done:
  6813. undo_isolate_page_range(pfn_max_align_down(start),
  6814. pfn_max_align_up(end), migratetype);
  6815. return ret;
  6816. }
  6817. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6818. {
  6819. unsigned int count = 0;
  6820. for (; nr_pages--; pfn++) {
  6821. struct page *page = pfn_to_page(pfn);
  6822. count += page_count(page) != 1;
  6823. __free_page(page);
  6824. }
  6825. WARN(count != 0, "%d pages are still in use!\n", count);
  6826. }
  6827. #endif
  6828. #ifdef CONFIG_MEMORY_HOTPLUG
  6829. /*
  6830. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6831. * page high values need to be recalulated.
  6832. */
  6833. void __meminit zone_pcp_update(struct zone *zone)
  6834. {
  6835. unsigned cpu;
  6836. mutex_lock(&pcp_batch_high_lock);
  6837. for_each_possible_cpu(cpu)
  6838. pageset_set_high_and_batch(zone,
  6839. per_cpu_ptr(zone->pageset, cpu));
  6840. mutex_unlock(&pcp_batch_high_lock);
  6841. }
  6842. #endif
  6843. void zone_pcp_reset(struct zone *zone)
  6844. {
  6845. unsigned long flags;
  6846. int cpu;
  6847. struct per_cpu_pageset *pset;
  6848. /* avoid races with drain_pages() */
  6849. local_irq_save(flags);
  6850. if (zone->pageset != &boot_pageset) {
  6851. for_each_online_cpu(cpu) {
  6852. pset = per_cpu_ptr(zone->pageset, cpu);
  6853. drain_zonestat(zone, pset);
  6854. }
  6855. free_percpu(zone->pageset);
  6856. zone->pageset = &boot_pageset;
  6857. }
  6858. local_irq_restore(flags);
  6859. }
  6860. #ifdef CONFIG_MEMORY_HOTREMOVE
  6861. /*
  6862. * All pages in the range must be in a single zone and isolated
  6863. * before calling this.
  6864. */
  6865. void
  6866. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6867. {
  6868. struct page *page;
  6869. struct zone *zone;
  6870. unsigned int order, i;
  6871. unsigned long pfn;
  6872. unsigned long flags;
  6873. /* find the first valid pfn */
  6874. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6875. if (pfn_valid(pfn))
  6876. break;
  6877. if (pfn == end_pfn)
  6878. return;
  6879. offline_mem_sections(pfn, end_pfn);
  6880. zone = page_zone(pfn_to_page(pfn));
  6881. spin_lock_irqsave(&zone->lock, flags);
  6882. pfn = start_pfn;
  6883. while (pfn < end_pfn) {
  6884. if (!pfn_valid(pfn)) {
  6885. pfn++;
  6886. continue;
  6887. }
  6888. page = pfn_to_page(pfn);
  6889. /*
  6890. * The HWPoisoned page may be not in buddy system, and
  6891. * page_count() is not 0.
  6892. */
  6893. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6894. pfn++;
  6895. SetPageReserved(page);
  6896. continue;
  6897. }
  6898. BUG_ON(page_count(page));
  6899. BUG_ON(!PageBuddy(page));
  6900. order = page_order(page);
  6901. #ifdef CONFIG_DEBUG_VM
  6902. pr_info("remove from free list %lx %d %lx\n",
  6903. pfn, 1 << order, end_pfn);
  6904. #endif
  6905. list_del(&page->lru);
  6906. rmv_page_order(page);
  6907. zone->free_area[order].nr_free--;
  6908. for (i = 0; i < (1 << order); i++)
  6909. SetPageReserved((page+i));
  6910. pfn += (1 << order);
  6911. }
  6912. spin_unlock_irqrestore(&zone->lock, flags);
  6913. }
  6914. #endif
  6915. bool is_free_buddy_page(struct page *page)
  6916. {
  6917. struct zone *zone = page_zone(page);
  6918. unsigned long pfn = page_to_pfn(page);
  6919. unsigned long flags;
  6920. unsigned int order;
  6921. spin_lock_irqsave(&zone->lock, flags);
  6922. for (order = 0; order < MAX_ORDER; order++) {
  6923. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6924. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6925. break;
  6926. }
  6927. spin_unlock_irqrestore(&zone->lock, flags);
  6928. return order < MAX_ORDER;
  6929. }