stm32-timer-trigger.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) STMicroelectronics 2016
  4. *
  5. * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
  6. *
  7. */
  8. #include <linux/iio/iio.h>
  9. #include <linux/iio/sysfs.h>
  10. #include <linux/iio/timer/stm32-timer-trigger.h>
  11. #include <linux/iio/trigger.h>
  12. #include <linux/mfd/stm32-timers.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/of_device.h>
  16. #define MAX_TRIGGERS 7
  17. #define MAX_VALIDS 5
  18. /* List the triggers created by each timer */
  19. static const void *triggers_table[][MAX_TRIGGERS] = {
  20. { TIM1_TRGO, TIM1_TRGO2, TIM1_CH1, TIM1_CH2, TIM1_CH3, TIM1_CH4,},
  21. { TIM2_TRGO, TIM2_CH1, TIM2_CH2, TIM2_CH3, TIM2_CH4,},
  22. { TIM3_TRGO, TIM3_CH1, TIM3_CH2, TIM3_CH3, TIM3_CH4,},
  23. { TIM4_TRGO, TIM4_CH1, TIM4_CH2, TIM4_CH3, TIM4_CH4,},
  24. { TIM5_TRGO, TIM5_CH1, TIM5_CH2, TIM5_CH3, TIM5_CH4,},
  25. { TIM6_TRGO,},
  26. { TIM7_TRGO,},
  27. { TIM8_TRGO, TIM8_TRGO2, TIM8_CH1, TIM8_CH2, TIM8_CH3, TIM8_CH4,},
  28. { TIM9_TRGO, TIM9_CH1, TIM9_CH2,},
  29. { TIM10_OC1,},
  30. { TIM11_OC1,},
  31. { TIM12_TRGO, TIM12_CH1, TIM12_CH2,},
  32. { TIM13_OC1,},
  33. { TIM14_OC1,},
  34. { TIM15_TRGO,},
  35. { TIM16_OC1,},
  36. { TIM17_OC1,},
  37. };
  38. /* List the triggers accepted by each timer */
  39. static const void *valids_table[][MAX_VALIDS] = {
  40. { TIM5_TRGO, TIM2_TRGO, TIM3_TRGO, TIM4_TRGO,},
  41. { TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
  42. { TIM1_TRGO, TIM2_TRGO, TIM5_TRGO, TIM4_TRGO,},
  43. { TIM1_TRGO, TIM2_TRGO, TIM3_TRGO, TIM8_TRGO,},
  44. { TIM2_TRGO, TIM3_TRGO, TIM4_TRGO, TIM8_TRGO,},
  45. { }, /* timer 6 */
  46. { }, /* timer 7 */
  47. { TIM1_TRGO, TIM2_TRGO, TIM4_TRGO, TIM5_TRGO,},
  48. { TIM2_TRGO, TIM3_TRGO, TIM10_OC1, TIM11_OC1,},
  49. { }, /* timer 10 */
  50. { }, /* timer 11 */
  51. { TIM4_TRGO, TIM5_TRGO, TIM13_OC1, TIM14_OC1,},
  52. };
  53. static const void *stm32h7_valids_table[][MAX_VALIDS] = {
  54. { TIM15_TRGO, TIM2_TRGO, TIM3_TRGO, TIM4_TRGO,},
  55. { TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
  56. { TIM1_TRGO, TIM2_TRGO, TIM15_TRGO, TIM4_TRGO,},
  57. { TIM1_TRGO, TIM2_TRGO, TIM3_TRGO, TIM8_TRGO,},
  58. { TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
  59. { }, /* timer 6 */
  60. { }, /* timer 7 */
  61. { TIM1_TRGO, TIM2_TRGO, TIM4_TRGO, TIM5_TRGO,},
  62. { }, /* timer 9 */
  63. { }, /* timer 10 */
  64. { }, /* timer 11 */
  65. { TIM4_TRGO, TIM5_TRGO, TIM13_OC1, TIM14_OC1,},
  66. { }, /* timer 13 */
  67. { }, /* timer 14 */
  68. { TIM1_TRGO, TIM3_TRGO, TIM16_OC1, TIM17_OC1,},
  69. { }, /* timer 16 */
  70. { }, /* timer 17 */
  71. };
  72. struct stm32_timer_trigger {
  73. struct device *dev;
  74. struct regmap *regmap;
  75. struct clk *clk;
  76. u32 max_arr;
  77. const void *triggers;
  78. const void *valids;
  79. bool has_trgo2;
  80. };
  81. struct stm32_timer_trigger_cfg {
  82. const void *(*valids_table)[MAX_VALIDS];
  83. const unsigned int num_valids_table;
  84. };
  85. static bool stm32_timer_is_trgo2_name(const char *name)
  86. {
  87. return !!strstr(name, "trgo2");
  88. }
  89. static bool stm32_timer_is_trgo_name(const char *name)
  90. {
  91. return (!!strstr(name, "trgo") && !strstr(name, "trgo2"));
  92. }
  93. static int stm32_timer_start(struct stm32_timer_trigger *priv,
  94. struct iio_trigger *trig,
  95. unsigned int frequency)
  96. {
  97. unsigned long long prd, div;
  98. int prescaler = 0;
  99. u32 ccer, cr1;
  100. /* Period and prescaler values depends of clock rate */
  101. div = (unsigned long long)clk_get_rate(priv->clk);
  102. do_div(div, frequency);
  103. prd = div;
  104. /*
  105. * Increase prescaler value until we get a result that fit
  106. * with auto reload register maximum value.
  107. */
  108. while (div > priv->max_arr) {
  109. prescaler++;
  110. div = prd;
  111. do_div(div, (prescaler + 1));
  112. }
  113. prd = div;
  114. if (prescaler > MAX_TIM_PSC) {
  115. dev_err(priv->dev, "prescaler exceeds the maximum value\n");
  116. return -EINVAL;
  117. }
  118. /* Check if nobody else use the timer */
  119. regmap_read(priv->regmap, TIM_CCER, &ccer);
  120. if (ccer & TIM_CCER_CCXE)
  121. return -EBUSY;
  122. regmap_read(priv->regmap, TIM_CR1, &cr1);
  123. if (!(cr1 & TIM_CR1_CEN))
  124. clk_enable(priv->clk);
  125. regmap_write(priv->regmap, TIM_PSC, prescaler);
  126. regmap_write(priv->regmap, TIM_ARR, prd - 1);
  127. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
  128. /* Force master mode to update mode */
  129. if (stm32_timer_is_trgo2_name(trig->name))
  130. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS2,
  131. 0x2 << TIM_CR2_MMS2_SHIFT);
  132. else
  133. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS,
  134. 0x2 << TIM_CR2_MMS_SHIFT);
  135. /* Make sure that registers are updated */
  136. regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
  137. /* Enable controller */
  138. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, TIM_CR1_CEN);
  139. return 0;
  140. }
  141. static void stm32_timer_stop(struct stm32_timer_trigger *priv)
  142. {
  143. u32 ccer, cr1;
  144. regmap_read(priv->regmap, TIM_CCER, &ccer);
  145. if (ccer & TIM_CCER_CCXE)
  146. return;
  147. regmap_read(priv->regmap, TIM_CR1, &cr1);
  148. if (cr1 & TIM_CR1_CEN)
  149. clk_disable(priv->clk);
  150. /* Stop timer */
  151. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
  152. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
  153. regmap_write(priv->regmap, TIM_PSC, 0);
  154. regmap_write(priv->regmap, TIM_ARR, 0);
  155. /* Make sure that registers are updated */
  156. regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
  157. }
  158. static ssize_t stm32_tt_store_frequency(struct device *dev,
  159. struct device_attribute *attr,
  160. const char *buf, size_t len)
  161. {
  162. struct iio_trigger *trig = to_iio_trigger(dev);
  163. struct stm32_timer_trigger *priv = iio_trigger_get_drvdata(trig);
  164. unsigned int freq;
  165. int ret;
  166. ret = kstrtouint(buf, 10, &freq);
  167. if (ret)
  168. return ret;
  169. if (freq == 0) {
  170. stm32_timer_stop(priv);
  171. } else {
  172. ret = stm32_timer_start(priv, trig, freq);
  173. if (ret)
  174. return ret;
  175. }
  176. return len;
  177. }
  178. static ssize_t stm32_tt_read_frequency(struct device *dev,
  179. struct device_attribute *attr, char *buf)
  180. {
  181. struct iio_trigger *trig = to_iio_trigger(dev);
  182. struct stm32_timer_trigger *priv = iio_trigger_get_drvdata(trig);
  183. u32 psc, arr, cr1;
  184. unsigned long long freq = 0;
  185. regmap_read(priv->regmap, TIM_CR1, &cr1);
  186. regmap_read(priv->regmap, TIM_PSC, &psc);
  187. regmap_read(priv->regmap, TIM_ARR, &arr);
  188. if (cr1 & TIM_CR1_CEN) {
  189. freq = (unsigned long long)clk_get_rate(priv->clk);
  190. do_div(freq, psc + 1);
  191. do_div(freq, arr + 1);
  192. }
  193. return sprintf(buf, "%d\n", (unsigned int)freq);
  194. }
  195. static IIO_DEV_ATTR_SAMP_FREQ(0660,
  196. stm32_tt_read_frequency,
  197. stm32_tt_store_frequency);
  198. #define MASTER_MODE_MAX 7
  199. #define MASTER_MODE2_MAX 15
  200. static char *master_mode_table[] = {
  201. "reset",
  202. "enable",
  203. "update",
  204. "compare_pulse",
  205. "OC1REF",
  206. "OC2REF",
  207. "OC3REF",
  208. "OC4REF",
  209. /* Master mode selection 2 only */
  210. "OC5REF",
  211. "OC6REF",
  212. "compare_pulse_OC4REF",
  213. "compare_pulse_OC6REF",
  214. "compare_pulse_OC4REF_r_or_OC6REF_r",
  215. "compare_pulse_OC4REF_r_or_OC6REF_f",
  216. "compare_pulse_OC5REF_r_or_OC6REF_r",
  217. "compare_pulse_OC5REF_r_or_OC6REF_f",
  218. };
  219. static ssize_t stm32_tt_show_master_mode(struct device *dev,
  220. struct device_attribute *attr,
  221. char *buf)
  222. {
  223. struct stm32_timer_trigger *priv = dev_get_drvdata(dev);
  224. struct iio_trigger *trig = to_iio_trigger(dev);
  225. u32 cr2;
  226. regmap_read(priv->regmap, TIM_CR2, &cr2);
  227. if (stm32_timer_is_trgo2_name(trig->name))
  228. cr2 = (cr2 & TIM_CR2_MMS2) >> TIM_CR2_MMS2_SHIFT;
  229. else
  230. cr2 = (cr2 & TIM_CR2_MMS) >> TIM_CR2_MMS_SHIFT;
  231. return snprintf(buf, PAGE_SIZE, "%s\n", master_mode_table[cr2]);
  232. }
  233. static ssize_t stm32_tt_store_master_mode(struct device *dev,
  234. struct device_attribute *attr,
  235. const char *buf, size_t len)
  236. {
  237. struct stm32_timer_trigger *priv = dev_get_drvdata(dev);
  238. struct iio_trigger *trig = to_iio_trigger(dev);
  239. u32 mask, shift, master_mode_max;
  240. int i;
  241. if (stm32_timer_is_trgo2_name(trig->name)) {
  242. mask = TIM_CR2_MMS2;
  243. shift = TIM_CR2_MMS2_SHIFT;
  244. master_mode_max = MASTER_MODE2_MAX;
  245. } else {
  246. mask = TIM_CR2_MMS;
  247. shift = TIM_CR2_MMS_SHIFT;
  248. master_mode_max = MASTER_MODE_MAX;
  249. }
  250. for (i = 0; i <= master_mode_max; i++) {
  251. if (!strncmp(master_mode_table[i], buf,
  252. strlen(master_mode_table[i]))) {
  253. regmap_update_bits(priv->regmap, TIM_CR2, mask,
  254. i << shift);
  255. /* Make sure that registers are updated */
  256. regmap_update_bits(priv->regmap, TIM_EGR,
  257. TIM_EGR_UG, TIM_EGR_UG);
  258. return len;
  259. }
  260. }
  261. return -EINVAL;
  262. }
  263. static ssize_t stm32_tt_show_master_mode_avail(struct device *dev,
  264. struct device_attribute *attr,
  265. char *buf)
  266. {
  267. struct iio_trigger *trig = to_iio_trigger(dev);
  268. unsigned int i, master_mode_max;
  269. size_t len = 0;
  270. if (stm32_timer_is_trgo2_name(trig->name))
  271. master_mode_max = MASTER_MODE2_MAX;
  272. else
  273. master_mode_max = MASTER_MODE_MAX;
  274. for (i = 0; i <= master_mode_max; i++)
  275. len += scnprintf(buf + len, PAGE_SIZE - len,
  276. "%s ", master_mode_table[i]);
  277. /* replace trailing space by newline */
  278. buf[len - 1] = '\n';
  279. return len;
  280. }
  281. static IIO_DEVICE_ATTR(master_mode_available, 0444,
  282. stm32_tt_show_master_mode_avail, NULL, 0);
  283. static IIO_DEVICE_ATTR(master_mode, 0660,
  284. stm32_tt_show_master_mode,
  285. stm32_tt_store_master_mode,
  286. 0);
  287. static struct attribute *stm32_trigger_attrs[] = {
  288. &iio_dev_attr_sampling_frequency.dev_attr.attr,
  289. &iio_dev_attr_master_mode.dev_attr.attr,
  290. &iio_dev_attr_master_mode_available.dev_attr.attr,
  291. NULL,
  292. };
  293. static const struct attribute_group stm32_trigger_attr_group = {
  294. .attrs = stm32_trigger_attrs,
  295. };
  296. static const struct attribute_group *stm32_trigger_attr_groups[] = {
  297. &stm32_trigger_attr_group,
  298. NULL,
  299. };
  300. static const struct iio_trigger_ops timer_trigger_ops = {
  301. };
  302. static int stm32_setup_iio_triggers(struct stm32_timer_trigger *priv)
  303. {
  304. int ret;
  305. const char * const *cur = priv->triggers;
  306. while (cur && *cur) {
  307. struct iio_trigger *trig;
  308. bool cur_is_trgo = stm32_timer_is_trgo_name(*cur);
  309. bool cur_is_trgo2 = stm32_timer_is_trgo2_name(*cur);
  310. if (cur_is_trgo2 && !priv->has_trgo2) {
  311. cur++;
  312. continue;
  313. }
  314. trig = devm_iio_trigger_alloc(priv->dev, "%s", *cur);
  315. if (!trig)
  316. return -ENOMEM;
  317. trig->dev.parent = priv->dev->parent;
  318. trig->ops = &timer_trigger_ops;
  319. /*
  320. * sampling frequency and master mode attributes
  321. * should only be available on trgo/trgo2 triggers
  322. */
  323. if (cur_is_trgo || cur_is_trgo2)
  324. trig->dev.groups = stm32_trigger_attr_groups;
  325. iio_trigger_set_drvdata(trig, priv);
  326. ret = devm_iio_trigger_register(priv->dev, trig);
  327. if (ret)
  328. return ret;
  329. cur++;
  330. }
  331. return 0;
  332. }
  333. static int stm32_counter_read_raw(struct iio_dev *indio_dev,
  334. struct iio_chan_spec const *chan,
  335. int *val, int *val2, long mask)
  336. {
  337. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  338. u32 dat;
  339. switch (mask) {
  340. case IIO_CHAN_INFO_RAW:
  341. regmap_read(priv->regmap, TIM_CNT, &dat);
  342. *val = dat;
  343. return IIO_VAL_INT;
  344. case IIO_CHAN_INFO_ENABLE:
  345. regmap_read(priv->regmap, TIM_CR1, &dat);
  346. *val = (dat & TIM_CR1_CEN) ? 1 : 0;
  347. return IIO_VAL_INT;
  348. case IIO_CHAN_INFO_SCALE:
  349. regmap_read(priv->regmap, TIM_SMCR, &dat);
  350. dat &= TIM_SMCR_SMS;
  351. *val = 1;
  352. *val2 = 0;
  353. /* in quadrature case scale = 0.25 */
  354. if (dat == 3)
  355. *val2 = 2;
  356. return IIO_VAL_FRACTIONAL_LOG2;
  357. }
  358. return -EINVAL;
  359. }
  360. static int stm32_counter_write_raw(struct iio_dev *indio_dev,
  361. struct iio_chan_spec const *chan,
  362. int val, int val2, long mask)
  363. {
  364. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  365. u32 dat;
  366. switch (mask) {
  367. case IIO_CHAN_INFO_RAW:
  368. return regmap_write(priv->regmap, TIM_CNT, val);
  369. case IIO_CHAN_INFO_SCALE:
  370. /* fixed scale */
  371. return -EINVAL;
  372. case IIO_CHAN_INFO_ENABLE:
  373. if (val) {
  374. regmap_read(priv->regmap, TIM_CR1, &dat);
  375. if (!(dat & TIM_CR1_CEN))
  376. clk_enable(priv->clk);
  377. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
  378. TIM_CR1_CEN);
  379. } else {
  380. regmap_read(priv->regmap, TIM_CR1, &dat);
  381. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
  382. 0);
  383. if (dat & TIM_CR1_CEN)
  384. clk_disable(priv->clk);
  385. }
  386. return 0;
  387. }
  388. return -EINVAL;
  389. }
  390. static int stm32_counter_validate_trigger(struct iio_dev *indio_dev,
  391. struct iio_trigger *trig)
  392. {
  393. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  394. const char * const *cur = priv->valids;
  395. unsigned int i = 0;
  396. if (!is_stm32_timer_trigger(trig))
  397. return -EINVAL;
  398. while (cur && *cur) {
  399. if (!strncmp(trig->name, *cur, strlen(trig->name))) {
  400. regmap_update_bits(priv->regmap,
  401. TIM_SMCR, TIM_SMCR_TS,
  402. i << TIM_SMCR_TS_SHIFT);
  403. return 0;
  404. }
  405. cur++;
  406. i++;
  407. }
  408. return -EINVAL;
  409. }
  410. static const struct iio_info stm32_trigger_info = {
  411. .validate_trigger = stm32_counter_validate_trigger,
  412. .read_raw = stm32_counter_read_raw,
  413. .write_raw = stm32_counter_write_raw
  414. };
  415. static const char *const stm32_trigger_modes[] = {
  416. "trigger",
  417. };
  418. static int stm32_set_trigger_mode(struct iio_dev *indio_dev,
  419. const struct iio_chan_spec *chan,
  420. unsigned int mode)
  421. {
  422. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  423. regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, TIM_SMCR_SMS);
  424. return 0;
  425. }
  426. static int stm32_get_trigger_mode(struct iio_dev *indio_dev,
  427. const struct iio_chan_spec *chan)
  428. {
  429. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  430. u32 smcr;
  431. regmap_read(priv->regmap, TIM_SMCR, &smcr);
  432. return (smcr & TIM_SMCR_SMS) == TIM_SMCR_SMS ? 0 : -EINVAL;
  433. }
  434. static const struct iio_enum stm32_trigger_mode_enum = {
  435. .items = stm32_trigger_modes,
  436. .num_items = ARRAY_SIZE(stm32_trigger_modes),
  437. .set = stm32_set_trigger_mode,
  438. .get = stm32_get_trigger_mode
  439. };
  440. static const char *const stm32_enable_modes[] = {
  441. "always",
  442. "gated",
  443. "triggered",
  444. };
  445. static int stm32_enable_mode2sms(int mode)
  446. {
  447. switch (mode) {
  448. case 0:
  449. return 0;
  450. case 1:
  451. return 5;
  452. case 2:
  453. return 6;
  454. }
  455. return -EINVAL;
  456. }
  457. static int stm32_set_enable_mode(struct iio_dev *indio_dev,
  458. const struct iio_chan_spec *chan,
  459. unsigned int mode)
  460. {
  461. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  462. int sms = stm32_enable_mode2sms(mode);
  463. u32 val;
  464. if (sms < 0)
  465. return sms;
  466. /*
  467. * Triggered mode sets CEN bit automatically by hardware. So, first
  468. * enable counter clock, so it can use it. Keeps it in sync with CEN.
  469. */
  470. if (sms == 6) {
  471. regmap_read(priv->regmap, TIM_CR1, &val);
  472. if (!(val & TIM_CR1_CEN))
  473. clk_enable(priv->clk);
  474. }
  475. regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
  476. return 0;
  477. }
  478. static int stm32_sms2enable_mode(int mode)
  479. {
  480. switch (mode) {
  481. case 0:
  482. return 0;
  483. case 5:
  484. return 1;
  485. case 6:
  486. return 2;
  487. }
  488. return -EINVAL;
  489. }
  490. static int stm32_get_enable_mode(struct iio_dev *indio_dev,
  491. const struct iio_chan_spec *chan)
  492. {
  493. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  494. u32 smcr;
  495. regmap_read(priv->regmap, TIM_SMCR, &smcr);
  496. smcr &= TIM_SMCR_SMS;
  497. return stm32_sms2enable_mode(smcr);
  498. }
  499. static const struct iio_enum stm32_enable_mode_enum = {
  500. .items = stm32_enable_modes,
  501. .num_items = ARRAY_SIZE(stm32_enable_modes),
  502. .set = stm32_set_enable_mode,
  503. .get = stm32_get_enable_mode
  504. };
  505. static const char *const stm32_quadrature_modes[] = {
  506. "channel_A",
  507. "channel_B",
  508. "quadrature",
  509. };
  510. static int stm32_set_quadrature_mode(struct iio_dev *indio_dev,
  511. const struct iio_chan_spec *chan,
  512. unsigned int mode)
  513. {
  514. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  515. regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, mode + 1);
  516. return 0;
  517. }
  518. static int stm32_get_quadrature_mode(struct iio_dev *indio_dev,
  519. const struct iio_chan_spec *chan)
  520. {
  521. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  522. u32 smcr;
  523. int mode;
  524. regmap_read(priv->regmap, TIM_SMCR, &smcr);
  525. mode = (smcr & TIM_SMCR_SMS) - 1;
  526. if ((mode < 0) || (mode > ARRAY_SIZE(stm32_quadrature_modes)))
  527. return -EINVAL;
  528. return mode;
  529. }
  530. static const struct iio_enum stm32_quadrature_mode_enum = {
  531. .items = stm32_quadrature_modes,
  532. .num_items = ARRAY_SIZE(stm32_quadrature_modes),
  533. .set = stm32_set_quadrature_mode,
  534. .get = stm32_get_quadrature_mode
  535. };
  536. static const char *const stm32_count_direction_states[] = {
  537. "up",
  538. "down"
  539. };
  540. static int stm32_set_count_direction(struct iio_dev *indio_dev,
  541. const struct iio_chan_spec *chan,
  542. unsigned int dir)
  543. {
  544. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  545. u32 val;
  546. int mode;
  547. /* In encoder mode, direction is RO (given by TI1/TI2 signals) */
  548. regmap_read(priv->regmap, TIM_SMCR, &val);
  549. mode = (val & TIM_SMCR_SMS) - 1;
  550. if ((mode >= 0) || (mode < ARRAY_SIZE(stm32_quadrature_modes)))
  551. return -EBUSY;
  552. return regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_DIR,
  553. dir ? TIM_CR1_DIR : 0);
  554. }
  555. static int stm32_get_count_direction(struct iio_dev *indio_dev,
  556. const struct iio_chan_spec *chan)
  557. {
  558. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  559. u32 cr1;
  560. regmap_read(priv->regmap, TIM_CR1, &cr1);
  561. return ((cr1 & TIM_CR1_DIR) ? 1 : 0);
  562. }
  563. static const struct iio_enum stm32_count_direction_enum = {
  564. .items = stm32_count_direction_states,
  565. .num_items = ARRAY_SIZE(stm32_count_direction_states),
  566. .set = stm32_set_count_direction,
  567. .get = stm32_get_count_direction
  568. };
  569. static ssize_t stm32_count_get_preset(struct iio_dev *indio_dev,
  570. uintptr_t private,
  571. const struct iio_chan_spec *chan,
  572. char *buf)
  573. {
  574. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  575. u32 arr;
  576. regmap_read(priv->regmap, TIM_ARR, &arr);
  577. return snprintf(buf, PAGE_SIZE, "%u\n", arr);
  578. }
  579. static ssize_t stm32_count_set_preset(struct iio_dev *indio_dev,
  580. uintptr_t private,
  581. const struct iio_chan_spec *chan,
  582. const char *buf, size_t len)
  583. {
  584. struct stm32_timer_trigger *priv = iio_priv(indio_dev);
  585. unsigned int preset;
  586. int ret;
  587. ret = kstrtouint(buf, 0, &preset);
  588. if (ret)
  589. return ret;
  590. /* TIMx_ARR register shouldn't be buffered (ARPE=0) */
  591. regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
  592. regmap_write(priv->regmap, TIM_ARR, preset);
  593. return len;
  594. }
  595. static const struct iio_chan_spec_ext_info stm32_trigger_count_info[] = {
  596. {
  597. .name = "preset",
  598. .shared = IIO_SEPARATE,
  599. .read = stm32_count_get_preset,
  600. .write = stm32_count_set_preset
  601. },
  602. IIO_ENUM("count_direction", IIO_SEPARATE, &stm32_count_direction_enum),
  603. IIO_ENUM_AVAILABLE("count_direction", &stm32_count_direction_enum),
  604. IIO_ENUM("quadrature_mode", IIO_SEPARATE, &stm32_quadrature_mode_enum),
  605. IIO_ENUM_AVAILABLE("quadrature_mode", &stm32_quadrature_mode_enum),
  606. IIO_ENUM("enable_mode", IIO_SEPARATE, &stm32_enable_mode_enum),
  607. IIO_ENUM_AVAILABLE("enable_mode", &stm32_enable_mode_enum),
  608. IIO_ENUM("trigger_mode", IIO_SEPARATE, &stm32_trigger_mode_enum),
  609. IIO_ENUM_AVAILABLE("trigger_mode", &stm32_trigger_mode_enum),
  610. {}
  611. };
  612. static const struct iio_chan_spec stm32_trigger_channel = {
  613. .type = IIO_COUNT,
  614. .channel = 0,
  615. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  616. BIT(IIO_CHAN_INFO_ENABLE) |
  617. BIT(IIO_CHAN_INFO_SCALE),
  618. .ext_info = stm32_trigger_count_info,
  619. .indexed = 1
  620. };
  621. static struct stm32_timer_trigger *stm32_setup_counter_device(struct device *dev)
  622. {
  623. struct iio_dev *indio_dev;
  624. int ret;
  625. indio_dev = devm_iio_device_alloc(dev,
  626. sizeof(struct stm32_timer_trigger));
  627. if (!indio_dev)
  628. return NULL;
  629. indio_dev->name = dev_name(dev);
  630. indio_dev->dev.parent = dev;
  631. indio_dev->info = &stm32_trigger_info;
  632. indio_dev->modes = INDIO_HARDWARE_TRIGGERED;
  633. indio_dev->num_channels = 1;
  634. indio_dev->channels = &stm32_trigger_channel;
  635. indio_dev->dev.of_node = dev->of_node;
  636. ret = devm_iio_device_register(dev, indio_dev);
  637. if (ret)
  638. return NULL;
  639. return iio_priv(indio_dev);
  640. }
  641. /**
  642. * is_stm32_timer_trigger
  643. * @trig: trigger to be checked
  644. *
  645. * return true if the trigger is a valid stm32 iio timer trigger
  646. * either return false
  647. */
  648. bool is_stm32_timer_trigger(struct iio_trigger *trig)
  649. {
  650. return (trig->ops == &timer_trigger_ops);
  651. }
  652. EXPORT_SYMBOL(is_stm32_timer_trigger);
  653. static void stm32_timer_detect_trgo2(struct stm32_timer_trigger *priv)
  654. {
  655. u32 val;
  656. /*
  657. * Master mode selection 2 bits can only be written and read back when
  658. * timer supports it.
  659. */
  660. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS2, TIM_CR2_MMS2);
  661. regmap_read(priv->regmap, TIM_CR2, &val);
  662. regmap_update_bits(priv->regmap, TIM_CR2, TIM_CR2_MMS2, 0);
  663. priv->has_trgo2 = !!val;
  664. }
  665. static int stm32_timer_trigger_probe(struct platform_device *pdev)
  666. {
  667. struct device *dev = &pdev->dev;
  668. struct stm32_timer_trigger *priv;
  669. struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
  670. const struct stm32_timer_trigger_cfg *cfg;
  671. unsigned int index;
  672. int ret;
  673. if (of_property_read_u32(dev->of_node, "reg", &index))
  674. return -EINVAL;
  675. cfg = (const struct stm32_timer_trigger_cfg *)
  676. of_match_device(dev->driver->of_match_table, dev)->data;
  677. if (index >= ARRAY_SIZE(triggers_table) ||
  678. index >= cfg->num_valids_table)
  679. return -EINVAL;
  680. /* Create an IIO device only if we have triggers to be validated */
  681. if (*cfg->valids_table[index])
  682. priv = stm32_setup_counter_device(dev);
  683. else
  684. priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
  685. if (!priv)
  686. return -ENOMEM;
  687. priv->dev = dev;
  688. priv->regmap = ddata->regmap;
  689. priv->clk = ddata->clk;
  690. priv->max_arr = ddata->max_arr;
  691. priv->triggers = triggers_table[index];
  692. priv->valids = cfg->valids_table[index];
  693. stm32_timer_detect_trgo2(priv);
  694. ret = stm32_setup_iio_triggers(priv);
  695. if (ret)
  696. return ret;
  697. platform_set_drvdata(pdev, priv);
  698. return 0;
  699. }
  700. static const struct stm32_timer_trigger_cfg stm32_timer_trg_cfg = {
  701. .valids_table = valids_table,
  702. .num_valids_table = ARRAY_SIZE(valids_table),
  703. };
  704. static const struct stm32_timer_trigger_cfg stm32h7_timer_trg_cfg = {
  705. .valids_table = stm32h7_valids_table,
  706. .num_valids_table = ARRAY_SIZE(stm32h7_valids_table),
  707. };
  708. static const struct of_device_id stm32_trig_of_match[] = {
  709. {
  710. .compatible = "st,stm32-timer-trigger",
  711. .data = (void *)&stm32_timer_trg_cfg,
  712. }, {
  713. .compatible = "st,stm32h7-timer-trigger",
  714. .data = (void *)&stm32h7_timer_trg_cfg,
  715. },
  716. { /* end node */ },
  717. };
  718. MODULE_DEVICE_TABLE(of, stm32_trig_of_match);
  719. static struct platform_driver stm32_timer_trigger_driver = {
  720. .probe = stm32_timer_trigger_probe,
  721. .driver = {
  722. .name = "stm32-timer-trigger",
  723. .of_match_table = stm32_trig_of_match,
  724. },
  725. };
  726. module_platform_driver(stm32_timer_trigger_driver);
  727. MODULE_ALIAS("platform: stm32-timer-trigger");
  728. MODULE_DESCRIPTION("STMicroelectronics STM32 Timer Trigger driver");
  729. MODULE_LICENSE("GPL v2");