core.c 201 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. #ifdef CONFIG_SCHED_DEBUG
  113. #define SCHED_FEAT(name, enabled) \
  114. #name ,
  115. static const char * const sched_feat_names[] = {
  116. #include "features.h"
  117. };
  118. #undef SCHED_FEAT
  119. static int sched_feat_show(struct seq_file *m, void *v)
  120. {
  121. int i;
  122. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  123. if (!(sysctl_sched_features & (1UL << i)))
  124. seq_puts(m, "NO_");
  125. seq_printf(m, "%s ", sched_feat_names[i]);
  126. }
  127. seq_puts(m, "\n");
  128. return 0;
  129. }
  130. #ifdef HAVE_JUMP_LABEL
  131. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  132. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  133. #define SCHED_FEAT(name, enabled) \
  134. jump_label_key__##enabled ,
  135. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  136. #include "features.h"
  137. };
  138. #undef SCHED_FEAT
  139. static void sched_feat_disable(int i)
  140. {
  141. if (static_key_enabled(&sched_feat_keys[i]))
  142. static_key_slow_dec(&sched_feat_keys[i]);
  143. }
  144. static void sched_feat_enable(int i)
  145. {
  146. if (!static_key_enabled(&sched_feat_keys[i]))
  147. static_key_slow_inc(&sched_feat_keys[i]);
  148. }
  149. #else
  150. static void sched_feat_disable(int i) { };
  151. static void sched_feat_enable(int i) { };
  152. #endif /* HAVE_JUMP_LABEL */
  153. static int sched_feat_set(char *cmp)
  154. {
  155. int i;
  156. int neg = 0;
  157. if (strncmp(cmp, "NO_", 3) == 0) {
  158. neg = 1;
  159. cmp += 3;
  160. }
  161. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  162. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  163. if (neg) {
  164. sysctl_sched_features &= ~(1UL << i);
  165. sched_feat_disable(i);
  166. } else {
  167. sysctl_sched_features |= (1UL << i);
  168. sched_feat_enable(i);
  169. }
  170. break;
  171. }
  172. }
  173. return i;
  174. }
  175. static ssize_t
  176. sched_feat_write(struct file *filp, const char __user *ubuf,
  177. size_t cnt, loff_t *ppos)
  178. {
  179. char buf[64];
  180. char *cmp;
  181. int i;
  182. struct inode *inode;
  183. if (cnt > 63)
  184. cnt = 63;
  185. if (copy_from_user(&buf, ubuf, cnt))
  186. return -EFAULT;
  187. buf[cnt] = 0;
  188. cmp = strstrip(buf);
  189. /* Ensure the static_key remains in a consistent state */
  190. inode = file_inode(filp);
  191. mutex_lock(&inode->i_mutex);
  192. i = sched_feat_set(cmp);
  193. mutex_unlock(&inode->i_mutex);
  194. if (i == __SCHED_FEAT_NR)
  195. return -EINVAL;
  196. *ppos += cnt;
  197. return cnt;
  198. }
  199. static int sched_feat_open(struct inode *inode, struct file *filp)
  200. {
  201. return single_open(filp, sched_feat_show, NULL);
  202. }
  203. static const struct file_operations sched_feat_fops = {
  204. .open = sched_feat_open,
  205. .write = sched_feat_write,
  206. .read = seq_read,
  207. .llseek = seq_lseek,
  208. .release = single_release,
  209. };
  210. static __init int sched_init_debug(void)
  211. {
  212. debugfs_create_file("sched_features", 0644, NULL, NULL,
  213. &sched_feat_fops);
  214. return 0;
  215. }
  216. late_initcall(sched_init_debug);
  217. #endif /* CONFIG_SCHED_DEBUG */
  218. /*
  219. * Number of tasks to iterate in a single balance run.
  220. * Limited because this is done with IRQs disabled.
  221. */
  222. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  223. /*
  224. * period over which we average the RT time consumption, measured
  225. * in ms.
  226. *
  227. * default: 1s
  228. */
  229. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  230. /*
  231. * period over which we measure -rt task cpu usage in us.
  232. * default: 1s
  233. */
  234. unsigned int sysctl_sched_rt_period = 1000000;
  235. __read_mostly int scheduler_running;
  236. /*
  237. * part of the period that we allow rt tasks to run in us.
  238. * default: 0.95s
  239. */
  240. int sysctl_sched_rt_runtime = 950000;
  241. /* cpus with isolated domains */
  242. cpumask_var_t cpu_isolated_map;
  243. /*
  244. * this_rq_lock - lock this runqueue and disable interrupts.
  245. */
  246. static struct rq *this_rq_lock(void)
  247. __acquires(rq->lock)
  248. {
  249. struct rq *rq;
  250. local_irq_disable();
  251. rq = this_rq();
  252. raw_spin_lock(&rq->lock);
  253. return rq;
  254. }
  255. #ifdef CONFIG_SCHED_HRTICK
  256. /*
  257. * Use HR-timers to deliver accurate preemption points.
  258. */
  259. static void hrtick_clear(struct rq *rq)
  260. {
  261. if (hrtimer_active(&rq->hrtick_timer))
  262. hrtimer_cancel(&rq->hrtick_timer);
  263. }
  264. /*
  265. * High-resolution timer tick.
  266. * Runs from hardirq context with interrupts disabled.
  267. */
  268. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  269. {
  270. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  271. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  272. raw_spin_lock(&rq->lock);
  273. update_rq_clock(rq);
  274. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  275. raw_spin_unlock(&rq->lock);
  276. return HRTIMER_NORESTART;
  277. }
  278. #ifdef CONFIG_SMP
  279. static void __hrtick_restart(struct rq *rq)
  280. {
  281. struct hrtimer *timer = &rq->hrtick_timer;
  282. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  283. }
  284. /*
  285. * called from hardirq (IPI) context
  286. */
  287. static void __hrtick_start(void *arg)
  288. {
  289. struct rq *rq = arg;
  290. raw_spin_lock(&rq->lock);
  291. __hrtick_restart(rq);
  292. rq->hrtick_csd_pending = 0;
  293. raw_spin_unlock(&rq->lock);
  294. }
  295. /*
  296. * Called to set the hrtick timer state.
  297. *
  298. * called with rq->lock held and irqs disabled
  299. */
  300. void hrtick_start(struct rq *rq, u64 delay)
  301. {
  302. struct hrtimer *timer = &rq->hrtick_timer;
  303. ktime_t time;
  304. s64 delta;
  305. /*
  306. * Don't schedule slices shorter than 10000ns, that just
  307. * doesn't make sense and can cause timer DoS.
  308. */
  309. delta = max_t(s64, delay, 10000LL);
  310. time = ktime_add_ns(timer->base->get_time(), delta);
  311. hrtimer_set_expires(timer, time);
  312. if (rq == this_rq()) {
  313. __hrtick_restart(rq);
  314. } else if (!rq->hrtick_csd_pending) {
  315. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  316. rq->hrtick_csd_pending = 1;
  317. }
  318. }
  319. static int
  320. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  321. {
  322. int cpu = (int)(long)hcpu;
  323. switch (action) {
  324. case CPU_UP_CANCELED:
  325. case CPU_UP_CANCELED_FROZEN:
  326. case CPU_DOWN_PREPARE:
  327. case CPU_DOWN_PREPARE_FROZEN:
  328. case CPU_DEAD:
  329. case CPU_DEAD_FROZEN:
  330. hrtick_clear(cpu_rq(cpu));
  331. return NOTIFY_OK;
  332. }
  333. return NOTIFY_DONE;
  334. }
  335. static __init void init_hrtick(void)
  336. {
  337. hotcpu_notifier(hotplug_hrtick, 0);
  338. }
  339. #else
  340. /*
  341. * Called to set the hrtick timer state.
  342. *
  343. * called with rq->lock held and irqs disabled
  344. */
  345. void hrtick_start(struct rq *rq, u64 delay)
  346. {
  347. /*
  348. * Don't schedule slices shorter than 10000ns, that just
  349. * doesn't make sense. Rely on vruntime for fairness.
  350. */
  351. delay = max_t(u64, delay, 10000LL);
  352. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  353. HRTIMER_MODE_REL_PINNED);
  354. }
  355. static inline void init_hrtick(void)
  356. {
  357. }
  358. #endif /* CONFIG_SMP */
  359. static void init_rq_hrtick(struct rq *rq)
  360. {
  361. #ifdef CONFIG_SMP
  362. rq->hrtick_csd_pending = 0;
  363. rq->hrtick_csd.flags = 0;
  364. rq->hrtick_csd.func = __hrtick_start;
  365. rq->hrtick_csd.info = rq;
  366. #endif
  367. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  368. rq->hrtick_timer.function = hrtick;
  369. }
  370. #else /* CONFIG_SCHED_HRTICK */
  371. static inline void hrtick_clear(struct rq *rq)
  372. {
  373. }
  374. static inline void init_rq_hrtick(struct rq *rq)
  375. {
  376. }
  377. static inline void init_hrtick(void)
  378. {
  379. }
  380. #endif /* CONFIG_SCHED_HRTICK */
  381. /*
  382. * cmpxchg based fetch_or, macro so it works for different integer types
  383. */
  384. #define fetch_or(ptr, val) \
  385. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  386. for (;;) { \
  387. __old = cmpxchg((ptr), __val, __val | (val)); \
  388. if (__old == __val) \
  389. break; \
  390. __val = __old; \
  391. } \
  392. __old; \
  393. })
  394. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  395. /*
  396. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  397. * this avoids any races wrt polling state changes and thereby avoids
  398. * spurious IPIs.
  399. */
  400. static bool set_nr_and_not_polling(struct task_struct *p)
  401. {
  402. struct thread_info *ti = task_thread_info(p);
  403. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  404. }
  405. /*
  406. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  407. *
  408. * If this returns true, then the idle task promises to call
  409. * sched_ttwu_pending() and reschedule soon.
  410. */
  411. static bool set_nr_if_polling(struct task_struct *p)
  412. {
  413. struct thread_info *ti = task_thread_info(p);
  414. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  415. for (;;) {
  416. if (!(val & _TIF_POLLING_NRFLAG))
  417. return false;
  418. if (val & _TIF_NEED_RESCHED)
  419. return true;
  420. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  421. if (old == val)
  422. break;
  423. val = old;
  424. }
  425. return true;
  426. }
  427. #else
  428. static bool set_nr_and_not_polling(struct task_struct *p)
  429. {
  430. set_tsk_need_resched(p);
  431. return true;
  432. }
  433. #ifdef CONFIG_SMP
  434. static bool set_nr_if_polling(struct task_struct *p)
  435. {
  436. return false;
  437. }
  438. #endif
  439. #endif
  440. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  441. {
  442. struct wake_q_node *node = &task->wake_q;
  443. /*
  444. * Atomically grab the task, if ->wake_q is !nil already it means
  445. * its already queued (either by us or someone else) and will get the
  446. * wakeup due to that.
  447. *
  448. * This cmpxchg() implies a full barrier, which pairs with the write
  449. * barrier implied by the wakeup in wake_up_list().
  450. */
  451. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  452. return;
  453. get_task_struct(task);
  454. /*
  455. * The head is context local, there can be no concurrency.
  456. */
  457. *head->lastp = node;
  458. head->lastp = &node->next;
  459. }
  460. void wake_up_q(struct wake_q_head *head)
  461. {
  462. struct wake_q_node *node = head->first;
  463. while (node != WAKE_Q_TAIL) {
  464. struct task_struct *task;
  465. task = container_of(node, struct task_struct, wake_q);
  466. BUG_ON(!task);
  467. /* task can safely be re-inserted now */
  468. node = node->next;
  469. task->wake_q.next = NULL;
  470. /*
  471. * wake_up_process() implies a wmb() to pair with the queueing
  472. * in wake_q_add() so as not to miss wakeups.
  473. */
  474. wake_up_process(task);
  475. put_task_struct(task);
  476. }
  477. }
  478. /*
  479. * resched_curr - mark rq's current task 'to be rescheduled now'.
  480. *
  481. * On UP this means the setting of the need_resched flag, on SMP it
  482. * might also involve a cross-CPU call to trigger the scheduler on
  483. * the target CPU.
  484. */
  485. void resched_curr(struct rq *rq)
  486. {
  487. struct task_struct *curr = rq->curr;
  488. int cpu;
  489. lockdep_assert_held(&rq->lock);
  490. if (test_tsk_need_resched(curr))
  491. return;
  492. cpu = cpu_of(rq);
  493. if (cpu == smp_processor_id()) {
  494. set_tsk_need_resched(curr);
  495. set_preempt_need_resched();
  496. return;
  497. }
  498. if (set_nr_and_not_polling(curr))
  499. smp_send_reschedule(cpu);
  500. else
  501. trace_sched_wake_idle_without_ipi(cpu);
  502. }
  503. void resched_cpu(int cpu)
  504. {
  505. struct rq *rq = cpu_rq(cpu);
  506. unsigned long flags;
  507. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  508. return;
  509. resched_curr(rq);
  510. raw_spin_unlock_irqrestore(&rq->lock, flags);
  511. }
  512. #ifdef CONFIG_SMP
  513. #ifdef CONFIG_NO_HZ_COMMON
  514. /*
  515. * In the semi idle case, use the nearest busy cpu for migrating timers
  516. * from an idle cpu. This is good for power-savings.
  517. *
  518. * We don't do similar optimization for completely idle system, as
  519. * selecting an idle cpu will add more delays to the timers than intended
  520. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  521. */
  522. int get_nohz_timer_target(int pinned)
  523. {
  524. int cpu = smp_processor_id();
  525. int i;
  526. struct sched_domain *sd;
  527. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  528. return cpu;
  529. rcu_read_lock();
  530. for_each_domain(cpu, sd) {
  531. for_each_cpu(i, sched_domain_span(sd)) {
  532. if (!idle_cpu(i)) {
  533. cpu = i;
  534. goto unlock;
  535. }
  536. }
  537. }
  538. unlock:
  539. rcu_read_unlock();
  540. return cpu;
  541. }
  542. /*
  543. * When add_timer_on() enqueues a timer into the timer wheel of an
  544. * idle CPU then this timer might expire before the next timer event
  545. * which is scheduled to wake up that CPU. In case of a completely
  546. * idle system the next event might even be infinite time into the
  547. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  548. * leaves the inner idle loop so the newly added timer is taken into
  549. * account when the CPU goes back to idle and evaluates the timer
  550. * wheel for the next timer event.
  551. */
  552. static void wake_up_idle_cpu(int cpu)
  553. {
  554. struct rq *rq = cpu_rq(cpu);
  555. if (cpu == smp_processor_id())
  556. return;
  557. if (set_nr_and_not_polling(rq->idle))
  558. smp_send_reschedule(cpu);
  559. else
  560. trace_sched_wake_idle_without_ipi(cpu);
  561. }
  562. static bool wake_up_full_nohz_cpu(int cpu)
  563. {
  564. /*
  565. * We just need the target to call irq_exit() and re-evaluate
  566. * the next tick. The nohz full kick at least implies that.
  567. * If needed we can still optimize that later with an
  568. * empty IRQ.
  569. */
  570. if (tick_nohz_full_cpu(cpu)) {
  571. if (cpu != smp_processor_id() ||
  572. tick_nohz_tick_stopped())
  573. tick_nohz_full_kick_cpu(cpu);
  574. return true;
  575. }
  576. return false;
  577. }
  578. void wake_up_nohz_cpu(int cpu)
  579. {
  580. if (!wake_up_full_nohz_cpu(cpu))
  581. wake_up_idle_cpu(cpu);
  582. }
  583. static inline bool got_nohz_idle_kick(void)
  584. {
  585. int cpu = smp_processor_id();
  586. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  587. return false;
  588. if (idle_cpu(cpu) && !need_resched())
  589. return true;
  590. /*
  591. * We can't run Idle Load Balance on this CPU for this time so we
  592. * cancel it and clear NOHZ_BALANCE_KICK
  593. */
  594. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  595. return false;
  596. }
  597. #else /* CONFIG_NO_HZ_COMMON */
  598. static inline bool got_nohz_idle_kick(void)
  599. {
  600. return false;
  601. }
  602. #endif /* CONFIG_NO_HZ_COMMON */
  603. #ifdef CONFIG_NO_HZ_FULL
  604. bool sched_can_stop_tick(void)
  605. {
  606. /*
  607. * FIFO realtime policy runs the highest priority task. Other runnable
  608. * tasks are of a lower priority. The scheduler tick does nothing.
  609. */
  610. if (current->policy == SCHED_FIFO)
  611. return true;
  612. /*
  613. * Round-robin realtime tasks time slice with other tasks at the same
  614. * realtime priority. Is this task the only one at this priority?
  615. */
  616. if (current->policy == SCHED_RR) {
  617. struct sched_rt_entity *rt_se = &current->rt;
  618. return rt_se->run_list.prev == rt_se->run_list.next;
  619. }
  620. /*
  621. * More than one running task need preemption.
  622. * nr_running update is assumed to be visible
  623. * after IPI is sent from wakers.
  624. */
  625. if (this_rq()->nr_running > 1)
  626. return false;
  627. return true;
  628. }
  629. #endif /* CONFIG_NO_HZ_FULL */
  630. void sched_avg_update(struct rq *rq)
  631. {
  632. s64 period = sched_avg_period();
  633. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  634. /*
  635. * Inline assembly required to prevent the compiler
  636. * optimising this loop into a divmod call.
  637. * See __iter_div_u64_rem() for another example of this.
  638. */
  639. asm("" : "+rm" (rq->age_stamp));
  640. rq->age_stamp += period;
  641. rq->rt_avg /= 2;
  642. }
  643. }
  644. #endif /* CONFIG_SMP */
  645. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  646. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  647. /*
  648. * Iterate task_group tree rooted at *from, calling @down when first entering a
  649. * node and @up when leaving it for the final time.
  650. *
  651. * Caller must hold rcu_lock or sufficient equivalent.
  652. */
  653. int walk_tg_tree_from(struct task_group *from,
  654. tg_visitor down, tg_visitor up, void *data)
  655. {
  656. struct task_group *parent, *child;
  657. int ret;
  658. parent = from;
  659. down:
  660. ret = (*down)(parent, data);
  661. if (ret)
  662. goto out;
  663. list_for_each_entry_rcu(child, &parent->children, siblings) {
  664. parent = child;
  665. goto down;
  666. up:
  667. continue;
  668. }
  669. ret = (*up)(parent, data);
  670. if (ret || parent == from)
  671. goto out;
  672. child = parent;
  673. parent = parent->parent;
  674. if (parent)
  675. goto up;
  676. out:
  677. return ret;
  678. }
  679. int tg_nop(struct task_group *tg, void *data)
  680. {
  681. return 0;
  682. }
  683. #endif
  684. static void set_load_weight(struct task_struct *p)
  685. {
  686. int prio = p->static_prio - MAX_RT_PRIO;
  687. struct load_weight *load = &p->se.load;
  688. /*
  689. * SCHED_IDLE tasks get minimal weight:
  690. */
  691. if (p->policy == SCHED_IDLE) {
  692. load->weight = scale_load(WEIGHT_IDLEPRIO);
  693. load->inv_weight = WMULT_IDLEPRIO;
  694. return;
  695. }
  696. load->weight = scale_load(prio_to_weight[prio]);
  697. load->inv_weight = prio_to_wmult[prio];
  698. }
  699. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  700. {
  701. update_rq_clock(rq);
  702. sched_info_queued(rq, p);
  703. p->sched_class->enqueue_task(rq, p, flags);
  704. }
  705. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  706. {
  707. update_rq_clock(rq);
  708. sched_info_dequeued(rq, p);
  709. p->sched_class->dequeue_task(rq, p, flags);
  710. }
  711. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  712. {
  713. if (task_contributes_to_load(p))
  714. rq->nr_uninterruptible--;
  715. enqueue_task(rq, p, flags);
  716. }
  717. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  718. {
  719. if (task_contributes_to_load(p))
  720. rq->nr_uninterruptible++;
  721. dequeue_task(rq, p, flags);
  722. }
  723. static void update_rq_clock_task(struct rq *rq, s64 delta)
  724. {
  725. /*
  726. * In theory, the compile should just see 0 here, and optimize out the call
  727. * to sched_rt_avg_update. But I don't trust it...
  728. */
  729. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  730. s64 steal = 0, irq_delta = 0;
  731. #endif
  732. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  733. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  734. /*
  735. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  736. * this case when a previous update_rq_clock() happened inside a
  737. * {soft,}irq region.
  738. *
  739. * When this happens, we stop ->clock_task and only update the
  740. * prev_irq_time stamp to account for the part that fit, so that a next
  741. * update will consume the rest. This ensures ->clock_task is
  742. * monotonic.
  743. *
  744. * It does however cause some slight miss-attribution of {soft,}irq
  745. * time, a more accurate solution would be to update the irq_time using
  746. * the current rq->clock timestamp, except that would require using
  747. * atomic ops.
  748. */
  749. if (irq_delta > delta)
  750. irq_delta = delta;
  751. rq->prev_irq_time += irq_delta;
  752. delta -= irq_delta;
  753. #endif
  754. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  755. if (static_key_false((&paravirt_steal_rq_enabled))) {
  756. steal = paravirt_steal_clock(cpu_of(rq));
  757. steal -= rq->prev_steal_time_rq;
  758. if (unlikely(steal > delta))
  759. steal = delta;
  760. rq->prev_steal_time_rq += steal;
  761. delta -= steal;
  762. }
  763. #endif
  764. rq->clock_task += delta;
  765. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  766. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  767. sched_rt_avg_update(rq, irq_delta + steal);
  768. #endif
  769. }
  770. void sched_set_stop_task(int cpu, struct task_struct *stop)
  771. {
  772. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  773. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  774. if (stop) {
  775. /*
  776. * Make it appear like a SCHED_FIFO task, its something
  777. * userspace knows about and won't get confused about.
  778. *
  779. * Also, it will make PI more or less work without too
  780. * much confusion -- but then, stop work should not
  781. * rely on PI working anyway.
  782. */
  783. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  784. stop->sched_class = &stop_sched_class;
  785. }
  786. cpu_rq(cpu)->stop = stop;
  787. if (old_stop) {
  788. /*
  789. * Reset it back to a normal scheduling class so that
  790. * it can die in pieces.
  791. */
  792. old_stop->sched_class = &rt_sched_class;
  793. }
  794. }
  795. /*
  796. * __normal_prio - return the priority that is based on the static prio
  797. */
  798. static inline int __normal_prio(struct task_struct *p)
  799. {
  800. return p->static_prio;
  801. }
  802. /*
  803. * Calculate the expected normal priority: i.e. priority
  804. * without taking RT-inheritance into account. Might be
  805. * boosted by interactivity modifiers. Changes upon fork,
  806. * setprio syscalls, and whenever the interactivity
  807. * estimator recalculates.
  808. */
  809. static inline int normal_prio(struct task_struct *p)
  810. {
  811. int prio;
  812. if (task_has_dl_policy(p))
  813. prio = MAX_DL_PRIO-1;
  814. else if (task_has_rt_policy(p))
  815. prio = MAX_RT_PRIO-1 - p->rt_priority;
  816. else
  817. prio = __normal_prio(p);
  818. return prio;
  819. }
  820. /*
  821. * Calculate the current priority, i.e. the priority
  822. * taken into account by the scheduler. This value might
  823. * be boosted by RT tasks, or might be boosted by
  824. * interactivity modifiers. Will be RT if the task got
  825. * RT-boosted. If not then it returns p->normal_prio.
  826. */
  827. static int effective_prio(struct task_struct *p)
  828. {
  829. p->normal_prio = normal_prio(p);
  830. /*
  831. * If we are RT tasks or we were boosted to RT priority,
  832. * keep the priority unchanged. Otherwise, update priority
  833. * to the normal priority:
  834. */
  835. if (!rt_prio(p->prio))
  836. return p->normal_prio;
  837. return p->prio;
  838. }
  839. /**
  840. * task_curr - is this task currently executing on a CPU?
  841. * @p: the task in question.
  842. *
  843. * Return: 1 if the task is currently executing. 0 otherwise.
  844. */
  845. inline int task_curr(const struct task_struct *p)
  846. {
  847. return cpu_curr(task_cpu(p)) == p;
  848. }
  849. /*
  850. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  851. * use the balance_callback list if you want balancing.
  852. *
  853. * this means any call to check_class_changed() must be followed by a call to
  854. * balance_callback().
  855. */
  856. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  857. const struct sched_class *prev_class,
  858. int oldprio)
  859. {
  860. if (prev_class != p->sched_class) {
  861. if (prev_class->switched_from)
  862. prev_class->switched_from(rq, p);
  863. p->sched_class->switched_to(rq, p);
  864. } else if (oldprio != p->prio || dl_task(p))
  865. p->sched_class->prio_changed(rq, p, oldprio);
  866. }
  867. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  868. {
  869. const struct sched_class *class;
  870. if (p->sched_class == rq->curr->sched_class) {
  871. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  872. } else {
  873. for_each_class(class) {
  874. if (class == rq->curr->sched_class)
  875. break;
  876. if (class == p->sched_class) {
  877. resched_curr(rq);
  878. break;
  879. }
  880. }
  881. }
  882. /*
  883. * A queue event has occurred, and we're going to schedule. In
  884. * this case, we can save a useless back to back clock update.
  885. */
  886. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  887. rq_clock_skip_update(rq, true);
  888. }
  889. #ifdef CONFIG_SMP
  890. /*
  891. * This is how migration works:
  892. *
  893. * 1) we invoke migration_cpu_stop() on the target CPU using
  894. * stop_one_cpu().
  895. * 2) stopper starts to run (implicitly forcing the migrated thread
  896. * off the CPU)
  897. * 3) it checks whether the migrated task is still in the wrong runqueue.
  898. * 4) if it's in the wrong runqueue then the migration thread removes
  899. * it and puts it into the right queue.
  900. * 5) stopper completes and stop_one_cpu() returns and the migration
  901. * is done.
  902. */
  903. /*
  904. * move_queued_task - move a queued task to new rq.
  905. *
  906. * Returns (locked) new rq. Old rq's lock is released.
  907. */
  908. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  909. {
  910. lockdep_assert_held(&rq->lock);
  911. dequeue_task(rq, p, 0);
  912. p->on_rq = TASK_ON_RQ_MIGRATING;
  913. set_task_cpu(p, new_cpu);
  914. raw_spin_unlock(&rq->lock);
  915. rq = cpu_rq(new_cpu);
  916. raw_spin_lock(&rq->lock);
  917. BUG_ON(task_cpu(p) != new_cpu);
  918. p->on_rq = TASK_ON_RQ_QUEUED;
  919. enqueue_task(rq, p, 0);
  920. check_preempt_curr(rq, p, 0);
  921. return rq;
  922. }
  923. struct migration_arg {
  924. struct task_struct *task;
  925. int dest_cpu;
  926. };
  927. /*
  928. * Move (not current) task off this cpu, onto dest cpu. We're doing
  929. * this because either it can't run here any more (set_cpus_allowed()
  930. * away from this CPU, or CPU going down), or because we're
  931. * attempting to rebalance this task on exec (sched_exec).
  932. *
  933. * So we race with normal scheduler movements, but that's OK, as long
  934. * as the task is no longer on this CPU.
  935. */
  936. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  937. {
  938. if (unlikely(!cpu_active(dest_cpu)))
  939. return rq;
  940. /* Affinity changed (again). */
  941. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  942. return rq;
  943. rq = move_queued_task(rq, p, dest_cpu);
  944. return rq;
  945. }
  946. /*
  947. * migration_cpu_stop - this will be executed by a highprio stopper thread
  948. * and performs thread migration by bumping thread off CPU then
  949. * 'pushing' onto another runqueue.
  950. */
  951. static int migration_cpu_stop(void *data)
  952. {
  953. struct migration_arg *arg = data;
  954. struct task_struct *p = arg->task;
  955. struct rq *rq = this_rq();
  956. /*
  957. * The original target cpu might have gone down and we might
  958. * be on another cpu but it doesn't matter.
  959. */
  960. local_irq_disable();
  961. /*
  962. * We need to explicitly wake pending tasks before running
  963. * __migrate_task() such that we will not miss enforcing cpus_allowed
  964. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  965. */
  966. sched_ttwu_pending();
  967. raw_spin_lock(&p->pi_lock);
  968. raw_spin_lock(&rq->lock);
  969. /*
  970. * If task_rq(p) != rq, it cannot be migrated here, because we're
  971. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  972. * we're holding p->pi_lock.
  973. */
  974. if (task_rq(p) == rq && task_on_rq_queued(p))
  975. rq = __migrate_task(rq, p, arg->dest_cpu);
  976. raw_spin_unlock(&rq->lock);
  977. raw_spin_unlock(&p->pi_lock);
  978. local_irq_enable();
  979. return 0;
  980. }
  981. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  982. {
  983. if (p->sched_class->set_cpus_allowed)
  984. p->sched_class->set_cpus_allowed(p, new_mask);
  985. cpumask_copy(&p->cpus_allowed, new_mask);
  986. p->nr_cpus_allowed = cpumask_weight(new_mask);
  987. }
  988. /*
  989. * Change a given task's CPU affinity. Migrate the thread to a
  990. * proper CPU and schedule it away if the CPU it's executing on
  991. * is removed from the allowed bitmask.
  992. *
  993. * NOTE: the caller must have a valid reference to the task, the
  994. * task must not exit() & deallocate itself prematurely. The
  995. * call is not atomic; no spinlocks may be held.
  996. */
  997. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  998. {
  999. unsigned long flags;
  1000. struct rq *rq;
  1001. unsigned int dest_cpu;
  1002. int ret = 0;
  1003. rq = task_rq_lock(p, &flags);
  1004. if (cpumask_equal(&p->cpus_allowed, new_mask))
  1005. goto out;
  1006. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  1007. ret = -EINVAL;
  1008. goto out;
  1009. }
  1010. do_set_cpus_allowed(p, new_mask);
  1011. /* Can the task run on the task's current CPU? If so, we're done */
  1012. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1013. goto out;
  1014. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  1015. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1016. struct migration_arg arg = { p, dest_cpu };
  1017. /* Need help from migration thread: drop lock and wait. */
  1018. task_rq_unlock(rq, p, &flags);
  1019. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1020. tlb_migrate_finish(p->mm);
  1021. return 0;
  1022. } else if (task_on_rq_queued(p))
  1023. rq = move_queued_task(rq, p, dest_cpu);
  1024. out:
  1025. task_rq_unlock(rq, p, &flags);
  1026. return ret;
  1027. }
  1028. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1029. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1030. {
  1031. #ifdef CONFIG_SCHED_DEBUG
  1032. /*
  1033. * We should never call set_task_cpu() on a blocked task,
  1034. * ttwu() will sort out the placement.
  1035. */
  1036. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1037. !p->on_rq);
  1038. #ifdef CONFIG_LOCKDEP
  1039. /*
  1040. * The caller should hold either p->pi_lock or rq->lock, when changing
  1041. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1042. *
  1043. * sched_move_task() holds both and thus holding either pins the cgroup,
  1044. * see task_group().
  1045. *
  1046. * Furthermore, all task_rq users should acquire both locks, see
  1047. * task_rq_lock().
  1048. */
  1049. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1050. lockdep_is_held(&task_rq(p)->lock)));
  1051. #endif
  1052. #endif
  1053. trace_sched_migrate_task(p, new_cpu);
  1054. if (task_cpu(p) != new_cpu) {
  1055. if (p->sched_class->migrate_task_rq)
  1056. p->sched_class->migrate_task_rq(p, new_cpu);
  1057. p->se.nr_migrations++;
  1058. perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
  1059. }
  1060. __set_task_cpu(p, new_cpu);
  1061. }
  1062. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1063. {
  1064. if (task_on_rq_queued(p)) {
  1065. struct rq *src_rq, *dst_rq;
  1066. src_rq = task_rq(p);
  1067. dst_rq = cpu_rq(cpu);
  1068. deactivate_task(src_rq, p, 0);
  1069. set_task_cpu(p, cpu);
  1070. activate_task(dst_rq, p, 0);
  1071. check_preempt_curr(dst_rq, p, 0);
  1072. } else {
  1073. /*
  1074. * Task isn't running anymore; make it appear like we migrated
  1075. * it before it went to sleep. This means on wakeup we make the
  1076. * previous cpu our targer instead of where it really is.
  1077. */
  1078. p->wake_cpu = cpu;
  1079. }
  1080. }
  1081. struct migration_swap_arg {
  1082. struct task_struct *src_task, *dst_task;
  1083. int src_cpu, dst_cpu;
  1084. };
  1085. static int migrate_swap_stop(void *data)
  1086. {
  1087. struct migration_swap_arg *arg = data;
  1088. struct rq *src_rq, *dst_rq;
  1089. int ret = -EAGAIN;
  1090. src_rq = cpu_rq(arg->src_cpu);
  1091. dst_rq = cpu_rq(arg->dst_cpu);
  1092. double_raw_lock(&arg->src_task->pi_lock,
  1093. &arg->dst_task->pi_lock);
  1094. double_rq_lock(src_rq, dst_rq);
  1095. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1096. goto unlock;
  1097. if (task_cpu(arg->src_task) != arg->src_cpu)
  1098. goto unlock;
  1099. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1100. goto unlock;
  1101. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1102. goto unlock;
  1103. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1104. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1105. ret = 0;
  1106. unlock:
  1107. double_rq_unlock(src_rq, dst_rq);
  1108. raw_spin_unlock(&arg->dst_task->pi_lock);
  1109. raw_spin_unlock(&arg->src_task->pi_lock);
  1110. return ret;
  1111. }
  1112. /*
  1113. * Cross migrate two tasks
  1114. */
  1115. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1116. {
  1117. struct migration_swap_arg arg;
  1118. int ret = -EINVAL;
  1119. arg = (struct migration_swap_arg){
  1120. .src_task = cur,
  1121. .src_cpu = task_cpu(cur),
  1122. .dst_task = p,
  1123. .dst_cpu = task_cpu(p),
  1124. };
  1125. if (arg.src_cpu == arg.dst_cpu)
  1126. goto out;
  1127. /*
  1128. * These three tests are all lockless; this is OK since all of them
  1129. * will be re-checked with proper locks held further down the line.
  1130. */
  1131. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1132. goto out;
  1133. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1134. goto out;
  1135. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1136. goto out;
  1137. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1138. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1139. out:
  1140. return ret;
  1141. }
  1142. /*
  1143. * wait_task_inactive - wait for a thread to unschedule.
  1144. *
  1145. * If @match_state is nonzero, it's the @p->state value just checked and
  1146. * not expected to change. If it changes, i.e. @p might have woken up,
  1147. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1148. * we return a positive number (its total switch count). If a second call
  1149. * a short while later returns the same number, the caller can be sure that
  1150. * @p has remained unscheduled the whole time.
  1151. *
  1152. * The caller must ensure that the task *will* unschedule sometime soon,
  1153. * else this function might spin for a *long* time. This function can't
  1154. * be called with interrupts off, or it may introduce deadlock with
  1155. * smp_call_function() if an IPI is sent by the same process we are
  1156. * waiting to become inactive.
  1157. */
  1158. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1159. {
  1160. unsigned long flags;
  1161. int running, queued;
  1162. unsigned long ncsw;
  1163. struct rq *rq;
  1164. for (;;) {
  1165. /*
  1166. * We do the initial early heuristics without holding
  1167. * any task-queue locks at all. We'll only try to get
  1168. * the runqueue lock when things look like they will
  1169. * work out!
  1170. */
  1171. rq = task_rq(p);
  1172. /*
  1173. * If the task is actively running on another CPU
  1174. * still, just relax and busy-wait without holding
  1175. * any locks.
  1176. *
  1177. * NOTE! Since we don't hold any locks, it's not
  1178. * even sure that "rq" stays as the right runqueue!
  1179. * But we don't care, since "task_running()" will
  1180. * return false if the runqueue has changed and p
  1181. * is actually now running somewhere else!
  1182. */
  1183. while (task_running(rq, p)) {
  1184. if (match_state && unlikely(p->state != match_state))
  1185. return 0;
  1186. cpu_relax();
  1187. }
  1188. /*
  1189. * Ok, time to look more closely! We need the rq
  1190. * lock now, to be *sure*. If we're wrong, we'll
  1191. * just go back and repeat.
  1192. */
  1193. rq = task_rq_lock(p, &flags);
  1194. trace_sched_wait_task(p);
  1195. running = task_running(rq, p);
  1196. queued = task_on_rq_queued(p);
  1197. ncsw = 0;
  1198. if (!match_state || p->state == match_state)
  1199. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1200. task_rq_unlock(rq, p, &flags);
  1201. /*
  1202. * If it changed from the expected state, bail out now.
  1203. */
  1204. if (unlikely(!ncsw))
  1205. break;
  1206. /*
  1207. * Was it really running after all now that we
  1208. * checked with the proper locks actually held?
  1209. *
  1210. * Oops. Go back and try again..
  1211. */
  1212. if (unlikely(running)) {
  1213. cpu_relax();
  1214. continue;
  1215. }
  1216. /*
  1217. * It's not enough that it's not actively running,
  1218. * it must be off the runqueue _entirely_, and not
  1219. * preempted!
  1220. *
  1221. * So if it was still runnable (but just not actively
  1222. * running right now), it's preempted, and we should
  1223. * yield - it could be a while.
  1224. */
  1225. if (unlikely(queued)) {
  1226. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1227. set_current_state(TASK_UNINTERRUPTIBLE);
  1228. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1229. continue;
  1230. }
  1231. /*
  1232. * Ahh, all good. It wasn't running, and it wasn't
  1233. * runnable, which means that it will never become
  1234. * running in the future either. We're all done!
  1235. */
  1236. break;
  1237. }
  1238. return ncsw;
  1239. }
  1240. /***
  1241. * kick_process - kick a running thread to enter/exit the kernel
  1242. * @p: the to-be-kicked thread
  1243. *
  1244. * Cause a process which is running on another CPU to enter
  1245. * kernel-mode, without any delay. (to get signals handled.)
  1246. *
  1247. * NOTE: this function doesn't have to take the runqueue lock,
  1248. * because all it wants to ensure is that the remote task enters
  1249. * the kernel. If the IPI races and the task has been migrated
  1250. * to another CPU then no harm is done and the purpose has been
  1251. * achieved as well.
  1252. */
  1253. void kick_process(struct task_struct *p)
  1254. {
  1255. int cpu;
  1256. preempt_disable();
  1257. cpu = task_cpu(p);
  1258. if ((cpu != smp_processor_id()) && task_curr(p))
  1259. smp_send_reschedule(cpu);
  1260. preempt_enable();
  1261. }
  1262. EXPORT_SYMBOL_GPL(kick_process);
  1263. /*
  1264. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1265. */
  1266. static int select_fallback_rq(int cpu, struct task_struct *p)
  1267. {
  1268. int nid = cpu_to_node(cpu);
  1269. const struct cpumask *nodemask = NULL;
  1270. enum { cpuset, possible, fail } state = cpuset;
  1271. int dest_cpu;
  1272. /*
  1273. * If the node that the cpu is on has been offlined, cpu_to_node()
  1274. * will return -1. There is no cpu on the node, and we should
  1275. * select the cpu on the other node.
  1276. */
  1277. if (nid != -1) {
  1278. nodemask = cpumask_of_node(nid);
  1279. /* Look for allowed, online CPU in same node. */
  1280. for_each_cpu(dest_cpu, nodemask) {
  1281. if (!cpu_online(dest_cpu))
  1282. continue;
  1283. if (!cpu_active(dest_cpu))
  1284. continue;
  1285. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1286. return dest_cpu;
  1287. }
  1288. }
  1289. for (;;) {
  1290. /* Any allowed, online CPU? */
  1291. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1292. if (!cpu_online(dest_cpu))
  1293. continue;
  1294. if (!cpu_active(dest_cpu))
  1295. continue;
  1296. goto out;
  1297. }
  1298. switch (state) {
  1299. case cpuset:
  1300. /* No more Mr. Nice Guy. */
  1301. cpuset_cpus_allowed_fallback(p);
  1302. state = possible;
  1303. break;
  1304. case possible:
  1305. do_set_cpus_allowed(p, cpu_possible_mask);
  1306. state = fail;
  1307. break;
  1308. case fail:
  1309. BUG();
  1310. break;
  1311. }
  1312. }
  1313. out:
  1314. if (state != cpuset) {
  1315. /*
  1316. * Don't tell them about moving exiting tasks or
  1317. * kernel threads (both mm NULL), since they never
  1318. * leave kernel.
  1319. */
  1320. if (p->mm && printk_ratelimit()) {
  1321. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1322. task_pid_nr(p), p->comm, cpu);
  1323. }
  1324. }
  1325. return dest_cpu;
  1326. }
  1327. /*
  1328. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1329. */
  1330. static inline
  1331. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1332. {
  1333. if (p->nr_cpus_allowed > 1)
  1334. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1335. /*
  1336. * In order not to call set_task_cpu() on a blocking task we need
  1337. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1338. * cpu.
  1339. *
  1340. * Since this is common to all placement strategies, this lives here.
  1341. *
  1342. * [ this allows ->select_task() to simply return task_cpu(p) and
  1343. * not worry about this generic constraint ]
  1344. */
  1345. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1346. !cpu_online(cpu)))
  1347. cpu = select_fallback_rq(task_cpu(p), p);
  1348. return cpu;
  1349. }
  1350. static void update_avg(u64 *avg, u64 sample)
  1351. {
  1352. s64 diff = sample - *avg;
  1353. *avg += diff >> 3;
  1354. }
  1355. #endif /* CONFIG_SMP */
  1356. static void
  1357. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1358. {
  1359. #ifdef CONFIG_SCHEDSTATS
  1360. struct rq *rq = this_rq();
  1361. #ifdef CONFIG_SMP
  1362. int this_cpu = smp_processor_id();
  1363. if (cpu == this_cpu) {
  1364. schedstat_inc(rq, ttwu_local);
  1365. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1366. } else {
  1367. struct sched_domain *sd;
  1368. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1369. rcu_read_lock();
  1370. for_each_domain(this_cpu, sd) {
  1371. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1372. schedstat_inc(sd, ttwu_wake_remote);
  1373. break;
  1374. }
  1375. }
  1376. rcu_read_unlock();
  1377. }
  1378. if (wake_flags & WF_MIGRATED)
  1379. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1380. #endif /* CONFIG_SMP */
  1381. schedstat_inc(rq, ttwu_count);
  1382. schedstat_inc(p, se.statistics.nr_wakeups);
  1383. if (wake_flags & WF_SYNC)
  1384. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1385. #endif /* CONFIG_SCHEDSTATS */
  1386. }
  1387. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1388. {
  1389. activate_task(rq, p, en_flags);
  1390. p->on_rq = TASK_ON_RQ_QUEUED;
  1391. /* if a worker is waking up, notify workqueue */
  1392. if (p->flags & PF_WQ_WORKER)
  1393. wq_worker_waking_up(p, cpu_of(rq));
  1394. }
  1395. /*
  1396. * Mark the task runnable and perform wakeup-preemption.
  1397. */
  1398. static void
  1399. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1400. {
  1401. check_preempt_curr(rq, p, wake_flags);
  1402. trace_sched_wakeup(p, true);
  1403. p->state = TASK_RUNNING;
  1404. #ifdef CONFIG_SMP
  1405. if (p->sched_class->task_woken) {
  1406. /*
  1407. * XXX can drop rq->lock; most likely ok.
  1408. */
  1409. p->sched_class->task_woken(rq, p);
  1410. }
  1411. if (rq->idle_stamp) {
  1412. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1413. u64 max = 2*rq->max_idle_balance_cost;
  1414. update_avg(&rq->avg_idle, delta);
  1415. if (rq->avg_idle > max)
  1416. rq->avg_idle = max;
  1417. rq->idle_stamp = 0;
  1418. }
  1419. #endif
  1420. }
  1421. static void
  1422. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1423. {
  1424. #ifdef CONFIG_SMP
  1425. if (p->sched_contributes_to_load)
  1426. rq->nr_uninterruptible--;
  1427. #endif
  1428. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1429. ttwu_do_wakeup(rq, p, wake_flags);
  1430. }
  1431. /*
  1432. * Called in case the task @p isn't fully descheduled from its runqueue,
  1433. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1434. * since all we need to do is flip p->state to TASK_RUNNING, since
  1435. * the task is still ->on_rq.
  1436. */
  1437. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1438. {
  1439. struct rq *rq;
  1440. int ret = 0;
  1441. rq = __task_rq_lock(p);
  1442. if (task_on_rq_queued(p)) {
  1443. /* check_preempt_curr() may use rq clock */
  1444. update_rq_clock(rq);
  1445. ttwu_do_wakeup(rq, p, wake_flags);
  1446. ret = 1;
  1447. }
  1448. __task_rq_unlock(rq);
  1449. return ret;
  1450. }
  1451. #ifdef CONFIG_SMP
  1452. void sched_ttwu_pending(void)
  1453. {
  1454. struct rq *rq = this_rq();
  1455. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1456. struct task_struct *p;
  1457. unsigned long flags;
  1458. if (!llist)
  1459. return;
  1460. raw_spin_lock_irqsave(&rq->lock, flags);
  1461. while (llist) {
  1462. p = llist_entry(llist, struct task_struct, wake_entry);
  1463. llist = llist_next(llist);
  1464. ttwu_do_activate(rq, p, 0);
  1465. }
  1466. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1467. }
  1468. void scheduler_ipi(void)
  1469. {
  1470. /*
  1471. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1472. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1473. * this IPI.
  1474. */
  1475. preempt_fold_need_resched();
  1476. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1477. return;
  1478. /*
  1479. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1480. * traditionally all their work was done from the interrupt return
  1481. * path. Now that we actually do some work, we need to make sure
  1482. * we do call them.
  1483. *
  1484. * Some archs already do call them, luckily irq_enter/exit nest
  1485. * properly.
  1486. *
  1487. * Arguably we should visit all archs and update all handlers,
  1488. * however a fair share of IPIs are still resched only so this would
  1489. * somewhat pessimize the simple resched case.
  1490. */
  1491. irq_enter();
  1492. sched_ttwu_pending();
  1493. /*
  1494. * Check if someone kicked us for doing the nohz idle load balance.
  1495. */
  1496. if (unlikely(got_nohz_idle_kick())) {
  1497. this_rq()->idle_balance = 1;
  1498. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1499. }
  1500. irq_exit();
  1501. }
  1502. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1503. {
  1504. struct rq *rq = cpu_rq(cpu);
  1505. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1506. if (!set_nr_if_polling(rq->idle))
  1507. smp_send_reschedule(cpu);
  1508. else
  1509. trace_sched_wake_idle_without_ipi(cpu);
  1510. }
  1511. }
  1512. void wake_up_if_idle(int cpu)
  1513. {
  1514. struct rq *rq = cpu_rq(cpu);
  1515. unsigned long flags;
  1516. rcu_read_lock();
  1517. if (!is_idle_task(rcu_dereference(rq->curr)))
  1518. goto out;
  1519. if (set_nr_if_polling(rq->idle)) {
  1520. trace_sched_wake_idle_without_ipi(cpu);
  1521. } else {
  1522. raw_spin_lock_irqsave(&rq->lock, flags);
  1523. if (is_idle_task(rq->curr))
  1524. smp_send_reschedule(cpu);
  1525. /* Else cpu is not in idle, do nothing here */
  1526. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1527. }
  1528. out:
  1529. rcu_read_unlock();
  1530. }
  1531. bool cpus_share_cache(int this_cpu, int that_cpu)
  1532. {
  1533. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1534. }
  1535. #endif /* CONFIG_SMP */
  1536. static void ttwu_queue(struct task_struct *p, int cpu)
  1537. {
  1538. struct rq *rq = cpu_rq(cpu);
  1539. #if defined(CONFIG_SMP)
  1540. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1541. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1542. ttwu_queue_remote(p, cpu);
  1543. return;
  1544. }
  1545. #endif
  1546. raw_spin_lock(&rq->lock);
  1547. ttwu_do_activate(rq, p, 0);
  1548. raw_spin_unlock(&rq->lock);
  1549. }
  1550. /**
  1551. * try_to_wake_up - wake up a thread
  1552. * @p: the thread to be awakened
  1553. * @state: the mask of task states that can be woken
  1554. * @wake_flags: wake modifier flags (WF_*)
  1555. *
  1556. * Put it on the run-queue if it's not already there. The "current"
  1557. * thread is always on the run-queue (except when the actual
  1558. * re-schedule is in progress), and as such you're allowed to do
  1559. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1560. * runnable without the overhead of this.
  1561. *
  1562. * Return: %true if @p was woken up, %false if it was already running.
  1563. * or @state didn't match @p's state.
  1564. */
  1565. static int
  1566. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1567. {
  1568. unsigned long flags;
  1569. int cpu, success = 0;
  1570. /*
  1571. * If we are going to wake up a thread waiting for CONDITION we
  1572. * need to ensure that CONDITION=1 done by the caller can not be
  1573. * reordered with p->state check below. This pairs with mb() in
  1574. * set_current_state() the waiting thread does.
  1575. */
  1576. smp_mb__before_spinlock();
  1577. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1578. if (!(p->state & state))
  1579. goto out;
  1580. success = 1; /* we're going to change ->state */
  1581. cpu = task_cpu(p);
  1582. if (p->on_rq && ttwu_remote(p, wake_flags))
  1583. goto stat;
  1584. #ifdef CONFIG_SMP
  1585. /*
  1586. * If the owning (remote) cpu is still in the middle of schedule() with
  1587. * this task as prev, wait until its done referencing the task.
  1588. */
  1589. while (p->on_cpu)
  1590. cpu_relax();
  1591. /*
  1592. * Pairs with the smp_wmb() in finish_lock_switch().
  1593. */
  1594. smp_rmb();
  1595. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1596. p->state = TASK_WAKING;
  1597. if (p->sched_class->task_waking)
  1598. p->sched_class->task_waking(p);
  1599. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1600. if (task_cpu(p) != cpu) {
  1601. wake_flags |= WF_MIGRATED;
  1602. set_task_cpu(p, cpu);
  1603. }
  1604. #endif /* CONFIG_SMP */
  1605. ttwu_queue(p, cpu);
  1606. stat:
  1607. ttwu_stat(p, cpu, wake_flags);
  1608. out:
  1609. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1610. return success;
  1611. }
  1612. /**
  1613. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1614. * @p: the thread to be awakened
  1615. *
  1616. * Put @p on the run-queue if it's not already there. The caller must
  1617. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1618. * the current task.
  1619. */
  1620. static void try_to_wake_up_local(struct task_struct *p)
  1621. {
  1622. struct rq *rq = task_rq(p);
  1623. if (WARN_ON_ONCE(rq != this_rq()) ||
  1624. WARN_ON_ONCE(p == current))
  1625. return;
  1626. lockdep_assert_held(&rq->lock);
  1627. if (!raw_spin_trylock(&p->pi_lock)) {
  1628. raw_spin_unlock(&rq->lock);
  1629. raw_spin_lock(&p->pi_lock);
  1630. raw_spin_lock(&rq->lock);
  1631. }
  1632. if (!(p->state & TASK_NORMAL))
  1633. goto out;
  1634. if (!task_on_rq_queued(p))
  1635. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1636. ttwu_do_wakeup(rq, p, 0);
  1637. ttwu_stat(p, smp_processor_id(), 0);
  1638. out:
  1639. raw_spin_unlock(&p->pi_lock);
  1640. }
  1641. /**
  1642. * wake_up_process - Wake up a specific process
  1643. * @p: The process to be woken up.
  1644. *
  1645. * Attempt to wake up the nominated process and move it to the set of runnable
  1646. * processes.
  1647. *
  1648. * Return: 1 if the process was woken up, 0 if it was already running.
  1649. *
  1650. * It may be assumed that this function implies a write memory barrier before
  1651. * changing the task state if and only if any tasks are woken up.
  1652. */
  1653. int wake_up_process(struct task_struct *p)
  1654. {
  1655. WARN_ON(task_is_stopped_or_traced(p));
  1656. return try_to_wake_up(p, TASK_NORMAL, 0);
  1657. }
  1658. EXPORT_SYMBOL(wake_up_process);
  1659. int wake_up_state(struct task_struct *p, unsigned int state)
  1660. {
  1661. return try_to_wake_up(p, state, 0);
  1662. }
  1663. /*
  1664. * This function clears the sched_dl_entity static params.
  1665. */
  1666. void __dl_clear_params(struct task_struct *p)
  1667. {
  1668. struct sched_dl_entity *dl_se = &p->dl;
  1669. dl_se->dl_runtime = 0;
  1670. dl_se->dl_deadline = 0;
  1671. dl_se->dl_period = 0;
  1672. dl_se->flags = 0;
  1673. dl_se->dl_bw = 0;
  1674. dl_se->dl_throttled = 0;
  1675. dl_se->dl_new = 1;
  1676. dl_se->dl_yielded = 0;
  1677. }
  1678. /*
  1679. * Perform scheduler related setup for a newly forked process p.
  1680. * p is forked by current.
  1681. *
  1682. * __sched_fork() is basic setup used by init_idle() too:
  1683. */
  1684. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1685. {
  1686. p->on_rq = 0;
  1687. p->se.on_rq = 0;
  1688. p->se.exec_start = 0;
  1689. p->se.sum_exec_runtime = 0;
  1690. p->se.prev_sum_exec_runtime = 0;
  1691. p->se.nr_migrations = 0;
  1692. p->se.vruntime = 0;
  1693. #ifdef CONFIG_SMP
  1694. p->se.avg.decay_count = 0;
  1695. #endif
  1696. INIT_LIST_HEAD(&p->se.group_node);
  1697. #ifdef CONFIG_SCHEDSTATS
  1698. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1699. #endif
  1700. RB_CLEAR_NODE(&p->dl.rb_node);
  1701. init_dl_task_timer(&p->dl);
  1702. __dl_clear_params(p);
  1703. INIT_LIST_HEAD(&p->rt.run_list);
  1704. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1705. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1706. #endif
  1707. #ifdef CONFIG_NUMA_BALANCING
  1708. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1709. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1710. p->mm->numa_scan_seq = 0;
  1711. }
  1712. if (clone_flags & CLONE_VM)
  1713. p->numa_preferred_nid = current->numa_preferred_nid;
  1714. else
  1715. p->numa_preferred_nid = -1;
  1716. p->node_stamp = 0ULL;
  1717. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1718. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1719. p->numa_work.next = &p->numa_work;
  1720. p->numa_faults = NULL;
  1721. p->last_task_numa_placement = 0;
  1722. p->last_sum_exec_runtime = 0;
  1723. p->numa_group = NULL;
  1724. #endif /* CONFIG_NUMA_BALANCING */
  1725. }
  1726. #ifdef CONFIG_NUMA_BALANCING
  1727. #ifdef CONFIG_SCHED_DEBUG
  1728. void set_numabalancing_state(bool enabled)
  1729. {
  1730. if (enabled)
  1731. sched_feat_set("NUMA");
  1732. else
  1733. sched_feat_set("NO_NUMA");
  1734. }
  1735. #else
  1736. __read_mostly bool numabalancing_enabled;
  1737. void set_numabalancing_state(bool enabled)
  1738. {
  1739. numabalancing_enabled = enabled;
  1740. }
  1741. #endif /* CONFIG_SCHED_DEBUG */
  1742. #ifdef CONFIG_PROC_SYSCTL
  1743. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1744. void __user *buffer, size_t *lenp, loff_t *ppos)
  1745. {
  1746. struct ctl_table t;
  1747. int err;
  1748. int state = numabalancing_enabled;
  1749. if (write && !capable(CAP_SYS_ADMIN))
  1750. return -EPERM;
  1751. t = *table;
  1752. t.data = &state;
  1753. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1754. if (err < 0)
  1755. return err;
  1756. if (write)
  1757. set_numabalancing_state(state);
  1758. return err;
  1759. }
  1760. #endif
  1761. #endif
  1762. /*
  1763. * fork()/clone()-time setup:
  1764. */
  1765. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1766. {
  1767. unsigned long flags;
  1768. int cpu = get_cpu();
  1769. __sched_fork(clone_flags, p);
  1770. /*
  1771. * We mark the process as running here. This guarantees that
  1772. * nobody will actually run it, and a signal or other external
  1773. * event cannot wake it up and insert it on the runqueue either.
  1774. */
  1775. p->state = TASK_RUNNING;
  1776. /*
  1777. * Make sure we do not leak PI boosting priority to the child.
  1778. */
  1779. p->prio = current->normal_prio;
  1780. /*
  1781. * Revert to default priority/policy on fork if requested.
  1782. */
  1783. if (unlikely(p->sched_reset_on_fork)) {
  1784. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1785. p->policy = SCHED_NORMAL;
  1786. p->static_prio = NICE_TO_PRIO(0);
  1787. p->rt_priority = 0;
  1788. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1789. p->static_prio = NICE_TO_PRIO(0);
  1790. p->prio = p->normal_prio = __normal_prio(p);
  1791. set_load_weight(p);
  1792. /*
  1793. * We don't need the reset flag anymore after the fork. It has
  1794. * fulfilled its duty:
  1795. */
  1796. p->sched_reset_on_fork = 0;
  1797. }
  1798. if (dl_prio(p->prio)) {
  1799. put_cpu();
  1800. return -EAGAIN;
  1801. } else if (rt_prio(p->prio)) {
  1802. p->sched_class = &rt_sched_class;
  1803. } else {
  1804. p->sched_class = &fair_sched_class;
  1805. }
  1806. if (p->sched_class->task_fork)
  1807. p->sched_class->task_fork(p);
  1808. /*
  1809. * The child is not yet in the pid-hash so no cgroup attach races,
  1810. * and the cgroup is pinned to this child due to cgroup_fork()
  1811. * is ran before sched_fork().
  1812. *
  1813. * Silence PROVE_RCU.
  1814. */
  1815. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1816. set_task_cpu(p, cpu);
  1817. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1818. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1819. if (likely(sched_info_on()))
  1820. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1821. #endif
  1822. #if defined(CONFIG_SMP)
  1823. p->on_cpu = 0;
  1824. #endif
  1825. init_task_preempt_count(p);
  1826. #ifdef CONFIG_SMP
  1827. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1828. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1829. #endif
  1830. put_cpu();
  1831. return 0;
  1832. }
  1833. unsigned long to_ratio(u64 period, u64 runtime)
  1834. {
  1835. if (runtime == RUNTIME_INF)
  1836. return 1ULL << 20;
  1837. /*
  1838. * Doing this here saves a lot of checks in all
  1839. * the calling paths, and returning zero seems
  1840. * safe for them anyway.
  1841. */
  1842. if (period == 0)
  1843. return 0;
  1844. return div64_u64(runtime << 20, period);
  1845. }
  1846. #ifdef CONFIG_SMP
  1847. inline struct dl_bw *dl_bw_of(int i)
  1848. {
  1849. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1850. "sched RCU must be held");
  1851. return &cpu_rq(i)->rd->dl_bw;
  1852. }
  1853. static inline int dl_bw_cpus(int i)
  1854. {
  1855. struct root_domain *rd = cpu_rq(i)->rd;
  1856. int cpus = 0;
  1857. rcu_lockdep_assert(rcu_read_lock_sched_held(),
  1858. "sched RCU must be held");
  1859. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1860. cpus++;
  1861. return cpus;
  1862. }
  1863. #else
  1864. inline struct dl_bw *dl_bw_of(int i)
  1865. {
  1866. return &cpu_rq(i)->dl.dl_bw;
  1867. }
  1868. static inline int dl_bw_cpus(int i)
  1869. {
  1870. return 1;
  1871. }
  1872. #endif
  1873. /*
  1874. * We must be sure that accepting a new task (or allowing changing the
  1875. * parameters of an existing one) is consistent with the bandwidth
  1876. * constraints. If yes, this function also accordingly updates the currently
  1877. * allocated bandwidth to reflect the new situation.
  1878. *
  1879. * This function is called while holding p's rq->lock.
  1880. *
  1881. * XXX we should delay bw change until the task's 0-lag point, see
  1882. * __setparam_dl().
  1883. */
  1884. static int dl_overflow(struct task_struct *p, int policy,
  1885. const struct sched_attr *attr)
  1886. {
  1887. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1888. u64 period = attr->sched_period ?: attr->sched_deadline;
  1889. u64 runtime = attr->sched_runtime;
  1890. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1891. int cpus, err = -1;
  1892. if (new_bw == p->dl.dl_bw)
  1893. return 0;
  1894. /*
  1895. * Either if a task, enters, leave, or stays -deadline but changes
  1896. * its parameters, we may need to update accordingly the total
  1897. * allocated bandwidth of the container.
  1898. */
  1899. raw_spin_lock(&dl_b->lock);
  1900. cpus = dl_bw_cpus(task_cpu(p));
  1901. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1902. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1903. __dl_add(dl_b, new_bw);
  1904. err = 0;
  1905. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1906. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1907. __dl_clear(dl_b, p->dl.dl_bw);
  1908. __dl_add(dl_b, new_bw);
  1909. err = 0;
  1910. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1911. __dl_clear(dl_b, p->dl.dl_bw);
  1912. err = 0;
  1913. }
  1914. raw_spin_unlock(&dl_b->lock);
  1915. return err;
  1916. }
  1917. extern void init_dl_bw(struct dl_bw *dl_b);
  1918. /*
  1919. * wake_up_new_task - wake up a newly created task for the first time.
  1920. *
  1921. * This function will do some initial scheduler statistics housekeeping
  1922. * that must be done for every newly created context, then puts the task
  1923. * on the runqueue and wakes it.
  1924. */
  1925. void wake_up_new_task(struct task_struct *p)
  1926. {
  1927. unsigned long flags;
  1928. struct rq *rq;
  1929. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1930. #ifdef CONFIG_SMP
  1931. /*
  1932. * Fork balancing, do it here and not earlier because:
  1933. * - cpus_allowed can change in the fork path
  1934. * - any previously selected cpu might disappear through hotplug
  1935. */
  1936. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1937. #endif
  1938. /* Initialize new task's runnable average */
  1939. init_task_runnable_average(p);
  1940. rq = __task_rq_lock(p);
  1941. activate_task(rq, p, 0);
  1942. p->on_rq = TASK_ON_RQ_QUEUED;
  1943. trace_sched_wakeup_new(p, true);
  1944. check_preempt_curr(rq, p, WF_FORK);
  1945. #ifdef CONFIG_SMP
  1946. if (p->sched_class->task_woken)
  1947. p->sched_class->task_woken(rq, p);
  1948. #endif
  1949. task_rq_unlock(rq, p, &flags);
  1950. }
  1951. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1952. /**
  1953. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1954. * @notifier: notifier struct to register
  1955. */
  1956. void preempt_notifier_register(struct preempt_notifier *notifier)
  1957. {
  1958. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1959. }
  1960. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1961. /**
  1962. * preempt_notifier_unregister - no longer interested in preemption notifications
  1963. * @notifier: notifier struct to unregister
  1964. *
  1965. * This is safe to call from within a preemption notifier.
  1966. */
  1967. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1968. {
  1969. hlist_del(&notifier->link);
  1970. }
  1971. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1972. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1973. {
  1974. struct preempt_notifier *notifier;
  1975. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1976. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1977. }
  1978. static void
  1979. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1980. struct task_struct *next)
  1981. {
  1982. struct preempt_notifier *notifier;
  1983. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1984. notifier->ops->sched_out(notifier, next);
  1985. }
  1986. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1987. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1988. {
  1989. }
  1990. static void
  1991. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1992. struct task_struct *next)
  1993. {
  1994. }
  1995. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1996. /**
  1997. * prepare_task_switch - prepare to switch tasks
  1998. * @rq: the runqueue preparing to switch
  1999. * @prev: the current task that is being switched out
  2000. * @next: the task we are going to switch to.
  2001. *
  2002. * This is called with the rq lock held and interrupts off. It must
  2003. * be paired with a subsequent finish_task_switch after the context
  2004. * switch.
  2005. *
  2006. * prepare_task_switch sets up locking and calls architecture specific
  2007. * hooks.
  2008. */
  2009. static inline void
  2010. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2011. struct task_struct *next)
  2012. {
  2013. trace_sched_switch(prev, next);
  2014. sched_info_switch(rq, prev, next);
  2015. perf_event_task_sched_out(prev, next);
  2016. fire_sched_out_preempt_notifiers(prev, next);
  2017. prepare_lock_switch(rq, next);
  2018. prepare_arch_switch(next);
  2019. }
  2020. /**
  2021. * finish_task_switch - clean up after a task-switch
  2022. * @prev: the thread we just switched away from.
  2023. *
  2024. * finish_task_switch must be called after the context switch, paired
  2025. * with a prepare_task_switch call before the context switch.
  2026. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2027. * and do any other architecture-specific cleanup actions.
  2028. *
  2029. * Note that we may have delayed dropping an mm in context_switch(). If
  2030. * so, we finish that here outside of the runqueue lock. (Doing it
  2031. * with the lock held can cause deadlocks; see schedule() for
  2032. * details.)
  2033. *
  2034. * The context switch have flipped the stack from under us and restored the
  2035. * local variables which were saved when this task called schedule() in the
  2036. * past. prev == current is still correct but we need to recalculate this_rq
  2037. * because prev may have moved to another CPU.
  2038. */
  2039. static struct rq *finish_task_switch(struct task_struct *prev)
  2040. __releases(rq->lock)
  2041. {
  2042. struct rq *rq = this_rq();
  2043. struct mm_struct *mm = rq->prev_mm;
  2044. long prev_state;
  2045. rq->prev_mm = NULL;
  2046. /*
  2047. * A task struct has one reference for the use as "current".
  2048. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2049. * schedule one last time. The schedule call will never return, and
  2050. * the scheduled task must drop that reference.
  2051. * The test for TASK_DEAD must occur while the runqueue locks are
  2052. * still held, otherwise prev could be scheduled on another cpu, die
  2053. * there before we look at prev->state, and then the reference would
  2054. * be dropped twice.
  2055. * Manfred Spraul <manfred@colorfullife.com>
  2056. */
  2057. prev_state = prev->state;
  2058. vtime_task_switch(prev);
  2059. finish_arch_switch(prev);
  2060. perf_event_task_sched_in(prev, current);
  2061. finish_lock_switch(rq, prev);
  2062. finish_arch_post_lock_switch();
  2063. fire_sched_in_preempt_notifiers(current);
  2064. if (mm)
  2065. mmdrop(mm);
  2066. if (unlikely(prev_state == TASK_DEAD)) {
  2067. if (prev->sched_class->task_dead)
  2068. prev->sched_class->task_dead(prev);
  2069. /*
  2070. * Remove function-return probe instances associated with this
  2071. * task and put them back on the free list.
  2072. */
  2073. kprobe_flush_task(prev);
  2074. put_task_struct(prev);
  2075. }
  2076. tick_nohz_task_switch(current);
  2077. return rq;
  2078. }
  2079. #ifdef CONFIG_SMP
  2080. /* rq->lock is NOT held, but preemption is disabled */
  2081. static void __balance_callback(struct rq *rq)
  2082. {
  2083. struct callback_head *head, *next;
  2084. void (*func)(struct rq *rq);
  2085. unsigned long flags;
  2086. raw_spin_lock_irqsave(&rq->lock, flags);
  2087. head = rq->balance_callback;
  2088. rq->balance_callback = NULL;
  2089. while (head) {
  2090. func = (void (*)(struct rq *))head->func;
  2091. next = head->next;
  2092. head->next = NULL;
  2093. head = next;
  2094. func(rq);
  2095. }
  2096. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2097. }
  2098. static inline void balance_callback(struct rq *rq)
  2099. {
  2100. if (unlikely(rq->balance_callback))
  2101. __balance_callback(rq);
  2102. }
  2103. #else
  2104. static inline void balance_callback(struct rq *rq)
  2105. {
  2106. }
  2107. #endif
  2108. /**
  2109. * schedule_tail - first thing a freshly forked thread must call.
  2110. * @prev: the thread we just switched away from.
  2111. */
  2112. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2113. __releases(rq->lock)
  2114. {
  2115. struct rq *rq;
  2116. /* finish_task_switch() drops rq->lock and enables preemtion */
  2117. preempt_disable();
  2118. rq = finish_task_switch(prev);
  2119. balance_callback(rq);
  2120. preempt_enable();
  2121. if (current->set_child_tid)
  2122. put_user(task_pid_vnr(current), current->set_child_tid);
  2123. }
  2124. /*
  2125. * context_switch - switch to the new MM and the new thread's register state.
  2126. */
  2127. static inline struct rq *
  2128. context_switch(struct rq *rq, struct task_struct *prev,
  2129. struct task_struct *next)
  2130. {
  2131. struct mm_struct *mm, *oldmm;
  2132. prepare_task_switch(rq, prev, next);
  2133. mm = next->mm;
  2134. oldmm = prev->active_mm;
  2135. /*
  2136. * For paravirt, this is coupled with an exit in switch_to to
  2137. * combine the page table reload and the switch backend into
  2138. * one hypercall.
  2139. */
  2140. arch_start_context_switch(prev);
  2141. if (!mm) {
  2142. next->active_mm = oldmm;
  2143. atomic_inc(&oldmm->mm_count);
  2144. enter_lazy_tlb(oldmm, next);
  2145. } else
  2146. switch_mm(oldmm, mm, next);
  2147. if (!prev->mm) {
  2148. prev->active_mm = NULL;
  2149. rq->prev_mm = oldmm;
  2150. }
  2151. /*
  2152. * Since the runqueue lock will be released by the next
  2153. * task (which is an invalid locking op but in the case
  2154. * of the scheduler it's an obvious special-case), so we
  2155. * do an early lockdep release here:
  2156. */
  2157. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2158. context_tracking_task_switch(prev, next);
  2159. /* Here we just switch the register state and the stack. */
  2160. switch_to(prev, next, prev);
  2161. barrier();
  2162. return finish_task_switch(prev);
  2163. }
  2164. /*
  2165. * nr_running and nr_context_switches:
  2166. *
  2167. * externally visible scheduler statistics: current number of runnable
  2168. * threads, total number of context switches performed since bootup.
  2169. */
  2170. unsigned long nr_running(void)
  2171. {
  2172. unsigned long i, sum = 0;
  2173. for_each_online_cpu(i)
  2174. sum += cpu_rq(i)->nr_running;
  2175. return sum;
  2176. }
  2177. /*
  2178. * Check if only the current task is running on the cpu.
  2179. */
  2180. bool single_task_running(void)
  2181. {
  2182. if (cpu_rq(smp_processor_id())->nr_running == 1)
  2183. return true;
  2184. else
  2185. return false;
  2186. }
  2187. EXPORT_SYMBOL(single_task_running);
  2188. unsigned long long nr_context_switches(void)
  2189. {
  2190. int i;
  2191. unsigned long long sum = 0;
  2192. for_each_possible_cpu(i)
  2193. sum += cpu_rq(i)->nr_switches;
  2194. return sum;
  2195. }
  2196. unsigned long nr_iowait(void)
  2197. {
  2198. unsigned long i, sum = 0;
  2199. for_each_possible_cpu(i)
  2200. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2201. return sum;
  2202. }
  2203. unsigned long nr_iowait_cpu(int cpu)
  2204. {
  2205. struct rq *this = cpu_rq(cpu);
  2206. return atomic_read(&this->nr_iowait);
  2207. }
  2208. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2209. {
  2210. struct rq *rq = this_rq();
  2211. *nr_waiters = atomic_read(&rq->nr_iowait);
  2212. *load = rq->load.weight;
  2213. }
  2214. #ifdef CONFIG_SMP
  2215. /*
  2216. * sched_exec - execve() is a valuable balancing opportunity, because at
  2217. * this point the task has the smallest effective memory and cache footprint.
  2218. */
  2219. void sched_exec(void)
  2220. {
  2221. struct task_struct *p = current;
  2222. unsigned long flags;
  2223. int dest_cpu;
  2224. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2225. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2226. if (dest_cpu == smp_processor_id())
  2227. goto unlock;
  2228. if (likely(cpu_active(dest_cpu))) {
  2229. struct migration_arg arg = { p, dest_cpu };
  2230. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2231. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2232. return;
  2233. }
  2234. unlock:
  2235. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2236. }
  2237. #endif
  2238. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2239. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2240. EXPORT_PER_CPU_SYMBOL(kstat);
  2241. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2242. /*
  2243. * Return accounted runtime for the task.
  2244. * In case the task is currently running, return the runtime plus current's
  2245. * pending runtime that have not been accounted yet.
  2246. */
  2247. unsigned long long task_sched_runtime(struct task_struct *p)
  2248. {
  2249. unsigned long flags;
  2250. struct rq *rq;
  2251. u64 ns;
  2252. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2253. /*
  2254. * 64-bit doesn't need locks to atomically read a 64bit value.
  2255. * So we have a optimization chance when the task's delta_exec is 0.
  2256. * Reading ->on_cpu is racy, but this is ok.
  2257. *
  2258. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2259. * If we race with it entering cpu, unaccounted time is 0. This is
  2260. * indistinguishable from the read occurring a few cycles earlier.
  2261. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2262. * been accounted, so we're correct here as well.
  2263. */
  2264. if (!p->on_cpu || !task_on_rq_queued(p))
  2265. return p->se.sum_exec_runtime;
  2266. #endif
  2267. rq = task_rq_lock(p, &flags);
  2268. /*
  2269. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2270. * project cycles that may never be accounted to this
  2271. * thread, breaking clock_gettime().
  2272. */
  2273. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2274. update_rq_clock(rq);
  2275. p->sched_class->update_curr(rq);
  2276. }
  2277. ns = p->se.sum_exec_runtime;
  2278. task_rq_unlock(rq, p, &flags);
  2279. return ns;
  2280. }
  2281. /*
  2282. * This function gets called by the timer code, with HZ frequency.
  2283. * We call it with interrupts disabled.
  2284. */
  2285. void scheduler_tick(void)
  2286. {
  2287. int cpu = smp_processor_id();
  2288. struct rq *rq = cpu_rq(cpu);
  2289. struct task_struct *curr = rq->curr;
  2290. sched_clock_tick();
  2291. raw_spin_lock(&rq->lock);
  2292. update_rq_clock(rq);
  2293. curr->sched_class->task_tick(rq, curr, 0);
  2294. update_cpu_load_active(rq);
  2295. calc_global_load_tick(rq);
  2296. raw_spin_unlock(&rq->lock);
  2297. perf_event_task_tick();
  2298. #ifdef CONFIG_SMP
  2299. rq->idle_balance = idle_cpu(cpu);
  2300. trigger_load_balance(rq);
  2301. #endif
  2302. rq_last_tick_reset(rq);
  2303. }
  2304. #ifdef CONFIG_NO_HZ_FULL
  2305. /**
  2306. * scheduler_tick_max_deferment
  2307. *
  2308. * Keep at least one tick per second when a single
  2309. * active task is running because the scheduler doesn't
  2310. * yet completely support full dynticks environment.
  2311. *
  2312. * This makes sure that uptime, CFS vruntime, load
  2313. * balancing, etc... continue to move forward, even
  2314. * with a very low granularity.
  2315. *
  2316. * Return: Maximum deferment in nanoseconds.
  2317. */
  2318. u64 scheduler_tick_max_deferment(void)
  2319. {
  2320. struct rq *rq = this_rq();
  2321. unsigned long next, now = READ_ONCE(jiffies);
  2322. next = rq->last_sched_tick + HZ;
  2323. if (time_before_eq(next, now))
  2324. return 0;
  2325. return jiffies_to_nsecs(next - now);
  2326. }
  2327. #endif
  2328. notrace unsigned long get_parent_ip(unsigned long addr)
  2329. {
  2330. if (in_lock_functions(addr)) {
  2331. addr = CALLER_ADDR2;
  2332. if (in_lock_functions(addr))
  2333. addr = CALLER_ADDR3;
  2334. }
  2335. return addr;
  2336. }
  2337. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2338. defined(CONFIG_PREEMPT_TRACER))
  2339. void preempt_count_add(int val)
  2340. {
  2341. #ifdef CONFIG_DEBUG_PREEMPT
  2342. /*
  2343. * Underflow?
  2344. */
  2345. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2346. return;
  2347. #endif
  2348. __preempt_count_add(val);
  2349. #ifdef CONFIG_DEBUG_PREEMPT
  2350. /*
  2351. * Spinlock count overflowing soon?
  2352. */
  2353. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2354. PREEMPT_MASK - 10);
  2355. #endif
  2356. if (preempt_count() == val) {
  2357. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2358. #ifdef CONFIG_DEBUG_PREEMPT
  2359. current->preempt_disable_ip = ip;
  2360. #endif
  2361. trace_preempt_off(CALLER_ADDR0, ip);
  2362. }
  2363. }
  2364. EXPORT_SYMBOL(preempt_count_add);
  2365. NOKPROBE_SYMBOL(preempt_count_add);
  2366. void preempt_count_sub(int val)
  2367. {
  2368. #ifdef CONFIG_DEBUG_PREEMPT
  2369. /*
  2370. * Underflow?
  2371. */
  2372. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2373. return;
  2374. /*
  2375. * Is the spinlock portion underflowing?
  2376. */
  2377. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2378. !(preempt_count() & PREEMPT_MASK)))
  2379. return;
  2380. #endif
  2381. if (preempt_count() == val)
  2382. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2383. __preempt_count_sub(val);
  2384. }
  2385. EXPORT_SYMBOL(preempt_count_sub);
  2386. NOKPROBE_SYMBOL(preempt_count_sub);
  2387. #endif
  2388. /*
  2389. * Print scheduling while atomic bug:
  2390. */
  2391. static noinline void __schedule_bug(struct task_struct *prev)
  2392. {
  2393. if (oops_in_progress)
  2394. return;
  2395. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2396. prev->comm, prev->pid, preempt_count());
  2397. debug_show_held_locks(prev);
  2398. print_modules();
  2399. if (irqs_disabled())
  2400. print_irqtrace_events(prev);
  2401. #ifdef CONFIG_DEBUG_PREEMPT
  2402. if (in_atomic_preempt_off()) {
  2403. pr_err("Preemption disabled at:");
  2404. print_ip_sym(current->preempt_disable_ip);
  2405. pr_cont("\n");
  2406. }
  2407. #endif
  2408. dump_stack();
  2409. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2410. }
  2411. /*
  2412. * Various schedule()-time debugging checks and statistics:
  2413. */
  2414. static inline void schedule_debug(struct task_struct *prev)
  2415. {
  2416. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2417. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2418. #endif
  2419. /*
  2420. * Test if we are atomic. Since do_exit() needs to call into
  2421. * schedule() atomically, we ignore that path. Otherwise whine
  2422. * if we are scheduling when we should not.
  2423. */
  2424. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2425. __schedule_bug(prev);
  2426. rcu_sleep_check();
  2427. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2428. schedstat_inc(this_rq(), sched_count);
  2429. }
  2430. /*
  2431. * Pick up the highest-prio task:
  2432. */
  2433. static inline struct task_struct *
  2434. pick_next_task(struct rq *rq, struct task_struct *prev)
  2435. {
  2436. const struct sched_class *class = &fair_sched_class;
  2437. struct task_struct *p;
  2438. /*
  2439. * Optimization: we know that if all tasks are in
  2440. * the fair class we can call that function directly:
  2441. */
  2442. if (likely(prev->sched_class == class &&
  2443. rq->nr_running == rq->cfs.h_nr_running)) {
  2444. p = fair_sched_class.pick_next_task(rq, prev);
  2445. if (unlikely(p == RETRY_TASK))
  2446. goto again;
  2447. /* assumes fair_sched_class->next == idle_sched_class */
  2448. if (unlikely(!p))
  2449. p = idle_sched_class.pick_next_task(rq, prev);
  2450. return p;
  2451. }
  2452. again:
  2453. for_each_class(class) {
  2454. p = class->pick_next_task(rq, prev);
  2455. if (p) {
  2456. if (unlikely(p == RETRY_TASK))
  2457. goto again;
  2458. return p;
  2459. }
  2460. }
  2461. BUG(); /* the idle class will always have a runnable task */
  2462. }
  2463. /*
  2464. * __schedule() is the main scheduler function.
  2465. *
  2466. * The main means of driving the scheduler and thus entering this function are:
  2467. *
  2468. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2469. *
  2470. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2471. * paths. For example, see arch/x86/entry_64.S.
  2472. *
  2473. * To drive preemption between tasks, the scheduler sets the flag in timer
  2474. * interrupt handler scheduler_tick().
  2475. *
  2476. * 3. Wakeups don't really cause entry into schedule(). They add a
  2477. * task to the run-queue and that's it.
  2478. *
  2479. * Now, if the new task added to the run-queue preempts the current
  2480. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2481. * called on the nearest possible occasion:
  2482. *
  2483. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2484. *
  2485. * - in syscall or exception context, at the next outmost
  2486. * preempt_enable(). (this might be as soon as the wake_up()'s
  2487. * spin_unlock()!)
  2488. *
  2489. * - in IRQ context, return from interrupt-handler to
  2490. * preemptible context
  2491. *
  2492. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2493. * then at the next:
  2494. *
  2495. * - cond_resched() call
  2496. * - explicit schedule() call
  2497. * - return from syscall or exception to user-space
  2498. * - return from interrupt-handler to user-space
  2499. *
  2500. * WARNING: must be called with preemption disabled!
  2501. */
  2502. static void __sched __schedule(void)
  2503. {
  2504. struct task_struct *prev, *next;
  2505. unsigned long *switch_count;
  2506. struct rq *rq;
  2507. int cpu;
  2508. cpu = smp_processor_id();
  2509. rq = cpu_rq(cpu);
  2510. rcu_note_context_switch();
  2511. prev = rq->curr;
  2512. schedule_debug(prev);
  2513. if (sched_feat(HRTICK))
  2514. hrtick_clear(rq);
  2515. /*
  2516. * Make sure that signal_pending_state()->signal_pending() below
  2517. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2518. * done by the caller to avoid the race with signal_wake_up().
  2519. */
  2520. smp_mb__before_spinlock();
  2521. raw_spin_lock_irq(&rq->lock);
  2522. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2523. switch_count = &prev->nivcsw;
  2524. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2525. if (unlikely(signal_pending_state(prev->state, prev))) {
  2526. prev->state = TASK_RUNNING;
  2527. } else {
  2528. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2529. prev->on_rq = 0;
  2530. /*
  2531. * If a worker went to sleep, notify and ask workqueue
  2532. * whether it wants to wake up a task to maintain
  2533. * concurrency.
  2534. */
  2535. if (prev->flags & PF_WQ_WORKER) {
  2536. struct task_struct *to_wakeup;
  2537. to_wakeup = wq_worker_sleeping(prev, cpu);
  2538. if (to_wakeup)
  2539. try_to_wake_up_local(to_wakeup);
  2540. }
  2541. }
  2542. switch_count = &prev->nvcsw;
  2543. }
  2544. if (task_on_rq_queued(prev))
  2545. update_rq_clock(rq);
  2546. next = pick_next_task(rq, prev);
  2547. clear_tsk_need_resched(prev);
  2548. clear_preempt_need_resched();
  2549. rq->clock_skip_update = 0;
  2550. if (likely(prev != next)) {
  2551. rq->nr_switches++;
  2552. rq->curr = next;
  2553. ++*switch_count;
  2554. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2555. cpu = cpu_of(rq);
  2556. } else
  2557. raw_spin_unlock_irq(&rq->lock);
  2558. balance_callback(rq);
  2559. }
  2560. static inline void sched_submit_work(struct task_struct *tsk)
  2561. {
  2562. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2563. return;
  2564. /*
  2565. * If we are going to sleep and we have plugged IO queued,
  2566. * make sure to submit it to avoid deadlocks.
  2567. */
  2568. if (blk_needs_flush_plug(tsk))
  2569. blk_schedule_flush_plug(tsk);
  2570. }
  2571. asmlinkage __visible void __sched schedule(void)
  2572. {
  2573. struct task_struct *tsk = current;
  2574. sched_submit_work(tsk);
  2575. do {
  2576. preempt_disable();
  2577. __schedule();
  2578. sched_preempt_enable_no_resched();
  2579. } while (need_resched());
  2580. }
  2581. EXPORT_SYMBOL(schedule);
  2582. #ifdef CONFIG_CONTEXT_TRACKING
  2583. asmlinkage __visible void __sched schedule_user(void)
  2584. {
  2585. /*
  2586. * If we come here after a random call to set_need_resched(),
  2587. * or we have been woken up remotely but the IPI has not yet arrived,
  2588. * we haven't yet exited the RCU idle mode. Do it here manually until
  2589. * we find a better solution.
  2590. *
  2591. * NB: There are buggy callers of this function. Ideally we
  2592. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2593. * too frequently to make sense yet.
  2594. */
  2595. enum ctx_state prev_state = exception_enter();
  2596. schedule();
  2597. exception_exit(prev_state);
  2598. }
  2599. #endif
  2600. /**
  2601. * schedule_preempt_disabled - called with preemption disabled
  2602. *
  2603. * Returns with preemption disabled. Note: preempt_count must be 1
  2604. */
  2605. void __sched schedule_preempt_disabled(void)
  2606. {
  2607. sched_preempt_enable_no_resched();
  2608. schedule();
  2609. preempt_disable();
  2610. }
  2611. static void __sched notrace preempt_schedule_common(void)
  2612. {
  2613. do {
  2614. preempt_active_enter();
  2615. __schedule();
  2616. preempt_active_exit();
  2617. /*
  2618. * Check again in case we missed a preemption opportunity
  2619. * between schedule and now.
  2620. */
  2621. } while (need_resched());
  2622. }
  2623. #ifdef CONFIG_PREEMPT
  2624. /*
  2625. * this is the entry point to schedule() from in-kernel preemption
  2626. * off of preempt_enable. Kernel preemptions off return from interrupt
  2627. * occur there and call schedule directly.
  2628. */
  2629. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2630. {
  2631. /*
  2632. * If there is a non-zero preempt_count or interrupts are disabled,
  2633. * we do not want to preempt the current task. Just return..
  2634. */
  2635. if (likely(!preemptible()))
  2636. return;
  2637. preempt_schedule_common();
  2638. }
  2639. NOKPROBE_SYMBOL(preempt_schedule);
  2640. EXPORT_SYMBOL(preempt_schedule);
  2641. /**
  2642. * preempt_schedule_notrace - preempt_schedule called by tracing
  2643. *
  2644. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2645. * recursion and tracing preempt enabling caused by the tracing
  2646. * infrastructure itself. But as tracing can happen in areas coming
  2647. * from userspace or just about to enter userspace, a preempt enable
  2648. * can occur before user_exit() is called. This will cause the scheduler
  2649. * to be called when the system is still in usermode.
  2650. *
  2651. * To prevent this, the preempt_enable_notrace will use this function
  2652. * instead of preempt_schedule() to exit user context if needed before
  2653. * calling the scheduler.
  2654. */
  2655. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2656. {
  2657. enum ctx_state prev_ctx;
  2658. if (likely(!preemptible()))
  2659. return;
  2660. do {
  2661. /*
  2662. * Use raw __prempt_count() ops that don't call function.
  2663. * We can't call functions before disabling preemption which
  2664. * disarm preemption tracing recursions.
  2665. */
  2666. __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2667. barrier();
  2668. /*
  2669. * Needs preempt disabled in case user_exit() is traced
  2670. * and the tracer calls preempt_enable_notrace() causing
  2671. * an infinite recursion.
  2672. */
  2673. prev_ctx = exception_enter();
  2674. __schedule();
  2675. exception_exit(prev_ctx);
  2676. barrier();
  2677. __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2678. } while (need_resched());
  2679. }
  2680. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  2681. #endif /* CONFIG_PREEMPT */
  2682. /*
  2683. * this is the entry point to schedule() from kernel preemption
  2684. * off of irq context.
  2685. * Note, that this is called and return with irqs disabled. This will
  2686. * protect us against recursive calling from irq.
  2687. */
  2688. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2689. {
  2690. enum ctx_state prev_state;
  2691. /* Catch callers which need to be fixed */
  2692. BUG_ON(preempt_count() || !irqs_disabled());
  2693. prev_state = exception_enter();
  2694. do {
  2695. preempt_active_enter();
  2696. local_irq_enable();
  2697. __schedule();
  2698. local_irq_disable();
  2699. preempt_active_exit();
  2700. } while (need_resched());
  2701. exception_exit(prev_state);
  2702. }
  2703. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2704. void *key)
  2705. {
  2706. return try_to_wake_up(curr->private, mode, wake_flags);
  2707. }
  2708. EXPORT_SYMBOL(default_wake_function);
  2709. #ifdef CONFIG_RT_MUTEXES
  2710. /*
  2711. * rt_mutex_setprio - set the current priority of a task
  2712. * @p: task
  2713. * @prio: prio value (kernel-internal form)
  2714. *
  2715. * This function changes the 'effective' priority of a task. It does
  2716. * not touch ->normal_prio like __setscheduler().
  2717. *
  2718. * Used by the rt_mutex code to implement priority inheritance
  2719. * logic. Call site only calls if the priority of the task changed.
  2720. */
  2721. void rt_mutex_setprio(struct task_struct *p, int prio)
  2722. {
  2723. int oldprio, queued, running, enqueue_flag = 0;
  2724. struct rq *rq;
  2725. const struct sched_class *prev_class;
  2726. BUG_ON(prio > MAX_PRIO);
  2727. rq = __task_rq_lock(p);
  2728. /*
  2729. * Idle task boosting is a nono in general. There is one
  2730. * exception, when PREEMPT_RT and NOHZ is active:
  2731. *
  2732. * The idle task calls get_next_timer_interrupt() and holds
  2733. * the timer wheel base->lock on the CPU and another CPU wants
  2734. * to access the timer (probably to cancel it). We can safely
  2735. * ignore the boosting request, as the idle CPU runs this code
  2736. * with interrupts disabled and will complete the lock
  2737. * protected section without being interrupted. So there is no
  2738. * real need to boost.
  2739. */
  2740. if (unlikely(p == rq->idle)) {
  2741. WARN_ON(p != rq->curr);
  2742. WARN_ON(p->pi_blocked_on);
  2743. goto out_unlock;
  2744. }
  2745. trace_sched_pi_setprio(p, prio);
  2746. oldprio = p->prio;
  2747. prev_class = p->sched_class;
  2748. queued = task_on_rq_queued(p);
  2749. running = task_current(rq, p);
  2750. if (queued)
  2751. dequeue_task(rq, p, 0);
  2752. if (running)
  2753. put_prev_task(rq, p);
  2754. /*
  2755. * Boosting condition are:
  2756. * 1. -rt task is running and holds mutex A
  2757. * --> -dl task blocks on mutex A
  2758. *
  2759. * 2. -dl task is running and holds mutex A
  2760. * --> -dl task blocks on mutex A and could preempt the
  2761. * running task
  2762. */
  2763. if (dl_prio(prio)) {
  2764. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2765. if (!dl_prio(p->normal_prio) ||
  2766. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2767. p->dl.dl_boosted = 1;
  2768. p->dl.dl_throttled = 0;
  2769. enqueue_flag = ENQUEUE_REPLENISH;
  2770. } else
  2771. p->dl.dl_boosted = 0;
  2772. p->sched_class = &dl_sched_class;
  2773. } else if (rt_prio(prio)) {
  2774. if (dl_prio(oldprio))
  2775. p->dl.dl_boosted = 0;
  2776. if (oldprio < prio)
  2777. enqueue_flag = ENQUEUE_HEAD;
  2778. p->sched_class = &rt_sched_class;
  2779. } else {
  2780. if (dl_prio(oldprio))
  2781. p->dl.dl_boosted = 0;
  2782. if (rt_prio(oldprio))
  2783. p->rt.timeout = 0;
  2784. p->sched_class = &fair_sched_class;
  2785. }
  2786. p->prio = prio;
  2787. if (running)
  2788. p->sched_class->set_curr_task(rq);
  2789. if (queued)
  2790. enqueue_task(rq, p, enqueue_flag);
  2791. check_class_changed(rq, p, prev_class, oldprio);
  2792. out_unlock:
  2793. preempt_disable(); /* avoid rq from going away on us */
  2794. __task_rq_unlock(rq);
  2795. balance_callback(rq);
  2796. preempt_enable();
  2797. }
  2798. #endif
  2799. void set_user_nice(struct task_struct *p, long nice)
  2800. {
  2801. int old_prio, delta, queued;
  2802. unsigned long flags;
  2803. struct rq *rq;
  2804. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2805. return;
  2806. /*
  2807. * We have to be careful, if called from sys_setpriority(),
  2808. * the task might be in the middle of scheduling on another CPU.
  2809. */
  2810. rq = task_rq_lock(p, &flags);
  2811. /*
  2812. * The RT priorities are set via sched_setscheduler(), but we still
  2813. * allow the 'normal' nice value to be set - but as expected
  2814. * it wont have any effect on scheduling until the task is
  2815. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2816. */
  2817. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2818. p->static_prio = NICE_TO_PRIO(nice);
  2819. goto out_unlock;
  2820. }
  2821. queued = task_on_rq_queued(p);
  2822. if (queued)
  2823. dequeue_task(rq, p, 0);
  2824. p->static_prio = NICE_TO_PRIO(nice);
  2825. set_load_weight(p);
  2826. old_prio = p->prio;
  2827. p->prio = effective_prio(p);
  2828. delta = p->prio - old_prio;
  2829. if (queued) {
  2830. enqueue_task(rq, p, 0);
  2831. /*
  2832. * If the task increased its priority or is running and
  2833. * lowered its priority, then reschedule its CPU:
  2834. */
  2835. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2836. resched_curr(rq);
  2837. }
  2838. out_unlock:
  2839. task_rq_unlock(rq, p, &flags);
  2840. }
  2841. EXPORT_SYMBOL(set_user_nice);
  2842. /*
  2843. * can_nice - check if a task can reduce its nice value
  2844. * @p: task
  2845. * @nice: nice value
  2846. */
  2847. int can_nice(const struct task_struct *p, const int nice)
  2848. {
  2849. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2850. int nice_rlim = nice_to_rlimit(nice);
  2851. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2852. capable(CAP_SYS_NICE));
  2853. }
  2854. #ifdef __ARCH_WANT_SYS_NICE
  2855. /*
  2856. * sys_nice - change the priority of the current process.
  2857. * @increment: priority increment
  2858. *
  2859. * sys_setpriority is a more generic, but much slower function that
  2860. * does similar things.
  2861. */
  2862. SYSCALL_DEFINE1(nice, int, increment)
  2863. {
  2864. long nice, retval;
  2865. /*
  2866. * Setpriority might change our priority at the same moment.
  2867. * We don't have to worry. Conceptually one call occurs first
  2868. * and we have a single winner.
  2869. */
  2870. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2871. nice = task_nice(current) + increment;
  2872. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2873. if (increment < 0 && !can_nice(current, nice))
  2874. return -EPERM;
  2875. retval = security_task_setnice(current, nice);
  2876. if (retval)
  2877. return retval;
  2878. set_user_nice(current, nice);
  2879. return 0;
  2880. }
  2881. #endif
  2882. /**
  2883. * task_prio - return the priority value of a given task.
  2884. * @p: the task in question.
  2885. *
  2886. * Return: The priority value as seen by users in /proc.
  2887. * RT tasks are offset by -200. Normal tasks are centered
  2888. * around 0, value goes from -16 to +15.
  2889. */
  2890. int task_prio(const struct task_struct *p)
  2891. {
  2892. return p->prio - MAX_RT_PRIO;
  2893. }
  2894. /**
  2895. * idle_cpu - is a given cpu idle currently?
  2896. * @cpu: the processor in question.
  2897. *
  2898. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2899. */
  2900. int idle_cpu(int cpu)
  2901. {
  2902. struct rq *rq = cpu_rq(cpu);
  2903. if (rq->curr != rq->idle)
  2904. return 0;
  2905. if (rq->nr_running)
  2906. return 0;
  2907. #ifdef CONFIG_SMP
  2908. if (!llist_empty(&rq->wake_list))
  2909. return 0;
  2910. #endif
  2911. return 1;
  2912. }
  2913. /**
  2914. * idle_task - return the idle task for a given cpu.
  2915. * @cpu: the processor in question.
  2916. *
  2917. * Return: The idle task for the cpu @cpu.
  2918. */
  2919. struct task_struct *idle_task(int cpu)
  2920. {
  2921. return cpu_rq(cpu)->idle;
  2922. }
  2923. /**
  2924. * find_process_by_pid - find a process with a matching PID value.
  2925. * @pid: the pid in question.
  2926. *
  2927. * The task of @pid, if found. %NULL otherwise.
  2928. */
  2929. static struct task_struct *find_process_by_pid(pid_t pid)
  2930. {
  2931. return pid ? find_task_by_vpid(pid) : current;
  2932. }
  2933. /*
  2934. * This function initializes the sched_dl_entity of a newly becoming
  2935. * SCHED_DEADLINE task.
  2936. *
  2937. * Only the static values are considered here, the actual runtime and the
  2938. * absolute deadline will be properly calculated when the task is enqueued
  2939. * for the first time with its new policy.
  2940. */
  2941. static void
  2942. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2943. {
  2944. struct sched_dl_entity *dl_se = &p->dl;
  2945. dl_se->dl_runtime = attr->sched_runtime;
  2946. dl_se->dl_deadline = attr->sched_deadline;
  2947. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2948. dl_se->flags = attr->sched_flags;
  2949. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2950. /*
  2951. * Changing the parameters of a task is 'tricky' and we're not doing
  2952. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  2953. *
  2954. * What we SHOULD do is delay the bandwidth release until the 0-lag
  2955. * point. This would include retaining the task_struct until that time
  2956. * and change dl_overflow() to not immediately decrement the current
  2957. * amount.
  2958. *
  2959. * Instead we retain the current runtime/deadline and let the new
  2960. * parameters take effect after the current reservation period lapses.
  2961. * This is safe (albeit pessimistic) because the 0-lag point is always
  2962. * before the current scheduling deadline.
  2963. *
  2964. * We can still have temporary overloads because we do not delay the
  2965. * change in bandwidth until that time; so admission control is
  2966. * not on the safe side. It does however guarantee tasks will never
  2967. * consume more than promised.
  2968. */
  2969. }
  2970. /*
  2971. * sched_setparam() passes in -1 for its policy, to let the functions
  2972. * it calls know not to change it.
  2973. */
  2974. #define SETPARAM_POLICY -1
  2975. static void __setscheduler_params(struct task_struct *p,
  2976. const struct sched_attr *attr)
  2977. {
  2978. int policy = attr->sched_policy;
  2979. if (policy == SETPARAM_POLICY)
  2980. policy = p->policy;
  2981. p->policy = policy;
  2982. if (dl_policy(policy))
  2983. __setparam_dl(p, attr);
  2984. else if (fair_policy(policy))
  2985. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2986. /*
  2987. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2988. * !rt_policy. Always setting this ensures that things like
  2989. * getparam()/getattr() don't report silly values for !rt tasks.
  2990. */
  2991. p->rt_priority = attr->sched_priority;
  2992. p->normal_prio = normal_prio(p);
  2993. set_load_weight(p);
  2994. }
  2995. /* Actually do priority change: must hold pi & rq lock. */
  2996. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2997. const struct sched_attr *attr, bool keep_boost)
  2998. {
  2999. __setscheduler_params(p, attr);
  3000. /*
  3001. * Keep a potential priority boosting if called from
  3002. * sched_setscheduler().
  3003. */
  3004. if (keep_boost)
  3005. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3006. else
  3007. p->prio = normal_prio(p);
  3008. if (dl_prio(p->prio))
  3009. p->sched_class = &dl_sched_class;
  3010. else if (rt_prio(p->prio))
  3011. p->sched_class = &rt_sched_class;
  3012. else
  3013. p->sched_class = &fair_sched_class;
  3014. }
  3015. static void
  3016. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3017. {
  3018. struct sched_dl_entity *dl_se = &p->dl;
  3019. attr->sched_priority = p->rt_priority;
  3020. attr->sched_runtime = dl_se->dl_runtime;
  3021. attr->sched_deadline = dl_se->dl_deadline;
  3022. attr->sched_period = dl_se->dl_period;
  3023. attr->sched_flags = dl_se->flags;
  3024. }
  3025. /*
  3026. * This function validates the new parameters of a -deadline task.
  3027. * We ask for the deadline not being zero, and greater or equal
  3028. * than the runtime, as well as the period of being zero or
  3029. * greater than deadline. Furthermore, we have to be sure that
  3030. * user parameters are above the internal resolution of 1us (we
  3031. * check sched_runtime only since it is always the smaller one) and
  3032. * below 2^63 ns (we have to check both sched_deadline and
  3033. * sched_period, as the latter can be zero).
  3034. */
  3035. static bool
  3036. __checkparam_dl(const struct sched_attr *attr)
  3037. {
  3038. /* deadline != 0 */
  3039. if (attr->sched_deadline == 0)
  3040. return false;
  3041. /*
  3042. * Since we truncate DL_SCALE bits, make sure we're at least
  3043. * that big.
  3044. */
  3045. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3046. return false;
  3047. /*
  3048. * Since we use the MSB for wrap-around and sign issues, make
  3049. * sure it's not set (mind that period can be equal to zero).
  3050. */
  3051. if (attr->sched_deadline & (1ULL << 63) ||
  3052. attr->sched_period & (1ULL << 63))
  3053. return false;
  3054. /* runtime <= deadline <= period (if period != 0) */
  3055. if ((attr->sched_period != 0 &&
  3056. attr->sched_period < attr->sched_deadline) ||
  3057. attr->sched_deadline < attr->sched_runtime)
  3058. return false;
  3059. return true;
  3060. }
  3061. /*
  3062. * check the target process has a UID that matches the current process's
  3063. */
  3064. static bool check_same_owner(struct task_struct *p)
  3065. {
  3066. const struct cred *cred = current_cred(), *pcred;
  3067. bool match;
  3068. rcu_read_lock();
  3069. pcred = __task_cred(p);
  3070. match = (uid_eq(cred->euid, pcred->euid) ||
  3071. uid_eq(cred->euid, pcred->uid));
  3072. rcu_read_unlock();
  3073. return match;
  3074. }
  3075. static bool dl_param_changed(struct task_struct *p,
  3076. const struct sched_attr *attr)
  3077. {
  3078. struct sched_dl_entity *dl_se = &p->dl;
  3079. if (dl_se->dl_runtime != attr->sched_runtime ||
  3080. dl_se->dl_deadline != attr->sched_deadline ||
  3081. dl_se->dl_period != attr->sched_period ||
  3082. dl_se->flags != attr->sched_flags)
  3083. return true;
  3084. return false;
  3085. }
  3086. static int __sched_setscheduler(struct task_struct *p,
  3087. const struct sched_attr *attr,
  3088. bool user, bool pi)
  3089. {
  3090. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3091. MAX_RT_PRIO - 1 - attr->sched_priority;
  3092. int retval, oldprio, oldpolicy = -1, queued, running;
  3093. int new_effective_prio, policy = attr->sched_policy;
  3094. unsigned long flags;
  3095. const struct sched_class *prev_class;
  3096. struct rq *rq;
  3097. int reset_on_fork;
  3098. /* may grab non-irq protected spin_locks */
  3099. BUG_ON(in_interrupt());
  3100. recheck:
  3101. /* double check policy once rq lock held */
  3102. if (policy < 0) {
  3103. reset_on_fork = p->sched_reset_on_fork;
  3104. policy = oldpolicy = p->policy;
  3105. } else {
  3106. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3107. if (policy != SCHED_DEADLINE &&
  3108. policy != SCHED_FIFO && policy != SCHED_RR &&
  3109. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3110. policy != SCHED_IDLE)
  3111. return -EINVAL;
  3112. }
  3113. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3114. return -EINVAL;
  3115. /*
  3116. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3117. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3118. * SCHED_BATCH and SCHED_IDLE is 0.
  3119. */
  3120. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3121. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3122. return -EINVAL;
  3123. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3124. (rt_policy(policy) != (attr->sched_priority != 0)))
  3125. return -EINVAL;
  3126. /*
  3127. * Allow unprivileged RT tasks to decrease priority:
  3128. */
  3129. if (user && !capable(CAP_SYS_NICE)) {
  3130. if (fair_policy(policy)) {
  3131. if (attr->sched_nice < task_nice(p) &&
  3132. !can_nice(p, attr->sched_nice))
  3133. return -EPERM;
  3134. }
  3135. if (rt_policy(policy)) {
  3136. unsigned long rlim_rtprio =
  3137. task_rlimit(p, RLIMIT_RTPRIO);
  3138. /* can't set/change the rt policy */
  3139. if (policy != p->policy && !rlim_rtprio)
  3140. return -EPERM;
  3141. /* can't increase priority */
  3142. if (attr->sched_priority > p->rt_priority &&
  3143. attr->sched_priority > rlim_rtprio)
  3144. return -EPERM;
  3145. }
  3146. /*
  3147. * Can't set/change SCHED_DEADLINE policy at all for now
  3148. * (safest behavior); in the future we would like to allow
  3149. * unprivileged DL tasks to increase their relative deadline
  3150. * or reduce their runtime (both ways reducing utilization)
  3151. */
  3152. if (dl_policy(policy))
  3153. return -EPERM;
  3154. /*
  3155. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3156. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3157. */
  3158. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3159. if (!can_nice(p, task_nice(p)))
  3160. return -EPERM;
  3161. }
  3162. /* can't change other user's priorities */
  3163. if (!check_same_owner(p))
  3164. return -EPERM;
  3165. /* Normal users shall not reset the sched_reset_on_fork flag */
  3166. if (p->sched_reset_on_fork && !reset_on_fork)
  3167. return -EPERM;
  3168. }
  3169. if (user) {
  3170. retval = security_task_setscheduler(p);
  3171. if (retval)
  3172. return retval;
  3173. }
  3174. /*
  3175. * make sure no PI-waiters arrive (or leave) while we are
  3176. * changing the priority of the task:
  3177. *
  3178. * To be able to change p->policy safely, the appropriate
  3179. * runqueue lock must be held.
  3180. */
  3181. rq = task_rq_lock(p, &flags);
  3182. /*
  3183. * Changing the policy of the stop threads its a very bad idea
  3184. */
  3185. if (p == rq->stop) {
  3186. task_rq_unlock(rq, p, &flags);
  3187. return -EINVAL;
  3188. }
  3189. /*
  3190. * If not changing anything there's no need to proceed further,
  3191. * but store a possible modification of reset_on_fork.
  3192. */
  3193. if (unlikely(policy == p->policy)) {
  3194. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3195. goto change;
  3196. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3197. goto change;
  3198. if (dl_policy(policy) && dl_param_changed(p, attr))
  3199. goto change;
  3200. p->sched_reset_on_fork = reset_on_fork;
  3201. task_rq_unlock(rq, p, &flags);
  3202. return 0;
  3203. }
  3204. change:
  3205. if (user) {
  3206. #ifdef CONFIG_RT_GROUP_SCHED
  3207. /*
  3208. * Do not allow realtime tasks into groups that have no runtime
  3209. * assigned.
  3210. */
  3211. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3212. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3213. !task_group_is_autogroup(task_group(p))) {
  3214. task_rq_unlock(rq, p, &flags);
  3215. return -EPERM;
  3216. }
  3217. #endif
  3218. #ifdef CONFIG_SMP
  3219. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3220. cpumask_t *span = rq->rd->span;
  3221. /*
  3222. * Don't allow tasks with an affinity mask smaller than
  3223. * the entire root_domain to become SCHED_DEADLINE. We
  3224. * will also fail if there's no bandwidth available.
  3225. */
  3226. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3227. rq->rd->dl_bw.bw == 0) {
  3228. task_rq_unlock(rq, p, &flags);
  3229. return -EPERM;
  3230. }
  3231. }
  3232. #endif
  3233. }
  3234. /* recheck policy now with rq lock held */
  3235. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3236. policy = oldpolicy = -1;
  3237. task_rq_unlock(rq, p, &flags);
  3238. goto recheck;
  3239. }
  3240. /*
  3241. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3242. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3243. * is available.
  3244. */
  3245. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3246. task_rq_unlock(rq, p, &flags);
  3247. return -EBUSY;
  3248. }
  3249. p->sched_reset_on_fork = reset_on_fork;
  3250. oldprio = p->prio;
  3251. if (pi) {
  3252. /*
  3253. * Take priority boosted tasks into account. If the new
  3254. * effective priority is unchanged, we just store the new
  3255. * normal parameters and do not touch the scheduler class and
  3256. * the runqueue. This will be done when the task deboost
  3257. * itself.
  3258. */
  3259. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3260. if (new_effective_prio == oldprio) {
  3261. __setscheduler_params(p, attr);
  3262. task_rq_unlock(rq, p, &flags);
  3263. return 0;
  3264. }
  3265. }
  3266. queued = task_on_rq_queued(p);
  3267. running = task_current(rq, p);
  3268. if (queued)
  3269. dequeue_task(rq, p, 0);
  3270. if (running)
  3271. put_prev_task(rq, p);
  3272. prev_class = p->sched_class;
  3273. __setscheduler(rq, p, attr, pi);
  3274. if (running)
  3275. p->sched_class->set_curr_task(rq);
  3276. if (queued) {
  3277. /*
  3278. * We enqueue to tail when the priority of a task is
  3279. * increased (user space view).
  3280. */
  3281. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3282. }
  3283. check_class_changed(rq, p, prev_class, oldprio);
  3284. preempt_disable(); /* avoid rq from going away on us */
  3285. task_rq_unlock(rq, p, &flags);
  3286. if (pi)
  3287. rt_mutex_adjust_pi(p);
  3288. /*
  3289. * Run balance callbacks after we've adjusted the PI chain.
  3290. */
  3291. balance_callback(rq);
  3292. preempt_enable();
  3293. return 0;
  3294. }
  3295. static int _sched_setscheduler(struct task_struct *p, int policy,
  3296. const struct sched_param *param, bool check)
  3297. {
  3298. struct sched_attr attr = {
  3299. .sched_policy = policy,
  3300. .sched_priority = param->sched_priority,
  3301. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3302. };
  3303. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3304. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3305. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3306. policy &= ~SCHED_RESET_ON_FORK;
  3307. attr.sched_policy = policy;
  3308. }
  3309. return __sched_setscheduler(p, &attr, check, true);
  3310. }
  3311. /**
  3312. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3313. * @p: the task in question.
  3314. * @policy: new policy.
  3315. * @param: structure containing the new RT priority.
  3316. *
  3317. * Return: 0 on success. An error code otherwise.
  3318. *
  3319. * NOTE that the task may be already dead.
  3320. */
  3321. int sched_setscheduler(struct task_struct *p, int policy,
  3322. const struct sched_param *param)
  3323. {
  3324. return _sched_setscheduler(p, policy, param, true);
  3325. }
  3326. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3327. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3328. {
  3329. return __sched_setscheduler(p, attr, true, true);
  3330. }
  3331. EXPORT_SYMBOL_GPL(sched_setattr);
  3332. /**
  3333. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3334. * @p: the task in question.
  3335. * @policy: new policy.
  3336. * @param: structure containing the new RT priority.
  3337. *
  3338. * Just like sched_setscheduler, only don't bother checking if the
  3339. * current context has permission. For example, this is needed in
  3340. * stop_machine(): we create temporary high priority worker threads,
  3341. * but our caller might not have that capability.
  3342. *
  3343. * Return: 0 on success. An error code otherwise.
  3344. */
  3345. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3346. const struct sched_param *param)
  3347. {
  3348. return _sched_setscheduler(p, policy, param, false);
  3349. }
  3350. static int
  3351. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3352. {
  3353. struct sched_param lparam;
  3354. struct task_struct *p;
  3355. int retval;
  3356. if (!param || pid < 0)
  3357. return -EINVAL;
  3358. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3359. return -EFAULT;
  3360. rcu_read_lock();
  3361. retval = -ESRCH;
  3362. p = find_process_by_pid(pid);
  3363. if (p != NULL)
  3364. retval = sched_setscheduler(p, policy, &lparam);
  3365. rcu_read_unlock();
  3366. return retval;
  3367. }
  3368. /*
  3369. * Mimics kernel/events/core.c perf_copy_attr().
  3370. */
  3371. static int sched_copy_attr(struct sched_attr __user *uattr,
  3372. struct sched_attr *attr)
  3373. {
  3374. u32 size;
  3375. int ret;
  3376. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3377. return -EFAULT;
  3378. /*
  3379. * zero the full structure, so that a short copy will be nice.
  3380. */
  3381. memset(attr, 0, sizeof(*attr));
  3382. ret = get_user(size, &uattr->size);
  3383. if (ret)
  3384. return ret;
  3385. if (size > PAGE_SIZE) /* silly large */
  3386. goto err_size;
  3387. if (!size) /* abi compat */
  3388. size = SCHED_ATTR_SIZE_VER0;
  3389. if (size < SCHED_ATTR_SIZE_VER0)
  3390. goto err_size;
  3391. /*
  3392. * If we're handed a bigger struct than we know of,
  3393. * ensure all the unknown bits are 0 - i.e. new
  3394. * user-space does not rely on any kernel feature
  3395. * extensions we dont know about yet.
  3396. */
  3397. if (size > sizeof(*attr)) {
  3398. unsigned char __user *addr;
  3399. unsigned char __user *end;
  3400. unsigned char val;
  3401. addr = (void __user *)uattr + sizeof(*attr);
  3402. end = (void __user *)uattr + size;
  3403. for (; addr < end; addr++) {
  3404. ret = get_user(val, addr);
  3405. if (ret)
  3406. return ret;
  3407. if (val)
  3408. goto err_size;
  3409. }
  3410. size = sizeof(*attr);
  3411. }
  3412. ret = copy_from_user(attr, uattr, size);
  3413. if (ret)
  3414. return -EFAULT;
  3415. /*
  3416. * XXX: do we want to be lenient like existing syscalls; or do we want
  3417. * to be strict and return an error on out-of-bounds values?
  3418. */
  3419. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3420. return 0;
  3421. err_size:
  3422. put_user(sizeof(*attr), &uattr->size);
  3423. return -E2BIG;
  3424. }
  3425. /**
  3426. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3427. * @pid: the pid in question.
  3428. * @policy: new policy.
  3429. * @param: structure containing the new RT priority.
  3430. *
  3431. * Return: 0 on success. An error code otherwise.
  3432. */
  3433. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3434. struct sched_param __user *, param)
  3435. {
  3436. /* negative values for policy are not valid */
  3437. if (policy < 0)
  3438. return -EINVAL;
  3439. return do_sched_setscheduler(pid, policy, param);
  3440. }
  3441. /**
  3442. * sys_sched_setparam - set/change the RT priority of a thread
  3443. * @pid: the pid in question.
  3444. * @param: structure containing the new RT priority.
  3445. *
  3446. * Return: 0 on success. An error code otherwise.
  3447. */
  3448. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3449. {
  3450. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3451. }
  3452. /**
  3453. * sys_sched_setattr - same as above, but with extended sched_attr
  3454. * @pid: the pid in question.
  3455. * @uattr: structure containing the extended parameters.
  3456. * @flags: for future extension.
  3457. */
  3458. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3459. unsigned int, flags)
  3460. {
  3461. struct sched_attr attr;
  3462. struct task_struct *p;
  3463. int retval;
  3464. if (!uattr || pid < 0 || flags)
  3465. return -EINVAL;
  3466. retval = sched_copy_attr(uattr, &attr);
  3467. if (retval)
  3468. return retval;
  3469. if ((int)attr.sched_policy < 0)
  3470. return -EINVAL;
  3471. rcu_read_lock();
  3472. retval = -ESRCH;
  3473. p = find_process_by_pid(pid);
  3474. if (p != NULL)
  3475. retval = sched_setattr(p, &attr);
  3476. rcu_read_unlock();
  3477. return retval;
  3478. }
  3479. /**
  3480. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3481. * @pid: the pid in question.
  3482. *
  3483. * Return: On success, the policy of the thread. Otherwise, a negative error
  3484. * code.
  3485. */
  3486. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3487. {
  3488. struct task_struct *p;
  3489. int retval;
  3490. if (pid < 0)
  3491. return -EINVAL;
  3492. retval = -ESRCH;
  3493. rcu_read_lock();
  3494. p = find_process_by_pid(pid);
  3495. if (p) {
  3496. retval = security_task_getscheduler(p);
  3497. if (!retval)
  3498. retval = p->policy
  3499. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3500. }
  3501. rcu_read_unlock();
  3502. return retval;
  3503. }
  3504. /**
  3505. * sys_sched_getparam - get the RT priority of a thread
  3506. * @pid: the pid in question.
  3507. * @param: structure containing the RT priority.
  3508. *
  3509. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3510. * code.
  3511. */
  3512. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3513. {
  3514. struct sched_param lp = { .sched_priority = 0 };
  3515. struct task_struct *p;
  3516. int retval;
  3517. if (!param || pid < 0)
  3518. return -EINVAL;
  3519. rcu_read_lock();
  3520. p = find_process_by_pid(pid);
  3521. retval = -ESRCH;
  3522. if (!p)
  3523. goto out_unlock;
  3524. retval = security_task_getscheduler(p);
  3525. if (retval)
  3526. goto out_unlock;
  3527. if (task_has_rt_policy(p))
  3528. lp.sched_priority = p->rt_priority;
  3529. rcu_read_unlock();
  3530. /*
  3531. * This one might sleep, we cannot do it with a spinlock held ...
  3532. */
  3533. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3534. return retval;
  3535. out_unlock:
  3536. rcu_read_unlock();
  3537. return retval;
  3538. }
  3539. static int sched_read_attr(struct sched_attr __user *uattr,
  3540. struct sched_attr *attr,
  3541. unsigned int usize)
  3542. {
  3543. int ret;
  3544. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3545. return -EFAULT;
  3546. /*
  3547. * If we're handed a smaller struct than we know of,
  3548. * ensure all the unknown bits are 0 - i.e. old
  3549. * user-space does not get uncomplete information.
  3550. */
  3551. if (usize < sizeof(*attr)) {
  3552. unsigned char *addr;
  3553. unsigned char *end;
  3554. addr = (void *)attr + usize;
  3555. end = (void *)attr + sizeof(*attr);
  3556. for (; addr < end; addr++) {
  3557. if (*addr)
  3558. return -EFBIG;
  3559. }
  3560. attr->size = usize;
  3561. }
  3562. ret = copy_to_user(uattr, attr, attr->size);
  3563. if (ret)
  3564. return -EFAULT;
  3565. return 0;
  3566. }
  3567. /**
  3568. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3569. * @pid: the pid in question.
  3570. * @uattr: structure containing the extended parameters.
  3571. * @size: sizeof(attr) for fwd/bwd comp.
  3572. * @flags: for future extension.
  3573. */
  3574. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3575. unsigned int, size, unsigned int, flags)
  3576. {
  3577. struct sched_attr attr = {
  3578. .size = sizeof(struct sched_attr),
  3579. };
  3580. struct task_struct *p;
  3581. int retval;
  3582. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3583. size < SCHED_ATTR_SIZE_VER0 || flags)
  3584. return -EINVAL;
  3585. rcu_read_lock();
  3586. p = find_process_by_pid(pid);
  3587. retval = -ESRCH;
  3588. if (!p)
  3589. goto out_unlock;
  3590. retval = security_task_getscheduler(p);
  3591. if (retval)
  3592. goto out_unlock;
  3593. attr.sched_policy = p->policy;
  3594. if (p->sched_reset_on_fork)
  3595. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3596. if (task_has_dl_policy(p))
  3597. __getparam_dl(p, &attr);
  3598. else if (task_has_rt_policy(p))
  3599. attr.sched_priority = p->rt_priority;
  3600. else
  3601. attr.sched_nice = task_nice(p);
  3602. rcu_read_unlock();
  3603. retval = sched_read_attr(uattr, &attr, size);
  3604. return retval;
  3605. out_unlock:
  3606. rcu_read_unlock();
  3607. return retval;
  3608. }
  3609. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3610. {
  3611. cpumask_var_t cpus_allowed, new_mask;
  3612. struct task_struct *p;
  3613. int retval;
  3614. rcu_read_lock();
  3615. p = find_process_by_pid(pid);
  3616. if (!p) {
  3617. rcu_read_unlock();
  3618. return -ESRCH;
  3619. }
  3620. /* Prevent p going away */
  3621. get_task_struct(p);
  3622. rcu_read_unlock();
  3623. if (p->flags & PF_NO_SETAFFINITY) {
  3624. retval = -EINVAL;
  3625. goto out_put_task;
  3626. }
  3627. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3628. retval = -ENOMEM;
  3629. goto out_put_task;
  3630. }
  3631. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3632. retval = -ENOMEM;
  3633. goto out_free_cpus_allowed;
  3634. }
  3635. retval = -EPERM;
  3636. if (!check_same_owner(p)) {
  3637. rcu_read_lock();
  3638. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3639. rcu_read_unlock();
  3640. goto out_free_new_mask;
  3641. }
  3642. rcu_read_unlock();
  3643. }
  3644. retval = security_task_setscheduler(p);
  3645. if (retval)
  3646. goto out_free_new_mask;
  3647. cpuset_cpus_allowed(p, cpus_allowed);
  3648. cpumask_and(new_mask, in_mask, cpus_allowed);
  3649. /*
  3650. * Since bandwidth control happens on root_domain basis,
  3651. * if admission test is enabled, we only admit -deadline
  3652. * tasks allowed to run on all the CPUs in the task's
  3653. * root_domain.
  3654. */
  3655. #ifdef CONFIG_SMP
  3656. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3657. rcu_read_lock();
  3658. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3659. retval = -EBUSY;
  3660. rcu_read_unlock();
  3661. goto out_free_new_mask;
  3662. }
  3663. rcu_read_unlock();
  3664. }
  3665. #endif
  3666. again:
  3667. retval = set_cpus_allowed_ptr(p, new_mask);
  3668. if (!retval) {
  3669. cpuset_cpus_allowed(p, cpus_allowed);
  3670. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3671. /*
  3672. * We must have raced with a concurrent cpuset
  3673. * update. Just reset the cpus_allowed to the
  3674. * cpuset's cpus_allowed
  3675. */
  3676. cpumask_copy(new_mask, cpus_allowed);
  3677. goto again;
  3678. }
  3679. }
  3680. out_free_new_mask:
  3681. free_cpumask_var(new_mask);
  3682. out_free_cpus_allowed:
  3683. free_cpumask_var(cpus_allowed);
  3684. out_put_task:
  3685. put_task_struct(p);
  3686. return retval;
  3687. }
  3688. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3689. struct cpumask *new_mask)
  3690. {
  3691. if (len < cpumask_size())
  3692. cpumask_clear(new_mask);
  3693. else if (len > cpumask_size())
  3694. len = cpumask_size();
  3695. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3696. }
  3697. /**
  3698. * sys_sched_setaffinity - set the cpu affinity of a process
  3699. * @pid: pid of the process
  3700. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3701. * @user_mask_ptr: user-space pointer to the new cpu mask
  3702. *
  3703. * Return: 0 on success. An error code otherwise.
  3704. */
  3705. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3706. unsigned long __user *, user_mask_ptr)
  3707. {
  3708. cpumask_var_t new_mask;
  3709. int retval;
  3710. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3711. return -ENOMEM;
  3712. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3713. if (retval == 0)
  3714. retval = sched_setaffinity(pid, new_mask);
  3715. free_cpumask_var(new_mask);
  3716. return retval;
  3717. }
  3718. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3719. {
  3720. struct task_struct *p;
  3721. unsigned long flags;
  3722. int retval;
  3723. rcu_read_lock();
  3724. retval = -ESRCH;
  3725. p = find_process_by_pid(pid);
  3726. if (!p)
  3727. goto out_unlock;
  3728. retval = security_task_getscheduler(p);
  3729. if (retval)
  3730. goto out_unlock;
  3731. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3732. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3733. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3734. out_unlock:
  3735. rcu_read_unlock();
  3736. return retval;
  3737. }
  3738. /**
  3739. * sys_sched_getaffinity - get the cpu affinity of a process
  3740. * @pid: pid of the process
  3741. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3742. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3743. *
  3744. * Return: 0 on success. An error code otherwise.
  3745. */
  3746. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3747. unsigned long __user *, user_mask_ptr)
  3748. {
  3749. int ret;
  3750. cpumask_var_t mask;
  3751. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3752. return -EINVAL;
  3753. if (len & (sizeof(unsigned long)-1))
  3754. return -EINVAL;
  3755. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3756. return -ENOMEM;
  3757. ret = sched_getaffinity(pid, mask);
  3758. if (ret == 0) {
  3759. size_t retlen = min_t(size_t, len, cpumask_size());
  3760. if (copy_to_user(user_mask_ptr, mask, retlen))
  3761. ret = -EFAULT;
  3762. else
  3763. ret = retlen;
  3764. }
  3765. free_cpumask_var(mask);
  3766. return ret;
  3767. }
  3768. /**
  3769. * sys_sched_yield - yield the current processor to other threads.
  3770. *
  3771. * This function yields the current CPU to other tasks. If there are no
  3772. * other threads running on this CPU then this function will return.
  3773. *
  3774. * Return: 0.
  3775. */
  3776. SYSCALL_DEFINE0(sched_yield)
  3777. {
  3778. struct rq *rq = this_rq_lock();
  3779. schedstat_inc(rq, yld_count);
  3780. current->sched_class->yield_task(rq);
  3781. /*
  3782. * Since we are going to call schedule() anyway, there's
  3783. * no need to preempt or enable interrupts:
  3784. */
  3785. __release(rq->lock);
  3786. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3787. do_raw_spin_unlock(&rq->lock);
  3788. sched_preempt_enable_no_resched();
  3789. schedule();
  3790. return 0;
  3791. }
  3792. int __sched _cond_resched(void)
  3793. {
  3794. if (should_resched()) {
  3795. preempt_schedule_common();
  3796. return 1;
  3797. }
  3798. return 0;
  3799. }
  3800. EXPORT_SYMBOL(_cond_resched);
  3801. /*
  3802. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3803. * call schedule, and on return reacquire the lock.
  3804. *
  3805. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3806. * operations here to prevent schedule() from being called twice (once via
  3807. * spin_unlock(), once by hand).
  3808. */
  3809. int __cond_resched_lock(spinlock_t *lock)
  3810. {
  3811. int resched = should_resched();
  3812. int ret = 0;
  3813. lockdep_assert_held(lock);
  3814. if (spin_needbreak(lock) || resched) {
  3815. spin_unlock(lock);
  3816. if (resched)
  3817. preempt_schedule_common();
  3818. else
  3819. cpu_relax();
  3820. ret = 1;
  3821. spin_lock(lock);
  3822. }
  3823. return ret;
  3824. }
  3825. EXPORT_SYMBOL(__cond_resched_lock);
  3826. int __sched __cond_resched_softirq(void)
  3827. {
  3828. BUG_ON(!in_softirq());
  3829. if (should_resched()) {
  3830. local_bh_enable();
  3831. preempt_schedule_common();
  3832. local_bh_disable();
  3833. return 1;
  3834. }
  3835. return 0;
  3836. }
  3837. EXPORT_SYMBOL(__cond_resched_softirq);
  3838. /**
  3839. * yield - yield the current processor to other threads.
  3840. *
  3841. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3842. *
  3843. * The scheduler is at all times free to pick the calling task as the most
  3844. * eligible task to run, if removing the yield() call from your code breaks
  3845. * it, its already broken.
  3846. *
  3847. * Typical broken usage is:
  3848. *
  3849. * while (!event)
  3850. * yield();
  3851. *
  3852. * where one assumes that yield() will let 'the other' process run that will
  3853. * make event true. If the current task is a SCHED_FIFO task that will never
  3854. * happen. Never use yield() as a progress guarantee!!
  3855. *
  3856. * If you want to use yield() to wait for something, use wait_event().
  3857. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3858. * If you still want to use yield(), do not!
  3859. */
  3860. void __sched yield(void)
  3861. {
  3862. set_current_state(TASK_RUNNING);
  3863. sys_sched_yield();
  3864. }
  3865. EXPORT_SYMBOL(yield);
  3866. /**
  3867. * yield_to - yield the current processor to another thread in
  3868. * your thread group, or accelerate that thread toward the
  3869. * processor it's on.
  3870. * @p: target task
  3871. * @preempt: whether task preemption is allowed or not
  3872. *
  3873. * It's the caller's job to ensure that the target task struct
  3874. * can't go away on us before we can do any checks.
  3875. *
  3876. * Return:
  3877. * true (>0) if we indeed boosted the target task.
  3878. * false (0) if we failed to boost the target.
  3879. * -ESRCH if there's no task to yield to.
  3880. */
  3881. int __sched yield_to(struct task_struct *p, bool preempt)
  3882. {
  3883. struct task_struct *curr = current;
  3884. struct rq *rq, *p_rq;
  3885. unsigned long flags;
  3886. int yielded = 0;
  3887. local_irq_save(flags);
  3888. rq = this_rq();
  3889. again:
  3890. p_rq = task_rq(p);
  3891. /*
  3892. * If we're the only runnable task on the rq and target rq also
  3893. * has only one task, there's absolutely no point in yielding.
  3894. */
  3895. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3896. yielded = -ESRCH;
  3897. goto out_irq;
  3898. }
  3899. double_rq_lock(rq, p_rq);
  3900. if (task_rq(p) != p_rq) {
  3901. double_rq_unlock(rq, p_rq);
  3902. goto again;
  3903. }
  3904. if (!curr->sched_class->yield_to_task)
  3905. goto out_unlock;
  3906. if (curr->sched_class != p->sched_class)
  3907. goto out_unlock;
  3908. if (task_running(p_rq, p) || p->state)
  3909. goto out_unlock;
  3910. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3911. if (yielded) {
  3912. schedstat_inc(rq, yld_count);
  3913. /*
  3914. * Make p's CPU reschedule; pick_next_entity takes care of
  3915. * fairness.
  3916. */
  3917. if (preempt && rq != p_rq)
  3918. resched_curr(p_rq);
  3919. }
  3920. out_unlock:
  3921. double_rq_unlock(rq, p_rq);
  3922. out_irq:
  3923. local_irq_restore(flags);
  3924. if (yielded > 0)
  3925. schedule();
  3926. return yielded;
  3927. }
  3928. EXPORT_SYMBOL_GPL(yield_to);
  3929. /*
  3930. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3931. * that process accounting knows that this is a task in IO wait state.
  3932. */
  3933. long __sched io_schedule_timeout(long timeout)
  3934. {
  3935. int old_iowait = current->in_iowait;
  3936. struct rq *rq;
  3937. long ret;
  3938. current->in_iowait = 1;
  3939. blk_schedule_flush_plug(current);
  3940. delayacct_blkio_start();
  3941. rq = raw_rq();
  3942. atomic_inc(&rq->nr_iowait);
  3943. ret = schedule_timeout(timeout);
  3944. current->in_iowait = old_iowait;
  3945. atomic_dec(&rq->nr_iowait);
  3946. delayacct_blkio_end();
  3947. return ret;
  3948. }
  3949. EXPORT_SYMBOL(io_schedule_timeout);
  3950. /**
  3951. * sys_sched_get_priority_max - return maximum RT priority.
  3952. * @policy: scheduling class.
  3953. *
  3954. * Return: On success, this syscall returns the maximum
  3955. * rt_priority that can be used by a given scheduling class.
  3956. * On failure, a negative error code is returned.
  3957. */
  3958. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3959. {
  3960. int ret = -EINVAL;
  3961. switch (policy) {
  3962. case SCHED_FIFO:
  3963. case SCHED_RR:
  3964. ret = MAX_USER_RT_PRIO-1;
  3965. break;
  3966. case SCHED_DEADLINE:
  3967. case SCHED_NORMAL:
  3968. case SCHED_BATCH:
  3969. case SCHED_IDLE:
  3970. ret = 0;
  3971. break;
  3972. }
  3973. return ret;
  3974. }
  3975. /**
  3976. * sys_sched_get_priority_min - return minimum RT priority.
  3977. * @policy: scheduling class.
  3978. *
  3979. * Return: On success, this syscall returns the minimum
  3980. * rt_priority that can be used by a given scheduling class.
  3981. * On failure, a negative error code is returned.
  3982. */
  3983. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3984. {
  3985. int ret = -EINVAL;
  3986. switch (policy) {
  3987. case SCHED_FIFO:
  3988. case SCHED_RR:
  3989. ret = 1;
  3990. break;
  3991. case SCHED_DEADLINE:
  3992. case SCHED_NORMAL:
  3993. case SCHED_BATCH:
  3994. case SCHED_IDLE:
  3995. ret = 0;
  3996. }
  3997. return ret;
  3998. }
  3999. /**
  4000. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4001. * @pid: pid of the process.
  4002. * @interval: userspace pointer to the timeslice value.
  4003. *
  4004. * this syscall writes the default timeslice value of a given process
  4005. * into the user-space timespec buffer. A value of '0' means infinity.
  4006. *
  4007. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4008. * an error code.
  4009. */
  4010. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4011. struct timespec __user *, interval)
  4012. {
  4013. struct task_struct *p;
  4014. unsigned int time_slice;
  4015. unsigned long flags;
  4016. struct rq *rq;
  4017. int retval;
  4018. struct timespec t;
  4019. if (pid < 0)
  4020. return -EINVAL;
  4021. retval = -ESRCH;
  4022. rcu_read_lock();
  4023. p = find_process_by_pid(pid);
  4024. if (!p)
  4025. goto out_unlock;
  4026. retval = security_task_getscheduler(p);
  4027. if (retval)
  4028. goto out_unlock;
  4029. rq = task_rq_lock(p, &flags);
  4030. time_slice = 0;
  4031. if (p->sched_class->get_rr_interval)
  4032. time_slice = p->sched_class->get_rr_interval(rq, p);
  4033. task_rq_unlock(rq, p, &flags);
  4034. rcu_read_unlock();
  4035. jiffies_to_timespec(time_slice, &t);
  4036. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4037. return retval;
  4038. out_unlock:
  4039. rcu_read_unlock();
  4040. return retval;
  4041. }
  4042. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4043. void sched_show_task(struct task_struct *p)
  4044. {
  4045. unsigned long free = 0;
  4046. int ppid;
  4047. unsigned long state = p->state;
  4048. if (state)
  4049. state = __ffs(state) + 1;
  4050. printk(KERN_INFO "%-15.15s %c", p->comm,
  4051. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4052. #if BITS_PER_LONG == 32
  4053. if (state == TASK_RUNNING)
  4054. printk(KERN_CONT " running ");
  4055. else
  4056. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4057. #else
  4058. if (state == TASK_RUNNING)
  4059. printk(KERN_CONT " running task ");
  4060. else
  4061. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4062. #endif
  4063. #ifdef CONFIG_DEBUG_STACK_USAGE
  4064. free = stack_not_used(p);
  4065. #endif
  4066. ppid = 0;
  4067. rcu_read_lock();
  4068. if (pid_alive(p))
  4069. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4070. rcu_read_unlock();
  4071. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4072. task_pid_nr(p), ppid,
  4073. (unsigned long)task_thread_info(p)->flags);
  4074. print_worker_info(KERN_INFO, p);
  4075. show_stack(p, NULL);
  4076. }
  4077. void show_state_filter(unsigned long state_filter)
  4078. {
  4079. struct task_struct *g, *p;
  4080. #if BITS_PER_LONG == 32
  4081. printk(KERN_INFO
  4082. " task PC stack pid father\n");
  4083. #else
  4084. printk(KERN_INFO
  4085. " task PC stack pid father\n");
  4086. #endif
  4087. rcu_read_lock();
  4088. for_each_process_thread(g, p) {
  4089. /*
  4090. * reset the NMI-timeout, listing all files on a slow
  4091. * console might take a lot of time:
  4092. */
  4093. touch_nmi_watchdog();
  4094. if (!state_filter || (p->state & state_filter))
  4095. sched_show_task(p);
  4096. }
  4097. touch_all_softlockup_watchdogs();
  4098. #ifdef CONFIG_SCHED_DEBUG
  4099. sysrq_sched_debug_show();
  4100. #endif
  4101. rcu_read_unlock();
  4102. /*
  4103. * Only show locks if all tasks are dumped:
  4104. */
  4105. if (!state_filter)
  4106. debug_show_all_locks();
  4107. }
  4108. void init_idle_bootup_task(struct task_struct *idle)
  4109. {
  4110. idle->sched_class = &idle_sched_class;
  4111. }
  4112. /**
  4113. * init_idle - set up an idle thread for a given CPU
  4114. * @idle: task in question
  4115. * @cpu: cpu the idle task belongs to
  4116. *
  4117. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4118. * flag, to make booting more robust.
  4119. */
  4120. void init_idle(struct task_struct *idle, int cpu)
  4121. {
  4122. struct rq *rq = cpu_rq(cpu);
  4123. unsigned long flags;
  4124. raw_spin_lock_irqsave(&rq->lock, flags);
  4125. __sched_fork(0, idle);
  4126. idle->state = TASK_RUNNING;
  4127. idle->se.exec_start = sched_clock();
  4128. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4129. /*
  4130. * We're having a chicken and egg problem, even though we are
  4131. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4132. * lockdep check in task_group() will fail.
  4133. *
  4134. * Similar case to sched_fork(). / Alternatively we could
  4135. * use task_rq_lock() here and obtain the other rq->lock.
  4136. *
  4137. * Silence PROVE_RCU
  4138. */
  4139. rcu_read_lock();
  4140. __set_task_cpu(idle, cpu);
  4141. rcu_read_unlock();
  4142. rq->curr = rq->idle = idle;
  4143. idle->on_rq = TASK_ON_RQ_QUEUED;
  4144. #if defined(CONFIG_SMP)
  4145. idle->on_cpu = 1;
  4146. #endif
  4147. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4148. /* Set the preempt count _outside_ the spinlocks! */
  4149. init_idle_preempt_count(idle, cpu);
  4150. /*
  4151. * The idle tasks have their own, simple scheduling class:
  4152. */
  4153. idle->sched_class = &idle_sched_class;
  4154. ftrace_graph_init_idle_task(idle, cpu);
  4155. vtime_init_idle(idle, cpu);
  4156. #if defined(CONFIG_SMP)
  4157. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4158. #endif
  4159. }
  4160. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4161. const struct cpumask *trial)
  4162. {
  4163. int ret = 1, trial_cpus;
  4164. struct dl_bw *cur_dl_b;
  4165. unsigned long flags;
  4166. if (!cpumask_weight(cur))
  4167. return ret;
  4168. rcu_read_lock_sched();
  4169. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4170. trial_cpus = cpumask_weight(trial);
  4171. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4172. if (cur_dl_b->bw != -1 &&
  4173. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4174. ret = 0;
  4175. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4176. rcu_read_unlock_sched();
  4177. return ret;
  4178. }
  4179. int task_can_attach(struct task_struct *p,
  4180. const struct cpumask *cs_cpus_allowed)
  4181. {
  4182. int ret = 0;
  4183. /*
  4184. * Kthreads which disallow setaffinity shouldn't be moved
  4185. * to a new cpuset; we don't want to change their cpu
  4186. * affinity and isolating such threads by their set of
  4187. * allowed nodes is unnecessary. Thus, cpusets are not
  4188. * applicable for such threads. This prevents checking for
  4189. * success of set_cpus_allowed_ptr() on all attached tasks
  4190. * before cpus_allowed may be changed.
  4191. */
  4192. if (p->flags & PF_NO_SETAFFINITY) {
  4193. ret = -EINVAL;
  4194. goto out;
  4195. }
  4196. #ifdef CONFIG_SMP
  4197. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4198. cs_cpus_allowed)) {
  4199. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4200. cs_cpus_allowed);
  4201. struct dl_bw *dl_b;
  4202. bool overflow;
  4203. int cpus;
  4204. unsigned long flags;
  4205. rcu_read_lock_sched();
  4206. dl_b = dl_bw_of(dest_cpu);
  4207. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4208. cpus = dl_bw_cpus(dest_cpu);
  4209. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4210. if (overflow)
  4211. ret = -EBUSY;
  4212. else {
  4213. /*
  4214. * We reserve space for this task in the destination
  4215. * root_domain, as we can't fail after this point.
  4216. * We will free resources in the source root_domain
  4217. * later on (see set_cpus_allowed_dl()).
  4218. */
  4219. __dl_add(dl_b, p->dl.dl_bw);
  4220. }
  4221. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4222. rcu_read_unlock_sched();
  4223. }
  4224. #endif
  4225. out:
  4226. return ret;
  4227. }
  4228. #ifdef CONFIG_SMP
  4229. #ifdef CONFIG_NUMA_BALANCING
  4230. /* Migrate current task p to target_cpu */
  4231. int migrate_task_to(struct task_struct *p, int target_cpu)
  4232. {
  4233. struct migration_arg arg = { p, target_cpu };
  4234. int curr_cpu = task_cpu(p);
  4235. if (curr_cpu == target_cpu)
  4236. return 0;
  4237. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4238. return -EINVAL;
  4239. /* TODO: This is not properly updating schedstats */
  4240. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4241. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4242. }
  4243. /*
  4244. * Requeue a task on a given node and accurately track the number of NUMA
  4245. * tasks on the runqueues
  4246. */
  4247. void sched_setnuma(struct task_struct *p, int nid)
  4248. {
  4249. struct rq *rq;
  4250. unsigned long flags;
  4251. bool queued, running;
  4252. rq = task_rq_lock(p, &flags);
  4253. queued = task_on_rq_queued(p);
  4254. running = task_current(rq, p);
  4255. if (queued)
  4256. dequeue_task(rq, p, 0);
  4257. if (running)
  4258. put_prev_task(rq, p);
  4259. p->numa_preferred_nid = nid;
  4260. if (running)
  4261. p->sched_class->set_curr_task(rq);
  4262. if (queued)
  4263. enqueue_task(rq, p, 0);
  4264. task_rq_unlock(rq, p, &flags);
  4265. }
  4266. #endif /* CONFIG_NUMA_BALANCING */
  4267. #ifdef CONFIG_HOTPLUG_CPU
  4268. /*
  4269. * Ensures that the idle task is using init_mm right before its cpu goes
  4270. * offline.
  4271. */
  4272. void idle_task_exit(void)
  4273. {
  4274. struct mm_struct *mm = current->active_mm;
  4275. BUG_ON(cpu_online(smp_processor_id()));
  4276. if (mm != &init_mm) {
  4277. switch_mm(mm, &init_mm, current);
  4278. finish_arch_post_lock_switch();
  4279. }
  4280. mmdrop(mm);
  4281. }
  4282. /*
  4283. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4284. * we might have. Assumes we're called after migrate_tasks() so that the
  4285. * nr_active count is stable.
  4286. *
  4287. * Also see the comment "Global load-average calculations".
  4288. */
  4289. static void calc_load_migrate(struct rq *rq)
  4290. {
  4291. long delta = calc_load_fold_active(rq);
  4292. if (delta)
  4293. atomic_long_add(delta, &calc_load_tasks);
  4294. }
  4295. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4296. {
  4297. }
  4298. static const struct sched_class fake_sched_class = {
  4299. .put_prev_task = put_prev_task_fake,
  4300. };
  4301. static struct task_struct fake_task = {
  4302. /*
  4303. * Avoid pull_{rt,dl}_task()
  4304. */
  4305. .prio = MAX_PRIO + 1,
  4306. .sched_class = &fake_sched_class,
  4307. };
  4308. /*
  4309. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4310. * try_to_wake_up()->select_task_rq().
  4311. *
  4312. * Called with rq->lock held even though we'er in stop_machine() and
  4313. * there's no concurrency possible, we hold the required locks anyway
  4314. * because of lock validation efforts.
  4315. */
  4316. static void migrate_tasks(struct rq *dead_rq)
  4317. {
  4318. struct rq *rq = dead_rq;
  4319. struct task_struct *next, *stop = rq->stop;
  4320. int dest_cpu;
  4321. /*
  4322. * Fudge the rq selection such that the below task selection loop
  4323. * doesn't get stuck on the currently eligible stop task.
  4324. *
  4325. * We're currently inside stop_machine() and the rq is either stuck
  4326. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4327. * either way we should never end up calling schedule() until we're
  4328. * done here.
  4329. */
  4330. rq->stop = NULL;
  4331. /*
  4332. * put_prev_task() and pick_next_task() sched
  4333. * class method both need to have an up-to-date
  4334. * value of rq->clock[_task]
  4335. */
  4336. update_rq_clock(rq);
  4337. for (;;) {
  4338. /*
  4339. * There's this thread running, bail when that's the only
  4340. * remaining thread.
  4341. */
  4342. if (rq->nr_running == 1)
  4343. break;
  4344. next = pick_next_task(rq, &fake_task);
  4345. BUG_ON(!next);
  4346. next->sched_class->put_prev_task(rq, next);
  4347. /* Find suitable destination for @next, with force if needed. */
  4348. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4349. rq = __migrate_task(rq, next, dest_cpu);
  4350. if (rq != dead_rq) {
  4351. raw_spin_unlock(&rq->lock);
  4352. rq = dead_rq;
  4353. raw_spin_lock(&rq->lock);
  4354. }
  4355. }
  4356. rq->stop = stop;
  4357. }
  4358. #endif /* CONFIG_HOTPLUG_CPU */
  4359. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4360. static struct ctl_table sd_ctl_dir[] = {
  4361. {
  4362. .procname = "sched_domain",
  4363. .mode = 0555,
  4364. },
  4365. {}
  4366. };
  4367. static struct ctl_table sd_ctl_root[] = {
  4368. {
  4369. .procname = "kernel",
  4370. .mode = 0555,
  4371. .child = sd_ctl_dir,
  4372. },
  4373. {}
  4374. };
  4375. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4376. {
  4377. struct ctl_table *entry =
  4378. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4379. return entry;
  4380. }
  4381. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4382. {
  4383. struct ctl_table *entry;
  4384. /*
  4385. * In the intermediate directories, both the child directory and
  4386. * procname are dynamically allocated and could fail but the mode
  4387. * will always be set. In the lowest directory the names are
  4388. * static strings and all have proc handlers.
  4389. */
  4390. for (entry = *tablep; entry->mode; entry++) {
  4391. if (entry->child)
  4392. sd_free_ctl_entry(&entry->child);
  4393. if (entry->proc_handler == NULL)
  4394. kfree(entry->procname);
  4395. }
  4396. kfree(*tablep);
  4397. *tablep = NULL;
  4398. }
  4399. static int min_load_idx = 0;
  4400. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4401. static void
  4402. set_table_entry(struct ctl_table *entry,
  4403. const char *procname, void *data, int maxlen,
  4404. umode_t mode, proc_handler *proc_handler,
  4405. bool load_idx)
  4406. {
  4407. entry->procname = procname;
  4408. entry->data = data;
  4409. entry->maxlen = maxlen;
  4410. entry->mode = mode;
  4411. entry->proc_handler = proc_handler;
  4412. if (load_idx) {
  4413. entry->extra1 = &min_load_idx;
  4414. entry->extra2 = &max_load_idx;
  4415. }
  4416. }
  4417. static struct ctl_table *
  4418. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4419. {
  4420. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4421. if (table == NULL)
  4422. return NULL;
  4423. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4424. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4425. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4426. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4427. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4428. sizeof(int), 0644, proc_dointvec_minmax, true);
  4429. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4430. sizeof(int), 0644, proc_dointvec_minmax, true);
  4431. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4432. sizeof(int), 0644, proc_dointvec_minmax, true);
  4433. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4434. sizeof(int), 0644, proc_dointvec_minmax, true);
  4435. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4436. sizeof(int), 0644, proc_dointvec_minmax, true);
  4437. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4438. sizeof(int), 0644, proc_dointvec_minmax, false);
  4439. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4440. sizeof(int), 0644, proc_dointvec_minmax, false);
  4441. set_table_entry(&table[9], "cache_nice_tries",
  4442. &sd->cache_nice_tries,
  4443. sizeof(int), 0644, proc_dointvec_minmax, false);
  4444. set_table_entry(&table[10], "flags", &sd->flags,
  4445. sizeof(int), 0644, proc_dointvec_minmax, false);
  4446. set_table_entry(&table[11], "max_newidle_lb_cost",
  4447. &sd->max_newidle_lb_cost,
  4448. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4449. set_table_entry(&table[12], "name", sd->name,
  4450. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4451. /* &table[13] is terminator */
  4452. return table;
  4453. }
  4454. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4455. {
  4456. struct ctl_table *entry, *table;
  4457. struct sched_domain *sd;
  4458. int domain_num = 0, i;
  4459. char buf[32];
  4460. for_each_domain(cpu, sd)
  4461. domain_num++;
  4462. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4463. if (table == NULL)
  4464. return NULL;
  4465. i = 0;
  4466. for_each_domain(cpu, sd) {
  4467. snprintf(buf, 32, "domain%d", i);
  4468. entry->procname = kstrdup(buf, GFP_KERNEL);
  4469. entry->mode = 0555;
  4470. entry->child = sd_alloc_ctl_domain_table(sd);
  4471. entry++;
  4472. i++;
  4473. }
  4474. return table;
  4475. }
  4476. static struct ctl_table_header *sd_sysctl_header;
  4477. static void register_sched_domain_sysctl(void)
  4478. {
  4479. int i, cpu_num = num_possible_cpus();
  4480. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4481. char buf[32];
  4482. WARN_ON(sd_ctl_dir[0].child);
  4483. sd_ctl_dir[0].child = entry;
  4484. if (entry == NULL)
  4485. return;
  4486. for_each_possible_cpu(i) {
  4487. snprintf(buf, 32, "cpu%d", i);
  4488. entry->procname = kstrdup(buf, GFP_KERNEL);
  4489. entry->mode = 0555;
  4490. entry->child = sd_alloc_ctl_cpu_table(i);
  4491. entry++;
  4492. }
  4493. WARN_ON(sd_sysctl_header);
  4494. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4495. }
  4496. /* may be called multiple times per register */
  4497. static void unregister_sched_domain_sysctl(void)
  4498. {
  4499. if (sd_sysctl_header)
  4500. unregister_sysctl_table(sd_sysctl_header);
  4501. sd_sysctl_header = NULL;
  4502. if (sd_ctl_dir[0].child)
  4503. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4504. }
  4505. #else
  4506. static void register_sched_domain_sysctl(void)
  4507. {
  4508. }
  4509. static void unregister_sched_domain_sysctl(void)
  4510. {
  4511. }
  4512. #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
  4513. static void set_rq_online(struct rq *rq)
  4514. {
  4515. if (!rq->online) {
  4516. const struct sched_class *class;
  4517. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4518. rq->online = 1;
  4519. for_each_class(class) {
  4520. if (class->rq_online)
  4521. class->rq_online(rq);
  4522. }
  4523. }
  4524. }
  4525. static void set_rq_offline(struct rq *rq)
  4526. {
  4527. if (rq->online) {
  4528. const struct sched_class *class;
  4529. for_each_class(class) {
  4530. if (class->rq_offline)
  4531. class->rq_offline(rq);
  4532. }
  4533. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4534. rq->online = 0;
  4535. }
  4536. }
  4537. /*
  4538. * migration_call - callback that gets triggered when a CPU is added.
  4539. * Here we can start up the necessary migration thread for the new CPU.
  4540. */
  4541. static int
  4542. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4543. {
  4544. int cpu = (long)hcpu;
  4545. unsigned long flags;
  4546. struct rq *rq = cpu_rq(cpu);
  4547. switch (action & ~CPU_TASKS_FROZEN) {
  4548. case CPU_UP_PREPARE:
  4549. rq->calc_load_update = calc_load_update;
  4550. break;
  4551. case CPU_ONLINE:
  4552. /* Update our root-domain */
  4553. raw_spin_lock_irqsave(&rq->lock, flags);
  4554. if (rq->rd) {
  4555. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4556. set_rq_online(rq);
  4557. }
  4558. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4559. break;
  4560. #ifdef CONFIG_HOTPLUG_CPU
  4561. case CPU_DYING:
  4562. sched_ttwu_pending();
  4563. /* Update our root-domain */
  4564. raw_spin_lock_irqsave(&rq->lock, flags);
  4565. if (rq->rd) {
  4566. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4567. set_rq_offline(rq);
  4568. }
  4569. migrate_tasks(rq);
  4570. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4571. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4572. break;
  4573. case CPU_DEAD:
  4574. calc_load_migrate(rq);
  4575. break;
  4576. #endif
  4577. }
  4578. update_max_interval();
  4579. return NOTIFY_OK;
  4580. }
  4581. /*
  4582. * Register at high priority so that task migration (migrate_all_tasks)
  4583. * happens before everything else. This has to be lower priority than
  4584. * the notifier in the perf_event subsystem, though.
  4585. */
  4586. static struct notifier_block migration_notifier = {
  4587. .notifier_call = migration_call,
  4588. .priority = CPU_PRI_MIGRATION,
  4589. };
  4590. static void set_cpu_rq_start_time(void)
  4591. {
  4592. int cpu = smp_processor_id();
  4593. struct rq *rq = cpu_rq(cpu);
  4594. rq->age_stamp = sched_clock_cpu(cpu);
  4595. }
  4596. static int sched_cpu_active(struct notifier_block *nfb,
  4597. unsigned long action, void *hcpu)
  4598. {
  4599. switch (action & ~CPU_TASKS_FROZEN) {
  4600. case CPU_STARTING:
  4601. set_cpu_rq_start_time();
  4602. return NOTIFY_OK;
  4603. case CPU_DOWN_FAILED:
  4604. set_cpu_active((long)hcpu, true);
  4605. return NOTIFY_OK;
  4606. default:
  4607. return NOTIFY_DONE;
  4608. }
  4609. }
  4610. static int sched_cpu_inactive(struct notifier_block *nfb,
  4611. unsigned long action, void *hcpu)
  4612. {
  4613. switch (action & ~CPU_TASKS_FROZEN) {
  4614. case CPU_DOWN_PREPARE:
  4615. set_cpu_active((long)hcpu, false);
  4616. return NOTIFY_OK;
  4617. default:
  4618. return NOTIFY_DONE;
  4619. }
  4620. }
  4621. static int __init migration_init(void)
  4622. {
  4623. void *cpu = (void *)(long)smp_processor_id();
  4624. int err;
  4625. /* Initialize migration for the boot CPU */
  4626. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4627. BUG_ON(err == NOTIFY_BAD);
  4628. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4629. register_cpu_notifier(&migration_notifier);
  4630. /* Register cpu active notifiers */
  4631. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4632. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4633. return 0;
  4634. }
  4635. early_initcall(migration_init);
  4636. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4637. #ifdef CONFIG_SCHED_DEBUG
  4638. static __read_mostly int sched_debug_enabled;
  4639. static int __init sched_debug_setup(char *str)
  4640. {
  4641. sched_debug_enabled = 1;
  4642. return 0;
  4643. }
  4644. early_param("sched_debug", sched_debug_setup);
  4645. static inline bool sched_debug(void)
  4646. {
  4647. return sched_debug_enabled;
  4648. }
  4649. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4650. struct cpumask *groupmask)
  4651. {
  4652. struct sched_group *group = sd->groups;
  4653. cpumask_clear(groupmask);
  4654. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4655. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4656. printk("does not load-balance\n");
  4657. if (sd->parent)
  4658. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4659. " has parent");
  4660. return -1;
  4661. }
  4662. printk(KERN_CONT "span %*pbl level %s\n",
  4663. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4664. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4665. printk(KERN_ERR "ERROR: domain->span does not contain "
  4666. "CPU%d\n", cpu);
  4667. }
  4668. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4669. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4670. " CPU%d\n", cpu);
  4671. }
  4672. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4673. do {
  4674. if (!group) {
  4675. printk("\n");
  4676. printk(KERN_ERR "ERROR: group is NULL\n");
  4677. break;
  4678. }
  4679. if (!cpumask_weight(sched_group_cpus(group))) {
  4680. printk(KERN_CONT "\n");
  4681. printk(KERN_ERR "ERROR: empty group\n");
  4682. break;
  4683. }
  4684. if (!(sd->flags & SD_OVERLAP) &&
  4685. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4686. printk(KERN_CONT "\n");
  4687. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4688. break;
  4689. }
  4690. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4691. printk(KERN_CONT " %*pbl",
  4692. cpumask_pr_args(sched_group_cpus(group)));
  4693. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4694. printk(KERN_CONT " (cpu_capacity = %d)",
  4695. group->sgc->capacity);
  4696. }
  4697. group = group->next;
  4698. } while (group != sd->groups);
  4699. printk(KERN_CONT "\n");
  4700. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4701. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4702. if (sd->parent &&
  4703. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4704. printk(KERN_ERR "ERROR: parent span is not a superset "
  4705. "of domain->span\n");
  4706. return 0;
  4707. }
  4708. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4709. {
  4710. int level = 0;
  4711. if (!sched_debug_enabled)
  4712. return;
  4713. if (!sd) {
  4714. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4715. return;
  4716. }
  4717. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4718. for (;;) {
  4719. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4720. break;
  4721. level++;
  4722. sd = sd->parent;
  4723. if (!sd)
  4724. break;
  4725. }
  4726. }
  4727. #else /* !CONFIG_SCHED_DEBUG */
  4728. # define sched_domain_debug(sd, cpu) do { } while (0)
  4729. static inline bool sched_debug(void)
  4730. {
  4731. return false;
  4732. }
  4733. #endif /* CONFIG_SCHED_DEBUG */
  4734. static int sd_degenerate(struct sched_domain *sd)
  4735. {
  4736. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4737. return 1;
  4738. /* Following flags need at least 2 groups */
  4739. if (sd->flags & (SD_LOAD_BALANCE |
  4740. SD_BALANCE_NEWIDLE |
  4741. SD_BALANCE_FORK |
  4742. SD_BALANCE_EXEC |
  4743. SD_SHARE_CPUCAPACITY |
  4744. SD_SHARE_PKG_RESOURCES |
  4745. SD_SHARE_POWERDOMAIN)) {
  4746. if (sd->groups != sd->groups->next)
  4747. return 0;
  4748. }
  4749. /* Following flags don't use groups */
  4750. if (sd->flags & (SD_WAKE_AFFINE))
  4751. return 0;
  4752. return 1;
  4753. }
  4754. static int
  4755. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4756. {
  4757. unsigned long cflags = sd->flags, pflags = parent->flags;
  4758. if (sd_degenerate(parent))
  4759. return 1;
  4760. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4761. return 0;
  4762. /* Flags needing groups don't count if only 1 group in parent */
  4763. if (parent->groups == parent->groups->next) {
  4764. pflags &= ~(SD_LOAD_BALANCE |
  4765. SD_BALANCE_NEWIDLE |
  4766. SD_BALANCE_FORK |
  4767. SD_BALANCE_EXEC |
  4768. SD_SHARE_CPUCAPACITY |
  4769. SD_SHARE_PKG_RESOURCES |
  4770. SD_PREFER_SIBLING |
  4771. SD_SHARE_POWERDOMAIN);
  4772. if (nr_node_ids == 1)
  4773. pflags &= ~SD_SERIALIZE;
  4774. }
  4775. if (~cflags & pflags)
  4776. return 0;
  4777. return 1;
  4778. }
  4779. static void free_rootdomain(struct rcu_head *rcu)
  4780. {
  4781. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4782. cpupri_cleanup(&rd->cpupri);
  4783. cpudl_cleanup(&rd->cpudl);
  4784. free_cpumask_var(rd->dlo_mask);
  4785. free_cpumask_var(rd->rto_mask);
  4786. free_cpumask_var(rd->online);
  4787. free_cpumask_var(rd->span);
  4788. kfree(rd);
  4789. }
  4790. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4791. {
  4792. struct root_domain *old_rd = NULL;
  4793. unsigned long flags;
  4794. raw_spin_lock_irqsave(&rq->lock, flags);
  4795. if (rq->rd) {
  4796. old_rd = rq->rd;
  4797. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4798. set_rq_offline(rq);
  4799. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4800. /*
  4801. * If we dont want to free the old_rd yet then
  4802. * set old_rd to NULL to skip the freeing later
  4803. * in this function:
  4804. */
  4805. if (!atomic_dec_and_test(&old_rd->refcount))
  4806. old_rd = NULL;
  4807. }
  4808. atomic_inc(&rd->refcount);
  4809. rq->rd = rd;
  4810. cpumask_set_cpu(rq->cpu, rd->span);
  4811. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4812. set_rq_online(rq);
  4813. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4814. if (old_rd)
  4815. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4816. }
  4817. static int init_rootdomain(struct root_domain *rd)
  4818. {
  4819. memset(rd, 0, sizeof(*rd));
  4820. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4821. goto out;
  4822. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4823. goto free_span;
  4824. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4825. goto free_online;
  4826. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4827. goto free_dlo_mask;
  4828. init_dl_bw(&rd->dl_bw);
  4829. if (cpudl_init(&rd->cpudl) != 0)
  4830. goto free_dlo_mask;
  4831. if (cpupri_init(&rd->cpupri) != 0)
  4832. goto free_rto_mask;
  4833. return 0;
  4834. free_rto_mask:
  4835. free_cpumask_var(rd->rto_mask);
  4836. free_dlo_mask:
  4837. free_cpumask_var(rd->dlo_mask);
  4838. free_online:
  4839. free_cpumask_var(rd->online);
  4840. free_span:
  4841. free_cpumask_var(rd->span);
  4842. out:
  4843. return -ENOMEM;
  4844. }
  4845. /*
  4846. * By default the system creates a single root-domain with all cpus as
  4847. * members (mimicking the global state we have today).
  4848. */
  4849. struct root_domain def_root_domain;
  4850. static void init_defrootdomain(void)
  4851. {
  4852. init_rootdomain(&def_root_domain);
  4853. atomic_set(&def_root_domain.refcount, 1);
  4854. }
  4855. static struct root_domain *alloc_rootdomain(void)
  4856. {
  4857. struct root_domain *rd;
  4858. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4859. if (!rd)
  4860. return NULL;
  4861. if (init_rootdomain(rd) != 0) {
  4862. kfree(rd);
  4863. return NULL;
  4864. }
  4865. return rd;
  4866. }
  4867. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4868. {
  4869. struct sched_group *tmp, *first;
  4870. if (!sg)
  4871. return;
  4872. first = sg;
  4873. do {
  4874. tmp = sg->next;
  4875. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4876. kfree(sg->sgc);
  4877. kfree(sg);
  4878. sg = tmp;
  4879. } while (sg != first);
  4880. }
  4881. static void free_sched_domain(struct rcu_head *rcu)
  4882. {
  4883. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4884. /*
  4885. * If its an overlapping domain it has private groups, iterate and
  4886. * nuke them all.
  4887. */
  4888. if (sd->flags & SD_OVERLAP) {
  4889. free_sched_groups(sd->groups, 1);
  4890. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4891. kfree(sd->groups->sgc);
  4892. kfree(sd->groups);
  4893. }
  4894. kfree(sd);
  4895. }
  4896. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4897. {
  4898. call_rcu(&sd->rcu, free_sched_domain);
  4899. }
  4900. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4901. {
  4902. for (; sd; sd = sd->parent)
  4903. destroy_sched_domain(sd, cpu);
  4904. }
  4905. /*
  4906. * Keep a special pointer to the highest sched_domain that has
  4907. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4908. * allows us to avoid some pointer chasing select_idle_sibling().
  4909. *
  4910. * Also keep a unique ID per domain (we use the first cpu number in
  4911. * the cpumask of the domain), this allows us to quickly tell if
  4912. * two cpus are in the same cache domain, see cpus_share_cache().
  4913. */
  4914. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4915. DEFINE_PER_CPU(int, sd_llc_size);
  4916. DEFINE_PER_CPU(int, sd_llc_id);
  4917. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4918. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4919. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4920. static void update_top_cache_domain(int cpu)
  4921. {
  4922. struct sched_domain *sd;
  4923. struct sched_domain *busy_sd = NULL;
  4924. int id = cpu;
  4925. int size = 1;
  4926. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4927. if (sd) {
  4928. id = cpumask_first(sched_domain_span(sd));
  4929. size = cpumask_weight(sched_domain_span(sd));
  4930. busy_sd = sd->parent; /* sd_busy */
  4931. }
  4932. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4933. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4934. per_cpu(sd_llc_size, cpu) = size;
  4935. per_cpu(sd_llc_id, cpu) = id;
  4936. sd = lowest_flag_domain(cpu, SD_NUMA);
  4937. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4938. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4939. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4940. }
  4941. /*
  4942. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4943. * hold the hotplug lock.
  4944. */
  4945. static void
  4946. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4947. {
  4948. struct rq *rq = cpu_rq(cpu);
  4949. struct sched_domain *tmp;
  4950. /* Remove the sched domains which do not contribute to scheduling. */
  4951. for (tmp = sd; tmp; ) {
  4952. struct sched_domain *parent = tmp->parent;
  4953. if (!parent)
  4954. break;
  4955. if (sd_parent_degenerate(tmp, parent)) {
  4956. tmp->parent = parent->parent;
  4957. if (parent->parent)
  4958. parent->parent->child = tmp;
  4959. /*
  4960. * Transfer SD_PREFER_SIBLING down in case of a
  4961. * degenerate parent; the spans match for this
  4962. * so the property transfers.
  4963. */
  4964. if (parent->flags & SD_PREFER_SIBLING)
  4965. tmp->flags |= SD_PREFER_SIBLING;
  4966. destroy_sched_domain(parent, cpu);
  4967. } else
  4968. tmp = tmp->parent;
  4969. }
  4970. if (sd && sd_degenerate(sd)) {
  4971. tmp = sd;
  4972. sd = sd->parent;
  4973. destroy_sched_domain(tmp, cpu);
  4974. if (sd)
  4975. sd->child = NULL;
  4976. }
  4977. sched_domain_debug(sd, cpu);
  4978. rq_attach_root(rq, rd);
  4979. tmp = rq->sd;
  4980. rcu_assign_pointer(rq->sd, sd);
  4981. destroy_sched_domains(tmp, cpu);
  4982. update_top_cache_domain(cpu);
  4983. }
  4984. /* Setup the mask of cpus configured for isolated domains */
  4985. static int __init isolated_cpu_setup(char *str)
  4986. {
  4987. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4988. cpulist_parse(str, cpu_isolated_map);
  4989. return 1;
  4990. }
  4991. __setup("isolcpus=", isolated_cpu_setup);
  4992. struct s_data {
  4993. struct sched_domain ** __percpu sd;
  4994. struct root_domain *rd;
  4995. };
  4996. enum s_alloc {
  4997. sa_rootdomain,
  4998. sa_sd,
  4999. sa_sd_storage,
  5000. sa_none,
  5001. };
  5002. /*
  5003. * Build an iteration mask that can exclude certain CPUs from the upwards
  5004. * domain traversal.
  5005. *
  5006. * Asymmetric node setups can result in situations where the domain tree is of
  5007. * unequal depth, make sure to skip domains that already cover the entire
  5008. * range.
  5009. *
  5010. * In that case build_sched_domains() will have terminated the iteration early
  5011. * and our sibling sd spans will be empty. Domains should always include the
  5012. * cpu they're built on, so check that.
  5013. *
  5014. */
  5015. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5016. {
  5017. const struct cpumask *span = sched_domain_span(sd);
  5018. struct sd_data *sdd = sd->private;
  5019. struct sched_domain *sibling;
  5020. int i;
  5021. for_each_cpu(i, span) {
  5022. sibling = *per_cpu_ptr(sdd->sd, i);
  5023. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5024. continue;
  5025. cpumask_set_cpu(i, sched_group_mask(sg));
  5026. }
  5027. }
  5028. /*
  5029. * Return the canonical balance cpu for this group, this is the first cpu
  5030. * of this group that's also in the iteration mask.
  5031. */
  5032. int group_balance_cpu(struct sched_group *sg)
  5033. {
  5034. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5035. }
  5036. static int
  5037. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5038. {
  5039. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5040. const struct cpumask *span = sched_domain_span(sd);
  5041. struct cpumask *covered = sched_domains_tmpmask;
  5042. struct sd_data *sdd = sd->private;
  5043. struct sched_domain *sibling;
  5044. int i;
  5045. cpumask_clear(covered);
  5046. for_each_cpu(i, span) {
  5047. struct cpumask *sg_span;
  5048. if (cpumask_test_cpu(i, covered))
  5049. continue;
  5050. sibling = *per_cpu_ptr(sdd->sd, i);
  5051. /* See the comment near build_group_mask(). */
  5052. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5053. continue;
  5054. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5055. GFP_KERNEL, cpu_to_node(cpu));
  5056. if (!sg)
  5057. goto fail;
  5058. sg_span = sched_group_cpus(sg);
  5059. if (sibling->child)
  5060. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5061. else
  5062. cpumask_set_cpu(i, sg_span);
  5063. cpumask_or(covered, covered, sg_span);
  5064. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5065. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5066. build_group_mask(sd, sg);
  5067. /*
  5068. * Initialize sgc->capacity such that even if we mess up the
  5069. * domains and no possible iteration will get us here, we won't
  5070. * die on a /0 trap.
  5071. */
  5072. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5073. /*
  5074. * Make sure the first group of this domain contains the
  5075. * canonical balance cpu. Otherwise the sched_domain iteration
  5076. * breaks. See update_sg_lb_stats().
  5077. */
  5078. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5079. group_balance_cpu(sg) == cpu)
  5080. groups = sg;
  5081. if (!first)
  5082. first = sg;
  5083. if (last)
  5084. last->next = sg;
  5085. last = sg;
  5086. last->next = first;
  5087. }
  5088. sd->groups = groups;
  5089. return 0;
  5090. fail:
  5091. free_sched_groups(first, 0);
  5092. return -ENOMEM;
  5093. }
  5094. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5095. {
  5096. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5097. struct sched_domain *child = sd->child;
  5098. if (child)
  5099. cpu = cpumask_first(sched_domain_span(child));
  5100. if (sg) {
  5101. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5102. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5103. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5104. }
  5105. return cpu;
  5106. }
  5107. /*
  5108. * build_sched_groups will build a circular linked list of the groups
  5109. * covered by the given span, and will set each group's ->cpumask correctly,
  5110. * and ->cpu_capacity to 0.
  5111. *
  5112. * Assumes the sched_domain tree is fully constructed
  5113. */
  5114. static int
  5115. build_sched_groups(struct sched_domain *sd, int cpu)
  5116. {
  5117. struct sched_group *first = NULL, *last = NULL;
  5118. struct sd_data *sdd = sd->private;
  5119. const struct cpumask *span = sched_domain_span(sd);
  5120. struct cpumask *covered;
  5121. int i;
  5122. get_group(cpu, sdd, &sd->groups);
  5123. atomic_inc(&sd->groups->ref);
  5124. if (cpu != cpumask_first(span))
  5125. return 0;
  5126. lockdep_assert_held(&sched_domains_mutex);
  5127. covered = sched_domains_tmpmask;
  5128. cpumask_clear(covered);
  5129. for_each_cpu(i, span) {
  5130. struct sched_group *sg;
  5131. int group, j;
  5132. if (cpumask_test_cpu(i, covered))
  5133. continue;
  5134. group = get_group(i, sdd, &sg);
  5135. cpumask_setall(sched_group_mask(sg));
  5136. for_each_cpu(j, span) {
  5137. if (get_group(j, sdd, NULL) != group)
  5138. continue;
  5139. cpumask_set_cpu(j, covered);
  5140. cpumask_set_cpu(j, sched_group_cpus(sg));
  5141. }
  5142. if (!first)
  5143. first = sg;
  5144. if (last)
  5145. last->next = sg;
  5146. last = sg;
  5147. }
  5148. last->next = first;
  5149. return 0;
  5150. }
  5151. /*
  5152. * Initialize sched groups cpu_capacity.
  5153. *
  5154. * cpu_capacity indicates the capacity of sched group, which is used while
  5155. * distributing the load between different sched groups in a sched domain.
  5156. * Typically cpu_capacity for all the groups in a sched domain will be same
  5157. * unless there are asymmetries in the topology. If there are asymmetries,
  5158. * group having more cpu_capacity will pickup more load compared to the
  5159. * group having less cpu_capacity.
  5160. */
  5161. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5162. {
  5163. struct sched_group *sg = sd->groups;
  5164. WARN_ON(!sg);
  5165. do {
  5166. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5167. sg = sg->next;
  5168. } while (sg != sd->groups);
  5169. if (cpu != group_balance_cpu(sg))
  5170. return;
  5171. update_group_capacity(sd, cpu);
  5172. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5173. }
  5174. /*
  5175. * Initializers for schedule domains
  5176. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5177. */
  5178. static int default_relax_domain_level = -1;
  5179. int sched_domain_level_max;
  5180. static int __init setup_relax_domain_level(char *str)
  5181. {
  5182. if (kstrtoint(str, 0, &default_relax_domain_level))
  5183. pr_warn("Unable to set relax_domain_level\n");
  5184. return 1;
  5185. }
  5186. __setup("relax_domain_level=", setup_relax_domain_level);
  5187. static void set_domain_attribute(struct sched_domain *sd,
  5188. struct sched_domain_attr *attr)
  5189. {
  5190. int request;
  5191. if (!attr || attr->relax_domain_level < 0) {
  5192. if (default_relax_domain_level < 0)
  5193. return;
  5194. else
  5195. request = default_relax_domain_level;
  5196. } else
  5197. request = attr->relax_domain_level;
  5198. if (request < sd->level) {
  5199. /* turn off idle balance on this domain */
  5200. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5201. } else {
  5202. /* turn on idle balance on this domain */
  5203. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5204. }
  5205. }
  5206. static void __sdt_free(const struct cpumask *cpu_map);
  5207. static int __sdt_alloc(const struct cpumask *cpu_map);
  5208. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5209. const struct cpumask *cpu_map)
  5210. {
  5211. switch (what) {
  5212. case sa_rootdomain:
  5213. if (!atomic_read(&d->rd->refcount))
  5214. free_rootdomain(&d->rd->rcu); /* fall through */
  5215. case sa_sd:
  5216. free_percpu(d->sd); /* fall through */
  5217. case sa_sd_storage:
  5218. __sdt_free(cpu_map); /* fall through */
  5219. case sa_none:
  5220. break;
  5221. }
  5222. }
  5223. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5224. const struct cpumask *cpu_map)
  5225. {
  5226. memset(d, 0, sizeof(*d));
  5227. if (__sdt_alloc(cpu_map))
  5228. return sa_sd_storage;
  5229. d->sd = alloc_percpu(struct sched_domain *);
  5230. if (!d->sd)
  5231. return sa_sd_storage;
  5232. d->rd = alloc_rootdomain();
  5233. if (!d->rd)
  5234. return sa_sd;
  5235. return sa_rootdomain;
  5236. }
  5237. /*
  5238. * NULL the sd_data elements we've used to build the sched_domain and
  5239. * sched_group structure so that the subsequent __free_domain_allocs()
  5240. * will not free the data we're using.
  5241. */
  5242. static void claim_allocations(int cpu, struct sched_domain *sd)
  5243. {
  5244. struct sd_data *sdd = sd->private;
  5245. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5246. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5247. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5248. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5249. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5250. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5251. }
  5252. #ifdef CONFIG_NUMA
  5253. static int sched_domains_numa_levels;
  5254. enum numa_topology_type sched_numa_topology_type;
  5255. static int *sched_domains_numa_distance;
  5256. int sched_max_numa_distance;
  5257. static struct cpumask ***sched_domains_numa_masks;
  5258. static int sched_domains_curr_level;
  5259. #endif
  5260. /*
  5261. * SD_flags allowed in topology descriptions.
  5262. *
  5263. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5264. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5265. * SD_NUMA - describes NUMA topologies
  5266. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5267. *
  5268. * Odd one out:
  5269. * SD_ASYM_PACKING - describes SMT quirks
  5270. */
  5271. #define TOPOLOGY_SD_FLAGS \
  5272. (SD_SHARE_CPUCAPACITY | \
  5273. SD_SHARE_PKG_RESOURCES | \
  5274. SD_NUMA | \
  5275. SD_ASYM_PACKING | \
  5276. SD_SHARE_POWERDOMAIN)
  5277. static struct sched_domain *
  5278. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5279. {
  5280. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5281. int sd_weight, sd_flags = 0;
  5282. #ifdef CONFIG_NUMA
  5283. /*
  5284. * Ugly hack to pass state to sd_numa_mask()...
  5285. */
  5286. sched_domains_curr_level = tl->numa_level;
  5287. #endif
  5288. sd_weight = cpumask_weight(tl->mask(cpu));
  5289. if (tl->sd_flags)
  5290. sd_flags = (*tl->sd_flags)();
  5291. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5292. "wrong sd_flags in topology description\n"))
  5293. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5294. *sd = (struct sched_domain){
  5295. .min_interval = sd_weight,
  5296. .max_interval = 2*sd_weight,
  5297. .busy_factor = 32,
  5298. .imbalance_pct = 125,
  5299. .cache_nice_tries = 0,
  5300. .busy_idx = 0,
  5301. .idle_idx = 0,
  5302. .newidle_idx = 0,
  5303. .wake_idx = 0,
  5304. .forkexec_idx = 0,
  5305. .flags = 1*SD_LOAD_BALANCE
  5306. | 1*SD_BALANCE_NEWIDLE
  5307. | 1*SD_BALANCE_EXEC
  5308. | 1*SD_BALANCE_FORK
  5309. | 0*SD_BALANCE_WAKE
  5310. | 1*SD_WAKE_AFFINE
  5311. | 0*SD_SHARE_CPUCAPACITY
  5312. | 0*SD_SHARE_PKG_RESOURCES
  5313. | 0*SD_SERIALIZE
  5314. | 0*SD_PREFER_SIBLING
  5315. | 0*SD_NUMA
  5316. | sd_flags
  5317. ,
  5318. .last_balance = jiffies,
  5319. .balance_interval = sd_weight,
  5320. .smt_gain = 0,
  5321. .max_newidle_lb_cost = 0,
  5322. .next_decay_max_lb_cost = jiffies,
  5323. #ifdef CONFIG_SCHED_DEBUG
  5324. .name = tl->name,
  5325. #endif
  5326. };
  5327. /*
  5328. * Convert topological properties into behaviour.
  5329. */
  5330. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5331. sd->flags |= SD_PREFER_SIBLING;
  5332. sd->imbalance_pct = 110;
  5333. sd->smt_gain = 1178; /* ~15% */
  5334. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5335. sd->imbalance_pct = 117;
  5336. sd->cache_nice_tries = 1;
  5337. sd->busy_idx = 2;
  5338. #ifdef CONFIG_NUMA
  5339. } else if (sd->flags & SD_NUMA) {
  5340. sd->cache_nice_tries = 2;
  5341. sd->busy_idx = 3;
  5342. sd->idle_idx = 2;
  5343. sd->flags |= SD_SERIALIZE;
  5344. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5345. sd->flags &= ~(SD_BALANCE_EXEC |
  5346. SD_BALANCE_FORK |
  5347. SD_WAKE_AFFINE);
  5348. }
  5349. #endif
  5350. } else {
  5351. sd->flags |= SD_PREFER_SIBLING;
  5352. sd->cache_nice_tries = 1;
  5353. sd->busy_idx = 2;
  5354. sd->idle_idx = 1;
  5355. }
  5356. sd->private = &tl->data;
  5357. return sd;
  5358. }
  5359. /*
  5360. * Topology list, bottom-up.
  5361. */
  5362. static struct sched_domain_topology_level default_topology[] = {
  5363. #ifdef CONFIG_SCHED_SMT
  5364. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5365. #endif
  5366. #ifdef CONFIG_SCHED_MC
  5367. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5368. #endif
  5369. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5370. { NULL, },
  5371. };
  5372. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5373. #define for_each_sd_topology(tl) \
  5374. for (tl = sched_domain_topology; tl->mask; tl++)
  5375. void set_sched_topology(struct sched_domain_topology_level *tl)
  5376. {
  5377. sched_domain_topology = tl;
  5378. }
  5379. #ifdef CONFIG_NUMA
  5380. static const struct cpumask *sd_numa_mask(int cpu)
  5381. {
  5382. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5383. }
  5384. static void sched_numa_warn(const char *str)
  5385. {
  5386. static int done = false;
  5387. int i,j;
  5388. if (done)
  5389. return;
  5390. done = true;
  5391. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5392. for (i = 0; i < nr_node_ids; i++) {
  5393. printk(KERN_WARNING " ");
  5394. for (j = 0; j < nr_node_ids; j++)
  5395. printk(KERN_CONT "%02d ", node_distance(i,j));
  5396. printk(KERN_CONT "\n");
  5397. }
  5398. printk(KERN_WARNING "\n");
  5399. }
  5400. bool find_numa_distance(int distance)
  5401. {
  5402. int i;
  5403. if (distance == node_distance(0, 0))
  5404. return true;
  5405. for (i = 0; i < sched_domains_numa_levels; i++) {
  5406. if (sched_domains_numa_distance[i] == distance)
  5407. return true;
  5408. }
  5409. return false;
  5410. }
  5411. /*
  5412. * A system can have three types of NUMA topology:
  5413. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5414. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5415. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5416. *
  5417. * The difference between a glueless mesh topology and a backplane
  5418. * topology lies in whether communication between not directly
  5419. * connected nodes goes through intermediary nodes (where programs
  5420. * could run), or through backplane controllers. This affects
  5421. * placement of programs.
  5422. *
  5423. * The type of topology can be discerned with the following tests:
  5424. * - If the maximum distance between any nodes is 1 hop, the system
  5425. * is directly connected.
  5426. * - If for two nodes A and B, located N > 1 hops away from each other,
  5427. * there is an intermediary node C, which is < N hops away from both
  5428. * nodes A and B, the system is a glueless mesh.
  5429. */
  5430. static void init_numa_topology_type(void)
  5431. {
  5432. int a, b, c, n;
  5433. n = sched_max_numa_distance;
  5434. if (n <= 1)
  5435. sched_numa_topology_type = NUMA_DIRECT;
  5436. for_each_online_node(a) {
  5437. for_each_online_node(b) {
  5438. /* Find two nodes furthest removed from each other. */
  5439. if (node_distance(a, b) < n)
  5440. continue;
  5441. /* Is there an intermediary node between a and b? */
  5442. for_each_online_node(c) {
  5443. if (node_distance(a, c) < n &&
  5444. node_distance(b, c) < n) {
  5445. sched_numa_topology_type =
  5446. NUMA_GLUELESS_MESH;
  5447. return;
  5448. }
  5449. }
  5450. sched_numa_topology_type = NUMA_BACKPLANE;
  5451. return;
  5452. }
  5453. }
  5454. }
  5455. static void sched_init_numa(void)
  5456. {
  5457. int next_distance, curr_distance = node_distance(0, 0);
  5458. struct sched_domain_topology_level *tl;
  5459. int level = 0;
  5460. int i, j, k;
  5461. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5462. if (!sched_domains_numa_distance)
  5463. return;
  5464. /*
  5465. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5466. * unique distances in the node_distance() table.
  5467. *
  5468. * Assumes node_distance(0,j) includes all distances in
  5469. * node_distance(i,j) in order to avoid cubic time.
  5470. */
  5471. next_distance = curr_distance;
  5472. for (i = 0; i < nr_node_ids; i++) {
  5473. for (j = 0; j < nr_node_ids; j++) {
  5474. for (k = 0; k < nr_node_ids; k++) {
  5475. int distance = node_distance(i, k);
  5476. if (distance > curr_distance &&
  5477. (distance < next_distance ||
  5478. next_distance == curr_distance))
  5479. next_distance = distance;
  5480. /*
  5481. * While not a strong assumption it would be nice to know
  5482. * about cases where if node A is connected to B, B is not
  5483. * equally connected to A.
  5484. */
  5485. if (sched_debug() && node_distance(k, i) != distance)
  5486. sched_numa_warn("Node-distance not symmetric");
  5487. if (sched_debug() && i && !find_numa_distance(distance))
  5488. sched_numa_warn("Node-0 not representative");
  5489. }
  5490. if (next_distance != curr_distance) {
  5491. sched_domains_numa_distance[level++] = next_distance;
  5492. sched_domains_numa_levels = level;
  5493. curr_distance = next_distance;
  5494. } else break;
  5495. }
  5496. /*
  5497. * In case of sched_debug() we verify the above assumption.
  5498. */
  5499. if (!sched_debug())
  5500. break;
  5501. }
  5502. if (!level)
  5503. return;
  5504. /*
  5505. * 'level' contains the number of unique distances, excluding the
  5506. * identity distance node_distance(i,i).
  5507. *
  5508. * The sched_domains_numa_distance[] array includes the actual distance
  5509. * numbers.
  5510. */
  5511. /*
  5512. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5513. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5514. * the array will contain less then 'level' members. This could be
  5515. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5516. * in other functions.
  5517. *
  5518. * We reset it to 'level' at the end of this function.
  5519. */
  5520. sched_domains_numa_levels = 0;
  5521. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5522. if (!sched_domains_numa_masks)
  5523. return;
  5524. /*
  5525. * Now for each level, construct a mask per node which contains all
  5526. * cpus of nodes that are that many hops away from us.
  5527. */
  5528. for (i = 0; i < level; i++) {
  5529. sched_domains_numa_masks[i] =
  5530. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5531. if (!sched_domains_numa_masks[i])
  5532. return;
  5533. for (j = 0; j < nr_node_ids; j++) {
  5534. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5535. if (!mask)
  5536. return;
  5537. sched_domains_numa_masks[i][j] = mask;
  5538. for (k = 0; k < nr_node_ids; k++) {
  5539. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5540. continue;
  5541. cpumask_or(mask, mask, cpumask_of_node(k));
  5542. }
  5543. }
  5544. }
  5545. /* Compute default topology size */
  5546. for (i = 0; sched_domain_topology[i].mask; i++);
  5547. tl = kzalloc((i + level + 1) *
  5548. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5549. if (!tl)
  5550. return;
  5551. /*
  5552. * Copy the default topology bits..
  5553. */
  5554. for (i = 0; sched_domain_topology[i].mask; i++)
  5555. tl[i] = sched_domain_topology[i];
  5556. /*
  5557. * .. and append 'j' levels of NUMA goodness.
  5558. */
  5559. for (j = 0; j < level; i++, j++) {
  5560. tl[i] = (struct sched_domain_topology_level){
  5561. .mask = sd_numa_mask,
  5562. .sd_flags = cpu_numa_flags,
  5563. .flags = SDTL_OVERLAP,
  5564. .numa_level = j,
  5565. SD_INIT_NAME(NUMA)
  5566. };
  5567. }
  5568. sched_domain_topology = tl;
  5569. sched_domains_numa_levels = level;
  5570. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5571. init_numa_topology_type();
  5572. }
  5573. static void sched_domains_numa_masks_set(int cpu)
  5574. {
  5575. int i, j;
  5576. int node = cpu_to_node(cpu);
  5577. for (i = 0; i < sched_domains_numa_levels; i++) {
  5578. for (j = 0; j < nr_node_ids; j++) {
  5579. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5580. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5581. }
  5582. }
  5583. }
  5584. static void sched_domains_numa_masks_clear(int cpu)
  5585. {
  5586. int i, j;
  5587. for (i = 0; i < sched_domains_numa_levels; i++) {
  5588. for (j = 0; j < nr_node_ids; j++)
  5589. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5590. }
  5591. }
  5592. /*
  5593. * Update sched_domains_numa_masks[level][node] array when new cpus
  5594. * are onlined.
  5595. */
  5596. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5597. unsigned long action,
  5598. void *hcpu)
  5599. {
  5600. int cpu = (long)hcpu;
  5601. switch (action & ~CPU_TASKS_FROZEN) {
  5602. case CPU_ONLINE:
  5603. sched_domains_numa_masks_set(cpu);
  5604. break;
  5605. case CPU_DEAD:
  5606. sched_domains_numa_masks_clear(cpu);
  5607. break;
  5608. default:
  5609. return NOTIFY_DONE;
  5610. }
  5611. return NOTIFY_OK;
  5612. }
  5613. #else
  5614. static inline void sched_init_numa(void)
  5615. {
  5616. }
  5617. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5618. unsigned long action,
  5619. void *hcpu)
  5620. {
  5621. return 0;
  5622. }
  5623. #endif /* CONFIG_NUMA */
  5624. static int __sdt_alloc(const struct cpumask *cpu_map)
  5625. {
  5626. struct sched_domain_topology_level *tl;
  5627. int j;
  5628. for_each_sd_topology(tl) {
  5629. struct sd_data *sdd = &tl->data;
  5630. sdd->sd = alloc_percpu(struct sched_domain *);
  5631. if (!sdd->sd)
  5632. return -ENOMEM;
  5633. sdd->sg = alloc_percpu(struct sched_group *);
  5634. if (!sdd->sg)
  5635. return -ENOMEM;
  5636. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5637. if (!sdd->sgc)
  5638. return -ENOMEM;
  5639. for_each_cpu(j, cpu_map) {
  5640. struct sched_domain *sd;
  5641. struct sched_group *sg;
  5642. struct sched_group_capacity *sgc;
  5643. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5644. GFP_KERNEL, cpu_to_node(j));
  5645. if (!sd)
  5646. return -ENOMEM;
  5647. *per_cpu_ptr(sdd->sd, j) = sd;
  5648. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5649. GFP_KERNEL, cpu_to_node(j));
  5650. if (!sg)
  5651. return -ENOMEM;
  5652. sg->next = sg;
  5653. *per_cpu_ptr(sdd->sg, j) = sg;
  5654. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5655. GFP_KERNEL, cpu_to_node(j));
  5656. if (!sgc)
  5657. return -ENOMEM;
  5658. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5659. }
  5660. }
  5661. return 0;
  5662. }
  5663. static void __sdt_free(const struct cpumask *cpu_map)
  5664. {
  5665. struct sched_domain_topology_level *tl;
  5666. int j;
  5667. for_each_sd_topology(tl) {
  5668. struct sd_data *sdd = &tl->data;
  5669. for_each_cpu(j, cpu_map) {
  5670. struct sched_domain *sd;
  5671. if (sdd->sd) {
  5672. sd = *per_cpu_ptr(sdd->sd, j);
  5673. if (sd && (sd->flags & SD_OVERLAP))
  5674. free_sched_groups(sd->groups, 0);
  5675. kfree(*per_cpu_ptr(sdd->sd, j));
  5676. }
  5677. if (sdd->sg)
  5678. kfree(*per_cpu_ptr(sdd->sg, j));
  5679. if (sdd->sgc)
  5680. kfree(*per_cpu_ptr(sdd->sgc, j));
  5681. }
  5682. free_percpu(sdd->sd);
  5683. sdd->sd = NULL;
  5684. free_percpu(sdd->sg);
  5685. sdd->sg = NULL;
  5686. free_percpu(sdd->sgc);
  5687. sdd->sgc = NULL;
  5688. }
  5689. }
  5690. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5691. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5692. struct sched_domain *child, int cpu)
  5693. {
  5694. struct sched_domain *sd = sd_init(tl, cpu);
  5695. if (!sd)
  5696. return child;
  5697. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5698. if (child) {
  5699. sd->level = child->level + 1;
  5700. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5701. child->parent = sd;
  5702. sd->child = child;
  5703. if (!cpumask_subset(sched_domain_span(child),
  5704. sched_domain_span(sd))) {
  5705. pr_err("BUG: arch topology borken\n");
  5706. #ifdef CONFIG_SCHED_DEBUG
  5707. pr_err(" the %s domain not a subset of the %s domain\n",
  5708. child->name, sd->name);
  5709. #endif
  5710. /* Fixup, ensure @sd has at least @child cpus. */
  5711. cpumask_or(sched_domain_span(sd),
  5712. sched_domain_span(sd),
  5713. sched_domain_span(child));
  5714. }
  5715. }
  5716. set_domain_attribute(sd, attr);
  5717. return sd;
  5718. }
  5719. /*
  5720. * Build sched domains for a given set of cpus and attach the sched domains
  5721. * to the individual cpus
  5722. */
  5723. static int build_sched_domains(const struct cpumask *cpu_map,
  5724. struct sched_domain_attr *attr)
  5725. {
  5726. enum s_alloc alloc_state;
  5727. struct sched_domain *sd;
  5728. struct s_data d;
  5729. int i, ret = -ENOMEM;
  5730. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5731. if (alloc_state != sa_rootdomain)
  5732. goto error;
  5733. /* Set up domains for cpus specified by the cpu_map. */
  5734. for_each_cpu(i, cpu_map) {
  5735. struct sched_domain_topology_level *tl;
  5736. sd = NULL;
  5737. for_each_sd_topology(tl) {
  5738. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5739. if (tl == sched_domain_topology)
  5740. *per_cpu_ptr(d.sd, i) = sd;
  5741. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5742. sd->flags |= SD_OVERLAP;
  5743. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5744. break;
  5745. }
  5746. }
  5747. /* Build the groups for the domains */
  5748. for_each_cpu(i, cpu_map) {
  5749. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5750. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5751. if (sd->flags & SD_OVERLAP) {
  5752. if (build_overlap_sched_groups(sd, i))
  5753. goto error;
  5754. } else {
  5755. if (build_sched_groups(sd, i))
  5756. goto error;
  5757. }
  5758. }
  5759. }
  5760. /* Calculate CPU capacity for physical packages and nodes */
  5761. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5762. if (!cpumask_test_cpu(i, cpu_map))
  5763. continue;
  5764. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5765. claim_allocations(i, sd);
  5766. init_sched_groups_capacity(i, sd);
  5767. }
  5768. }
  5769. /* Attach the domains */
  5770. rcu_read_lock();
  5771. for_each_cpu(i, cpu_map) {
  5772. sd = *per_cpu_ptr(d.sd, i);
  5773. cpu_attach_domain(sd, d.rd, i);
  5774. }
  5775. rcu_read_unlock();
  5776. ret = 0;
  5777. error:
  5778. __free_domain_allocs(&d, alloc_state, cpu_map);
  5779. return ret;
  5780. }
  5781. static cpumask_var_t *doms_cur; /* current sched domains */
  5782. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5783. static struct sched_domain_attr *dattr_cur;
  5784. /* attribues of custom domains in 'doms_cur' */
  5785. /*
  5786. * Special case: If a kmalloc of a doms_cur partition (array of
  5787. * cpumask) fails, then fallback to a single sched domain,
  5788. * as determined by the single cpumask fallback_doms.
  5789. */
  5790. static cpumask_var_t fallback_doms;
  5791. /*
  5792. * arch_update_cpu_topology lets virtualized architectures update the
  5793. * cpu core maps. It is supposed to return 1 if the topology changed
  5794. * or 0 if it stayed the same.
  5795. */
  5796. int __weak arch_update_cpu_topology(void)
  5797. {
  5798. return 0;
  5799. }
  5800. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5801. {
  5802. int i;
  5803. cpumask_var_t *doms;
  5804. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5805. if (!doms)
  5806. return NULL;
  5807. for (i = 0; i < ndoms; i++) {
  5808. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5809. free_sched_domains(doms, i);
  5810. return NULL;
  5811. }
  5812. }
  5813. return doms;
  5814. }
  5815. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5816. {
  5817. unsigned int i;
  5818. for (i = 0; i < ndoms; i++)
  5819. free_cpumask_var(doms[i]);
  5820. kfree(doms);
  5821. }
  5822. /*
  5823. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5824. * For now this just excludes isolated cpus, but could be used to
  5825. * exclude other special cases in the future.
  5826. */
  5827. static int init_sched_domains(const struct cpumask *cpu_map)
  5828. {
  5829. int err;
  5830. arch_update_cpu_topology();
  5831. ndoms_cur = 1;
  5832. doms_cur = alloc_sched_domains(ndoms_cur);
  5833. if (!doms_cur)
  5834. doms_cur = &fallback_doms;
  5835. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5836. err = build_sched_domains(doms_cur[0], NULL);
  5837. register_sched_domain_sysctl();
  5838. return err;
  5839. }
  5840. /*
  5841. * Detach sched domains from a group of cpus specified in cpu_map
  5842. * These cpus will now be attached to the NULL domain
  5843. */
  5844. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5845. {
  5846. int i;
  5847. rcu_read_lock();
  5848. for_each_cpu(i, cpu_map)
  5849. cpu_attach_domain(NULL, &def_root_domain, i);
  5850. rcu_read_unlock();
  5851. }
  5852. /* handle null as "default" */
  5853. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5854. struct sched_domain_attr *new, int idx_new)
  5855. {
  5856. struct sched_domain_attr tmp;
  5857. /* fast path */
  5858. if (!new && !cur)
  5859. return 1;
  5860. tmp = SD_ATTR_INIT;
  5861. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5862. new ? (new + idx_new) : &tmp,
  5863. sizeof(struct sched_domain_attr));
  5864. }
  5865. /*
  5866. * Partition sched domains as specified by the 'ndoms_new'
  5867. * cpumasks in the array doms_new[] of cpumasks. This compares
  5868. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5869. * It destroys each deleted domain and builds each new domain.
  5870. *
  5871. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5872. * The masks don't intersect (don't overlap.) We should setup one
  5873. * sched domain for each mask. CPUs not in any of the cpumasks will
  5874. * not be load balanced. If the same cpumask appears both in the
  5875. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5876. * it as it is.
  5877. *
  5878. * The passed in 'doms_new' should be allocated using
  5879. * alloc_sched_domains. This routine takes ownership of it and will
  5880. * free_sched_domains it when done with it. If the caller failed the
  5881. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5882. * and partition_sched_domains() will fallback to the single partition
  5883. * 'fallback_doms', it also forces the domains to be rebuilt.
  5884. *
  5885. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5886. * ndoms_new == 0 is a special case for destroying existing domains,
  5887. * and it will not create the default domain.
  5888. *
  5889. * Call with hotplug lock held
  5890. */
  5891. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5892. struct sched_domain_attr *dattr_new)
  5893. {
  5894. int i, j, n;
  5895. int new_topology;
  5896. mutex_lock(&sched_domains_mutex);
  5897. /* always unregister in case we don't destroy any domains */
  5898. unregister_sched_domain_sysctl();
  5899. /* Let architecture update cpu core mappings. */
  5900. new_topology = arch_update_cpu_topology();
  5901. n = doms_new ? ndoms_new : 0;
  5902. /* Destroy deleted domains */
  5903. for (i = 0; i < ndoms_cur; i++) {
  5904. for (j = 0; j < n && !new_topology; j++) {
  5905. if (cpumask_equal(doms_cur[i], doms_new[j])
  5906. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5907. goto match1;
  5908. }
  5909. /* no match - a current sched domain not in new doms_new[] */
  5910. detach_destroy_domains(doms_cur[i]);
  5911. match1:
  5912. ;
  5913. }
  5914. n = ndoms_cur;
  5915. if (doms_new == NULL) {
  5916. n = 0;
  5917. doms_new = &fallback_doms;
  5918. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5919. WARN_ON_ONCE(dattr_new);
  5920. }
  5921. /* Build new domains */
  5922. for (i = 0; i < ndoms_new; i++) {
  5923. for (j = 0; j < n && !new_topology; j++) {
  5924. if (cpumask_equal(doms_new[i], doms_cur[j])
  5925. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5926. goto match2;
  5927. }
  5928. /* no match - add a new doms_new */
  5929. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5930. match2:
  5931. ;
  5932. }
  5933. /* Remember the new sched domains */
  5934. if (doms_cur != &fallback_doms)
  5935. free_sched_domains(doms_cur, ndoms_cur);
  5936. kfree(dattr_cur); /* kfree(NULL) is safe */
  5937. doms_cur = doms_new;
  5938. dattr_cur = dattr_new;
  5939. ndoms_cur = ndoms_new;
  5940. register_sched_domain_sysctl();
  5941. mutex_unlock(&sched_domains_mutex);
  5942. }
  5943. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5944. /*
  5945. * Update cpusets according to cpu_active mask. If cpusets are
  5946. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5947. * around partition_sched_domains().
  5948. *
  5949. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5950. * want to restore it back to its original state upon resume anyway.
  5951. */
  5952. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5953. void *hcpu)
  5954. {
  5955. switch (action) {
  5956. case CPU_ONLINE_FROZEN:
  5957. case CPU_DOWN_FAILED_FROZEN:
  5958. /*
  5959. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5960. * resume sequence. As long as this is not the last online
  5961. * operation in the resume sequence, just build a single sched
  5962. * domain, ignoring cpusets.
  5963. */
  5964. num_cpus_frozen--;
  5965. if (likely(num_cpus_frozen)) {
  5966. partition_sched_domains(1, NULL, NULL);
  5967. break;
  5968. }
  5969. /*
  5970. * This is the last CPU online operation. So fall through and
  5971. * restore the original sched domains by considering the
  5972. * cpuset configurations.
  5973. */
  5974. case CPU_ONLINE:
  5975. cpuset_update_active_cpus(true);
  5976. break;
  5977. default:
  5978. return NOTIFY_DONE;
  5979. }
  5980. return NOTIFY_OK;
  5981. }
  5982. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5983. void *hcpu)
  5984. {
  5985. unsigned long flags;
  5986. long cpu = (long)hcpu;
  5987. struct dl_bw *dl_b;
  5988. bool overflow;
  5989. int cpus;
  5990. switch (action) {
  5991. case CPU_DOWN_PREPARE:
  5992. rcu_read_lock_sched();
  5993. dl_b = dl_bw_of(cpu);
  5994. raw_spin_lock_irqsave(&dl_b->lock, flags);
  5995. cpus = dl_bw_cpus(cpu);
  5996. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  5997. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  5998. rcu_read_unlock_sched();
  5999. if (overflow)
  6000. return notifier_from_errno(-EBUSY);
  6001. cpuset_update_active_cpus(false);
  6002. break;
  6003. case CPU_DOWN_PREPARE_FROZEN:
  6004. num_cpus_frozen++;
  6005. partition_sched_domains(1, NULL, NULL);
  6006. break;
  6007. default:
  6008. return NOTIFY_DONE;
  6009. }
  6010. return NOTIFY_OK;
  6011. }
  6012. void __init sched_init_smp(void)
  6013. {
  6014. cpumask_var_t non_isolated_cpus;
  6015. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6016. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6017. sched_init_numa();
  6018. /*
  6019. * There's no userspace yet to cause hotplug operations; hence all the
  6020. * cpu masks are stable and all blatant races in the below code cannot
  6021. * happen.
  6022. */
  6023. mutex_lock(&sched_domains_mutex);
  6024. init_sched_domains(cpu_active_mask);
  6025. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6026. if (cpumask_empty(non_isolated_cpus))
  6027. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6028. mutex_unlock(&sched_domains_mutex);
  6029. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6030. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6031. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6032. init_hrtick();
  6033. /* Move init over to a non-isolated CPU */
  6034. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6035. BUG();
  6036. sched_init_granularity();
  6037. free_cpumask_var(non_isolated_cpus);
  6038. init_sched_rt_class();
  6039. init_sched_dl_class();
  6040. }
  6041. #else
  6042. void __init sched_init_smp(void)
  6043. {
  6044. sched_init_granularity();
  6045. }
  6046. #endif /* CONFIG_SMP */
  6047. const_debug unsigned int sysctl_timer_migration = 1;
  6048. int in_sched_functions(unsigned long addr)
  6049. {
  6050. return in_lock_functions(addr) ||
  6051. (addr >= (unsigned long)__sched_text_start
  6052. && addr < (unsigned long)__sched_text_end);
  6053. }
  6054. #ifdef CONFIG_CGROUP_SCHED
  6055. /*
  6056. * Default task group.
  6057. * Every task in system belongs to this group at bootup.
  6058. */
  6059. struct task_group root_task_group;
  6060. LIST_HEAD(task_groups);
  6061. #endif
  6062. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6063. void __init sched_init(void)
  6064. {
  6065. int i, j;
  6066. unsigned long alloc_size = 0, ptr;
  6067. #ifdef CONFIG_FAIR_GROUP_SCHED
  6068. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6069. #endif
  6070. #ifdef CONFIG_RT_GROUP_SCHED
  6071. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6072. #endif
  6073. if (alloc_size) {
  6074. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6075. #ifdef CONFIG_FAIR_GROUP_SCHED
  6076. root_task_group.se = (struct sched_entity **)ptr;
  6077. ptr += nr_cpu_ids * sizeof(void **);
  6078. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6079. ptr += nr_cpu_ids * sizeof(void **);
  6080. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6081. #ifdef CONFIG_RT_GROUP_SCHED
  6082. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6083. ptr += nr_cpu_ids * sizeof(void **);
  6084. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6085. ptr += nr_cpu_ids * sizeof(void **);
  6086. #endif /* CONFIG_RT_GROUP_SCHED */
  6087. }
  6088. #ifdef CONFIG_CPUMASK_OFFSTACK
  6089. for_each_possible_cpu(i) {
  6090. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6091. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6092. }
  6093. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6094. init_rt_bandwidth(&def_rt_bandwidth,
  6095. global_rt_period(), global_rt_runtime());
  6096. init_dl_bandwidth(&def_dl_bandwidth,
  6097. global_rt_period(), global_rt_runtime());
  6098. #ifdef CONFIG_SMP
  6099. init_defrootdomain();
  6100. #endif
  6101. #ifdef CONFIG_RT_GROUP_SCHED
  6102. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6103. global_rt_period(), global_rt_runtime());
  6104. #endif /* CONFIG_RT_GROUP_SCHED */
  6105. #ifdef CONFIG_CGROUP_SCHED
  6106. list_add(&root_task_group.list, &task_groups);
  6107. INIT_LIST_HEAD(&root_task_group.children);
  6108. INIT_LIST_HEAD(&root_task_group.siblings);
  6109. autogroup_init(&init_task);
  6110. #endif /* CONFIG_CGROUP_SCHED */
  6111. for_each_possible_cpu(i) {
  6112. struct rq *rq;
  6113. rq = cpu_rq(i);
  6114. raw_spin_lock_init(&rq->lock);
  6115. rq->nr_running = 0;
  6116. rq->calc_load_active = 0;
  6117. rq->calc_load_update = jiffies + LOAD_FREQ;
  6118. init_cfs_rq(&rq->cfs);
  6119. init_rt_rq(&rq->rt);
  6120. init_dl_rq(&rq->dl);
  6121. #ifdef CONFIG_FAIR_GROUP_SCHED
  6122. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6123. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6124. /*
  6125. * How much cpu bandwidth does root_task_group get?
  6126. *
  6127. * In case of task-groups formed thr' the cgroup filesystem, it
  6128. * gets 100% of the cpu resources in the system. This overall
  6129. * system cpu resource is divided among the tasks of
  6130. * root_task_group and its child task-groups in a fair manner,
  6131. * based on each entity's (task or task-group's) weight
  6132. * (se->load.weight).
  6133. *
  6134. * In other words, if root_task_group has 10 tasks of weight
  6135. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6136. * then A0's share of the cpu resource is:
  6137. *
  6138. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6139. *
  6140. * We achieve this by letting root_task_group's tasks sit
  6141. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6142. */
  6143. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6144. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6145. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6146. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6147. #ifdef CONFIG_RT_GROUP_SCHED
  6148. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6149. #endif
  6150. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6151. rq->cpu_load[j] = 0;
  6152. rq->last_load_update_tick = jiffies;
  6153. #ifdef CONFIG_SMP
  6154. rq->sd = NULL;
  6155. rq->rd = NULL;
  6156. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6157. rq->balance_callback = NULL;
  6158. rq->active_balance = 0;
  6159. rq->next_balance = jiffies;
  6160. rq->push_cpu = 0;
  6161. rq->cpu = i;
  6162. rq->online = 0;
  6163. rq->idle_stamp = 0;
  6164. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6165. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6166. INIT_LIST_HEAD(&rq->cfs_tasks);
  6167. rq_attach_root(rq, &def_root_domain);
  6168. #ifdef CONFIG_NO_HZ_COMMON
  6169. rq->nohz_flags = 0;
  6170. #endif
  6171. #ifdef CONFIG_NO_HZ_FULL
  6172. rq->last_sched_tick = 0;
  6173. #endif
  6174. #endif
  6175. init_rq_hrtick(rq);
  6176. atomic_set(&rq->nr_iowait, 0);
  6177. }
  6178. set_load_weight(&init_task);
  6179. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6180. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6181. #endif
  6182. /*
  6183. * The boot idle thread does lazy MMU switching as well:
  6184. */
  6185. atomic_inc(&init_mm.mm_count);
  6186. enter_lazy_tlb(&init_mm, current);
  6187. /*
  6188. * During early bootup we pretend to be a normal task:
  6189. */
  6190. current->sched_class = &fair_sched_class;
  6191. /*
  6192. * Make us the idle thread. Technically, schedule() should not be
  6193. * called from this thread, however somewhere below it might be,
  6194. * but because we are the idle thread, we just pick up running again
  6195. * when this runqueue becomes "idle".
  6196. */
  6197. init_idle(current, smp_processor_id());
  6198. calc_load_update = jiffies + LOAD_FREQ;
  6199. #ifdef CONFIG_SMP
  6200. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6201. /* May be allocated at isolcpus cmdline parse time */
  6202. if (cpu_isolated_map == NULL)
  6203. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6204. idle_thread_set_boot_cpu();
  6205. set_cpu_rq_start_time();
  6206. #endif
  6207. init_sched_fair_class();
  6208. scheduler_running = 1;
  6209. }
  6210. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6211. static inline int preempt_count_equals(int preempt_offset)
  6212. {
  6213. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6214. return (nested == preempt_offset);
  6215. }
  6216. void __might_sleep(const char *file, int line, int preempt_offset)
  6217. {
  6218. /*
  6219. * Blocking primitives will set (and therefore destroy) current->state,
  6220. * since we will exit with TASK_RUNNING make sure we enter with it,
  6221. * otherwise we will destroy state.
  6222. */
  6223. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6224. "do not call blocking ops when !TASK_RUNNING; "
  6225. "state=%lx set at [<%p>] %pS\n",
  6226. current->state,
  6227. (void *)current->task_state_change,
  6228. (void *)current->task_state_change);
  6229. ___might_sleep(file, line, preempt_offset);
  6230. }
  6231. EXPORT_SYMBOL(__might_sleep);
  6232. void ___might_sleep(const char *file, int line, int preempt_offset)
  6233. {
  6234. static unsigned long prev_jiffy; /* ratelimiting */
  6235. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6236. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6237. !is_idle_task(current)) ||
  6238. system_state != SYSTEM_RUNNING || oops_in_progress)
  6239. return;
  6240. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6241. return;
  6242. prev_jiffy = jiffies;
  6243. printk(KERN_ERR
  6244. "BUG: sleeping function called from invalid context at %s:%d\n",
  6245. file, line);
  6246. printk(KERN_ERR
  6247. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6248. in_atomic(), irqs_disabled(),
  6249. current->pid, current->comm);
  6250. if (task_stack_end_corrupted(current))
  6251. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6252. debug_show_held_locks(current);
  6253. if (irqs_disabled())
  6254. print_irqtrace_events(current);
  6255. #ifdef CONFIG_DEBUG_PREEMPT
  6256. if (!preempt_count_equals(preempt_offset)) {
  6257. pr_err("Preemption disabled at:");
  6258. print_ip_sym(current->preempt_disable_ip);
  6259. pr_cont("\n");
  6260. }
  6261. #endif
  6262. dump_stack();
  6263. }
  6264. EXPORT_SYMBOL(___might_sleep);
  6265. #endif
  6266. #ifdef CONFIG_MAGIC_SYSRQ
  6267. void normalize_rt_tasks(void)
  6268. {
  6269. struct task_struct *g, *p;
  6270. struct sched_attr attr = {
  6271. .sched_policy = SCHED_NORMAL,
  6272. };
  6273. read_lock(&tasklist_lock);
  6274. for_each_process_thread(g, p) {
  6275. /*
  6276. * Only normalize user tasks:
  6277. */
  6278. if (p->flags & PF_KTHREAD)
  6279. continue;
  6280. p->se.exec_start = 0;
  6281. #ifdef CONFIG_SCHEDSTATS
  6282. p->se.statistics.wait_start = 0;
  6283. p->se.statistics.sleep_start = 0;
  6284. p->se.statistics.block_start = 0;
  6285. #endif
  6286. if (!dl_task(p) && !rt_task(p)) {
  6287. /*
  6288. * Renice negative nice level userspace
  6289. * tasks back to 0:
  6290. */
  6291. if (task_nice(p) < 0)
  6292. set_user_nice(p, 0);
  6293. continue;
  6294. }
  6295. __sched_setscheduler(p, &attr, false, false);
  6296. }
  6297. read_unlock(&tasklist_lock);
  6298. }
  6299. #endif /* CONFIG_MAGIC_SYSRQ */
  6300. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6301. /*
  6302. * These functions are only useful for the IA64 MCA handling, or kdb.
  6303. *
  6304. * They can only be called when the whole system has been
  6305. * stopped - every CPU needs to be quiescent, and no scheduling
  6306. * activity can take place. Using them for anything else would
  6307. * be a serious bug, and as a result, they aren't even visible
  6308. * under any other configuration.
  6309. */
  6310. /**
  6311. * curr_task - return the current task for a given cpu.
  6312. * @cpu: the processor in question.
  6313. *
  6314. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6315. *
  6316. * Return: The current task for @cpu.
  6317. */
  6318. struct task_struct *curr_task(int cpu)
  6319. {
  6320. return cpu_curr(cpu);
  6321. }
  6322. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6323. #ifdef CONFIG_IA64
  6324. /**
  6325. * set_curr_task - set the current task for a given cpu.
  6326. * @cpu: the processor in question.
  6327. * @p: the task pointer to set.
  6328. *
  6329. * Description: This function must only be used when non-maskable interrupts
  6330. * are serviced on a separate stack. It allows the architecture to switch the
  6331. * notion of the current task on a cpu in a non-blocking manner. This function
  6332. * must be called with all CPU's synchronized, and interrupts disabled, the
  6333. * and caller must save the original value of the current task (see
  6334. * curr_task() above) and restore that value before reenabling interrupts and
  6335. * re-starting the system.
  6336. *
  6337. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6338. */
  6339. void set_curr_task(int cpu, struct task_struct *p)
  6340. {
  6341. cpu_curr(cpu) = p;
  6342. }
  6343. #endif
  6344. #ifdef CONFIG_CGROUP_SCHED
  6345. /* task_group_lock serializes the addition/removal of task groups */
  6346. static DEFINE_SPINLOCK(task_group_lock);
  6347. static void free_sched_group(struct task_group *tg)
  6348. {
  6349. free_fair_sched_group(tg);
  6350. free_rt_sched_group(tg);
  6351. autogroup_free(tg);
  6352. kfree(tg);
  6353. }
  6354. /* allocate runqueue etc for a new task group */
  6355. struct task_group *sched_create_group(struct task_group *parent)
  6356. {
  6357. struct task_group *tg;
  6358. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6359. if (!tg)
  6360. return ERR_PTR(-ENOMEM);
  6361. if (!alloc_fair_sched_group(tg, parent))
  6362. goto err;
  6363. if (!alloc_rt_sched_group(tg, parent))
  6364. goto err;
  6365. return tg;
  6366. err:
  6367. free_sched_group(tg);
  6368. return ERR_PTR(-ENOMEM);
  6369. }
  6370. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6371. {
  6372. unsigned long flags;
  6373. spin_lock_irqsave(&task_group_lock, flags);
  6374. list_add_rcu(&tg->list, &task_groups);
  6375. WARN_ON(!parent); /* root should already exist */
  6376. tg->parent = parent;
  6377. INIT_LIST_HEAD(&tg->children);
  6378. list_add_rcu(&tg->siblings, &parent->children);
  6379. spin_unlock_irqrestore(&task_group_lock, flags);
  6380. }
  6381. /* rcu callback to free various structures associated with a task group */
  6382. static void free_sched_group_rcu(struct rcu_head *rhp)
  6383. {
  6384. /* now it should be safe to free those cfs_rqs */
  6385. free_sched_group(container_of(rhp, struct task_group, rcu));
  6386. }
  6387. /* Destroy runqueue etc associated with a task group */
  6388. void sched_destroy_group(struct task_group *tg)
  6389. {
  6390. /* wait for possible concurrent references to cfs_rqs complete */
  6391. call_rcu(&tg->rcu, free_sched_group_rcu);
  6392. }
  6393. void sched_offline_group(struct task_group *tg)
  6394. {
  6395. unsigned long flags;
  6396. int i;
  6397. /* end participation in shares distribution */
  6398. for_each_possible_cpu(i)
  6399. unregister_fair_sched_group(tg, i);
  6400. spin_lock_irqsave(&task_group_lock, flags);
  6401. list_del_rcu(&tg->list);
  6402. list_del_rcu(&tg->siblings);
  6403. spin_unlock_irqrestore(&task_group_lock, flags);
  6404. }
  6405. /* change task's runqueue when it moves between groups.
  6406. * The caller of this function should have put the task in its new group
  6407. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6408. * reflect its new group.
  6409. */
  6410. void sched_move_task(struct task_struct *tsk)
  6411. {
  6412. struct task_group *tg;
  6413. int queued, running;
  6414. unsigned long flags;
  6415. struct rq *rq;
  6416. rq = task_rq_lock(tsk, &flags);
  6417. running = task_current(rq, tsk);
  6418. queued = task_on_rq_queued(tsk);
  6419. if (queued)
  6420. dequeue_task(rq, tsk, 0);
  6421. if (unlikely(running))
  6422. put_prev_task(rq, tsk);
  6423. /*
  6424. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6425. * which is pointless here. Thus, we pass "true" to task_css_check()
  6426. * to prevent lockdep warnings.
  6427. */
  6428. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6429. struct task_group, css);
  6430. tg = autogroup_task_group(tsk, tg);
  6431. tsk->sched_task_group = tg;
  6432. #ifdef CONFIG_FAIR_GROUP_SCHED
  6433. if (tsk->sched_class->task_move_group)
  6434. tsk->sched_class->task_move_group(tsk, queued);
  6435. else
  6436. #endif
  6437. set_task_rq(tsk, task_cpu(tsk));
  6438. if (unlikely(running))
  6439. tsk->sched_class->set_curr_task(rq);
  6440. if (queued)
  6441. enqueue_task(rq, tsk, 0);
  6442. task_rq_unlock(rq, tsk, &flags);
  6443. }
  6444. #endif /* CONFIG_CGROUP_SCHED */
  6445. #ifdef CONFIG_RT_GROUP_SCHED
  6446. /*
  6447. * Ensure that the real time constraints are schedulable.
  6448. */
  6449. static DEFINE_MUTEX(rt_constraints_mutex);
  6450. /* Must be called with tasklist_lock held */
  6451. static inline int tg_has_rt_tasks(struct task_group *tg)
  6452. {
  6453. struct task_struct *g, *p;
  6454. /*
  6455. * Autogroups do not have RT tasks; see autogroup_create().
  6456. */
  6457. if (task_group_is_autogroup(tg))
  6458. return 0;
  6459. for_each_process_thread(g, p) {
  6460. if (rt_task(p) && task_group(p) == tg)
  6461. return 1;
  6462. }
  6463. return 0;
  6464. }
  6465. struct rt_schedulable_data {
  6466. struct task_group *tg;
  6467. u64 rt_period;
  6468. u64 rt_runtime;
  6469. };
  6470. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6471. {
  6472. struct rt_schedulable_data *d = data;
  6473. struct task_group *child;
  6474. unsigned long total, sum = 0;
  6475. u64 period, runtime;
  6476. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6477. runtime = tg->rt_bandwidth.rt_runtime;
  6478. if (tg == d->tg) {
  6479. period = d->rt_period;
  6480. runtime = d->rt_runtime;
  6481. }
  6482. /*
  6483. * Cannot have more runtime than the period.
  6484. */
  6485. if (runtime > period && runtime != RUNTIME_INF)
  6486. return -EINVAL;
  6487. /*
  6488. * Ensure we don't starve existing RT tasks.
  6489. */
  6490. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6491. return -EBUSY;
  6492. total = to_ratio(period, runtime);
  6493. /*
  6494. * Nobody can have more than the global setting allows.
  6495. */
  6496. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6497. return -EINVAL;
  6498. /*
  6499. * The sum of our children's runtime should not exceed our own.
  6500. */
  6501. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6502. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6503. runtime = child->rt_bandwidth.rt_runtime;
  6504. if (child == d->tg) {
  6505. period = d->rt_period;
  6506. runtime = d->rt_runtime;
  6507. }
  6508. sum += to_ratio(period, runtime);
  6509. }
  6510. if (sum > total)
  6511. return -EINVAL;
  6512. return 0;
  6513. }
  6514. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6515. {
  6516. int ret;
  6517. struct rt_schedulable_data data = {
  6518. .tg = tg,
  6519. .rt_period = period,
  6520. .rt_runtime = runtime,
  6521. };
  6522. rcu_read_lock();
  6523. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6524. rcu_read_unlock();
  6525. return ret;
  6526. }
  6527. static int tg_set_rt_bandwidth(struct task_group *tg,
  6528. u64 rt_period, u64 rt_runtime)
  6529. {
  6530. int i, err = 0;
  6531. /*
  6532. * Disallowing the root group RT runtime is BAD, it would disallow the
  6533. * kernel creating (and or operating) RT threads.
  6534. */
  6535. if (tg == &root_task_group && rt_runtime == 0)
  6536. return -EINVAL;
  6537. /* No period doesn't make any sense. */
  6538. if (rt_period == 0)
  6539. return -EINVAL;
  6540. mutex_lock(&rt_constraints_mutex);
  6541. read_lock(&tasklist_lock);
  6542. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6543. if (err)
  6544. goto unlock;
  6545. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6546. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6547. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6548. for_each_possible_cpu(i) {
  6549. struct rt_rq *rt_rq = tg->rt_rq[i];
  6550. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6551. rt_rq->rt_runtime = rt_runtime;
  6552. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6553. }
  6554. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6555. unlock:
  6556. read_unlock(&tasklist_lock);
  6557. mutex_unlock(&rt_constraints_mutex);
  6558. return err;
  6559. }
  6560. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6561. {
  6562. u64 rt_runtime, rt_period;
  6563. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6564. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6565. if (rt_runtime_us < 0)
  6566. rt_runtime = RUNTIME_INF;
  6567. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6568. }
  6569. static long sched_group_rt_runtime(struct task_group *tg)
  6570. {
  6571. u64 rt_runtime_us;
  6572. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6573. return -1;
  6574. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6575. do_div(rt_runtime_us, NSEC_PER_USEC);
  6576. return rt_runtime_us;
  6577. }
  6578. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6579. {
  6580. u64 rt_runtime, rt_period;
  6581. rt_period = rt_period_us * NSEC_PER_USEC;
  6582. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6583. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6584. }
  6585. static long sched_group_rt_period(struct task_group *tg)
  6586. {
  6587. u64 rt_period_us;
  6588. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6589. do_div(rt_period_us, NSEC_PER_USEC);
  6590. return rt_period_us;
  6591. }
  6592. #endif /* CONFIG_RT_GROUP_SCHED */
  6593. #ifdef CONFIG_RT_GROUP_SCHED
  6594. static int sched_rt_global_constraints(void)
  6595. {
  6596. int ret = 0;
  6597. mutex_lock(&rt_constraints_mutex);
  6598. read_lock(&tasklist_lock);
  6599. ret = __rt_schedulable(NULL, 0, 0);
  6600. read_unlock(&tasklist_lock);
  6601. mutex_unlock(&rt_constraints_mutex);
  6602. return ret;
  6603. }
  6604. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6605. {
  6606. /* Don't accept realtime tasks when there is no way for them to run */
  6607. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6608. return 0;
  6609. return 1;
  6610. }
  6611. #else /* !CONFIG_RT_GROUP_SCHED */
  6612. static int sched_rt_global_constraints(void)
  6613. {
  6614. unsigned long flags;
  6615. int i, ret = 0;
  6616. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6617. for_each_possible_cpu(i) {
  6618. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6619. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6620. rt_rq->rt_runtime = global_rt_runtime();
  6621. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6622. }
  6623. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6624. return ret;
  6625. }
  6626. #endif /* CONFIG_RT_GROUP_SCHED */
  6627. static int sched_dl_global_validate(void)
  6628. {
  6629. u64 runtime = global_rt_runtime();
  6630. u64 period = global_rt_period();
  6631. u64 new_bw = to_ratio(period, runtime);
  6632. struct dl_bw *dl_b;
  6633. int cpu, ret = 0;
  6634. unsigned long flags;
  6635. /*
  6636. * Here we want to check the bandwidth not being set to some
  6637. * value smaller than the currently allocated bandwidth in
  6638. * any of the root_domains.
  6639. *
  6640. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6641. * cycling on root_domains... Discussion on different/better
  6642. * solutions is welcome!
  6643. */
  6644. for_each_possible_cpu(cpu) {
  6645. rcu_read_lock_sched();
  6646. dl_b = dl_bw_of(cpu);
  6647. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6648. if (new_bw < dl_b->total_bw)
  6649. ret = -EBUSY;
  6650. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6651. rcu_read_unlock_sched();
  6652. if (ret)
  6653. break;
  6654. }
  6655. return ret;
  6656. }
  6657. static void sched_dl_do_global(void)
  6658. {
  6659. u64 new_bw = -1;
  6660. struct dl_bw *dl_b;
  6661. int cpu;
  6662. unsigned long flags;
  6663. def_dl_bandwidth.dl_period = global_rt_period();
  6664. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6665. if (global_rt_runtime() != RUNTIME_INF)
  6666. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6667. /*
  6668. * FIXME: As above...
  6669. */
  6670. for_each_possible_cpu(cpu) {
  6671. rcu_read_lock_sched();
  6672. dl_b = dl_bw_of(cpu);
  6673. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6674. dl_b->bw = new_bw;
  6675. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6676. rcu_read_unlock_sched();
  6677. }
  6678. }
  6679. static int sched_rt_global_validate(void)
  6680. {
  6681. if (sysctl_sched_rt_period <= 0)
  6682. return -EINVAL;
  6683. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6684. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6685. return -EINVAL;
  6686. return 0;
  6687. }
  6688. static void sched_rt_do_global(void)
  6689. {
  6690. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6691. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6692. }
  6693. int sched_rt_handler(struct ctl_table *table, int write,
  6694. void __user *buffer, size_t *lenp,
  6695. loff_t *ppos)
  6696. {
  6697. int old_period, old_runtime;
  6698. static DEFINE_MUTEX(mutex);
  6699. int ret;
  6700. mutex_lock(&mutex);
  6701. old_period = sysctl_sched_rt_period;
  6702. old_runtime = sysctl_sched_rt_runtime;
  6703. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6704. if (!ret && write) {
  6705. ret = sched_rt_global_validate();
  6706. if (ret)
  6707. goto undo;
  6708. ret = sched_dl_global_validate();
  6709. if (ret)
  6710. goto undo;
  6711. ret = sched_rt_global_constraints();
  6712. if (ret)
  6713. goto undo;
  6714. sched_rt_do_global();
  6715. sched_dl_do_global();
  6716. }
  6717. if (0) {
  6718. undo:
  6719. sysctl_sched_rt_period = old_period;
  6720. sysctl_sched_rt_runtime = old_runtime;
  6721. }
  6722. mutex_unlock(&mutex);
  6723. return ret;
  6724. }
  6725. int sched_rr_handler(struct ctl_table *table, int write,
  6726. void __user *buffer, size_t *lenp,
  6727. loff_t *ppos)
  6728. {
  6729. int ret;
  6730. static DEFINE_MUTEX(mutex);
  6731. mutex_lock(&mutex);
  6732. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6733. /* make sure that internally we keep jiffies */
  6734. /* also, writing zero resets timeslice to default */
  6735. if (!ret && write) {
  6736. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6737. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6738. }
  6739. mutex_unlock(&mutex);
  6740. return ret;
  6741. }
  6742. #ifdef CONFIG_CGROUP_SCHED
  6743. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6744. {
  6745. return css ? container_of(css, struct task_group, css) : NULL;
  6746. }
  6747. static struct cgroup_subsys_state *
  6748. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6749. {
  6750. struct task_group *parent = css_tg(parent_css);
  6751. struct task_group *tg;
  6752. if (!parent) {
  6753. /* This is early initialization for the top cgroup */
  6754. return &root_task_group.css;
  6755. }
  6756. tg = sched_create_group(parent);
  6757. if (IS_ERR(tg))
  6758. return ERR_PTR(-ENOMEM);
  6759. return &tg->css;
  6760. }
  6761. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6762. {
  6763. struct task_group *tg = css_tg(css);
  6764. struct task_group *parent = css_tg(css->parent);
  6765. if (parent)
  6766. sched_online_group(tg, parent);
  6767. return 0;
  6768. }
  6769. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6770. {
  6771. struct task_group *tg = css_tg(css);
  6772. sched_destroy_group(tg);
  6773. }
  6774. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6775. {
  6776. struct task_group *tg = css_tg(css);
  6777. sched_offline_group(tg);
  6778. }
  6779. static void cpu_cgroup_fork(struct task_struct *task)
  6780. {
  6781. sched_move_task(task);
  6782. }
  6783. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6784. struct cgroup_taskset *tset)
  6785. {
  6786. struct task_struct *task;
  6787. cgroup_taskset_for_each(task, tset) {
  6788. #ifdef CONFIG_RT_GROUP_SCHED
  6789. if (!sched_rt_can_attach(css_tg(css), task))
  6790. return -EINVAL;
  6791. #else
  6792. /* We don't support RT-tasks being in separate groups */
  6793. if (task->sched_class != &fair_sched_class)
  6794. return -EINVAL;
  6795. #endif
  6796. }
  6797. return 0;
  6798. }
  6799. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6800. struct cgroup_taskset *tset)
  6801. {
  6802. struct task_struct *task;
  6803. cgroup_taskset_for_each(task, tset)
  6804. sched_move_task(task);
  6805. }
  6806. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6807. struct cgroup_subsys_state *old_css,
  6808. struct task_struct *task)
  6809. {
  6810. /*
  6811. * cgroup_exit() is called in the copy_process() failure path.
  6812. * Ignore this case since the task hasn't ran yet, this avoids
  6813. * trying to poke a half freed task state from generic code.
  6814. */
  6815. if (!(task->flags & PF_EXITING))
  6816. return;
  6817. sched_move_task(task);
  6818. }
  6819. #ifdef CONFIG_FAIR_GROUP_SCHED
  6820. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6821. struct cftype *cftype, u64 shareval)
  6822. {
  6823. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6824. }
  6825. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6826. struct cftype *cft)
  6827. {
  6828. struct task_group *tg = css_tg(css);
  6829. return (u64) scale_load_down(tg->shares);
  6830. }
  6831. #ifdef CONFIG_CFS_BANDWIDTH
  6832. static DEFINE_MUTEX(cfs_constraints_mutex);
  6833. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6834. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6835. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6836. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6837. {
  6838. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6839. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6840. if (tg == &root_task_group)
  6841. return -EINVAL;
  6842. /*
  6843. * Ensure we have at some amount of bandwidth every period. This is
  6844. * to prevent reaching a state of large arrears when throttled via
  6845. * entity_tick() resulting in prolonged exit starvation.
  6846. */
  6847. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6848. return -EINVAL;
  6849. /*
  6850. * Likewise, bound things on the otherside by preventing insane quota
  6851. * periods. This also allows us to normalize in computing quota
  6852. * feasibility.
  6853. */
  6854. if (period > max_cfs_quota_period)
  6855. return -EINVAL;
  6856. /*
  6857. * Prevent race between setting of cfs_rq->runtime_enabled and
  6858. * unthrottle_offline_cfs_rqs().
  6859. */
  6860. get_online_cpus();
  6861. mutex_lock(&cfs_constraints_mutex);
  6862. ret = __cfs_schedulable(tg, period, quota);
  6863. if (ret)
  6864. goto out_unlock;
  6865. runtime_enabled = quota != RUNTIME_INF;
  6866. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6867. /*
  6868. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6869. * before making related changes, and on->off must occur afterwards
  6870. */
  6871. if (runtime_enabled && !runtime_was_enabled)
  6872. cfs_bandwidth_usage_inc();
  6873. raw_spin_lock_irq(&cfs_b->lock);
  6874. cfs_b->period = ns_to_ktime(period);
  6875. cfs_b->quota = quota;
  6876. __refill_cfs_bandwidth_runtime(cfs_b);
  6877. /* restart the period timer (if active) to handle new period expiry */
  6878. if (runtime_enabled)
  6879. start_cfs_bandwidth(cfs_b);
  6880. raw_spin_unlock_irq(&cfs_b->lock);
  6881. for_each_online_cpu(i) {
  6882. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6883. struct rq *rq = cfs_rq->rq;
  6884. raw_spin_lock_irq(&rq->lock);
  6885. cfs_rq->runtime_enabled = runtime_enabled;
  6886. cfs_rq->runtime_remaining = 0;
  6887. if (cfs_rq->throttled)
  6888. unthrottle_cfs_rq(cfs_rq);
  6889. raw_spin_unlock_irq(&rq->lock);
  6890. }
  6891. if (runtime_was_enabled && !runtime_enabled)
  6892. cfs_bandwidth_usage_dec();
  6893. out_unlock:
  6894. mutex_unlock(&cfs_constraints_mutex);
  6895. put_online_cpus();
  6896. return ret;
  6897. }
  6898. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6899. {
  6900. u64 quota, period;
  6901. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6902. if (cfs_quota_us < 0)
  6903. quota = RUNTIME_INF;
  6904. else
  6905. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6906. return tg_set_cfs_bandwidth(tg, period, quota);
  6907. }
  6908. long tg_get_cfs_quota(struct task_group *tg)
  6909. {
  6910. u64 quota_us;
  6911. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6912. return -1;
  6913. quota_us = tg->cfs_bandwidth.quota;
  6914. do_div(quota_us, NSEC_PER_USEC);
  6915. return quota_us;
  6916. }
  6917. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6918. {
  6919. u64 quota, period;
  6920. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6921. quota = tg->cfs_bandwidth.quota;
  6922. return tg_set_cfs_bandwidth(tg, period, quota);
  6923. }
  6924. long tg_get_cfs_period(struct task_group *tg)
  6925. {
  6926. u64 cfs_period_us;
  6927. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6928. do_div(cfs_period_us, NSEC_PER_USEC);
  6929. return cfs_period_us;
  6930. }
  6931. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6932. struct cftype *cft)
  6933. {
  6934. return tg_get_cfs_quota(css_tg(css));
  6935. }
  6936. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6937. struct cftype *cftype, s64 cfs_quota_us)
  6938. {
  6939. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6940. }
  6941. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6942. struct cftype *cft)
  6943. {
  6944. return tg_get_cfs_period(css_tg(css));
  6945. }
  6946. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6947. struct cftype *cftype, u64 cfs_period_us)
  6948. {
  6949. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6950. }
  6951. struct cfs_schedulable_data {
  6952. struct task_group *tg;
  6953. u64 period, quota;
  6954. };
  6955. /*
  6956. * normalize group quota/period to be quota/max_period
  6957. * note: units are usecs
  6958. */
  6959. static u64 normalize_cfs_quota(struct task_group *tg,
  6960. struct cfs_schedulable_data *d)
  6961. {
  6962. u64 quota, period;
  6963. if (tg == d->tg) {
  6964. period = d->period;
  6965. quota = d->quota;
  6966. } else {
  6967. period = tg_get_cfs_period(tg);
  6968. quota = tg_get_cfs_quota(tg);
  6969. }
  6970. /* note: these should typically be equivalent */
  6971. if (quota == RUNTIME_INF || quota == -1)
  6972. return RUNTIME_INF;
  6973. return to_ratio(period, quota);
  6974. }
  6975. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6976. {
  6977. struct cfs_schedulable_data *d = data;
  6978. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6979. s64 quota = 0, parent_quota = -1;
  6980. if (!tg->parent) {
  6981. quota = RUNTIME_INF;
  6982. } else {
  6983. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6984. quota = normalize_cfs_quota(tg, d);
  6985. parent_quota = parent_b->hierarchical_quota;
  6986. /*
  6987. * ensure max(child_quota) <= parent_quota, inherit when no
  6988. * limit is set
  6989. */
  6990. if (quota == RUNTIME_INF)
  6991. quota = parent_quota;
  6992. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6993. return -EINVAL;
  6994. }
  6995. cfs_b->hierarchical_quota = quota;
  6996. return 0;
  6997. }
  6998. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6999. {
  7000. int ret;
  7001. struct cfs_schedulable_data data = {
  7002. .tg = tg,
  7003. .period = period,
  7004. .quota = quota,
  7005. };
  7006. if (quota != RUNTIME_INF) {
  7007. do_div(data.period, NSEC_PER_USEC);
  7008. do_div(data.quota, NSEC_PER_USEC);
  7009. }
  7010. rcu_read_lock();
  7011. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7012. rcu_read_unlock();
  7013. return ret;
  7014. }
  7015. static int cpu_stats_show(struct seq_file *sf, void *v)
  7016. {
  7017. struct task_group *tg = css_tg(seq_css(sf));
  7018. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7019. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7020. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7021. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7022. return 0;
  7023. }
  7024. #endif /* CONFIG_CFS_BANDWIDTH */
  7025. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7026. #ifdef CONFIG_RT_GROUP_SCHED
  7027. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7028. struct cftype *cft, s64 val)
  7029. {
  7030. return sched_group_set_rt_runtime(css_tg(css), val);
  7031. }
  7032. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7033. struct cftype *cft)
  7034. {
  7035. return sched_group_rt_runtime(css_tg(css));
  7036. }
  7037. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7038. struct cftype *cftype, u64 rt_period_us)
  7039. {
  7040. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7041. }
  7042. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7043. struct cftype *cft)
  7044. {
  7045. return sched_group_rt_period(css_tg(css));
  7046. }
  7047. #endif /* CONFIG_RT_GROUP_SCHED */
  7048. static struct cftype cpu_files[] = {
  7049. #ifdef CONFIG_FAIR_GROUP_SCHED
  7050. {
  7051. .name = "shares",
  7052. .read_u64 = cpu_shares_read_u64,
  7053. .write_u64 = cpu_shares_write_u64,
  7054. },
  7055. #endif
  7056. #ifdef CONFIG_CFS_BANDWIDTH
  7057. {
  7058. .name = "cfs_quota_us",
  7059. .read_s64 = cpu_cfs_quota_read_s64,
  7060. .write_s64 = cpu_cfs_quota_write_s64,
  7061. },
  7062. {
  7063. .name = "cfs_period_us",
  7064. .read_u64 = cpu_cfs_period_read_u64,
  7065. .write_u64 = cpu_cfs_period_write_u64,
  7066. },
  7067. {
  7068. .name = "stat",
  7069. .seq_show = cpu_stats_show,
  7070. },
  7071. #endif
  7072. #ifdef CONFIG_RT_GROUP_SCHED
  7073. {
  7074. .name = "rt_runtime_us",
  7075. .read_s64 = cpu_rt_runtime_read,
  7076. .write_s64 = cpu_rt_runtime_write,
  7077. },
  7078. {
  7079. .name = "rt_period_us",
  7080. .read_u64 = cpu_rt_period_read_uint,
  7081. .write_u64 = cpu_rt_period_write_uint,
  7082. },
  7083. #endif
  7084. { } /* terminate */
  7085. };
  7086. struct cgroup_subsys cpu_cgrp_subsys = {
  7087. .css_alloc = cpu_cgroup_css_alloc,
  7088. .css_free = cpu_cgroup_css_free,
  7089. .css_online = cpu_cgroup_css_online,
  7090. .css_offline = cpu_cgroup_css_offline,
  7091. .fork = cpu_cgroup_fork,
  7092. .can_attach = cpu_cgroup_can_attach,
  7093. .attach = cpu_cgroup_attach,
  7094. .exit = cpu_cgroup_exit,
  7095. .legacy_cftypes = cpu_files,
  7096. .early_init = 1,
  7097. };
  7098. #endif /* CONFIG_CGROUP_SCHED */
  7099. void dump_cpu_task(int cpu)
  7100. {
  7101. pr_info("Task dump for CPU %d:\n", cpu);
  7102. sched_show_task(cpu_curr(cpu));
  7103. }