amdgpu_cs.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003
  1. /*
  2. * Copyright 2008 Jerome Glisse.
  3. * All Rights Reserved.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Jerome Glisse <glisse@freedesktop.org>
  26. */
  27. #include <linux/list_sort.h>
  28. #include <drm/drmP.h>
  29. #include <drm/amdgpu_drm.h>
  30. #include "amdgpu.h"
  31. #include "amdgpu_trace.h"
  32. #define AMDGPU_CS_MAX_PRIORITY 32u
  33. #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
  34. /* This is based on the bucket sort with O(n) time complexity.
  35. * An item with priority "i" is added to bucket[i]. The lists are then
  36. * concatenated in descending order.
  37. */
  38. struct amdgpu_cs_buckets {
  39. struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
  40. };
  41. static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
  42. {
  43. unsigned i;
  44. for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
  45. INIT_LIST_HEAD(&b->bucket[i]);
  46. }
  47. static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
  48. struct list_head *item, unsigned priority)
  49. {
  50. /* Since buffers which appear sooner in the relocation list are
  51. * likely to be used more often than buffers which appear later
  52. * in the list, the sort mustn't change the ordering of buffers
  53. * with the same priority, i.e. it must be stable.
  54. */
  55. list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
  56. }
  57. static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
  58. struct list_head *out_list)
  59. {
  60. unsigned i;
  61. /* Connect the sorted buckets in the output list. */
  62. for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
  63. list_splice(&b->bucket[i], out_list);
  64. }
  65. }
  66. int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
  67. u32 ip_instance, u32 ring,
  68. struct amdgpu_ring **out_ring)
  69. {
  70. /* Right now all IPs have only one instance - multiple rings. */
  71. if (ip_instance != 0) {
  72. DRM_ERROR("invalid ip instance: %d\n", ip_instance);
  73. return -EINVAL;
  74. }
  75. switch (ip_type) {
  76. default:
  77. DRM_ERROR("unknown ip type: %d\n", ip_type);
  78. return -EINVAL;
  79. case AMDGPU_HW_IP_GFX:
  80. if (ring < adev->gfx.num_gfx_rings) {
  81. *out_ring = &adev->gfx.gfx_ring[ring];
  82. } else {
  83. DRM_ERROR("only %d gfx rings are supported now\n",
  84. adev->gfx.num_gfx_rings);
  85. return -EINVAL;
  86. }
  87. break;
  88. case AMDGPU_HW_IP_COMPUTE:
  89. if (ring < adev->gfx.num_compute_rings) {
  90. *out_ring = &adev->gfx.compute_ring[ring];
  91. } else {
  92. DRM_ERROR("only %d compute rings are supported now\n",
  93. adev->gfx.num_compute_rings);
  94. return -EINVAL;
  95. }
  96. break;
  97. case AMDGPU_HW_IP_DMA:
  98. if (ring < adev->sdma.num_instances) {
  99. *out_ring = &adev->sdma.instance[ring].ring;
  100. } else {
  101. DRM_ERROR("only %d SDMA rings are supported\n",
  102. adev->sdma.num_instances);
  103. return -EINVAL;
  104. }
  105. break;
  106. case AMDGPU_HW_IP_UVD:
  107. *out_ring = &adev->uvd.ring;
  108. break;
  109. case AMDGPU_HW_IP_VCE:
  110. if (ring < 2){
  111. *out_ring = &adev->vce.ring[ring];
  112. } else {
  113. DRM_ERROR("only two VCE rings are supported\n");
  114. return -EINVAL;
  115. }
  116. break;
  117. }
  118. return 0;
  119. }
  120. int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
  121. {
  122. union drm_amdgpu_cs *cs = data;
  123. uint64_t *chunk_array_user;
  124. uint64_t *chunk_array;
  125. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  126. unsigned size;
  127. int i;
  128. int ret;
  129. if (cs->in.num_chunks == 0)
  130. return 0;
  131. chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
  132. if (!chunk_array)
  133. return -ENOMEM;
  134. p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
  135. if (!p->ctx) {
  136. ret = -EINVAL;
  137. goto free_chunk;
  138. }
  139. p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
  140. /* get chunks */
  141. INIT_LIST_HEAD(&p->validated);
  142. chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
  143. if (copy_from_user(chunk_array, chunk_array_user,
  144. sizeof(uint64_t)*cs->in.num_chunks)) {
  145. ret = -EFAULT;
  146. goto put_bo_list;
  147. }
  148. p->nchunks = cs->in.num_chunks;
  149. p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
  150. GFP_KERNEL);
  151. if (!p->chunks) {
  152. ret = -ENOMEM;
  153. goto put_bo_list;
  154. }
  155. for (i = 0; i < p->nchunks; i++) {
  156. struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
  157. struct drm_amdgpu_cs_chunk user_chunk;
  158. uint32_t __user *cdata;
  159. chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
  160. if (copy_from_user(&user_chunk, chunk_ptr,
  161. sizeof(struct drm_amdgpu_cs_chunk))) {
  162. ret = -EFAULT;
  163. i--;
  164. goto free_partial_kdata;
  165. }
  166. p->chunks[i].chunk_id = user_chunk.chunk_id;
  167. p->chunks[i].length_dw = user_chunk.length_dw;
  168. size = p->chunks[i].length_dw;
  169. cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
  170. p->chunks[i].user_ptr = cdata;
  171. p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
  172. if (p->chunks[i].kdata == NULL) {
  173. ret = -ENOMEM;
  174. i--;
  175. goto free_partial_kdata;
  176. }
  177. size *= sizeof(uint32_t);
  178. if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
  179. ret = -EFAULT;
  180. goto free_partial_kdata;
  181. }
  182. switch (p->chunks[i].chunk_id) {
  183. case AMDGPU_CHUNK_ID_IB:
  184. p->num_ibs++;
  185. break;
  186. case AMDGPU_CHUNK_ID_FENCE:
  187. size = sizeof(struct drm_amdgpu_cs_chunk_fence);
  188. if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) {
  189. uint32_t handle;
  190. struct drm_gem_object *gobj;
  191. struct drm_amdgpu_cs_chunk_fence *fence_data;
  192. fence_data = (void *)p->chunks[i].kdata;
  193. handle = fence_data->handle;
  194. gobj = drm_gem_object_lookup(p->adev->ddev,
  195. p->filp, handle);
  196. if (gobj == NULL) {
  197. ret = -EINVAL;
  198. goto free_partial_kdata;
  199. }
  200. p->uf.bo = gem_to_amdgpu_bo(gobj);
  201. p->uf.offset = fence_data->offset;
  202. } else {
  203. ret = -EINVAL;
  204. goto free_partial_kdata;
  205. }
  206. break;
  207. case AMDGPU_CHUNK_ID_DEPENDENCIES:
  208. break;
  209. default:
  210. ret = -EINVAL;
  211. goto free_partial_kdata;
  212. }
  213. }
  214. p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
  215. if (!p->ibs) {
  216. ret = -ENOMEM;
  217. goto free_all_kdata;
  218. }
  219. kfree(chunk_array);
  220. return 0;
  221. free_all_kdata:
  222. i = p->nchunks - 1;
  223. free_partial_kdata:
  224. for (; i >= 0; i--)
  225. drm_free_large(p->chunks[i].kdata);
  226. kfree(p->chunks);
  227. put_bo_list:
  228. if (p->bo_list)
  229. amdgpu_bo_list_put(p->bo_list);
  230. amdgpu_ctx_put(p->ctx);
  231. free_chunk:
  232. kfree(chunk_array);
  233. return ret;
  234. }
  235. /* Returns how many bytes TTM can move per IB.
  236. */
  237. static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
  238. {
  239. u64 real_vram_size = adev->mc.real_vram_size;
  240. u64 vram_usage = atomic64_read(&adev->vram_usage);
  241. /* This function is based on the current VRAM usage.
  242. *
  243. * - If all of VRAM is free, allow relocating the number of bytes that
  244. * is equal to 1/4 of the size of VRAM for this IB.
  245. * - If more than one half of VRAM is occupied, only allow relocating
  246. * 1 MB of data for this IB.
  247. *
  248. * - From 0 to one half of used VRAM, the threshold decreases
  249. * linearly.
  250. * __________________
  251. * 1/4 of -|\ |
  252. * VRAM | \ |
  253. * | \ |
  254. * | \ |
  255. * | \ |
  256. * | \ |
  257. * | \ |
  258. * | \________|1 MB
  259. * |----------------|
  260. * VRAM 0 % 100 %
  261. * used used
  262. *
  263. * Note: It's a threshold, not a limit. The threshold must be crossed
  264. * for buffer relocations to stop, so any buffer of an arbitrary size
  265. * can be moved as long as the threshold isn't crossed before
  266. * the relocation takes place. We don't want to disable buffer
  267. * relocations completely.
  268. *
  269. * The idea is that buffers should be placed in VRAM at creation time
  270. * and TTM should only do a minimum number of relocations during
  271. * command submission. In practice, you need to submit at least
  272. * a dozen IBs to move all buffers to VRAM if they are in GTT.
  273. *
  274. * Also, things can get pretty crazy under memory pressure and actual
  275. * VRAM usage can change a lot, so playing safe even at 50% does
  276. * consistently increase performance.
  277. */
  278. u64 half_vram = real_vram_size >> 1;
  279. u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
  280. u64 bytes_moved_threshold = half_free_vram >> 1;
  281. return max(bytes_moved_threshold, 1024*1024ull);
  282. }
  283. int amdgpu_cs_list_validate(struct amdgpu_device *adev,
  284. struct amdgpu_vm *vm,
  285. struct list_head *validated)
  286. {
  287. struct amdgpu_bo_list_entry *lobj;
  288. struct amdgpu_bo *bo;
  289. u64 bytes_moved = 0, initial_bytes_moved;
  290. u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
  291. int r;
  292. list_for_each_entry(lobj, validated, tv.head) {
  293. bo = lobj->robj;
  294. if (!bo->pin_count) {
  295. u32 domain = lobj->prefered_domains;
  296. u32 current_domain =
  297. amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
  298. /* Check if this buffer will be moved and don't move it
  299. * if we have moved too many buffers for this IB already.
  300. *
  301. * Note that this allows moving at least one buffer of
  302. * any size, because it doesn't take the current "bo"
  303. * into account. We don't want to disallow buffer moves
  304. * completely.
  305. */
  306. if ((lobj->allowed_domains & current_domain) != 0 &&
  307. (domain & current_domain) == 0 && /* will be moved */
  308. bytes_moved > bytes_moved_threshold) {
  309. /* don't move it */
  310. domain = current_domain;
  311. }
  312. retry:
  313. amdgpu_ttm_placement_from_domain(bo, domain);
  314. initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
  315. r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
  316. bytes_moved += atomic64_read(&adev->num_bytes_moved) -
  317. initial_bytes_moved;
  318. if (unlikely(r)) {
  319. if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
  320. domain = lobj->allowed_domains;
  321. goto retry;
  322. }
  323. return r;
  324. }
  325. }
  326. lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
  327. }
  328. return 0;
  329. }
  330. static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
  331. {
  332. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  333. struct amdgpu_cs_buckets buckets;
  334. struct list_head duplicates;
  335. bool need_mmap_lock = false;
  336. int i, r;
  337. if (p->bo_list) {
  338. need_mmap_lock = p->bo_list->has_userptr;
  339. amdgpu_cs_buckets_init(&buckets);
  340. for (i = 0; i < p->bo_list->num_entries; i++)
  341. amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
  342. p->bo_list->array[i].priority);
  343. amdgpu_cs_buckets_get_list(&buckets, &p->validated);
  344. }
  345. p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
  346. &p->validated);
  347. if (need_mmap_lock)
  348. down_read(&current->mm->mmap_sem);
  349. INIT_LIST_HEAD(&duplicates);
  350. r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
  351. if (unlikely(r != 0))
  352. goto error_reserve;
  353. r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
  354. if (r)
  355. goto error_validate;
  356. r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
  357. error_validate:
  358. if (r)
  359. ttm_eu_backoff_reservation(&p->ticket, &p->validated);
  360. error_reserve:
  361. if (need_mmap_lock)
  362. up_read(&current->mm->mmap_sem);
  363. return r;
  364. }
  365. static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
  366. {
  367. struct amdgpu_bo_list_entry *e;
  368. int r;
  369. list_for_each_entry(e, &p->validated, tv.head) {
  370. struct reservation_object *resv = e->robj->tbo.resv;
  371. r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
  372. if (r)
  373. return r;
  374. }
  375. return 0;
  376. }
  377. static int cmp_size_smaller_first(void *priv, struct list_head *a,
  378. struct list_head *b)
  379. {
  380. struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
  381. struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
  382. /* Sort A before B if A is smaller. */
  383. return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
  384. }
  385. static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff)
  386. {
  387. if (!error) {
  388. /* Sort the buffer list from the smallest to largest buffer,
  389. * which affects the order of buffers in the LRU list.
  390. * This assures that the smallest buffers are added first
  391. * to the LRU list, so they are likely to be later evicted
  392. * first, instead of large buffers whose eviction is more
  393. * expensive.
  394. *
  395. * This slightly lowers the number of bytes moved by TTM
  396. * per frame under memory pressure.
  397. */
  398. list_sort(NULL, &parser->validated, cmp_size_smaller_first);
  399. ttm_eu_fence_buffer_objects(&parser->ticket,
  400. &parser->validated,
  401. &parser->ibs[parser->num_ibs-1].fence->base);
  402. } else if (backoff) {
  403. ttm_eu_backoff_reservation(&parser->ticket,
  404. &parser->validated);
  405. }
  406. }
  407. static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser)
  408. {
  409. unsigned i;
  410. if (parser->ctx)
  411. amdgpu_ctx_put(parser->ctx);
  412. if (parser->bo_list)
  413. amdgpu_bo_list_put(parser->bo_list);
  414. drm_free_large(parser->vm_bos);
  415. for (i = 0; i < parser->nchunks; i++)
  416. drm_free_large(parser->chunks[i].kdata);
  417. kfree(parser->chunks);
  418. if (parser->ibs)
  419. for (i = 0; i < parser->num_ibs; i++)
  420. amdgpu_ib_free(parser->adev, &parser->ibs[i]);
  421. kfree(parser->ibs);
  422. if (parser->uf.bo)
  423. drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base);
  424. }
  425. /**
  426. * cs_parser_fini() - clean parser states
  427. * @parser: parser structure holding parsing context.
  428. * @error: error number
  429. *
  430. * If error is set than unvalidate buffer, otherwise just free memory
  431. * used by parsing context.
  432. **/
  433. static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
  434. {
  435. amdgpu_cs_parser_fini_early(parser, error, backoff);
  436. amdgpu_cs_parser_fini_late(parser);
  437. }
  438. static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
  439. struct amdgpu_vm *vm)
  440. {
  441. struct amdgpu_device *adev = p->adev;
  442. struct amdgpu_bo_va *bo_va;
  443. struct amdgpu_bo *bo;
  444. int i, r;
  445. r = amdgpu_vm_update_page_directory(adev, vm);
  446. if (r)
  447. return r;
  448. r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
  449. if (r)
  450. return r;
  451. r = amdgpu_vm_clear_freed(adev, vm);
  452. if (r)
  453. return r;
  454. if (p->bo_list) {
  455. for (i = 0; i < p->bo_list->num_entries; i++) {
  456. struct fence *f;
  457. /* ignore duplicates */
  458. bo = p->bo_list->array[i].robj;
  459. if (!bo)
  460. continue;
  461. bo_va = p->bo_list->array[i].bo_va;
  462. if (bo_va == NULL)
  463. continue;
  464. r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
  465. if (r)
  466. return r;
  467. f = bo_va->last_pt_update;
  468. r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
  469. if (r)
  470. return r;
  471. }
  472. }
  473. r = amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
  474. if (amdgpu_vm_debug && p->bo_list) {
  475. /* Invalidate all BOs to test for userspace bugs */
  476. for (i = 0; i < p->bo_list->num_entries; i++) {
  477. /* ignore duplicates */
  478. bo = p->bo_list->array[i].robj;
  479. if (!bo)
  480. continue;
  481. amdgpu_vm_bo_invalidate(adev, bo);
  482. }
  483. }
  484. return r;
  485. }
  486. static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
  487. struct amdgpu_cs_parser *parser)
  488. {
  489. struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
  490. struct amdgpu_vm *vm = &fpriv->vm;
  491. struct amdgpu_ring *ring;
  492. int i, r;
  493. if (parser->num_ibs == 0)
  494. return 0;
  495. /* Only for UVD/VCE VM emulation */
  496. for (i = 0; i < parser->num_ibs; i++) {
  497. ring = parser->ibs[i].ring;
  498. if (ring->funcs->parse_cs) {
  499. r = amdgpu_ring_parse_cs(ring, parser, i);
  500. if (r)
  501. return r;
  502. }
  503. }
  504. r = amdgpu_bo_vm_update_pte(parser, vm);
  505. if (r) {
  506. goto out;
  507. }
  508. amdgpu_cs_sync_rings(parser);
  509. if (!amdgpu_enable_scheduler)
  510. r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs,
  511. parser->filp);
  512. out:
  513. return r;
  514. }
  515. static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
  516. {
  517. if (r == -EDEADLK) {
  518. r = amdgpu_gpu_reset(adev);
  519. if (!r)
  520. r = -EAGAIN;
  521. }
  522. return r;
  523. }
  524. static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
  525. struct amdgpu_cs_parser *parser)
  526. {
  527. struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
  528. struct amdgpu_vm *vm = &fpriv->vm;
  529. int i, j;
  530. int r;
  531. for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
  532. struct amdgpu_cs_chunk *chunk;
  533. struct amdgpu_ib *ib;
  534. struct drm_amdgpu_cs_chunk_ib *chunk_ib;
  535. struct amdgpu_ring *ring;
  536. chunk = &parser->chunks[i];
  537. ib = &parser->ibs[j];
  538. chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
  539. if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
  540. continue;
  541. r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
  542. chunk_ib->ip_instance, chunk_ib->ring,
  543. &ring);
  544. if (r)
  545. return r;
  546. if (ring->funcs->parse_cs) {
  547. struct amdgpu_bo_va_mapping *m;
  548. struct amdgpu_bo *aobj = NULL;
  549. uint64_t offset;
  550. uint8_t *kptr;
  551. m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
  552. &aobj);
  553. if (!aobj) {
  554. DRM_ERROR("IB va_start is invalid\n");
  555. return -EINVAL;
  556. }
  557. if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
  558. (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
  559. DRM_ERROR("IB va_start+ib_bytes is invalid\n");
  560. return -EINVAL;
  561. }
  562. /* the IB should be reserved at this point */
  563. r = amdgpu_bo_kmap(aobj, (void **)&kptr);
  564. if (r) {
  565. return r;
  566. }
  567. offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
  568. kptr += chunk_ib->va_start - offset;
  569. r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
  570. if (r) {
  571. DRM_ERROR("Failed to get ib !\n");
  572. return r;
  573. }
  574. memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
  575. amdgpu_bo_kunmap(aobj);
  576. } else {
  577. r = amdgpu_ib_get(ring, vm, 0, ib);
  578. if (r) {
  579. DRM_ERROR("Failed to get ib !\n");
  580. return r;
  581. }
  582. ib->gpu_addr = chunk_ib->va_start;
  583. }
  584. ib->length_dw = chunk_ib->ib_bytes / 4;
  585. ib->flags = chunk_ib->flags;
  586. ib->ctx = parser->ctx;
  587. j++;
  588. }
  589. if (!parser->num_ibs)
  590. return 0;
  591. /* add GDS resources to first IB */
  592. if (parser->bo_list) {
  593. struct amdgpu_bo *gds = parser->bo_list->gds_obj;
  594. struct amdgpu_bo *gws = parser->bo_list->gws_obj;
  595. struct amdgpu_bo *oa = parser->bo_list->oa_obj;
  596. struct amdgpu_ib *ib = &parser->ibs[0];
  597. if (gds) {
  598. ib->gds_base = amdgpu_bo_gpu_offset(gds);
  599. ib->gds_size = amdgpu_bo_size(gds);
  600. }
  601. if (gws) {
  602. ib->gws_base = amdgpu_bo_gpu_offset(gws);
  603. ib->gws_size = amdgpu_bo_size(gws);
  604. }
  605. if (oa) {
  606. ib->oa_base = amdgpu_bo_gpu_offset(oa);
  607. ib->oa_size = amdgpu_bo_size(oa);
  608. }
  609. }
  610. /* wrap the last IB with user fence */
  611. if (parser->uf.bo) {
  612. struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
  613. /* UVD & VCE fw doesn't support user fences */
  614. if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
  615. ib->ring->type == AMDGPU_RING_TYPE_VCE)
  616. return -EINVAL;
  617. ib->user = &parser->uf;
  618. }
  619. return 0;
  620. }
  621. static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
  622. struct amdgpu_cs_parser *p)
  623. {
  624. struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
  625. struct amdgpu_ib *ib;
  626. int i, j, r;
  627. if (!p->num_ibs)
  628. return 0;
  629. /* Add dependencies to first IB */
  630. ib = &p->ibs[0];
  631. for (i = 0; i < p->nchunks; ++i) {
  632. struct drm_amdgpu_cs_chunk_dep *deps;
  633. struct amdgpu_cs_chunk *chunk;
  634. unsigned num_deps;
  635. chunk = &p->chunks[i];
  636. if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
  637. continue;
  638. deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
  639. num_deps = chunk->length_dw * 4 /
  640. sizeof(struct drm_amdgpu_cs_chunk_dep);
  641. for (j = 0; j < num_deps; ++j) {
  642. struct amdgpu_ring *ring;
  643. struct amdgpu_ctx *ctx;
  644. struct fence *fence;
  645. r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
  646. deps[j].ip_instance,
  647. deps[j].ring, &ring);
  648. if (r)
  649. return r;
  650. ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
  651. if (ctx == NULL)
  652. return -EINVAL;
  653. fence = amdgpu_ctx_get_fence(ctx, ring,
  654. deps[j].handle);
  655. if (IS_ERR(fence)) {
  656. r = PTR_ERR(fence);
  657. amdgpu_ctx_put(ctx);
  658. return r;
  659. } else if (fence) {
  660. r = amdgpu_sync_fence(adev, &ib->sync, fence);
  661. fence_put(fence);
  662. amdgpu_ctx_put(ctx);
  663. if (r)
  664. return r;
  665. }
  666. }
  667. }
  668. return 0;
  669. }
  670. static int amdgpu_cs_free_job(struct amdgpu_job *job)
  671. {
  672. int i;
  673. if (job->ibs)
  674. for (i = 0; i < job->num_ibs; i++)
  675. amdgpu_ib_free(job->adev, &job->ibs[i]);
  676. kfree(job->ibs);
  677. if (job->uf.bo)
  678. drm_gem_object_unreference_unlocked(&job->uf.bo->gem_base);
  679. return 0;
  680. }
  681. int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
  682. {
  683. struct amdgpu_device *adev = dev->dev_private;
  684. union drm_amdgpu_cs *cs = data;
  685. struct amdgpu_fpriv *fpriv = filp->driver_priv;
  686. struct amdgpu_vm *vm = &fpriv->vm;
  687. struct amdgpu_cs_parser parser = {};
  688. bool reserved_buffers = false;
  689. int i, r;
  690. if (!adev->accel_working)
  691. return -EBUSY;
  692. parser.adev = adev;
  693. parser.filp = filp;
  694. r = amdgpu_cs_parser_init(&parser, data);
  695. if (r) {
  696. DRM_ERROR("Failed to initialize parser !\n");
  697. amdgpu_cs_parser_fini(&parser, r, false);
  698. r = amdgpu_cs_handle_lockup(adev, r);
  699. return r;
  700. }
  701. mutex_lock(&vm->mutex);
  702. r = amdgpu_cs_parser_relocs(&parser);
  703. if (r == -ENOMEM)
  704. DRM_ERROR("Not enough memory for command submission!\n");
  705. else if (r && r != -ERESTARTSYS)
  706. DRM_ERROR("Failed to process the buffer list %d!\n", r);
  707. else if (!r) {
  708. reserved_buffers = true;
  709. r = amdgpu_cs_ib_fill(adev, &parser);
  710. }
  711. if (!r) {
  712. r = amdgpu_cs_dependencies(adev, &parser);
  713. if (r)
  714. DRM_ERROR("Failed in the dependencies handling %d!\n", r);
  715. }
  716. if (r)
  717. goto out;
  718. for (i = 0; i < parser.num_ibs; i++)
  719. trace_amdgpu_cs(&parser, i);
  720. r = amdgpu_cs_ib_vm_chunk(adev, &parser);
  721. if (r)
  722. goto out;
  723. if (amdgpu_enable_scheduler && parser.num_ibs) {
  724. struct amdgpu_ring * ring = parser.ibs->ring;
  725. struct amd_sched_fence *fence;
  726. struct amdgpu_job *job;
  727. job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
  728. if (!job) {
  729. r = -ENOMEM;
  730. goto out;
  731. }
  732. job->base.sched = &ring->sched;
  733. job->base.s_entity = &parser.ctx->rings[ring->idx].entity;
  734. job->adev = parser.adev;
  735. job->owner = parser.filp;
  736. job->free_job = amdgpu_cs_free_job;
  737. job->ibs = parser.ibs;
  738. job->num_ibs = parser.num_ibs;
  739. parser.ibs = NULL;
  740. parser.num_ibs = 0;
  741. if (job->ibs[job->num_ibs - 1].user) {
  742. job->uf = parser.uf;
  743. job->ibs[job->num_ibs - 1].user = &job->uf;
  744. parser.uf.bo = NULL;
  745. }
  746. fence = amd_sched_fence_create(job->base.s_entity,
  747. parser.filp);
  748. if (!fence) {
  749. r = -ENOMEM;
  750. amdgpu_cs_free_job(job);
  751. kfree(job);
  752. goto out;
  753. }
  754. job->base.s_fence = fence;
  755. fence_get(&fence->base);
  756. cs->out.handle = amdgpu_ctx_add_fence(parser.ctx, ring,
  757. &fence->base);
  758. job->ibs[job->num_ibs - 1].sequence = cs->out.handle;
  759. trace_amdgpu_cs_ioctl(job);
  760. amd_sched_entity_push_job(&job->base);
  761. list_sort(NULL, &parser.validated, cmp_size_smaller_first);
  762. ttm_eu_fence_buffer_objects(&parser.ticket, &parser.validated,
  763. &fence->base);
  764. fence_put(&fence->base);
  765. amdgpu_cs_parser_fini_late(&parser);
  766. mutex_unlock(&vm->mutex);
  767. return 0;
  768. }
  769. cs->out.handle = parser.ibs[parser.num_ibs - 1].sequence;
  770. out:
  771. amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
  772. mutex_unlock(&vm->mutex);
  773. r = amdgpu_cs_handle_lockup(adev, r);
  774. return r;
  775. }
  776. /**
  777. * amdgpu_cs_wait_ioctl - wait for a command submission to finish
  778. *
  779. * @dev: drm device
  780. * @data: data from userspace
  781. * @filp: file private
  782. *
  783. * Wait for the command submission identified by handle to finish.
  784. */
  785. int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
  786. struct drm_file *filp)
  787. {
  788. union drm_amdgpu_wait_cs *wait = data;
  789. struct amdgpu_device *adev = dev->dev_private;
  790. unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
  791. struct amdgpu_ring *ring = NULL;
  792. struct amdgpu_ctx *ctx;
  793. struct fence *fence;
  794. long r;
  795. r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
  796. wait->in.ring, &ring);
  797. if (r)
  798. return r;
  799. ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
  800. if (ctx == NULL)
  801. return -EINVAL;
  802. fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
  803. if (IS_ERR(fence))
  804. r = PTR_ERR(fence);
  805. else if (fence) {
  806. r = fence_wait_timeout(fence, true, timeout);
  807. fence_put(fence);
  808. } else
  809. r = 1;
  810. amdgpu_ctx_put(ctx);
  811. if (r < 0)
  812. return r;
  813. memset(wait, 0, sizeof(*wait));
  814. wait->out.status = (r == 0);
  815. return 0;
  816. }
  817. /**
  818. * amdgpu_cs_find_bo_va - find bo_va for VM address
  819. *
  820. * @parser: command submission parser context
  821. * @addr: VM address
  822. * @bo: resulting BO of the mapping found
  823. *
  824. * Search the buffer objects in the command submission context for a certain
  825. * virtual memory address. Returns allocation structure when found, NULL
  826. * otherwise.
  827. */
  828. struct amdgpu_bo_va_mapping *
  829. amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
  830. uint64_t addr, struct amdgpu_bo **bo)
  831. {
  832. struct amdgpu_bo_list_entry *reloc;
  833. struct amdgpu_bo_va_mapping *mapping;
  834. addr /= AMDGPU_GPU_PAGE_SIZE;
  835. list_for_each_entry(reloc, &parser->validated, tv.head) {
  836. if (!reloc->bo_va)
  837. continue;
  838. list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
  839. if (mapping->it.start > addr ||
  840. addr > mapping->it.last)
  841. continue;
  842. *bo = reloc->bo_va->bo;
  843. return mapping;
  844. }
  845. list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
  846. if (mapping->it.start > addr ||
  847. addr > mapping->it.last)
  848. continue;
  849. *bo = reloc->bo_va->bo;
  850. return mapping;
  851. }
  852. }
  853. return NULL;
  854. }