node.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "xattr.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  25. static struct kmem_cache *nat_entry_slab;
  26. static struct kmem_cache *free_nid_slab;
  27. static struct kmem_cache *nat_entry_set_slab;
  28. static struct kmem_cache *fsync_node_entry_slab;
  29. /*
  30. * Check whether the given nid is within node id range.
  31. */
  32. int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  33. {
  34. if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  35. set_sbi_flag(sbi, SBI_NEED_FSCK);
  36. f2fs_msg(sbi->sb, KERN_WARNING,
  37. "%s: out-of-range nid=%x, run fsck to fix.",
  38. __func__, nid);
  39. return -EINVAL;
  40. }
  41. return 0;
  42. }
  43. bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  44. {
  45. struct f2fs_nm_info *nm_i = NM_I(sbi);
  46. struct sysinfo val;
  47. unsigned long avail_ram;
  48. unsigned long mem_size = 0;
  49. bool res = false;
  50. si_meminfo(&val);
  51. /* only uses low memory */
  52. avail_ram = val.totalram - val.totalhigh;
  53. /*
  54. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  55. */
  56. if (type == FREE_NIDS) {
  57. mem_size = (nm_i->nid_cnt[FREE_NID] *
  58. sizeof(struct free_nid)) >> PAGE_SHIFT;
  59. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  60. } else if (type == NAT_ENTRIES) {
  61. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  62. PAGE_SHIFT;
  63. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  64. if (excess_cached_nats(sbi))
  65. res = false;
  66. } else if (type == DIRTY_DENTS) {
  67. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  68. return false;
  69. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  70. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  71. } else if (type == INO_ENTRIES) {
  72. int i;
  73. for (i = 0; i < MAX_INO_ENTRY; i++)
  74. mem_size += sbi->im[i].ino_num *
  75. sizeof(struct ino_entry);
  76. mem_size >>= PAGE_SHIFT;
  77. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  78. } else if (type == EXTENT_CACHE) {
  79. mem_size = (atomic_read(&sbi->total_ext_tree) *
  80. sizeof(struct extent_tree) +
  81. atomic_read(&sbi->total_ext_node) *
  82. sizeof(struct extent_node)) >> PAGE_SHIFT;
  83. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  84. } else if (type == INMEM_PAGES) {
  85. /* it allows 20% / total_ram for inmemory pages */
  86. mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  87. res = mem_size < (val.totalram / 5);
  88. } else {
  89. if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  90. return true;
  91. }
  92. return res;
  93. }
  94. static void clear_node_page_dirty(struct page *page)
  95. {
  96. if (PageDirty(page)) {
  97. f2fs_clear_page_cache_dirty_tag(page);
  98. clear_page_dirty_for_io(page);
  99. dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  100. }
  101. ClearPageUptodate(page);
  102. }
  103. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  104. {
  105. return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
  106. }
  107. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  108. {
  109. struct page *src_page;
  110. struct page *dst_page;
  111. pgoff_t dst_off;
  112. void *src_addr;
  113. void *dst_addr;
  114. struct f2fs_nm_info *nm_i = NM_I(sbi);
  115. dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
  116. /* get current nat block page with lock */
  117. src_page = get_current_nat_page(sbi, nid);
  118. dst_page = f2fs_grab_meta_page(sbi, dst_off);
  119. f2fs_bug_on(sbi, PageDirty(src_page));
  120. src_addr = page_address(src_page);
  121. dst_addr = page_address(dst_page);
  122. memcpy(dst_addr, src_addr, PAGE_SIZE);
  123. set_page_dirty(dst_page);
  124. f2fs_put_page(src_page, 1);
  125. set_to_next_nat(nm_i, nid);
  126. return dst_page;
  127. }
  128. static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
  129. {
  130. struct nat_entry *new;
  131. if (no_fail)
  132. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  133. else
  134. new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
  135. if (new) {
  136. nat_set_nid(new, nid);
  137. nat_reset_flag(new);
  138. }
  139. return new;
  140. }
  141. static void __free_nat_entry(struct nat_entry *e)
  142. {
  143. kmem_cache_free(nat_entry_slab, e);
  144. }
  145. /* must be locked by nat_tree_lock */
  146. static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
  147. struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
  148. {
  149. if (no_fail)
  150. f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
  151. else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
  152. return NULL;
  153. if (raw_ne)
  154. node_info_from_raw_nat(&ne->ni, raw_ne);
  155. spin_lock(&nm_i->nat_list_lock);
  156. list_add_tail(&ne->list, &nm_i->nat_entries);
  157. spin_unlock(&nm_i->nat_list_lock);
  158. nm_i->nat_cnt++;
  159. return ne;
  160. }
  161. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  162. {
  163. struct nat_entry *ne;
  164. ne = radix_tree_lookup(&nm_i->nat_root, n);
  165. /* for recent accessed nat entry, move it to tail of lru list */
  166. if (ne && !get_nat_flag(ne, IS_DIRTY)) {
  167. spin_lock(&nm_i->nat_list_lock);
  168. if (!list_empty(&ne->list))
  169. list_move_tail(&ne->list, &nm_i->nat_entries);
  170. spin_unlock(&nm_i->nat_list_lock);
  171. }
  172. return ne;
  173. }
  174. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  175. nid_t start, unsigned int nr, struct nat_entry **ep)
  176. {
  177. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  178. }
  179. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  180. {
  181. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  182. nm_i->nat_cnt--;
  183. __free_nat_entry(e);
  184. }
  185. static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
  186. struct nat_entry *ne)
  187. {
  188. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  189. struct nat_entry_set *head;
  190. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  191. if (!head) {
  192. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
  193. INIT_LIST_HEAD(&head->entry_list);
  194. INIT_LIST_HEAD(&head->set_list);
  195. head->set = set;
  196. head->entry_cnt = 0;
  197. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  198. }
  199. return head;
  200. }
  201. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  202. struct nat_entry *ne)
  203. {
  204. struct nat_entry_set *head;
  205. bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
  206. if (!new_ne)
  207. head = __grab_nat_entry_set(nm_i, ne);
  208. /*
  209. * update entry_cnt in below condition:
  210. * 1. update NEW_ADDR to valid block address;
  211. * 2. update old block address to new one;
  212. */
  213. if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
  214. !get_nat_flag(ne, IS_DIRTY)))
  215. head->entry_cnt++;
  216. set_nat_flag(ne, IS_PREALLOC, new_ne);
  217. if (get_nat_flag(ne, IS_DIRTY))
  218. goto refresh_list;
  219. nm_i->dirty_nat_cnt++;
  220. set_nat_flag(ne, IS_DIRTY, true);
  221. refresh_list:
  222. spin_lock(&nm_i->nat_list_lock);
  223. if (new_ne)
  224. list_del_init(&ne->list);
  225. else
  226. list_move_tail(&ne->list, &head->entry_list);
  227. spin_unlock(&nm_i->nat_list_lock);
  228. }
  229. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  230. struct nat_entry_set *set, struct nat_entry *ne)
  231. {
  232. spin_lock(&nm_i->nat_list_lock);
  233. list_move_tail(&ne->list, &nm_i->nat_entries);
  234. spin_unlock(&nm_i->nat_list_lock);
  235. set_nat_flag(ne, IS_DIRTY, false);
  236. set->entry_cnt--;
  237. nm_i->dirty_nat_cnt--;
  238. }
  239. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  240. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  241. {
  242. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  243. start, nr);
  244. }
  245. bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
  246. {
  247. return NODE_MAPPING(sbi) == page->mapping &&
  248. IS_DNODE(page) && is_cold_node(page);
  249. }
  250. void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
  251. {
  252. spin_lock_init(&sbi->fsync_node_lock);
  253. INIT_LIST_HEAD(&sbi->fsync_node_list);
  254. sbi->fsync_seg_id = 0;
  255. sbi->fsync_node_num = 0;
  256. }
  257. static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
  258. struct page *page)
  259. {
  260. struct fsync_node_entry *fn;
  261. unsigned long flags;
  262. unsigned int seq_id;
  263. fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
  264. get_page(page);
  265. fn->page = page;
  266. INIT_LIST_HEAD(&fn->list);
  267. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  268. list_add_tail(&fn->list, &sbi->fsync_node_list);
  269. fn->seq_id = sbi->fsync_seg_id++;
  270. seq_id = fn->seq_id;
  271. sbi->fsync_node_num++;
  272. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  273. return seq_id;
  274. }
  275. void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
  276. {
  277. struct fsync_node_entry *fn;
  278. unsigned long flags;
  279. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  280. list_for_each_entry(fn, &sbi->fsync_node_list, list) {
  281. if (fn->page == page) {
  282. list_del(&fn->list);
  283. sbi->fsync_node_num--;
  284. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  285. kmem_cache_free(fsync_node_entry_slab, fn);
  286. put_page(page);
  287. return;
  288. }
  289. }
  290. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  291. f2fs_bug_on(sbi, 1);
  292. }
  293. void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
  294. {
  295. unsigned long flags;
  296. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  297. sbi->fsync_seg_id = 0;
  298. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  299. }
  300. int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  301. {
  302. struct f2fs_nm_info *nm_i = NM_I(sbi);
  303. struct nat_entry *e;
  304. bool need = false;
  305. down_read(&nm_i->nat_tree_lock);
  306. e = __lookup_nat_cache(nm_i, nid);
  307. if (e) {
  308. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  309. !get_nat_flag(e, HAS_FSYNCED_INODE))
  310. need = true;
  311. }
  312. up_read(&nm_i->nat_tree_lock);
  313. return need;
  314. }
  315. bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  316. {
  317. struct f2fs_nm_info *nm_i = NM_I(sbi);
  318. struct nat_entry *e;
  319. bool is_cp = true;
  320. down_read(&nm_i->nat_tree_lock);
  321. e = __lookup_nat_cache(nm_i, nid);
  322. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  323. is_cp = false;
  324. up_read(&nm_i->nat_tree_lock);
  325. return is_cp;
  326. }
  327. bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  328. {
  329. struct f2fs_nm_info *nm_i = NM_I(sbi);
  330. struct nat_entry *e;
  331. bool need_update = true;
  332. down_read(&nm_i->nat_tree_lock);
  333. e = __lookup_nat_cache(nm_i, ino);
  334. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  335. (get_nat_flag(e, IS_CHECKPOINTED) ||
  336. get_nat_flag(e, HAS_FSYNCED_INODE)))
  337. need_update = false;
  338. up_read(&nm_i->nat_tree_lock);
  339. return need_update;
  340. }
  341. /* must be locked by nat_tree_lock */
  342. static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
  343. struct f2fs_nat_entry *ne)
  344. {
  345. struct f2fs_nm_info *nm_i = NM_I(sbi);
  346. struct nat_entry *new, *e;
  347. new = __alloc_nat_entry(nid, false);
  348. if (!new)
  349. return;
  350. down_write(&nm_i->nat_tree_lock);
  351. e = __lookup_nat_cache(nm_i, nid);
  352. if (!e)
  353. e = __init_nat_entry(nm_i, new, ne, false);
  354. else
  355. f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
  356. nat_get_blkaddr(e) !=
  357. le32_to_cpu(ne->block_addr) ||
  358. nat_get_version(e) != ne->version);
  359. up_write(&nm_i->nat_tree_lock);
  360. if (e != new)
  361. __free_nat_entry(new);
  362. }
  363. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  364. block_t new_blkaddr, bool fsync_done)
  365. {
  366. struct f2fs_nm_info *nm_i = NM_I(sbi);
  367. struct nat_entry *e;
  368. struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
  369. down_write(&nm_i->nat_tree_lock);
  370. e = __lookup_nat_cache(nm_i, ni->nid);
  371. if (!e) {
  372. e = __init_nat_entry(nm_i, new, NULL, true);
  373. copy_node_info(&e->ni, ni);
  374. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  375. } else if (new_blkaddr == NEW_ADDR) {
  376. /*
  377. * when nid is reallocated,
  378. * previous nat entry can be remained in nat cache.
  379. * So, reinitialize it with new information.
  380. */
  381. copy_node_info(&e->ni, ni);
  382. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  383. }
  384. /* let's free early to reduce memory consumption */
  385. if (e != new)
  386. __free_nat_entry(new);
  387. /* sanity check */
  388. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  389. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  390. new_blkaddr == NULL_ADDR);
  391. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  392. new_blkaddr == NEW_ADDR);
  393. f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
  394. new_blkaddr == NEW_ADDR);
  395. /* increment version no as node is removed */
  396. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  397. unsigned char version = nat_get_version(e);
  398. nat_set_version(e, inc_node_version(version));
  399. }
  400. /* change address */
  401. nat_set_blkaddr(e, new_blkaddr);
  402. if (!is_valid_data_blkaddr(sbi, new_blkaddr))
  403. set_nat_flag(e, IS_CHECKPOINTED, false);
  404. __set_nat_cache_dirty(nm_i, e);
  405. /* update fsync_mark if its inode nat entry is still alive */
  406. if (ni->nid != ni->ino)
  407. e = __lookup_nat_cache(nm_i, ni->ino);
  408. if (e) {
  409. if (fsync_done && ni->nid == ni->ino)
  410. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  411. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  412. }
  413. up_write(&nm_i->nat_tree_lock);
  414. }
  415. int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  416. {
  417. struct f2fs_nm_info *nm_i = NM_I(sbi);
  418. int nr = nr_shrink;
  419. if (!down_write_trylock(&nm_i->nat_tree_lock))
  420. return 0;
  421. spin_lock(&nm_i->nat_list_lock);
  422. while (nr_shrink) {
  423. struct nat_entry *ne;
  424. if (list_empty(&nm_i->nat_entries))
  425. break;
  426. ne = list_first_entry(&nm_i->nat_entries,
  427. struct nat_entry, list);
  428. list_del(&ne->list);
  429. spin_unlock(&nm_i->nat_list_lock);
  430. __del_from_nat_cache(nm_i, ne);
  431. nr_shrink--;
  432. spin_lock(&nm_i->nat_list_lock);
  433. }
  434. spin_unlock(&nm_i->nat_list_lock);
  435. up_write(&nm_i->nat_tree_lock);
  436. return nr - nr_shrink;
  437. }
  438. /*
  439. * This function always returns success
  440. */
  441. int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
  442. struct node_info *ni)
  443. {
  444. struct f2fs_nm_info *nm_i = NM_I(sbi);
  445. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  446. struct f2fs_journal *journal = curseg->journal;
  447. nid_t start_nid = START_NID(nid);
  448. struct f2fs_nat_block *nat_blk;
  449. struct page *page = NULL;
  450. struct f2fs_nat_entry ne;
  451. struct nat_entry *e;
  452. pgoff_t index;
  453. int i;
  454. ni->nid = nid;
  455. /* Check nat cache */
  456. down_read(&nm_i->nat_tree_lock);
  457. e = __lookup_nat_cache(nm_i, nid);
  458. if (e) {
  459. ni->ino = nat_get_ino(e);
  460. ni->blk_addr = nat_get_blkaddr(e);
  461. ni->version = nat_get_version(e);
  462. up_read(&nm_i->nat_tree_lock);
  463. return 0;
  464. }
  465. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  466. /* Check current segment summary */
  467. down_read(&curseg->journal_rwsem);
  468. i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
  469. if (i >= 0) {
  470. ne = nat_in_journal(journal, i);
  471. node_info_from_raw_nat(ni, &ne);
  472. }
  473. up_read(&curseg->journal_rwsem);
  474. if (i >= 0) {
  475. up_read(&nm_i->nat_tree_lock);
  476. goto cache;
  477. }
  478. /* Fill node_info from nat page */
  479. index = current_nat_addr(sbi, nid);
  480. up_read(&nm_i->nat_tree_lock);
  481. page = f2fs_get_meta_page(sbi, index);
  482. if (IS_ERR(page))
  483. return PTR_ERR(page);
  484. nat_blk = (struct f2fs_nat_block *)page_address(page);
  485. ne = nat_blk->entries[nid - start_nid];
  486. node_info_from_raw_nat(ni, &ne);
  487. f2fs_put_page(page, 1);
  488. cache:
  489. /* cache nat entry */
  490. cache_nat_entry(sbi, nid, &ne);
  491. return 0;
  492. }
  493. /*
  494. * readahead MAX_RA_NODE number of node pages.
  495. */
  496. static void f2fs_ra_node_pages(struct page *parent, int start, int n)
  497. {
  498. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  499. struct blk_plug plug;
  500. int i, end;
  501. nid_t nid;
  502. blk_start_plug(&plug);
  503. /* Then, try readahead for siblings of the desired node */
  504. end = start + n;
  505. end = min(end, NIDS_PER_BLOCK);
  506. for (i = start; i < end; i++) {
  507. nid = get_nid(parent, i, false);
  508. f2fs_ra_node_page(sbi, nid);
  509. }
  510. blk_finish_plug(&plug);
  511. }
  512. pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
  513. {
  514. const long direct_index = ADDRS_PER_INODE(dn->inode);
  515. const long direct_blks = ADDRS_PER_BLOCK;
  516. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  517. unsigned int skipped_unit = ADDRS_PER_BLOCK;
  518. int cur_level = dn->cur_level;
  519. int max_level = dn->max_level;
  520. pgoff_t base = 0;
  521. if (!dn->max_level)
  522. return pgofs + 1;
  523. while (max_level-- > cur_level)
  524. skipped_unit *= NIDS_PER_BLOCK;
  525. switch (dn->max_level) {
  526. case 3:
  527. base += 2 * indirect_blks;
  528. case 2:
  529. base += 2 * direct_blks;
  530. case 1:
  531. base += direct_index;
  532. break;
  533. default:
  534. f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
  535. }
  536. return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
  537. }
  538. /*
  539. * The maximum depth is four.
  540. * Offset[0] will have raw inode offset.
  541. */
  542. static int get_node_path(struct inode *inode, long block,
  543. int offset[4], unsigned int noffset[4])
  544. {
  545. const long direct_index = ADDRS_PER_INODE(inode);
  546. const long direct_blks = ADDRS_PER_BLOCK;
  547. const long dptrs_per_blk = NIDS_PER_BLOCK;
  548. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  549. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  550. int n = 0;
  551. int level = 0;
  552. noffset[0] = 0;
  553. if (block < direct_index) {
  554. offset[n] = block;
  555. goto got;
  556. }
  557. block -= direct_index;
  558. if (block < direct_blks) {
  559. offset[n++] = NODE_DIR1_BLOCK;
  560. noffset[n] = 1;
  561. offset[n] = block;
  562. level = 1;
  563. goto got;
  564. }
  565. block -= direct_blks;
  566. if (block < direct_blks) {
  567. offset[n++] = NODE_DIR2_BLOCK;
  568. noffset[n] = 2;
  569. offset[n] = block;
  570. level = 1;
  571. goto got;
  572. }
  573. block -= direct_blks;
  574. if (block < indirect_blks) {
  575. offset[n++] = NODE_IND1_BLOCK;
  576. noffset[n] = 3;
  577. offset[n++] = block / direct_blks;
  578. noffset[n] = 4 + offset[n - 1];
  579. offset[n] = block % direct_blks;
  580. level = 2;
  581. goto got;
  582. }
  583. block -= indirect_blks;
  584. if (block < indirect_blks) {
  585. offset[n++] = NODE_IND2_BLOCK;
  586. noffset[n] = 4 + dptrs_per_blk;
  587. offset[n++] = block / direct_blks;
  588. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  589. offset[n] = block % direct_blks;
  590. level = 2;
  591. goto got;
  592. }
  593. block -= indirect_blks;
  594. if (block < dindirect_blks) {
  595. offset[n++] = NODE_DIND_BLOCK;
  596. noffset[n] = 5 + (dptrs_per_blk * 2);
  597. offset[n++] = block / indirect_blks;
  598. noffset[n] = 6 + (dptrs_per_blk * 2) +
  599. offset[n - 1] * (dptrs_per_blk + 1);
  600. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  601. noffset[n] = 7 + (dptrs_per_blk * 2) +
  602. offset[n - 2] * (dptrs_per_blk + 1) +
  603. offset[n - 1];
  604. offset[n] = block % direct_blks;
  605. level = 3;
  606. goto got;
  607. } else {
  608. return -E2BIG;
  609. }
  610. got:
  611. return level;
  612. }
  613. /*
  614. * Caller should call f2fs_put_dnode(dn).
  615. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  616. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  617. * In the case of RDONLY_NODE, we don't need to care about mutex.
  618. */
  619. int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  620. {
  621. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  622. struct page *npage[4];
  623. struct page *parent = NULL;
  624. int offset[4];
  625. unsigned int noffset[4];
  626. nid_t nids[4];
  627. int level, i = 0;
  628. int err = 0;
  629. level = get_node_path(dn->inode, index, offset, noffset);
  630. if (level < 0)
  631. return level;
  632. nids[0] = dn->inode->i_ino;
  633. npage[0] = dn->inode_page;
  634. if (!npage[0]) {
  635. npage[0] = f2fs_get_node_page(sbi, nids[0]);
  636. if (IS_ERR(npage[0]))
  637. return PTR_ERR(npage[0]);
  638. }
  639. /* if inline_data is set, should not report any block indices */
  640. if (f2fs_has_inline_data(dn->inode) && index) {
  641. err = -ENOENT;
  642. f2fs_put_page(npage[0], 1);
  643. goto release_out;
  644. }
  645. parent = npage[0];
  646. if (level != 0)
  647. nids[1] = get_nid(parent, offset[0], true);
  648. dn->inode_page = npage[0];
  649. dn->inode_page_locked = true;
  650. /* get indirect or direct nodes */
  651. for (i = 1; i <= level; i++) {
  652. bool done = false;
  653. if (!nids[i] && mode == ALLOC_NODE) {
  654. /* alloc new node */
  655. if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
  656. err = -ENOSPC;
  657. goto release_pages;
  658. }
  659. dn->nid = nids[i];
  660. npage[i] = f2fs_new_node_page(dn, noffset[i]);
  661. if (IS_ERR(npage[i])) {
  662. f2fs_alloc_nid_failed(sbi, nids[i]);
  663. err = PTR_ERR(npage[i]);
  664. goto release_pages;
  665. }
  666. set_nid(parent, offset[i - 1], nids[i], i == 1);
  667. f2fs_alloc_nid_done(sbi, nids[i]);
  668. done = true;
  669. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  670. npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
  671. if (IS_ERR(npage[i])) {
  672. err = PTR_ERR(npage[i]);
  673. goto release_pages;
  674. }
  675. done = true;
  676. }
  677. if (i == 1) {
  678. dn->inode_page_locked = false;
  679. unlock_page(parent);
  680. } else {
  681. f2fs_put_page(parent, 1);
  682. }
  683. if (!done) {
  684. npage[i] = f2fs_get_node_page(sbi, nids[i]);
  685. if (IS_ERR(npage[i])) {
  686. err = PTR_ERR(npage[i]);
  687. f2fs_put_page(npage[0], 0);
  688. goto release_out;
  689. }
  690. }
  691. if (i < level) {
  692. parent = npage[i];
  693. nids[i + 1] = get_nid(parent, offset[i], false);
  694. }
  695. }
  696. dn->nid = nids[level];
  697. dn->ofs_in_node = offset[level];
  698. dn->node_page = npage[level];
  699. dn->data_blkaddr = datablock_addr(dn->inode,
  700. dn->node_page, dn->ofs_in_node);
  701. return 0;
  702. release_pages:
  703. f2fs_put_page(parent, 1);
  704. if (i > 1)
  705. f2fs_put_page(npage[0], 0);
  706. release_out:
  707. dn->inode_page = NULL;
  708. dn->node_page = NULL;
  709. if (err == -ENOENT) {
  710. dn->cur_level = i;
  711. dn->max_level = level;
  712. dn->ofs_in_node = offset[level];
  713. }
  714. return err;
  715. }
  716. static int truncate_node(struct dnode_of_data *dn)
  717. {
  718. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  719. struct node_info ni;
  720. int err;
  721. err = f2fs_get_node_info(sbi, dn->nid, &ni);
  722. if (err)
  723. return err;
  724. /* Deallocate node address */
  725. f2fs_invalidate_blocks(sbi, ni.blk_addr);
  726. dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
  727. set_node_addr(sbi, &ni, NULL_ADDR, false);
  728. if (dn->nid == dn->inode->i_ino) {
  729. f2fs_remove_orphan_inode(sbi, dn->nid);
  730. dec_valid_inode_count(sbi);
  731. f2fs_inode_synced(dn->inode);
  732. }
  733. clear_node_page_dirty(dn->node_page);
  734. set_sbi_flag(sbi, SBI_IS_DIRTY);
  735. f2fs_put_page(dn->node_page, 1);
  736. invalidate_mapping_pages(NODE_MAPPING(sbi),
  737. dn->node_page->index, dn->node_page->index);
  738. dn->node_page = NULL;
  739. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  740. return 0;
  741. }
  742. static int truncate_dnode(struct dnode_of_data *dn)
  743. {
  744. struct page *page;
  745. int err;
  746. if (dn->nid == 0)
  747. return 1;
  748. /* get direct node */
  749. page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  750. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  751. return 1;
  752. else if (IS_ERR(page))
  753. return PTR_ERR(page);
  754. /* Make dnode_of_data for parameter */
  755. dn->node_page = page;
  756. dn->ofs_in_node = 0;
  757. f2fs_truncate_data_blocks(dn);
  758. err = truncate_node(dn);
  759. if (err)
  760. return err;
  761. return 1;
  762. }
  763. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  764. int ofs, int depth)
  765. {
  766. struct dnode_of_data rdn = *dn;
  767. struct page *page;
  768. struct f2fs_node *rn;
  769. nid_t child_nid;
  770. unsigned int child_nofs;
  771. int freed = 0;
  772. int i, ret;
  773. if (dn->nid == 0)
  774. return NIDS_PER_BLOCK + 1;
  775. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  776. page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  777. if (IS_ERR(page)) {
  778. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  779. return PTR_ERR(page);
  780. }
  781. f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
  782. rn = F2FS_NODE(page);
  783. if (depth < 3) {
  784. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  785. child_nid = le32_to_cpu(rn->in.nid[i]);
  786. if (child_nid == 0)
  787. continue;
  788. rdn.nid = child_nid;
  789. ret = truncate_dnode(&rdn);
  790. if (ret < 0)
  791. goto out_err;
  792. if (set_nid(page, i, 0, false))
  793. dn->node_changed = true;
  794. }
  795. } else {
  796. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  797. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  798. child_nid = le32_to_cpu(rn->in.nid[i]);
  799. if (child_nid == 0) {
  800. child_nofs += NIDS_PER_BLOCK + 1;
  801. continue;
  802. }
  803. rdn.nid = child_nid;
  804. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  805. if (ret == (NIDS_PER_BLOCK + 1)) {
  806. if (set_nid(page, i, 0, false))
  807. dn->node_changed = true;
  808. child_nofs += ret;
  809. } else if (ret < 0 && ret != -ENOENT) {
  810. goto out_err;
  811. }
  812. }
  813. freed = child_nofs;
  814. }
  815. if (!ofs) {
  816. /* remove current indirect node */
  817. dn->node_page = page;
  818. ret = truncate_node(dn);
  819. if (ret)
  820. goto out_err;
  821. freed++;
  822. } else {
  823. f2fs_put_page(page, 1);
  824. }
  825. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  826. return freed;
  827. out_err:
  828. f2fs_put_page(page, 1);
  829. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  830. return ret;
  831. }
  832. static int truncate_partial_nodes(struct dnode_of_data *dn,
  833. struct f2fs_inode *ri, int *offset, int depth)
  834. {
  835. struct page *pages[2];
  836. nid_t nid[3];
  837. nid_t child_nid;
  838. int err = 0;
  839. int i;
  840. int idx = depth - 2;
  841. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  842. if (!nid[0])
  843. return 0;
  844. /* get indirect nodes in the path */
  845. for (i = 0; i < idx + 1; i++) {
  846. /* reference count'll be increased */
  847. pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  848. if (IS_ERR(pages[i])) {
  849. err = PTR_ERR(pages[i]);
  850. idx = i - 1;
  851. goto fail;
  852. }
  853. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  854. }
  855. f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
  856. /* free direct nodes linked to a partial indirect node */
  857. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  858. child_nid = get_nid(pages[idx], i, false);
  859. if (!child_nid)
  860. continue;
  861. dn->nid = child_nid;
  862. err = truncate_dnode(dn);
  863. if (err < 0)
  864. goto fail;
  865. if (set_nid(pages[idx], i, 0, false))
  866. dn->node_changed = true;
  867. }
  868. if (offset[idx + 1] == 0) {
  869. dn->node_page = pages[idx];
  870. dn->nid = nid[idx];
  871. err = truncate_node(dn);
  872. if (err)
  873. goto fail;
  874. } else {
  875. f2fs_put_page(pages[idx], 1);
  876. }
  877. offset[idx]++;
  878. offset[idx + 1] = 0;
  879. idx--;
  880. fail:
  881. for (i = idx; i >= 0; i--)
  882. f2fs_put_page(pages[i], 1);
  883. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  884. return err;
  885. }
  886. /*
  887. * All the block addresses of data and nodes should be nullified.
  888. */
  889. int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
  890. {
  891. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  892. int err = 0, cont = 1;
  893. int level, offset[4], noffset[4];
  894. unsigned int nofs = 0;
  895. struct f2fs_inode *ri;
  896. struct dnode_of_data dn;
  897. struct page *page;
  898. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  899. level = get_node_path(inode, from, offset, noffset);
  900. if (level < 0)
  901. return level;
  902. page = f2fs_get_node_page(sbi, inode->i_ino);
  903. if (IS_ERR(page)) {
  904. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  905. return PTR_ERR(page);
  906. }
  907. set_new_dnode(&dn, inode, page, NULL, 0);
  908. unlock_page(page);
  909. ri = F2FS_INODE(page);
  910. switch (level) {
  911. case 0:
  912. case 1:
  913. nofs = noffset[1];
  914. break;
  915. case 2:
  916. nofs = noffset[1];
  917. if (!offset[level - 1])
  918. goto skip_partial;
  919. err = truncate_partial_nodes(&dn, ri, offset, level);
  920. if (err < 0 && err != -ENOENT)
  921. goto fail;
  922. nofs += 1 + NIDS_PER_BLOCK;
  923. break;
  924. case 3:
  925. nofs = 5 + 2 * NIDS_PER_BLOCK;
  926. if (!offset[level - 1])
  927. goto skip_partial;
  928. err = truncate_partial_nodes(&dn, ri, offset, level);
  929. if (err < 0 && err != -ENOENT)
  930. goto fail;
  931. break;
  932. default:
  933. BUG();
  934. }
  935. skip_partial:
  936. while (cont) {
  937. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  938. switch (offset[0]) {
  939. case NODE_DIR1_BLOCK:
  940. case NODE_DIR2_BLOCK:
  941. err = truncate_dnode(&dn);
  942. break;
  943. case NODE_IND1_BLOCK:
  944. case NODE_IND2_BLOCK:
  945. err = truncate_nodes(&dn, nofs, offset[1], 2);
  946. break;
  947. case NODE_DIND_BLOCK:
  948. err = truncate_nodes(&dn, nofs, offset[1], 3);
  949. cont = 0;
  950. break;
  951. default:
  952. BUG();
  953. }
  954. if (err < 0 && err != -ENOENT)
  955. goto fail;
  956. if (offset[1] == 0 &&
  957. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  958. lock_page(page);
  959. BUG_ON(page->mapping != NODE_MAPPING(sbi));
  960. f2fs_wait_on_page_writeback(page, NODE, true);
  961. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  962. set_page_dirty(page);
  963. unlock_page(page);
  964. }
  965. offset[1] = 0;
  966. offset[0]++;
  967. nofs += err;
  968. }
  969. fail:
  970. f2fs_put_page(page, 0);
  971. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  972. return err > 0 ? 0 : err;
  973. }
  974. /* caller must lock inode page */
  975. int f2fs_truncate_xattr_node(struct inode *inode)
  976. {
  977. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  978. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  979. struct dnode_of_data dn;
  980. struct page *npage;
  981. int err;
  982. if (!nid)
  983. return 0;
  984. npage = f2fs_get_node_page(sbi, nid);
  985. if (IS_ERR(npage))
  986. return PTR_ERR(npage);
  987. set_new_dnode(&dn, inode, NULL, npage, nid);
  988. err = truncate_node(&dn);
  989. if (err) {
  990. f2fs_put_page(npage, 1);
  991. return err;
  992. }
  993. f2fs_i_xnid_write(inode, 0);
  994. return 0;
  995. }
  996. /*
  997. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  998. * f2fs_unlock_op().
  999. */
  1000. int f2fs_remove_inode_page(struct inode *inode)
  1001. {
  1002. struct dnode_of_data dn;
  1003. int err;
  1004. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  1005. err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  1006. if (err)
  1007. return err;
  1008. err = f2fs_truncate_xattr_node(inode);
  1009. if (err) {
  1010. f2fs_put_dnode(&dn);
  1011. return err;
  1012. }
  1013. /* remove potential inline_data blocks */
  1014. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  1015. S_ISLNK(inode->i_mode))
  1016. f2fs_truncate_data_blocks_range(&dn, 1);
  1017. /* 0 is possible, after f2fs_new_inode() has failed */
  1018. if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
  1019. f2fs_put_dnode(&dn);
  1020. return -EIO;
  1021. }
  1022. f2fs_bug_on(F2FS_I_SB(inode),
  1023. inode->i_blocks != 0 && inode->i_blocks != 8);
  1024. /* will put inode & node pages */
  1025. err = truncate_node(&dn);
  1026. if (err) {
  1027. f2fs_put_dnode(&dn);
  1028. return err;
  1029. }
  1030. return 0;
  1031. }
  1032. struct page *f2fs_new_inode_page(struct inode *inode)
  1033. {
  1034. struct dnode_of_data dn;
  1035. /* allocate inode page for new inode */
  1036. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  1037. /* caller should f2fs_put_page(page, 1); */
  1038. return f2fs_new_node_page(&dn, 0);
  1039. }
  1040. struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  1041. {
  1042. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  1043. struct node_info new_ni;
  1044. struct page *page;
  1045. int err;
  1046. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  1047. return ERR_PTR(-EPERM);
  1048. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
  1049. if (!page)
  1050. return ERR_PTR(-ENOMEM);
  1051. if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
  1052. goto fail;
  1053. #ifdef CONFIG_F2FS_CHECK_FS
  1054. err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
  1055. if (err) {
  1056. dec_valid_node_count(sbi, dn->inode, !ofs);
  1057. goto fail;
  1058. }
  1059. f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
  1060. #endif
  1061. new_ni.nid = dn->nid;
  1062. new_ni.ino = dn->inode->i_ino;
  1063. new_ni.blk_addr = NULL_ADDR;
  1064. new_ni.flag = 0;
  1065. new_ni.version = 0;
  1066. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1067. f2fs_wait_on_page_writeback(page, NODE, true);
  1068. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  1069. set_cold_node(page, S_ISDIR(dn->inode->i_mode));
  1070. if (!PageUptodate(page))
  1071. SetPageUptodate(page);
  1072. if (set_page_dirty(page))
  1073. dn->node_changed = true;
  1074. if (f2fs_has_xattr_block(ofs))
  1075. f2fs_i_xnid_write(dn->inode, dn->nid);
  1076. if (ofs == 0)
  1077. inc_valid_inode_count(sbi);
  1078. return page;
  1079. fail:
  1080. clear_node_page_dirty(page);
  1081. f2fs_put_page(page, 1);
  1082. return ERR_PTR(err);
  1083. }
  1084. /*
  1085. * Caller should do after getting the following values.
  1086. * 0: f2fs_put_page(page, 0)
  1087. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  1088. */
  1089. static int read_node_page(struct page *page, int op_flags)
  1090. {
  1091. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1092. struct node_info ni;
  1093. struct f2fs_io_info fio = {
  1094. .sbi = sbi,
  1095. .type = NODE,
  1096. .op = REQ_OP_READ,
  1097. .op_flags = op_flags,
  1098. .page = page,
  1099. .encrypted_page = NULL,
  1100. };
  1101. int err;
  1102. if (PageUptodate(page)) {
  1103. #ifdef CONFIG_F2FS_CHECK_FS
  1104. f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
  1105. #endif
  1106. return LOCKED_PAGE;
  1107. }
  1108. err = f2fs_get_node_info(sbi, page->index, &ni);
  1109. if (err)
  1110. return err;
  1111. if (unlikely(ni.blk_addr == NULL_ADDR) ||
  1112. is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
  1113. ClearPageUptodate(page);
  1114. return -ENOENT;
  1115. }
  1116. fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
  1117. return f2fs_submit_page_bio(&fio);
  1118. }
  1119. /*
  1120. * Readahead a node page
  1121. */
  1122. void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  1123. {
  1124. struct page *apage;
  1125. int err;
  1126. if (!nid)
  1127. return;
  1128. if (f2fs_check_nid_range(sbi, nid))
  1129. return;
  1130. apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
  1131. if (apage)
  1132. return;
  1133. apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1134. if (!apage)
  1135. return;
  1136. err = read_node_page(apage, REQ_RAHEAD);
  1137. f2fs_put_page(apage, err ? 1 : 0);
  1138. }
  1139. static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
  1140. struct page *parent, int start)
  1141. {
  1142. struct page *page;
  1143. int err;
  1144. if (!nid)
  1145. return ERR_PTR(-ENOENT);
  1146. if (f2fs_check_nid_range(sbi, nid))
  1147. return ERR_PTR(-EINVAL);
  1148. repeat:
  1149. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  1150. if (!page)
  1151. return ERR_PTR(-ENOMEM);
  1152. err = read_node_page(page, 0);
  1153. if (err < 0) {
  1154. f2fs_put_page(page, 1);
  1155. return ERR_PTR(err);
  1156. } else if (err == LOCKED_PAGE) {
  1157. err = 0;
  1158. goto page_hit;
  1159. }
  1160. if (parent)
  1161. f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
  1162. lock_page(page);
  1163. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1164. f2fs_put_page(page, 1);
  1165. goto repeat;
  1166. }
  1167. if (unlikely(!PageUptodate(page))) {
  1168. err = -EIO;
  1169. goto out_err;
  1170. }
  1171. if (!f2fs_inode_chksum_verify(sbi, page)) {
  1172. err = -EBADMSG;
  1173. goto out_err;
  1174. }
  1175. page_hit:
  1176. if(unlikely(nid != nid_of_node(page))) {
  1177. f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
  1178. "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
  1179. nid, nid_of_node(page), ino_of_node(page),
  1180. ofs_of_node(page), cpver_of_node(page),
  1181. next_blkaddr_of_node(page));
  1182. err = -EINVAL;
  1183. out_err:
  1184. ClearPageUptodate(page);
  1185. f2fs_put_page(page, 1);
  1186. return ERR_PTR(err);
  1187. }
  1188. return page;
  1189. }
  1190. struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  1191. {
  1192. return __get_node_page(sbi, nid, NULL, 0);
  1193. }
  1194. struct page *f2fs_get_node_page_ra(struct page *parent, int start)
  1195. {
  1196. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  1197. nid_t nid = get_nid(parent, start, false);
  1198. return __get_node_page(sbi, nid, parent, start);
  1199. }
  1200. static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
  1201. {
  1202. struct inode *inode;
  1203. struct page *page;
  1204. int ret;
  1205. /* should flush inline_data before evict_inode */
  1206. inode = ilookup(sbi->sb, ino);
  1207. if (!inode)
  1208. return;
  1209. page = f2fs_pagecache_get_page(inode->i_mapping, 0,
  1210. FGP_LOCK|FGP_NOWAIT, 0);
  1211. if (!page)
  1212. goto iput_out;
  1213. if (!PageUptodate(page))
  1214. goto page_out;
  1215. if (!PageDirty(page))
  1216. goto page_out;
  1217. if (!clear_page_dirty_for_io(page))
  1218. goto page_out;
  1219. ret = f2fs_write_inline_data(inode, page);
  1220. inode_dec_dirty_pages(inode);
  1221. f2fs_remove_dirty_inode(inode);
  1222. if (ret)
  1223. set_page_dirty(page);
  1224. page_out:
  1225. f2fs_put_page(page, 1);
  1226. iput_out:
  1227. iput(inode);
  1228. }
  1229. static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
  1230. {
  1231. pgoff_t index;
  1232. struct pagevec pvec;
  1233. struct page *last_page = NULL;
  1234. int nr_pages;
  1235. pagevec_init(&pvec);
  1236. index = 0;
  1237. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1238. PAGECACHE_TAG_DIRTY))) {
  1239. int i;
  1240. for (i = 0; i < nr_pages; i++) {
  1241. struct page *page = pvec.pages[i];
  1242. if (unlikely(f2fs_cp_error(sbi))) {
  1243. f2fs_put_page(last_page, 0);
  1244. pagevec_release(&pvec);
  1245. return ERR_PTR(-EIO);
  1246. }
  1247. if (!IS_DNODE(page) || !is_cold_node(page))
  1248. continue;
  1249. if (ino_of_node(page) != ino)
  1250. continue;
  1251. lock_page(page);
  1252. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1253. continue_unlock:
  1254. unlock_page(page);
  1255. continue;
  1256. }
  1257. if (ino_of_node(page) != ino)
  1258. goto continue_unlock;
  1259. if (!PageDirty(page)) {
  1260. /* someone wrote it for us */
  1261. goto continue_unlock;
  1262. }
  1263. if (last_page)
  1264. f2fs_put_page(last_page, 0);
  1265. get_page(page);
  1266. last_page = page;
  1267. unlock_page(page);
  1268. }
  1269. pagevec_release(&pvec);
  1270. cond_resched();
  1271. }
  1272. return last_page;
  1273. }
  1274. static int __write_node_page(struct page *page, bool atomic, bool *submitted,
  1275. struct writeback_control *wbc, bool do_balance,
  1276. enum iostat_type io_type, unsigned int *seq_id)
  1277. {
  1278. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1279. nid_t nid;
  1280. struct node_info ni;
  1281. struct f2fs_io_info fio = {
  1282. .sbi = sbi,
  1283. .ino = ino_of_node(page),
  1284. .type = NODE,
  1285. .op = REQ_OP_WRITE,
  1286. .op_flags = wbc_to_write_flags(wbc),
  1287. .page = page,
  1288. .encrypted_page = NULL,
  1289. .submitted = false,
  1290. .io_type = io_type,
  1291. .io_wbc = wbc,
  1292. };
  1293. unsigned int seq;
  1294. trace_f2fs_writepage(page, NODE);
  1295. if (unlikely(f2fs_cp_error(sbi)))
  1296. goto redirty_out;
  1297. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1298. goto redirty_out;
  1299. if (wbc->sync_mode == WB_SYNC_NONE &&
  1300. IS_DNODE(page) && is_cold_node(page))
  1301. goto redirty_out;
  1302. /* get old block addr of this node page */
  1303. nid = nid_of_node(page);
  1304. f2fs_bug_on(sbi, page->index != nid);
  1305. if (f2fs_get_node_info(sbi, nid, &ni))
  1306. goto redirty_out;
  1307. if (wbc->for_reclaim) {
  1308. if (!down_read_trylock(&sbi->node_write))
  1309. goto redirty_out;
  1310. } else {
  1311. down_read(&sbi->node_write);
  1312. }
  1313. /* This page is already truncated */
  1314. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1315. ClearPageUptodate(page);
  1316. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1317. up_read(&sbi->node_write);
  1318. unlock_page(page);
  1319. return 0;
  1320. }
  1321. if (__is_valid_data_blkaddr(ni.blk_addr) &&
  1322. !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC))
  1323. goto redirty_out;
  1324. if (atomic && !test_opt(sbi, NOBARRIER))
  1325. fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  1326. set_page_writeback(page);
  1327. ClearPageError(page);
  1328. if (f2fs_in_warm_node_list(sbi, page)) {
  1329. seq = f2fs_add_fsync_node_entry(sbi, page);
  1330. if (seq_id)
  1331. *seq_id = seq;
  1332. }
  1333. fio.old_blkaddr = ni.blk_addr;
  1334. f2fs_do_write_node_page(nid, &fio);
  1335. set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
  1336. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1337. up_read(&sbi->node_write);
  1338. if (wbc->for_reclaim) {
  1339. f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
  1340. page->index, NODE);
  1341. submitted = NULL;
  1342. }
  1343. unlock_page(page);
  1344. if (unlikely(f2fs_cp_error(sbi))) {
  1345. f2fs_submit_merged_write(sbi, NODE);
  1346. submitted = NULL;
  1347. }
  1348. if (submitted)
  1349. *submitted = fio.submitted;
  1350. if (do_balance)
  1351. f2fs_balance_fs(sbi, false);
  1352. return 0;
  1353. redirty_out:
  1354. redirty_page_for_writepage(wbc, page);
  1355. return AOP_WRITEPAGE_ACTIVATE;
  1356. }
  1357. void f2fs_move_node_page(struct page *node_page, int gc_type)
  1358. {
  1359. if (gc_type == FG_GC) {
  1360. struct writeback_control wbc = {
  1361. .sync_mode = WB_SYNC_ALL,
  1362. .nr_to_write = 1,
  1363. .for_reclaim = 0,
  1364. };
  1365. set_page_dirty(node_page);
  1366. f2fs_wait_on_page_writeback(node_page, NODE, true);
  1367. f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
  1368. if (!clear_page_dirty_for_io(node_page))
  1369. goto out_page;
  1370. if (__write_node_page(node_page, false, NULL,
  1371. &wbc, false, FS_GC_NODE_IO, NULL))
  1372. unlock_page(node_page);
  1373. goto release_page;
  1374. } else {
  1375. /* set page dirty and write it */
  1376. if (!PageWriteback(node_page))
  1377. set_page_dirty(node_page);
  1378. }
  1379. out_page:
  1380. unlock_page(node_page);
  1381. release_page:
  1382. f2fs_put_page(node_page, 0);
  1383. }
  1384. static int f2fs_write_node_page(struct page *page,
  1385. struct writeback_control *wbc)
  1386. {
  1387. return __write_node_page(page, false, NULL, wbc, false,
  1388. FS_NODE_IO, NULL);
  1389. }
  1390. int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
  1391. struct writeback_control *wbc, bool atomic,
  1392. unsigned int *seq_id)
  1393. {
  1394. pgoff_t index;
  1395. pgoff_t last_idx = ULONG_MAX;
  1396. struct pagevec pvec;
  1397. int ret = 0;
  1398. struct page *last_page = NULL;
  1399. bool marked = false;
  1400. nid_t ino = inode->i_ino;
  1401. int nr_pages;
  1402. if (atomic) {
  1403. last_page = last_fsync_dnode(sbi, ino);
  1404. if (IS_ERR_OR_NULL(last_page))
  1405. return PTR_ERR_OR_ZERO(last_page);
  1406. }
  1407. retry:
  1408. pagevec_init(&pvec);
  1409. index = 0;
  1410. while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1411. PAGECACHE_TAG_DIRTY))) {
  1412. int i;
  1413. for (i = 0; i < nr_pages; i++) {
  1414. struct page *page = pvec.pages[i];
  1415. bool submitted = false;
  1416. if (unlikely(f2fs_cp_error(sbi))) {
  1417. f2fs_put_page(last_page, 0);
  1418. pagevec_release(&pvec);
  1419. ret = -EIO;
  1420. goto out;
  1421. }
  1422. if (!IS_DNODE(page) || !is_cold_node(page))
  1423. continue;
  1424. if (ino_of_node(page) != ino)
  1425. continue;
  1426. lock_page(page);
  1427. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1428. continue_unlock:
  1429. unlock_page(page);
  1430. continue;
  1431. }
  1432. if (ino_of_node(page) != ino)
  1433. goto continue_unlock;
  1434. if (!PageDirty(page) && page != last_page) {
  1435. /* someone wrote it for us */
  1436. goto continue_unlock;
  1437. }
  1438. f2fs_wait_on_page_writeback(page, NODE, true);
  1439. BUG_ON(PageWriteback(page));
  1440. set_fsync_mark(page, 0);
  1441. set_dentry_mark(page, 0);
  1442. if (!atomic || page == last_page) {
  1443. set_fsync_mark(page, 1);
  1444. if (IS_INODE(page)) {
  1445. if (is_inode_flag_set(inode,
  1446. FI_DIRTY_INODE))
  1447. f2fs_update_inode(inode, page);
  1448. set_dentry_mark(page,
  1449. f2fs_need_dentry_mark(sbi, ino));
  1450. }
  1451. /* may be written by other thread */
  1452. if (!PageDirty(page))
  1453. set_page_dirty(page);
  1454. }
  1455. if (!clear_page_dirty_for_io(page))
  1456. goto continue_unlock;
  1457. ret = __write_node_page(page, atomic &&
  1458. page == last_page,
  1459. &submitted, wbc, true,
  1460. FS_NODE_IO, seq_id);
  1461. if (ret) {
  1462. unlock_page(page);
  1463. f2fs_put_page(last_page, 0);
  1464. break;
  1465. } else if (submitted) {
  1466. last_idx = page->index;
  1467. }
  1468. if (page == last_page) {
  1469. f2fs_put_page(page, 0);
  1470. marked = true;
  1471. break;
  1472. }
  1473. }
  1474. pagevec_release(&pvec);
  1475. cond_resched();
  1476. if (ret || marked)
  1477. break;
  1478. }
  1479. if (!ret && atomic && !marked) {
  1480. f2fs_msg(sbi->sb, KERN_DEBUG,
  1481. "Retry to write fsync mark: ino=%u, idx=%lx",
  1482. ino, last_page->index);
  1483. lock_page(last_page);
  1484. f2fs_wait_on_page_writeback(last_page, NODE, true);
  1485. set_page_dirty(last_page);
  1486. unlock_page(last_page);
  1487. goto retry;
  1488. }
  1489. out:
  1490. if (last_idx != ULONG_MAX)
  1491. f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
  1492. return ret ? -EIO: 0;
  1493. }
  1494. int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
  1495. struct writeback_control *wbc,
  1496. bool do_balance, enum iostat_type io_type)
  1497. {
  1498. pgoff_t index;
  1499. struct pagevec pvec;
  1500. int step = 0;
  1501. int nwritten = 0;
  1502. int ret = 0;
  1503. int nr_pages, done = 0;
  1504. pagevec_init(&pvec);
  1505. next_step:
  1506. index = 0;
  1507. while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
  1508. NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
  1509. int i;
  1510. for (i = 0; i < nr_pages; i++) {
  1511. struct page *page = pvec.pages[i];
  1512. bool submitted = false;
  1513. /* give a priority to WB_SYNC threads */
  1514. if (atomic_read(&sbi->wb_sync_req[NODE]) &&
  1515. wbc->sync_mode == WB_SYNC_NONE) {
  1516. done = 1;
  1517. break;
  1518. }
  1519. /*
  1520. * flushing sequence with step:
  1521. * 0. indirect nodes
  1522. * 1. dentry dnodes
  1523. * 2. file dnodes
  1524. */
  1525. if (step == 0 && IS_DNODE(page))
  1526. continue;
  1527. if (step == 1 && (!IS_DNODE(page) ||
  1528. is_cold_node(page)))
  1529. continue;
  1530. if (step == 2 && (!IS_DNODE(page) ||
  1531. !is_cold_node(page)))
  1532. continue;
  1533. lock_node:
  1534. if (wbc->sync_mode == WB_SYNC_ALL)
  1535. lock_page(page);
  1536. else if (!trylock_page(page))
  1537. continue;
  1538. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1539. continue_unlock:
  1540. unlock_page(page);
  1541. continue;
  1542. }
  1543. if (!PageDirty(page)) {
  1544. /* someone wrote it for us */
  1545. goto continue_unlock;
  1546. }
  1547. /* flush inline_data */
  1548. if (is_inline_node(page)) {
  1549. clear_inline_node(page);
  1550. unlock_page(page);
  1551. flush_inline_data(sbi, ino_of_node(page));
  1552. goto lock_node;
  1553. }
  1554. f2fs_wait_on_page_writeback(page, NODE, true);
  1555. BUG_ON(PageWriteback(page));
  1556. if (!clear_page_dirty_for_io(page))
  1557. goto continue_unlock;
  1558. set_fsync_mark(page, 0);
  1559. set_dentry_mark(page, 0);
  1560. ret = __write_node_page(page, false, &submitted,
  1561. wbc, do_balance, io_type, NULL);
  1562. if (ret)
  1563. unlock_page(page);
  1564. else if (submitted)
  1565. nwritten++;
  1566. if (--wbc->nr_to_write == 0)
  1567. break;
  1568. }
  1569. pagevec_release(&pvec);
  1570. cond_resched();
  1571. if (wbc->nr_to_write == 0) {
  1572. step = 2;
  1573. break;
  1574. }
  1575. }
  1576. if (step < 2) {
  1577. if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
  1578. goto out;
  1579. step++;
  1580. goto next_step;
  1581. }
  1582. out:
  1583. if (nwritten)
  1584. f2fs_submit_merged_write(sbi, NODE);
  1585. if (unlikely(f2fs_cp_error(sbi)))
  1586. return -EIO;
  1587. return ret;
  1588. }
  1589. int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
  1590. unsigned int seq_id)
  1591. {
  1592. struct fsync_node_entry *fn;
  1593. struct page *page;
  1594. struct list_head *head = &sbi->fsync_node_list;
  1595. unsigned long flags;
  1596. unsigned int cur_seq_id = 0;
  1597. int ret2, ret = 0;
  1598. while (seq_id && cur_seq_id < seq_id) {
  1599. spin_lock_irqsave(&sbi->fsync_node_lock, flags);
  1600. if (list_empty(head)) {
  1601. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1602. break;
  1603. }
  1604. fn = list_first_entry(head, struct fsync_node_entry, list);
  1605. if (fn->seq_id > seq_id) {
  1606. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1607. break;
  1608. }
  1609. cur_seq_id = fn->seq_id;
  1610. page = fn->page;
  1611. get_page(page);
  1612. spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
  1613. f2fs_wait_on_page_writeback(page, NODE, true);
  1614. if (TestClearPageError(page))
  1615. ret = -EIO;
  1616. put_page(page);
  1617. if (ret)
  1618. break;
  1619. }
  1620. ret2 = filemap_check_errors(NODE_MAPPING(sbi));
  1621. if (!ret)
  1622. ret = ret2;
  1623. return ret;
  1624. }
  1625. static int f2fs_write_node_pages(struct address_space *mapping,
  1626. struct writeback_control *wbc)
  1627. {
  1628. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1629. struct blk_plug plug;
  1630. long diff;
  1631. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1632. goto skip_write;
  1633. /* balancing f2fs's metadata in background */
  1634. f2fs_balance_fs_bg(sbi);
  1635. /* collect a number of dirty node pages and write together */
  1636. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1637. goto skip_write;
  1638. if (wbc->sync_mode == WB_SYNC_ALL)
  1639. atomic_inc(&sbi->wb_sync_req[NODE]);
  1640. else if (atomic_read(&sbi->wb_sync_req[NODE]))
  1641. goto skip_write;
  1642. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1643. diff = nr_pages_to_write(sbi, NODE, wbc);
  1644. blk_start_plug(&plug);
  1645. f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
  1646. blk_finish_plug(&plug);
  1647. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1648. if (wbc->sync_mode == WB_SYNC_ALL)
  1649. atomic_dec(&sbi->wb_sync_req[NODE]);
  1650. return 0;
  1651. skip_write:
  1652. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1653. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1654. return 0;
  1655. }
  1656. static int f2fs_set_node_page_dirty(struct page *page)
  1657. {
  1658. trace_f2fs_set_page_dirty(page, NODE);
  1659. if (!PageUptodate(page))
  1660. SetPageUptodate(page);
  1661. #ifdef CONFIG_F2FS_CHECK_FS
  1662. if (IS_INODE(page))
  1663. f2fs_inode_chksum_set(F2FS_P_SB(page), page);
  1664. #endif
  1665. if (!PageDirty(page)) {
  1666. __set_page_dirty_nobuffers(page);
  1667. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1668. SetPagePrivate(page);
  1669. f2fs_trace_pid(page);
  1670. return 1;
  1671. }
  1672. return 0;
  1673. }
  1674. /*
  1675. * Structure of the f2fs node operations
  1676. */
  1677. const struct address_space_operations f2fs_node_aops = {
  1678. .writepage = f2fs_write_node_page,
  1679. .writepages = f2fs_write_node_pages,
  1680. .set_page_dirty = f2fs_set_node_page_dirty,
  1681. .invalidatepage = f2fs_invalidate_page,
  1682. .releasepage = f2fs_release_page,
  1683. #ifdef CONFIG_MIGRATION
  1684. .migratepage = f2fs_migrate_page,
  1685. #endif
  1686. };
  1687. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1688. nid_t n)
  1689. {
  1690. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1691. }
  1692. static int __insert_free_nid(struct f2fs_sb_info *sbi,
  1693. struct free_nid *i, enum nid_state state)
  1694. {
  1695. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1696. int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
  1697. if (err)
  1698. return err;
  1699. f2fs_bug_on(sbi, state != i->state);
  1700. nm_i->nid_cnt[state]++;
  1701. if (state == FREE_NID)
  1702. list_add_tail(&i->list, &nm_i->free_nid_list);
  1703. return 0;
  1704. }
  1705. static void __remove_free_nid(struct f2fs_sb_info *sbi,
  1706. struct free_nid *i, enum nid_state state)
  1707. {
  1708. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1709. f2fs_bug_on(sbi, state != i->state);
  1710. nm_i->nid_cnt[state]--;
  1711. if (state == FREE_NID)
  1712. list_del(&i->list);
  1713. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1714. }
  1715. static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
  1716. enum nid_state org_state, enum nid_state dst_state)
  1717. {
  1718. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1719. f2fs_bug_on(sbi, org_state != i->state);
  1720. i->state = dst_state;
  1721. nm_i->nid_cnt[org_state]--;
  1722. nm_i->nid_cnt[dst_state]++;
  1723. switch (dst_state) {
  1724. case PREALLOC_NID:
  1725. list_del(&i->list);
  1726. break;
  1727. case FREE_NID:
  1728. list_add_tail(&i->list, &nm_i->free_nid_list);
  1729. break;
  1730. default:
  1731. BUG_ON(1);
  1732. }
  1733. }
  1734. static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
  1735. bool set, bool build)
  1736. {
  1737. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1738. unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
  1739. unsigned int nid_ofs = nid - START_NID(nid);
  1740. if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
  1741. return;
  1742. if (set) {
  1743. if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1744. return;
  1745. __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1746. nm_i->free_nid_count[nat_ofs]++;
  1747. } else {
  1748. if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
  1749. return;
  1750. __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1751. if (!build)
  1752. nm_i->free_nid_count[nat_ofs]--;
  1753. }
  1754. }
  1755. /* return if the nid is recognized as free */
  1756. static bool add_free_nid(struct f2fs_sb_info *sbi,
  1757. nid_t nid, bool build, bool update)
  1758. {
  1759. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1760. struct free_nid *i, *e;
  1761. struct nat_entry *ne;
  1762. int err = -EINVAL;
  1763. bool ret = false;
  1764. /* 0 nid should not be used */
  1765. if (unlikely(nid == 0))
  1766. return false;
  1767. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1768. i->nid = nid;
  1769. i->state = FREE_NID;
  1770. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  1771. spin_lock(&nm_i->nid_list_lock);
  1772. if (build) {
  1773. /*
  1774. * Thread A Thread B
  1775. * - f2fs_create
  1776. * - f2fs_new_inode
  1777. * - f2fs_alloc_nid
  1778. * - __insert_nid_to_list(PREALLOC_NID)
  1779. * - f2fs_balance_fs_bg
  1780. * - f2fs_build_free_nids
  1781. * - __f2fs_build_free_nids
  1782. * - scan_nat_page
  1783. * - add_free_nid
  1784. * - __lookup_nat_cache
  1785. * - f2fs_add_link
  1786. * - f2fs_init_inode_metadata
  1787. * - f2fs_new_inode_page
  1788. * - f2fs_new_node_page
  1789. * - set_node_addr
  1790. * - f2fs_alloc_nid_done
  1791. * - __remove_nid_from_list(PREALLOC_NID)
  1792. * - __insert_nid_to_list(FREE_NID)
  1793. */
  1794. ne = __lookup_nat_cache(nm_i, nid);
  1795. if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1796. nat_get_blkaddr(ne) != NULL_ADDR))
  1797. goto err_out;
  1798. e = __lookup_free_nid_list(nm_i, nid);
  1799. if (e) {
  1800. if (e->state == FREE_NID)
  1801. ret = true;
  1802. goto err_out;
  1803. }
  1804. }
  1805. ret = true;
  1806. err = __insert_free_nid(sbi, i, FREE_NID);
  1807. err_out:
  1808. if (update) {
  1809. update_free_nid_bitmap(sbi, nid, ret, build);
  1810. if (!build)
  1811. nm_i->available_nids++;
  1812. }
  1813. spin_unlock(&nm_i->nid_list_lock);
  1814. radix_tree_preload_end();
  1815. if (err)
  1816. kmem_cache_free(free_nid_slab, i);
  1817. return ret;
  1818. }
  1819. static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
  1820. {
  1821. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1822. struct free_nid *i;
  1823. bool need_free = false;
  1824. spin_lock(&nm_i->nid_list_lock);
  1825. i = __lookup_free_nid_list(nm_i, nid);
  1826. if (i && i->state == FREE_NID) {
  1827. __remove_free_nid(sbi, i, FREE_NID);
  1828. need_free = true;
  1829. }
  1830. spin_unlock(&nm_i->nid_list_lock);
  1831. if (need_free)
  1832. kmem_cache_free(free_nid_slab, i);
  1833. }
  1834. static int scan_nat_page(struct f2fs_sb_info *sbi,
  1835. struct page *nat_page, nid_t start_nid)
  1836. {
  1837. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1838. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1839. block_t blk_addr;
  1840. unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
  1841. int i;
  1842. __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
  1843. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1844. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1845. if (unlikely(start_nid >= nm_i->max_nid))
  1846. break;
  1847. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1848. if (blk_addr == NEW_ADDR)
  1849. return -EINVAL;
  1850. if (blk_addr == NULL_ADDR) {
  1851. add_free_nid(sbi, start_nid, true, true);
  1852. } else {
  1853. spin_lock(&NM_I(sbi)->nid_list_lock);
  1854. update_free_nid_bitmap(sbi, start_nid, false, true);
  1855. spin_unlock(&NM_I(sbi)->nid_list_lock);
  1856. }
  1857. }
  1858. return 0;
  1859. }
  1860. static void scan_curseg_cache(struct f2fs_sb_info *sbi)
  1861. {
  1862. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1863. struct f2fs_journal *journal = curseg->journal;
  1864. int i;
  1865. down_read(&curseg->journal_rwsem);
  1866. for (i = 0; i < nats_in_cursum(journal); i++) {
  1867. block_t addr;
  1868. nid_t nid;
  1869. addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
  1870. nid = le32_to_cpu(nid_in_journal(journal, i));
  1871. if (addr == NULL_ADDR)
  1872. add_free_nid(sbi, nid, true, false);
  1873. else
  1874. remove_free_nid(sbi, nid);
  1875. }
  1876. up_read(&curseg->journal_rwsem);
  1877. }
  1878. static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
  1879. {
  1880. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1881. unsigned int i, idx;
  1882. nid_t nid;
  1883. down_read(&nm_i->nat_tree_lock);
  1884. for (i = 0; i < nm_i->nat_blocks; i++) {
  1885. if (!test_bit_le(i, nm_i->nat_block_bitmap))
  1886. continue;
  1887. if (!nm_i->free_nid_count[i])
  1888. continue;
  1889. for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
  1890. idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
  1891. NAT_ENTRY_PER_BLOCK, idx);
  1892. if (idx >= NAT_ENTRY_PER_BLOCK)
  1893. break;
  1894. nid = i * NAT_ENTRY_PER_BLOCK + idx;
  1895. add_free_nid(sbi, nid, true, false);
  1896. if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
  1897. goto out;
  1898. }
  1899. }
  1900. out:
  1901. scan_curseg_cache(sbi);
  1902. up_read(&nm_i->nat_tree_lock);
  1903. }
  1904. static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
  1905. bool sync, bool mount)
  1906. {
  1907. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1908. int i = 0, ret;
  1909. nid_t nid = nm_i->next_scan_nid;
  1910. if (unlikely(nid >= nm_i->max_nid))
  1911. nid = 0;
  1912. /* Enough entries */
  1913. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1914. return 0;
  1915. if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
  1916. return 0;
  1917. if (!mount) {
  1918. /* try to find free nids in free_nid_bitmap */
  1919. scan_free_nid_bits(sbi);
  1920. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1921. return 0;
  1922. }
  1923. /* readahead nat pages to be scanned */
  1924. f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
  1925. META_NAT, true);
  1926. down_read(&nm_i->nat_tree_lock);
  1927. while (1) {
  1928. if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
  1929. nm_i->nat_block_bitmap)) {
  1930. struct page *page = get_current_nat_page(sbi, nid);
  1931. ret = scan_nat_page(sbi, page, nid);
  1932. f2fs_put_page(page, 1);
  1933. if (ret) {
  1934. up_read(&nm_i->nat_tree_lock);
  1935. f2fs_bug_on(sbi, !mount);
  1936. f2fs_msg(sbi->sb, KERN_ERR,
  1937. "NAT is corrupt, run fsck to fix it");
  1938. return -EINVAL;
  1939. }
  1940. }
  1941. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1942. if (unlikely(nid >= nm_i->max_nid))
  1943. nid = 0;
  1944. if (++i >= FREE_NID_PAGES)
  1945. break;
  1946. }
  1947. /* go to the next free nat pages to find free nids abundantly */
  1948. nm_i->next_scan_nid = nid;
  1949. /* find free nids from current sum_pages */
  1950. scan_curseg_cache(sbi);
  1951. up_read(&nm_i->nat_tree_lock);
  1952. f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
  1953. nm_i->ra_nid_pages, META_NAT, false);
  1954. return 0;
  1955. }
  1956. int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1957. {
  1958. int ret;
  1959. mutex_lock(&NM_I(sbi)->build_lock);
  1960. ret = __f2fs_build_free_nids(sbi, sync, mount);
  1961. mutex_unlock(&NM_I(sbi)->build_lock);
  1962. return ret;
  1963. }
  1964. /*
  1965. * If this function returns success, caller can obtain a new nid
  1966. * from second parameter of this function.
  1967. * The returned nid could be used ino as well as nid when inode is created.
  1968. */
  1969. bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1970. {
  1971. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1972. struct free_nid *i = NULL;
  1973. retry:
  1974. if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
  1975. f2fs_show_injection_info(FAULT_ALLOC_NID);
  1976. return false;
  1977. }
  1978. spin_lock(&nm_i->nid_list_lock);
  1979. if (unlikely(nm_i->available_nids == 0)) {
  1980. spin_unlock(&nm_i->nid_list_lock);
  1981. return false;
  1982. }
  1983. /* We should not use stale free nids created by f2fs_build_free_nids */
  1984. if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
  1985. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1986. i = list_first_entry(&nm_i->free_nid_list,
  1987. struct free_nid, list);
  1988. *nid = i->nid;
  1989. __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
  1990. nm_i->available_nids--;
  1991. update_free_nid_bitmap(sbi, *nid, false, false);
  1992. spin_unlock(&nm_i->nid_list_lock);
  1993. return true;
  1994. }
  1995. spin_unlock(&nm_i->nid_list_lock);
  1996. /* Let's scan nat pages and its caches to get free nids */
  1997. f2fs_build_free_nids(sbi, true, false);
  1998. goto retry;
  1999. }
  2000. /*
  2001. * f2fs_alloc_nid() should be called prior to this function.
  2002. */
  2003. void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  2004. {
  2005. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2006. struct free_nid *i;
  2007. spin_lock(&nm_i->nid_list_lock);
  2008. i = __lookup_free_nid_list(nm_i, nid);
  2009. f2fs_bug_on(sbi, !i);
  2010. __remove_free_nid(sbi, i, PREALLOC_NID);
  2011. spin_unlock(&nm_i->nid_list_lock);
  2012. kmem_cache_free(free_nid_slab, i);
  2013. }
  2014. /*
  2015. * f2fs_alloc_nid() should be called prior to this function.
  2016. */
  2017. void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  2018. {
  2019. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2020. struct free_nid *i;
  2021. bool need_free = false;
  2022. if (!nid)
  2023. return;
  2024. spin_lock(&nm_i->nid_list_lock);
  2025. i = __lookup_free_nid_list(nm_i, nid);
  2026. f2fs_bug_on(sbi, !i);
  2027. if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
  2028. __remove_free_nid(sbi, i, PREALLOC_NID);
  2029. need_free = true;
  2030. } else {
  2031. __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
  2032. }
  2033. nm_i->available_nids++;
  2034. update_free_nid_bitmap(sbi, nid, true, false);
  2035. spin_unlock(&nm_i->nid_list_lock);
  2036. if (need_free)
  2037. kmem_cache_free(free_nid_slab, i);
  2038. }
  2039. int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  2040. {
  2041. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2042. struct free_nid *i, *next;
  2043. int nr = nr_shrink;
  2044. if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  2045. return 0;
  2046. if (!mutex_trylock(&nm_i->build_lock))
  2047. return 0;
  2048. spin_lock(&nm_i->nid_list_lock);
  2049. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  2050. if (nr_shrink <= 0 ||
  2051. nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  2052. break;
  2053. __remove_free_nid(sbi, i, FREE_NID);
  2054. kmem_cache_free(free_nid_slab, i);
  2055. nr_shrink--;
  2056. }
  2057. spin_unlock(&nm_i->nid_list_lock);
  2058. mutex_unlock(&nm_i->build_lock);
  2059. return nr - nr_shrink;
  2060. }
  2061. void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
  2062. {
  2063. void *src_addr, *dst_addr;
  2064. size_t inline_size;
  2065. struct page *ipage;
  2066. struct f2fs_inode *ri;
  2067. ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
  2068. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  2069. ri = F2FS_INODE(page);
  2070. if (ri->i_inline & F2FS_INLINE_XATTR) {
  2071. set_inode_flag(inode, FI_INLINE_XATTR);
  2072. } else {
  2073. clear_inode_flag(inode, FI_INLINE_XATTR);
  2074. goto update_inode;
  2075. }
  2076. dst_addr = inline_xattr_addr(inode, ipage);
  2077. src_addr = inline_xattr_addr(inode, page);
  2078. inline_size = inline_xattr_size(inode);
  2079. f2fs_wait_on_page_writeback(ipage, NODE, true);
  2080. memcpy(dst_addr, src_addr, inline_size);
  2081. update_inode:
  2082. f2fs_update_inode(inode, ipage);
  2083. f2fs_put_page(ipage, 1);
  2084. }
  2085. int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
  2086. {
  2087. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  2088. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  2089. nid_t new_xnid;
  2090. struct dnode_of_data dn;
  2091. struct node_info ni;
  2092. struct page *xpage;
  2093. int err;
  2094. if (!prev_xnid)
  2095. goto recover_xnid;
  2096. /* 1: invalidate the previous xattr nid */
  2097. err = f2fs_get_node_info(sbi, prev_xnid, &ni);
  2098. if (err)
  2099. return err;
  2100. f2fs_invalidate_blocks(sbi, ni.blk_addr);
  2101. dec_valid_node_count(sbi, inode, false);
  2102. set_node_addr(sbi, &ni, NULL_ADDR, false);
  2103. recover_xnid:
  2104. /* 2: update xattr nid in inode */
  2105. if (!f2fs_alloc_nid(sbi, &new_xnid))
  2106. return -ENOSPC;
  2107. set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
  2108. xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
  2109. if (IS_ERR(xpage)) {
  2110. f2fs_alloc_nid_failed(sbi, new_xnid);
  2111. return PTR_ERR(xpage);
  2112. }
  2113. f2fs_alloc_nid_done(sbi, new_xnid);
  2114. f2fs_update_inode_page(inode);
  2115. /* 3: update and set xattr node page dirty */
  2116. memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
  2117. set_page_dirty(xpage);
  2118. f2fs_put_page(xpage, 1);
  2119. return 0;
  2120. }
  2121. int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  2122. {
  2123. struct f2fs_inode *src, *dst;
  2124. nid_t ino = ino_of_node(page);
  2125. struct node_info old_ni, new_ni;
  2126. struct page *ipage;
  2127. int err;
  2128. err = f2fs_get_node_info(sbi, ino, &old_ni);
  2129. if (err)
  2130. return err;
  2131. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  2132. return -EINVAL;
  2133. retry:
  2134. ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
  2135. if (!ipage) {
  2136. congestion_wait(BLK_RW_ASYNC, HZ/50);
  2137. goto retry;
  2138. }
  2139. /* Should not use this inode from free nid list */
  2140. remove_free_nid(sbi, ino);
  2141. if (!PageUptodate(ipage))
  2142. SetPageUptodate(ipage);
  2143. fill_node_footer(ipage, ino, ino, 0, true);
  2144. set_cold_node(page, false);
  2145. src = F2FS_INODE(page);
  2146. dst = F2FS_INODE(ipage);
  2147. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  2148. dst->i_size = 0;
  2149. dst->i_blocks = cpu_to_le64(1);
  2150. dst->i_links = cpu_to_le32(1);
  2151. dst->i_xattr_nid = 0;
  2152. dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
  2153. if (dst->i_inline & F2FS_EXTRA_ATTR) {
  2154. dst->i_extra_isize = src->i_extra_isize;
  2155. if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
  2156. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2157. i_inline_xattr_size))
  2158. dst->i_inline_xattr_size = src->i_inline_xattr_size;
  2159. if (f2fs_sb_has_project_quota(sbi->sb) &&
  2160. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  2161. i_projid))
  2162. dst->i_projid = src->i_projid;
  2163. }
  2164. new_ni = old_ni;
  2165. new_ni.ino = ino;
  2166. if (unlikely(inc_valid_node_count(sbi, NULL, true)))
  2167. WARN_ON(1);
  2168. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  2169. inc_valid_inode_count(sbi);
  2170. set_page_dirty(ipage);
  2171. f2fs_put_page(ipage, 1);
  2172. return 0;
  2173. }
  2174. int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
  2175. unsigned int segno, struct f2fs_summary_block *sum)
  2176. {
  2177. struct f2fs_node *rn;
  2178. struct f2fs_summary *sum_entry;
  2179. block_t addr;
  2180. int i, idx, last_offset, nrpages;
  2181. /* scan the node segment */
  2182. last_offset = sbi->blocks_per_seg;
  2183. addr = START_BLOCK(sbi, segno);
  2184. sum_entry = &sum->entries[0];
  2185. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  2186. nrpages = min(last_offset - i, BIO_MAX_PAGES);
  2187. /* readahead node pages */
  2188. f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
  2189. for (idx = addr; idx < addr + nrpages; idx++) {
  2190. struct page *page = f2fs_get_tmp_page(sbi, idx);
  2191. if (IS_ERR(page))
  2192. return PTR_ERR(page);
  2193. rn = F2FS_NODE(page);
  2194. sum_entry->nid = rn->footer.nid;
  2195. sum_entry->version = 0;
  2196. sum_entry->ofs_in_node = 0;
  2197. sum_entry++;
  2198. f2fs_put_page(page, 1);
  2199. }
  2200. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  2201. addr + nrpages);
  2202. }
  2203. return 0;
  2204. }
  2205. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  2206. {
  2207. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2208. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2209. struct f2fs_journal *journal = curseg->journal;
  2210. int i;
  2211. down_write(&curseg->journal_rwsem);
  2212. for (i = 0; i < nats_in_cursum(journal); i++) {
  2213. struct nat_entry *ne;
  2214. struct f2fs_nat_entry raw_ne;
  2215. nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
  2216. raw_ne = nat_in_journal(journal, i);
  2217. ne = __lookup_nat_cache(nm_i, nid);
  2218. if (!ne) {
  2219. ne = __alloc_nat_entry(nid, true);
  2220. __init_nat_entry(nm_i, ne, &raw_ne, true);
  2221. }
  2222. /*
  2223. * if a free nat in journal has not been used after last
  2224. * checkpoint, we should remove it from available nids,
  2225. * since later we will add it again.
  2226. */
  2227. if (!get_nat_flag(ne, IS_DIRTY) &&
  2228. le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
  2229. spin_lock(&nm_i->nid_list_lock);
  2230. nm_i->available_nids--;
  2231. spin_unlock(&nm_i->nid_list_lock);
  2232. }
  2233. __set_nat_cache_dirty(nm_i, ne);
  2234. }
  2235. update_nats_in_cursum(journal, -i);
  2236. up_write(&curseg->journal_rwsem);
  2237. }
  2238. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  2239. struct list_head *head, int max)
  2240. {
  2241. struct nat_entry_set *cur;
  2242. if (nes->entry_cnt >= max)
  2243. goto add_out;
  2244. list_for_each_entry(cur, head, set_list) {
  2245. if (cur->entry_cnt >= nes->entry_cnt) {
  2246. list_add(&nes->set_list, cur->set_list.prev);
  2247. return;
  2248. }
  2249. }
  2250. add_out:
  2251. list_add_tail(&nes->set_list, head);
  2252. }
  2253. static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
  2254. struct page *page)
  2255. {
  2256. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2257. unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
  2258. struct f2fs_nat_block *nat_blk = page_address(page);
  2259. int valid = 0;
  2260. int i = 0;
  2261. if (!enabled_nat_bits(sbi, NULL))
  2262. return;
  2263. if (nat_index == 0) {
  2264. valid = 1;
  2265. i = 1;
  2266. }
  2267. for (; i < NAT_ENTRY_PER_BLOCK; i++) {
  2268. if (nat_blk->entries[i].block_addr != NULL_ADDR)
  2269. valid++;
  2270. }
  2271. if (valid == 0) {
  2272. __set_bit_le(nat_index, nm_i->empty_nat_bits);
  2273. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2274. return;
  2275. }
  2276. __clear_bit_le(nat_index, nm_i->empty_nat_bits);
  2277. if (valid == NAT_ENTRY_PER_BLOCK)
  2278. __set_bit_le(nat_index, nm_i->full_nat_bits);
  2279. else
  2280. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2281. }
  2282. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  2283. struct nat_entry_set *set, struct cp_control *cpc)
  2284. {
  2285. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2286. struct f2fs_journal *journal = curseg->journal;
  2287. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  2288. bool to_journal = true;
  2289. struct f2fs_nat_block *nat_blk;
  2290. struct nat_entry *ne, *cur;
  2291. struct page *page = NULL;
  2292. /*
  2293. * there are two steps to flush nat entries:
  2294. * #1, flush nat entries to journal in current hot data summary block.
  2295. * #2, flush nat entries to nat page.
  2296. */
  2297. if (enabled_nat_bits(sbi, cpc) ||
  2298. !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
  2299. to_journal = false;
  2300. if (to_journal) {
  2301. down_write(&curseg->journal_rwsem);
  2302. } else {
  2303. page = get_next_nat_page(sbi, start_nid);
  2304. nat_blk = page_address(page);
  2305. f2fs_bug_on(sbi, !nat_blk);
  2306. }
  2307. /* flush dirty nats in nat entry set */
  2308. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  2309. struct f2fs_nat_entry *raw_ne;
  2310. nid_t nid = nat_get_nid(ne);
  2311. int offset;
  2312. f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
  2313. if (to_journal) {
  2314. offset = f2fs_lookup_journal_in_cursum(journal,
  2315. NAT_JOURNAL, nid, 1);
  2316. f2fs_bug_on(sbi, offset < 0);
  2317. raw_ne = &nat_in_journal(journal, offset);
  2318. nid_in_journal(journal, offset) = cpu_to_le32(nid);
  2319. } else {
  2320. raw_ne = &nat_blk->entries[nid - start_nid];
  2321. }
  2322. raw_nat_from_node_info(raw_ne, &ne->ni);
  2323. nat_reset_flag(ne);
  2324. __clear_nat_cache_dirty(NM_I(sbi), set, ne);
  2325. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  2326. add_free_nid(sbi, nid, false, true);
  2327. } else {
  2328. spin_lock(&NM_I(sbi)->nid_list_lock);
  2329. update_free_nid_bitmap(sbi, nid, false, false);
  2330. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2331. }
  2332. }
  2333. if (to_journal) {
  2334. up_write(&curseg->journal_rwsem);
  2335. } else {
  2336. __update_nat_bits(sbi, start_nid, page);
  2337. f2fs_put_page(page, 1);
  2338. }
  2339. /* Allow dirty nats by node block allocation in write_begin */
  2340. if (!set->entry_cnt) {
  2341. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  2342. kmem_cache_free(nat_entry_set_slab, set);
  2343. }
  2344. }
  2345. /*
  2346. * This function is called during the checkpointing process.
  2347. */
  2348. void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2349. {
  2350. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2351. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2352. struct f2fs_journal *journal = curseg->journal;
  2353. struct nat_entry_set *setvec[SETVEC_SIZE];
  2354. struct nat_entry_set *set, *tmp;
  2355. unsigned int found;
  2356. nid_t set_idx = 0;
  2357. LIST_HEAD(sets);
  2358. /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
  2359. if (enabled_nat_bits(sbi, cpc)) {
  2360. down_write(&nm_i->nat_tree_lock);
  2361. remove_nats_in_journal(sbi);
  2362. up_write(&nm_i->nat_tree_lock);
  2363. }
  2364. if (!nm_i->dirty_nat_cnt)
  2365. return;
  2366. down_write(&nm_i->nat_tree_lock);
  2367. /*
  2368. * if there are no enough space in journal to store dirty nat
  2369. * entries, remove all entries from journal and merge them
  2370. * into nat entry set.
  2371. */
  2372. if (enabled_nat_bits(sbi, cpc) ||
  2373. !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  2374. remove_nats_in_journal(sbi);
  2375. while ((found = __gang_lookup_nat_set(nm_i,
  2376. set_idx, SETVEC_SIZE, setvec))) {
  2377. unsigned idx;
  2378. set_idx = setvec[found - 1]->set + 1;
  2379. for (idx = 0; idx < found; idx++)
  2380. __adjust_nat_entry_set(setvec[idx], &sets,
  2381. MAX_NAT_JENTRIES(journal));
  2382. }
  2383. /* flush dirty nats in nat entry set */
  2384. list_for_each_entry_safe(set, tmp, &sets, set_list)
  2385. __flush_nat_entry_set(sbi, set, cpc);
  2386. up_write(&nm_i->nat_tree_lock);
  2387. /* Allow dirty nats by node block allocation in write_begin */
  2388. }
  2389. static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
  2390. {
  2391. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2392. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2393. unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
  2394. unsigned int i;
  2395. __u64 cp_ver = cur_cp_version(ckpt);
  2396. block_t nat_bits_addr;
  2397. if (!enabled_nat_bits(sbi, NULL))
  2398. return 0;
  2399. nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
  2400. nm_i->nat_bits = f2fs_kzalloc(sbi,
  2401. nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
  2402. if (!nm_i->nat_bits)
  2403. return -ENOMEM;
  2404. nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
  2405. nm_i->nat_bits_blocks;
  2406. for (i = 0; i < nm_i->nat_bits_blocks; i++) {
  2407. struct page *page;
  2408. page = f2fs_get_meta_page(sbi, nat_bits_addr++);
  2409. if (IS_ERR(page)) {
  2410. disable_nat_bits(sbi, true);
  2411. return PTR_ERR(page);
  2412. }
  2413. memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
  2414. page_address(page), F2FS_BLKSIZE);
  2415. f2fs_put_page(page, 1);
  2416. }
  2417. cp_ver |= (cur_cp_crc(ckpt) << 32);
  2418. if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
  2419. disable_nat_bits(sbi, true);
  2420. return 0;
  2421. }
  2422. nm_i->full_nat_bits = nm_i->nat_bits + 8;
  2423. nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
  2424. f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
  2425. return 0;
  2426. }
  2427. static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
  2428. {
  2429. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2430. unsigned int i = 0;
  2431. nid_t nid, last_nid;
  2432. if (!enabled_nat_bits(sbi, NULL))
  2433. return;
  2434. for (i = 0; i < nm_i->nat_blocks; i++) {
  2435. i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
  2436. if (i >= nm_i->nat_blocks)
  2437. break;
  2438. __set_bit_le(i, nm_i->nat_block_bitmap);
  2439. nid = i * NAT_ENTRY_PER_BLOCK;
  2440. last_nid = nid + NAT_ENTRY_PER_BLOCK;
  2441. spin_lock(&NM_I(sbi)->nid_list_lock);
  2442. for (; nid < last_nid; nid++)
  2443. update_free_nid_bitmap(sbi, nid, true, true);
  2444. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2445. }
  2446. for (i = 0; i < nm_i->nat_blocks; i++) {
  2447. i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
  2448. if (i >= nm_i->nat_blocks)
  2449. break;
  2450. __set_bit_le(i, nm_i->nat_block_bitmap);
  2451. }
  2452. }
  2453. static int init_node_manager(struct f2fs_sb_info *sbi)
  2454. {
  2455. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  2456. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2457. unsigned char *version_bitmap;
  2458. unsigned int nat_segs;
  2459. int err;
  2460. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  2461. /* segment_count_nat includes pair segment so divide to 2. */
  2462. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  2463. nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  2464. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
  2465. /* not used nids: 0, node, meta, (and root counted as valid node) */
  2466. nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
  2467. sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
  2468. nm_i->nid_cnt[FREE_NID] = 0;
  2469. nm_i->nid_cnt[PREALLOC_NID] = 0;
  2470. nm_i->nat_cnt = 0;
  2471. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  2472. nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
  2473. nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
  2474. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  2475. INIT_LIST_HEAD(&nm_i->free_nid_list);
  2476. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  2477. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  2478. INIT_LIST_HEAD(&nm_i->nat_entries);
  2479. spin_lock_init(&nm_i->nat_list_lock);
  2480. mutex_init(&nm_i->build_lock);
  2481. spin_lock_init(&nm_i->nid_list_lock);
  2482. init_rwsem(&nm_i->nat_tree_lock);
  2483. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  2484. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  2485. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  2486. if (!version_bitmap)
  2487. return -EFAULT;
  2488. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  2489. GFP_KERNEL);
  2490. if (!nm_i->nat_bitmap)
  2491. return -ENOMEM;
  2492. err = __get_nat_bitmaps(sbi);
  2493. if (err)
  2494. return err;
  2495. #ifdef CONFIG_F2FS_CHECK_FS
  2496. nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
  2497. GFP_KERNEL);
  2498. if (!nm_i->nat_bitmap_mir)
  2499. return -ENOMEM;
  2500. #endif
  2501. return 0;
  2502. }
  2503. static int init_free_nid_cache(struct f2fs_sb_info *sbi)
  2504. {
  2505. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2506. int i;
  2507. nm_i->free_nid_bitmap =
  2508. f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
  2509. nm_i->nat_blocks),
  2510. GFP_KERNEL);
  2511. if (!nm_i->free_nid_bitmap)
  2512. return -ENOMEM;
  2513. for (i = 0; i < nm_i->nat_blocks; i++) {
  2514. nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
  2515. f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
  2516. if (!nm_i->free_nid_bitmap[i])
  2517. return -ENOMEM;
  2518. }
  2519. nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
  2520. GFP_KERNEL);
  2521. if (!nm_i->nat_block_bitmap)
  2522. return -ENOMEM;
  2523. nm_i->free_nid_count =
  2524. f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
  2525. nm_i->nat_blocks),
  2526. GFP_KERNEL);
  2527. if (!nm_i->free_nid_count)
  2528. return -ENOMEM;
  2529. return 0;
  2530. }
  2531. int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
  2532. {
  2533. int err;
  2534. sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
  2535. GFP_KERNEL);
  2536. if (!sbi->nm_info)
  2537. return -ENOMEM;
  2538. err = init_node_manager(sbi);
  2539. if (err)
  2540. return err;
  2541. err = init_free_nid_cache(sbi);
  2542. if (err)
  2543. return err;
  2544. /* load free nid status from nat_bits table */
  2545. load_free_nid_bitmap(sbi);
  2546. return f2fs_build_free_nids(sbi, true, true);
  2547. }
  2548. void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
  2549. {
  2550. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2551. struct free_nid *i, *next_i;
  2552. struct nat_entry *natvec[NATVEC_SIZE];
  2553. struct nat_entry_set *setvec[SETVEC_SIZE];
  2554. nid_t nid = 0;
  2555. unsigned int found;
  2556. if (!nm_i)
  2557. return;
  2558. /* destroy free nid list */
  2559. spin_lock(&nm_i->nid_list_lock);
  2560. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  2561. __remove_free_nid(sbi, i, FREE_NID);
  2562. spin_unlock(&nm_i->nid_list_lock);
  2563. kmem_cache_free(free_nid_slab, i);
  2564. spin_lock(&nm_i->nid_list_lock);
  2565. }
  2566. f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
  2567. f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
  2568. f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
  2569. spin_unlock(&nm_i->nid_list_lock);
  2570. /* destroy nat cache */
  2571. down_write(&nm_i->nat_tree_lock);
  2572. while ((found = __gang_lookup_nat_cache(nm_i,
  2573. nid, NATVEC_SIZE, natvec))) {
  2574. unsigned idx;
  2575. nid = nat_get_nid(natvec[found - 1]) + 1;
  2576. for (idx = 0; idx < found; idx++) {
  2577. spin_lock(&nm_i->nat_list_lock);
  2578. list_del(&natvec[idx]->list);
  2579. spin_unlock(&nm_i->nat_list_lock);
  2580. __del_from_nat_cache(nm_i, natvec[idx]);
  2581. }
  2582. }
  2583. f2fs_bug_on(sbi, nm_i->nat_cnt);
  2584. /* destroy nat set cache */
  2585. nid = 0;
  2586. while ((found = __gang_lookup_nat_set(nm_i,
  2587. nid, SETVEC_SIZE, setvec))) {
  2588. unsigned idx;
  2589. nid = setvec[found - 1]->set + 1;
  2590. for (idx = 0; idx < found; idx++) {
  2591. /* entry_cnt is not zero, when cp_error was occurred */
  2592. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  2593. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  2594. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  2595. }
  2596. }
  2597. up_write(&nm_i->nat_tree_lock);
  2598. kvfree(nm_i->nat_block_bitmap);
  2599. if (nm_i->free_nid_bitmap) {
  2600. int i;
  2601. for (i = 0; i < nm_i->nat_blocks; i++)
  2602. kvfree(nm_i->free_nid_bitmap[i]);
  2603. kfree(nm_i->free_nid_bitmap);
  2604. }
  2605. kvfree(nm_i->free_nid_count);
  2606. kfree(nm_i->nat_bitmap);
  2607. kfree(nm_i->nat_bits);
  2608. #ifdef CONFIG_F2FS_CHECK_FS
  2609. kfree(nm_i->nat_bitmap_mir);
  2610. #endif
  2611. sbi->nm_info = NULL;
  2612. kfree(nm_i);
  2613. }
  2614. int __init f2fs_create_node_manager_caches(void)
  2615. {
  2616. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  2617. sizeof(struct nat_entry));
  2618. if (!nat_entry_slab)
  2619. goto fail;
  2620. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  2621. sizeof(struct free_nid));
  2622. if (!free_nid_slab)
  2623. goto destroy_nat_entry;
  2624. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  2625. sizeof(struct nat_entry_set));
  2626. if (!nat_entry_set_slab)
  2627. goto destroy_free_nid;
  2628. fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
  2629. sizeof(struct fsync_node_entry));
  2630. if (!fsync_node_entry_slab)
  2631. goto destroy_nat_entry_set;
  2632. return 0;
  2633. destroy_nat_entry_set:
  2634. kmem_cache_destroy(nat_entry_set_slab);
  2635. destroy_free_nid:
  2636. kmem_cache_destroy(free_nid_slab);
  2637. destroy_nat_entry:
  2638. kmem_cache_destroy(nat_entry_slab);
  2639. fail:
  2640. return -ENOMEM;
  2641. }
  2642. void f2fs_destroy_node_manager_caches(void)
  2643. {
  2644. kmem_cache_destroy(fsync_node_entry_slab);
  2645. kmem_cache_destroy(nat_entry_set_slab);
  2646. kmem_cache_destroy(free_nid_slab);
  2647. kmem_cache_destroy(nat_entry_slab);
  2648. }