perf_event_intel.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/stddef.h>
  9. #include <linux/types.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/export.h>
  13. #include <linux/nmi.h>
  14. #include <asm/cpufeature.h>
  15. #include <asm/hardirq.h>
  16. #include <asm/apic.h>
  17. #include "perf_event.h"
  18. /*
  19. * Intel PerfMon, used on Core and later.
  20. */
  21. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  22. {
  23. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  24. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  25. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  26. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  27. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  28. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  29. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  30. [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
  31. };
  32. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  33. {
  34. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  35. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  36. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  37. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  38. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  39. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  40. EVENT_CONSTRAINT_END
  41. };
  42. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  43. {
  44. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  45. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  46. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  47. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  48. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  49. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  50. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  51. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  52. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  53. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  54. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  55. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  56. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  57. EVENT_CONSTRAINT_END
  58. };
  59. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  60. {
  61. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  62. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  63. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  64. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  65. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  66. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  67. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  68. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  69. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  70. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  71. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  72. EVENT_CONSTRAINT_END
  73. };
  74. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  75. {
  76. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  77. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  78. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  79. EVENT_EXTRA_END
  80. };
  81. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  82. {
  83. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  84. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  85. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  86. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  87. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  88. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  89. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  90. EVENT_CONSTRAINT_END
  91. };
  92. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  93. {
  94. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  95. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  96. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  97. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  98. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  99. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  100. INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  101. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  102. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  103. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  104. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  105. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  106. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  107. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  108. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  109. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  110. EVENT_CONSTRAINT_END
  111. };
  112. static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
  113. {
  114. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  115. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  116. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  117. INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
  118. INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
  119. INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
  120. INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
  121. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  122. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  123. INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
  124. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  125. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  126. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  127. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  128. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  129. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  130. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  131. EVENT_CONSTRAINT_END
  132. };
  133. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  134. {
  135. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  136. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  137. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  138. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  139. EVENT_EXTRA_END
  140. };
  141. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  142. {
  143. EVENT_CONSTRAINT_END
  144. };
  145. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  146. {
  147. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  148. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  149. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  150. EVENT_CONSTRAINT_END
  151. };
  152. static struct event_constraint intel_slm_event_constraints[] __read_mostly =
  153. {
  154. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  155. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  156. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
  157. EVENT_CONSTRAINT_END
  158. };
  159. struct event_constraint intel_skl_event_constraints[] = {
  160. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  161. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  162. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  163. INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
  164. EVENT_CONSTRAINT_END
  165. };
  166. static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
  167. INTEL_UEVENT_EXTRA_REG(0x01b7,
  168. MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
  169. INTEL_UEVENT_EXTRA_REG(0x02b7,
  170. MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
  171. EVENT_EXTRA_END
  172. };
  173. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  174. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  175. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
  176. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
  177. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  178. EVENT_EXTRA_END
  179. };
  180. static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
  181. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  182. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  183. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  184. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  185. EVENT_EXTRA_END
  186. };
  187. static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
  188. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  189. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  190. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  191. /*
  192. * Note the low 8 bits eventsel code is not a continuous field, containing
  193. * some #GPing bits. These are masked out.
  194. */
  195. INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
  196. EVENT_EXTRA_END
  197. };
  198. EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
  199. EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
  200. EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
  201. struct attribute *nhm_events_attrs[] = {
  202. EVENT_PTR(mem_ld_nhm),
  203. NULL,
  204. };
  205. struct attribute *snb_events_attrs[] = {
  206. EVENT_PTR(mem_ld_snb),
  207. EVENT_PTR(mem_st_snb),
  208. NULL,
  209. };
  210. static struct event_constraint intel_hsw_event_constraints[] = {
  211. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  212. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  213. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  214. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  215. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  216. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  217. /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  218. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
  219. /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  220. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
  221. /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  222. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
  223. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  224. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  225. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  226. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  227. EVENT_CONSTRAINT_END
  228. };
  229. struct event_constraint intel_bdw_event_constraints[] = {
  230. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  231. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  232. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  233. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  234. INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
  235. EVENT_CONSTRAINT_END
  236. };
  237. static u64 intel_pmu_event_map(int hw_event)
  238. {
  239. return intel_perfmon_event_map[hw_event];
  240. }
  241. /*
  242. * Notes on the events:
  243. * - data reads do not include code reads (comparable to earlier tables)
  244. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  245. * - remote node access includes remote memory, remote cache, remote mmio.
  246. * - prefetches are not included in the counts.
  247. * - icache miss does not include decoded icache
  248. */
  249. #define SKL_DEMAND_DATA_RD BIT_ULL(0)
  250. #define SKL_DEMAND_RFO BIT_ULL(1)
  251. #define SKL_ANY_RESPONSE BIT_ULL(16)
  252. #define SKL_SUPPLIER_NONE BIT_ULL(17)
  253. #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
  254. #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
  255. #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
  256. #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
  257. #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
  258. SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  259. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  260. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  261. #define SKL_SPL_HIT BIT_ULL(30)
  262. #define SKL_SNOOP_NONE BIT_ULL(31)
  263. #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
  264. #define SKL_SNOOP_MISS BIT_ULL(33)
  265. #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
  266. #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  267. #define SKL_SNOOP_HITM BIT_ULL(36)
  268. #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
  269. #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
  270. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  271. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  272. SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
  273. #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
  274. #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
  275. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  276. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  277. SKL_SNOOP_HITM|SKL_SPL_HIT)
  278. #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
  279. #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
  280. #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  281. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  282. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  283. static __initconst const u64 skl_hw_cache_event_ids
  284. [PERF_COUNT_HW_CACHE_MAX]
  285. [PERF_COUNT_HW_CACHE_OP_MAX]
  286. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  287. {
  288. [ C(L1D ) ] = {
  289. [ C(OP_READ) ] = {
  290. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  291. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  292. },
  293. [ C(OP_WRITE) ] = {
  294. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  295. [ C(RESULT_MISS) ] = 0x0,
  296. },
  297. [ C(OP_PREFETCH) ] = {
  298. [ C(RESULT_ACCESS) ] = 0x0,
  299. [ C(RESULT_MISS) ] = 0x0,
  300. },
  301. },
  302. [ C(L1I ) ] = {
  303. [ C(OP_READ) ] = {
  304. [ C(RESULT_ACCESS) ] = 0x0,
  305. [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
  306. },
  307. [ C(OP_WRITE) ] = {
  308. [ C(RESULT_ACCESS) ] = -1,
  309. [ C(RESULT_MISS) ] = -1,
  310. },
  311. [ C(OP_PREFETCH) ] = {
  312. [ C(RESULT_ACCESS) ] = 0x0,
  313. [ C(RESULT_MISS) ] = 0x0,
  314. },
  315. },
  316. [ C(LL ) ] = {
  317. [ C(OP_READ) ] = {
  318. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  319. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  320. },
  321. [ C(OP_WRITE) ] = {
  322. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  323. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  324. },
  325. [ C(OP_PREFETCH) ] = {
  326. [ C(RESULT_ACCESS) ] = 0x0,
  327. [ C(RESULT_MISS) ] = 0x0,
  328. },
  329. },
  330. [ C(DTLB) ] = {
  331. [ C(OP_READ) ] = {
  332. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  333. [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
  334. },
  335. [ C(OP_WRITE) ] = {
  336. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  337. [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
  338. },
  339. [ C(OP_PREFETCH) ] = {
  340. [ C(RESULT_ACCESS) ] = 0x0,
  341. [ C(RESULT_MISS) ] = 0x0,
  342. },
  343. },
  344. [ C(ITLB) ] = {
  345. [ C(OP_READ) ] = {
  346. [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
  347. [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
  348. },
  349. [ C(OP_WRITE) ] = {
  350. [ C(RESULT_ACCESS) ] = -1,
  351. [ C(RESULT_MISS) ] = -1,
  352. },
  353. [ C(OP_PREFETCH) ] = {
  354. [ C(RESULT_ACCESS) ] = -1,
  355. [ C(RESULT_MISS) ] = -1,
  356. },
  357. },
  358. [ C(BPU ) ] = {
  359. [ C(OP_READ) ] = {
  360. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  361. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  362. },
  363. [ C(OP_WRITE) ] = {
  364. [ C(RESULT_ACCESS) ] = -1,
  365. [ C(RESULT_MISS) ] = -1,
  366. },
  367. [ C(OP_PREFETCH) ] = {
  368. [ C(RESULT_ACCESS) ] = -1,
  369. [ C(RESULT_MISS) ] = -1,
  370. },
  371. },
  372. [ C(NODE) ] = {
  373. [ C(OP_READ) ] = {
  374. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  375. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  376. },
  377. [ C(OP_WRITE) ] = {
  378. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  379. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  380. },
  381. [ C(OP_PREFETCH) ] = {
  382. [ C(RESULT_ACCESS) ] = 0x0,
  383. [ C(RESULT_MISS) ] = 0x0,
  384. },
  385. },
  386. };
  387. static __initconst const u64 skl_hw_cache_extra_regs
  388. [PERF_COUNT_HW_CACHE_MAX]
  389. [PERF_COUNT_HW_CACHE_OP_MAX]
  390. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  391. {
  392. [ C(LL ) ] = {
  393. [ C(OP_READ) ] = {
  394. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  395. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  396. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  397. SKL_L3_MISS|SKL_ANY_SNOOP|
  398. SKL_SUPPLIER_NONE,
  399. },
  400. [ C(OP_WRITE) ] = {
  401. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  402. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  403. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  404. SKL_L3_MISS|SKL_ANY_SNOOP|
  405. SKL_SUPPLIER_NONE,
  406. },
  407. [ C(OP_PREFETCH) ] = {
  408. [ C(RESULT_ACCESS) ] = 0x0,
  409. [ C(RESULT_MISS) ] = 0x0,
  410. },
  411. },
  412. [ C(NODE) ] = {
  413. [ C(OP_READ) ] = {
  414. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  415. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  416. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  417. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  418. },
  419. [ C(OP_WRITE) ] = {
  420. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  421. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  422. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  423. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  424. },
  425. [ C(OP_PREFETCH) ] = {
  426. [ C(RESULT_ACCESS) ] = 0x0,
  427. [ C(RESULT_MISS) ] = 0x0,
  428. },
  429. },
  430. };
  431. #define SNB_DMND_DATA_RD (1ULL << 0)
  432. #define SNB_DMND_RFO (1ULL << 1)
  433. #define SNB_DMND_IFETCH (1ULL << 2)
  434. #define SNB_DMND_WB (1ULL << 3)
  435. #define SNB_PF_DATA_RD (1ULL << 4)
  436. #define SNB_PF_RFO (1ULL << 5)
  437. #define SNB_PF_IFETCH (1ULL << 6)
  438. #define SNB_LLC_DATA_RD (1ULL << 7)
  439. #define SNB_LLC_RFO (1ULL << 8)
  440. #define SNB_LLC_IFETCH (1ULL << 9)
  441. #define SNB_BUS_LOCKS (1ULL << 10)
  442. #define SNB_STRM_ST (1ULL << 11)
  443. #define SNB_OTHER (1ULL << 15)
  444. #define SNB_RESP_ANY (1ULL << 16)
  445. #define SNB_NO_SUPP (1ULL << 17)
  446. #define SNB_LLC_HITM (1ULL << 18)
  447. #define SNB_LLC_HITE (1ULL << 19)
  448. #define SNB_LLC_HITS (1ULL << 20)
  449. #define SNB_LLC_HITF (1ULL << 21)
  450. #define SNB_LOCAL (1ULL << 22)
  451. #define SNB_REMOTE (0xffULL << 23)
  452. #define SNB_SNP_NONE (1ULL << 31)
  453. #define SNB_SNP_NOT_NEEDED (1ULL << 32)
  454. #define SNB_SNP_MISS (1ULL << 33)
  455. #define SNB_NO_FWD (1ULL << 34)
  456. #define SNB_SNP_FWD (1ULL << 35)
  457. #define SNB_HITM (1ULL << 36)
  458. #define SNB_NON_DRAM (1ULL << 37)
  459. #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
  460. #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
  461. #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  462. #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
  463. SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
  464. SNB_HITM)
  465. #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
  466. #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
  467. #define SNB_L3_ACCESS SNB_RESP_ANY
  468. #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
  469. static __initconst const u64 snb_hw_cache_extra_regs
  470. [PERF_COUNT_HW_CACHE_MAX]
  471. [PERF_COUNT_HW_CACHE_OP_MAX]
  472. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  473. {
  474. [ C(LL ) ] = {
  475. [ C(OP_READ) ] = {
  476. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
  477. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
  478. },
  479. [ C(OP_WRITE) ] = {
  480. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
  481. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
  482. },
  483. [ C(OP_PREFETCH) ] = {
  484. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
  485. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
  486. },
  487. },
  488. [ C(NODE) ] = {
  489. [ C(OP_READ) ] = {
  490. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
  491. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
  492. },
  493. [ C(OP_WRITE) ] = {
  494. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
  495. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
  496. },
  497. [ C(OP_PREFETCH) ] = {
  498. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
  499. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
  500. },
  501. },
  502. };
  503. static __initconst const u64 snb_hw_cache_event_ids
  504. [PERF_COUNT_HW_CACHE_MAX]
  505. [PERF_COUNT_HW_CACHE_OP_MAX]
  506. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  507. {
  508. [ C(L1D) ] = {
  509. [ C(OP_READ) ] = {
  510. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  511. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  512. },
  513. [ C(OP_WRITE) ] = {
  514. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  515. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  516. },
  517. [ C(OP_PREFETCH) ] = {
  518. [ C(RESULT_ACCESS) ] = 0x0,
  519. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  520. },
  521. },
  522. [ C(L1I ) ] = {
  523. [ C(OP_READ) ] = {
  524. [ C(RESULT_ACCESS) ] = 0x0,
  525. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  526. },
  527. [ C(OP_WRITE) ] = {
  528. [ C(RESULT_ACCESS) ] = -1,
  529. [ C(RESULT_MISS) ] = -1,
  530. },
  531. [ C(OP_PREFETCH) ] = {
  532. [ C(RESULT_ACCESS) ] = 0x0,
  533. [ C(RESULT_MISS) ] = 0x0,
  534. },
  535. },
  536. [ C(LL ) ] = {
  537. [ C(OP_READ) ] = {
  538. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  539. [ C(RESULT_ACCESS) ] = 0x01b7,
  540. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  541. [ C(RESULT_MISS) ] = 0x01b7,
  542. },
  543. [ C(OP_WRITE) ] = {
  544. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  545. [ C(RESULT_ACCESS) ] = 0x01b7,
  546. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  547. [ C(RESULT_MISS) ] = 0x01b7,
  548. },
  549. [ C(OP_PREFETCH) ] = {
  550. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  551. [ C(RESULT_ACCESS) ] = 0x01b7,
  552. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  553. [ C(RESULT_MISS) ] = 0x01b7,
  554. },
  555. },
  556. [ C(DTLB) ] = {
  557. [ C(OP_READ) ] = {
  558. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  559. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  560. },
  561. [ C(OP_WRITE) ] = {
  562. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  563. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  564. },
  565. [ C(OP_PREFETCH) ] = {
  566. [ C(RESULT_ACCESS) ] = 0x0,
  567. [ C(RESULT_MISS) ] = 0x0,
  568. },
  569. },
  570. [ C(ITLB) ] = {
  571. [ C(OP_READ) ] = {
  572. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  573. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  574. },
  575. [ C(OP_WRITE) ] = {
  576. [ C(RESULT_ACCESS) ] = -1,
  577. [ C(RESULT_MISS) ] = -1,
  578. },
  579. [ C(OP_PREFETCH) ] = {
  580. [ C(RESULT_ACCESS) ] = -1,
  581. [ C(RESULT_MISS) ] = -1,
  582. },
  583. },
  584. [ C(BPU ) ] = {
  585. [ C(OP_READ) ] = {
  586. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  587. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  588. },
  589. [ C(OP_WRITE) ] = {
  590. [ C(RESULT_ACCESS) ] = -1,
  591. [ C(RESULT_MISS) ] = -1,
  592. },
  593. [ C(OP_PREFETCH) ] = {
  594. [ C(RESULT_ACCESS) ] = -1,
  595. [ C(RESULT_MISS) ] = -1,
  596. },
  597. },
  598. [ C(NODE) ] = {
  599. [ C(OP_READ) ] = {
  600. [ C(RESULT_ACCESS) ] = 0x01b7,
  601. [ C(RESULT_MISS) ] = 0x01b7,
  602. },
  603. [ C(OP_WRITE) ] = {
  604. [ C(RESULT_ACCESS) ] = 0x01b7,
  605. [ C(RESULT_MISS) ] = 0x01b7,
  606. },
  607. [ C(OP_PREFETCH) ] = {
  608. [ C(RESULT_ACCESS) ] = 0x01b7,
  609. [ C(RESULT_MISS) ] = 0x01b7,
  610. },
  611. },
  612. };
  613. /*
  614. * Notes on the events:
  615. * - data reads do not include code reads (comparable to earlier tables)
  616. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  617. * - remote node access includes remote memory, remote cache, remote mmio.
  618. * - prefetches are not included in the counts because they are not
  619. * reliably counted.
  620. */
  621. #define HSW_DEMAND_DATA_RD BIT_ULL(0)
  622. #define HSW_DEMAND_RFO BIT_ULL(1)
  623. #define HSW_ANY_RESPONSE BIT_ULL(16)
  624. #define HSW_SUPPLIER_NONE BIT_ULL(17)
  625. #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
  626. #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
  627. #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
  628. #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
  629. #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
  630. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  631. HSW_L3_MISS_REMOTE_HOP2P)
  632. #define HSW_SNOOP_NONE BIT_ULL(31)
  633. #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
  634. #define HSW_SNOOP_MISS BIT_ULL(33)
  635. #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
  636. #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  637. #define HSW_SNOOP_HITM BIT_ULL(36)
  638. #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
  639. #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
  640. HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
  641. HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
  642. HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
  643. #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
  644. #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
  645. #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
  646. #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
  647. HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
  648. #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
  649. #define BDW_L3_MISS_LOCAL BIT(26)
  650. #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
  651. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  652. HSW_L3_MISS_REMOTE_HOP2P)
  653. static __initconst const u64 hsw_hw_cache_event_ids
  654. [PERF_COUNT_HW_CACHE_MAX]
  655. [PERF_COUNT_HW_CACHE_OP_MAX]
  656. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  657. {
  658. [ C(L1D ) ] = {
  659. [ C(OP_READ) ] = {
  660. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  661. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  662. },
  663. [ C(OP_WRITE) ] = {
  664. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  665. [ C(RESULT_MISS) ] = 0x0,
  666. },
  667. [ C(OP_PREFETCH) ] = {
  668. [ C(RESULT_ACCESS) ] = 0x0,
  669. [ C(RESULT_MISS) ] = 0x0,
  670. },
  671. },
  672. [ C(L1I ) ] = {
  673. [ C(OP_READ) ] = {
  674. [ C(RESULT_ACCESS) ] = 0x0,
  675. [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
  676. },
  677. [ C(OP_WRITE) ] = {
  678. [ C(RESULT_ACCESS) ] = -1,
  679. [ C(RESULT_MISS) ] = -1,
  680. },
  681. [ C(OP_PREFETCH) ] = {
  682. [ C(RESULT_ACCESS) ] = 0x0,
  683. [ C(RESULT_MISS) ] = 0x0,
  684. },
  685. },
  686. [ C(LL ) ] = {
  687. [ C(OP_READ) ] = {
  688. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  689. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  690. },
  691. [ C(OP_WRITE) ] = {
  692. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  693. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  694. },
  695. [ C(OP_PREFETCH) ] = {
  696. [ C(RESULT_ACCESS) ] = 0x0,
  697. [ C(RESULT_MISS) ] = 0x0,
  698. },
  699. },
  700. [ C(DTLB) ] = {
  701. [ C(OP_READ) ] = {
  702. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  703. [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
  704. },
  705. [ C(OP_WRITE) ] = {
  706. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  707. [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  708. },
  709. [ C(OP_PREFETCH) ] = {
  710. [ C(RESULT_ACCESS) ] = 0x0,
  711. [ C(RESULT_MISS) ] = 0x0,
  712. },
  713. },
  714. [ C(ITLB) ] = {
  715. [ C(OP_READ) ] = {
  716. [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
  717. [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
  718. },
  719. [ C(OP_WRITE) ] = {
  720. [ C(RESULT_ACCESS) ] = -1,
  721. [ C(RESULT_MISS) ] = -1,
  722. },
  723. [ C(OP_PREFETCH) ] = {
  724. [ C(RESULT_ACCESS) ] = -1,
  725. [ C(RESULT_MISS) ] = -1,
  726. },
  727. },
  728. [ C(BPU ) ] = {
  729. [ C(OP_READ) ] = {
  730. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  731. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  732. },
  733. [ C(OP_WRITE) ] = {
  734. [ C(RESULT_ACCESS) ] = -1,
  735. [ C(RESULT_MISS) ] = -1,
  736. },
  737. [ C(OP_PREFETCH) ] = {
  738. [ C(RESULT_ACCESS) ] = -1,
  739. [ C(RESULT_MISS) ] = -1,
  740. },
  741. },
  742. [ C(NODE) ] = {
  743. [ C(OP_READ) ] = {
  744. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  745. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  746. },
  747. [ C(OP_WRITE) ] = {
  748. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  749. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  750. },
  751. [ C(OP_PREFETCH) ] = {
  752. [ C(RESULT_ACCESS) ] = 0x0,
  753. [ C(RESULT_MISS) ] = 0x0,
  754. },
  755. },
  756. };
  757. static __initconst const u64 hsw_hw_cache_extra_regs
  758. [PERF_COUNT_HW_CACHE_MAX]
  759. [PERF_COUNT_HW_CACHE_OP_MAX]
  760. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  761. {
  762. [ C(LL ) ] = {
  763. [ C(OP_READ) ] = {
  764. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  765. HSW_LLC_ACCESS,
  766. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  767. HSW_L3_MISS|HSW_ANY_SNOOP,
  768. },
  769. [ C(OP_WRITE) ] = {
  770. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  771. HSW_LLC_ACCESS,
  772. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  773. HSW_L3_MISS|HSW_ANY_SNOOP,
  774. },
  775. [ C(OP_PREFETCH) ] = {
  776. [ C(RESULT_ACCESS) ] = 0x0,
  777. [ C(RESULT_MISS) ] = 0x0,
  778. },
  779. },
  780. [ C(NODE) ] = {
  781. [ C(OP_READ) ] = {
  782. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  783. HSW_L3_MISS_LOCAL_DRAM|
  784. HSW_SNOOP_DRAM,
  785. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  786. HSW_L3_MISS_REMOTE|
  787. HSW_SNOOP_DRAM,
  788. },
  789. [ C(OP_WRITE) ] = {
  790. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  791. HSW_L3_MISS_LOCAL_DRAM|
  792. HSW_SNOOP_DRAM,
  793. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  794. HSW_L3_MISS_REMOTE|
  795. HSW_SNOOP_DRAM,
  796. },
  797. [ C(OP_PREFETCH) ] = {
  798. [ C(RESULT_ACCESS) ] = 0x0,
  799. [ C(RESULT_MISS) ] = 0x0,
  800. },
  801. },
  802. };
  803. static __initconst const u64 westmere_hw_cache_event_ids
  804. [PERF_COUNT_HW_CACHE_MAX]
  805. [PERF_COUNT_HW_CACHE_OP_MAX]
  806. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  807. {
  808. [ C(L1D) ] = {
  809. [ C(OP_READ) ] = {
  810. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  811. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  812. },
  813. [ C(OP_WRITE) ] = {
  814. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  815. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  816. },
  817. [ C(OP_PREFETCH) ] = {
  818. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  819. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  820. },
  821. },
  822. [ C(L1I ) ] = {
  823. [ C(OP_READ) ] = {
  824. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  825. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  826. },
  827. [ C(OP_WRITE) ] = {
  828. [ C(RESULT_ACCESS) ] = -1,
  829. [ C(RESULT_MISS) ] = -1,
  830. },
  831. [ C(OP_PREFETCH) ] = {
  832. [ C(RESULT_ACCESS) ] = 0x0,
  833. [ C(RESULT_MISS) ] = 0x0,
  834. },
  835. },
  836. [ C(LL ) ] = {
  837. [ C(OP_READ) ] = {
  838. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  839. [ C(RESULT_ACCESS) ] = 0x01b7,
  840. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  841. [ C(RESULT_MISS) ] = 0x01b7,
  842. },
  843. /*
  844. * Use RFO, not WRITEBACK, because a write miss would typically occur
  845. * on RFO.
  846. */
  847. [ C(OP_WRITE) ] = {
  848. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  849. [ C(RESULT_ACCESS) ] = 0x01b7,
  850. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  851. [ C(RESULT_MISS) ] = 0x01b7,
  852. },
  853. [ C(OP_PREFETCH) ] = {
  854. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  855. [ C(RESULT_ACCESS) ] = 0x01b7,
  856. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  857. [ C(RESULT_MISS) ] = 0x01b7,
  858. },
  859. },
  860. [ C(DTLB) ] = {
  861. [ C(OP_READ) ] = {
  862. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  863. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  864. },
  865. [ C(OP_WRITE) ] = {
  866. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  867. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  868. },
  869. [ C(OP_PREFETCH) ] = {
  870. [ C(RESULT_ACCESS) ] = 0x0,
  871. [ C(RESULT_MISS) ] = 0x0,
  872. },
  873. },
  874. [ C(ITLB) ] = {
  875. [ C(OP_READ) ] = {
  876. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  877. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  878. },
  879. [ C(OP_WRITE) ] = {
  880. [ C(RESULT_ACCESS) ] = -1,
  881. [ C(RESULT_MISS) ] = -1,
  882. },
  883. [ C(OP_PREFETCH) ] = {
  884. [ C(RESULT_ACCESS) ] = -1,
  885. [ C(RESULT_MISS) ] = -1,
  886. },
  887. },
  888. [ C(BPU ) ] = {
  889. [ C(OP_READ) ] = {
  890. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  891. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  892. },
  893. [ C(OP_WRITE) ] = {
  894. [ C(RESULT_ACCESS) ] = -1,
  895. [ C(RESULT_MISS) ] = -1,
  896. },
  897. [ C(OP_PREFETCH) ] = {
  898. [ C(RESULT_ACCESS) ] = -1,
  899. [ C(RESULT_MISS) ] = -1,
  900. },
  901. },
  902. [ C(NODE) ] = {
  903. [ C(OP_READ) ] = {
  904. [ C(RESULT_ACCESS) ] = 0x01b7,
  905. [ C(RESULT_MISS) ] = 0x01b7,
  906. },
  907. [ C(OP_WRITE) ] = {
  908. [ C(RESULT_ACCESS) ] = 0x01b7,
  909. [ C(RESULT_MISS) ] = 0x01b7,
  910. },
  911. [ C(OP_PREFETCH) ] = {
  912. [ C(RESULT_ACCESS) ] = 0x01b7,
  913. [ C(RESULT_MISS) ] = 0x01b7,
  914. },
  915. },
  916. };
  917. /*
  918. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  919. * See IA32 SDM Vol 3B 30.6.1.3
  920. */
  921. #define NHM_DMND_DATA_RD (1 << 0)
  922. #define NHM_DMND_RFO (1 << 1)
  923. #define NHM_DMND_IFETCH (1 << 2)
  924. #define NHM_DMND_WB (1 << 3)
  925. #define NHM_PF_DATA_RD (1 << 4)
  926. #define NHM_PF_DATA_RFO (1 << 5)
  927. #define NHM_PF_IFETCH (1 << 6)
  928. #define NHM_OFFCORE_OTHER (1 << 7)
  929. #define NHM_UNCORE_HIT (1 << 8)
  930. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  931. #define NHM_OTHER_CORE_HITM (1 << 10)
  932. /* reserved */
  933. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  934. #define NHM_REMOTE_DRAM (1 << 13)
  935. #define NHM_LOCAL_DRAM (1 << 14)
  936. #define NHM_NON_DRAM (1 << 15)
  937. #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
  938. #define NHM_REMOTE (NHM_REMOTE_DRAM)
  939. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  940. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  941. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  942. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  943. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
  944. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  945. static __initconst const u64 nehalem_hw_cache_extra_regs
  946. [PERF_COUNT_HW_CACHE_MAX]
  947. [PERF_COUNT_HW_CACHE_OP_MAX]
  948. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  949. {
  950. [ C(LL ) ] = {
  951. [ C(OP_READ) ] = {
  952. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  953. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  954. },
  955. [ C(OP_WRITE) ] = {
  956. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  957. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  958. },
  959. [ C(OP_PREFETCH) ] = {
  960. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  961. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  962. },
  963. },
  964. [ C(NODE) ] = {
  965. [ C(OP_READ) ] = {
  966. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
  967. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
  968. },
  969. [ C(OP_WRITE) ] = {
  970. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
  971. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
  972. },
  973. [ C(OP_PREFETCH) ] = {
  974. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
  975. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
  976. },
  977. },
  978. };
  979. static __initconst const u64 nehalem_hw_cache_event_ids
  980. [PERF_COUNT_HW_CACHE_MAX]
  981. [PERF_COUNT_HW_CACHE_OP_MAX]
  982. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  983. {
  984. [ C(L1D) ] = {
  985. [ C(OP_READ) ] = {
  986. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  987. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  988. },
  989. [ C(OP_WRITE) ] = {
  990. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  991. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  992. },
  993. [ C(OP_PREFETCH) ] = {
  994. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  995. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  996. },
  997. },
  998. [ C(L1I ) ] = {
  999. [ C(OP_READ) ] = {
  1000. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1001. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1002. },
  1003. [ C(OP_WRITE) ] = {
  1004. [ C(RESULT_ACCESS) ] = -1,
  1005. [ C(RESULT_MISS) ] = -1,
  1006. },
  1007. [ C(OP_PREFETCH) ] = {
  1008. [ C(RESULT_ACCESS) ] = 0x0,
  1009. [ C(RESULT_MISS) ] = 0x0,
  1010. },
  1011. },
  1012. [ C(LL ) ] = {
  1013. [ C(OP_READ) ] = {
  1014. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1015. [ C(RESULT_ACCESS) ] = 0x01b7,
  1016. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  1017. [ C(RESULT_MISS) ] = 0x01b7,
  1018. },
  1019. /*
  1020. * Use RFO, not WRITEBACK, because a write miss would typically occur
  1021. * on RFO.
  1022. */
  1023. [ C(OP_WRITE) ] = {
  1024. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1025. [ C(RESULT_ACCESS) ] = 0x01b7,
  1026. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1027. [ C(RESULT_MISS) ] = 0x01b7,
  1028. },
  1029. [ C(OP_PREFETCH) ] = {
  1030. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1031. [ C(RESULT_ACCESS) ] = 0x01b7,
  1032. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1033. [ C(RESULT_MISS) ] = 0x01b7,
  1034. },
  1035. },
  1036. [ C(DTLB) ] = {
  1037. [ C(OP_READ) ] = {
  1038. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1039. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  1040. },
  1041. [ C(OP_WRITE) ] = {
  1042. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1043. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  1044. },
  1045. [ C(OP_PREFETCH) ] = {
  1046. [ C(RESULT_ACCESS) ] = 0x0,
  1047. [ C(RESULT_MISS) ] = 0x0,
  1048. },
  1049. },
  1050. [ C(ITLB) ] = {
  1051. [ C(OP_READ) ] = {
  1052. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  1053. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  1054. },
  1055. [ C(OP_WRITE) ] = {
  1056. [ C(RESULT_ACCESS) ] = -1,
  1057. [ C(RESULT_MISS) ] = -1,
  1058. },
  1059. [ C(OP_PREFETCH) ] = {
  1060. [ C(RESULT_ACCESS) ] = -1,
  1061. [ C(RESULT_MISS) ] = -1,
  1062. },
  1063. },
  1064. [ C(BPU ) ] = {
  1065. [ C(OP_READ) ] = {
  1066. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1067. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  1068. },
  1069. [ C(OP_WRITE) ] = {
  1070. [ C(RESULT_ACCESS) ] = -1,
  1071. [ C(RESULT_MISS) ] = -1,
  1072. },
  1073. [ C(OP_PREFETCH) ] = {
  1074. [ C(RESULT_ACCESS) ] = -1,
  1075. [ C(RESULT_MISS) ] = -1,
  1076. },
  1077. },
  1078. [ C(NODE) ] = {
  1079. [ C(OP_READ) ] = {
  1080. [ C(RESULT_ACCESS) ] = 0x01b7,
  1081. [ C(RESULT_MISS) ] = 0x01b7,
  1082. },
  1083. [ C(OP_WRITE) ] = {
  1084. [ C(RESULT_ACCESS) ] = 0x01b7,
  1085. [ C(RESULT_MISS) ] = 0x01b7,
  1086. },
  1087. [ C(OP_PREFETCH) ] = {
  1088. [ C(RESULT_ACCESS) ] = 0x01b7,
  1089. [ C(RESULT_MISS) ] = 0x01b7,
  1090. },
  1091. },
  1092. };
  1093. static __initconst const u64 core2_hw_cache_event_ids
  1094. [PERF_COUNT_HW_CACHE_MAX]
  1095. [PERF_COUNT_HW_CACHE_OP_MAX]
  1096. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1097. {
  1098. [ C(L1D) ] = {
  1099. [ C(OP_READ) ] = {
  1100. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  1101. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  1102. },
  1103. [ C(OP_WRITE) ] = {
  1104. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  1105. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  1106. },
  1107. [ C(OP_PREFETCH) ] = {
  1108. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  1109. [ C(RESULT_MISS) ] = 0,
  1110. },
  1111. },
  1112. [ C(L1I ) ] = {
  1113. [ C(OP_READ) ] = {
  1114. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  1115. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  1116. },
  1117. [ C(OP_WRITE) ] = {
  1118. [ C(RESULT_ACCESS) ] = -1,
  1119. [ C(RESULT_MISS) ] = -1,
  1120. },
  1121. [ C(OP_PREFETCH) ] = {
  1122. [ C(RESULT_ACCESS) ] = 0,
  1123. [ C(RESULT_MISS) ] = 0,
  1124. },
  1125. },
  1126. [ C(LL ) ] = {
  1127. [ C(OP_READ) ] = {
  1128. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1129. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1130. },
  1131. [ C(OP_WRITE) ] = {
  1132. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1133. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1134. },
  1135. [ C(OP_PREFETCH) ] = {
  1136. [ C(RESULT_ACCESS) ] = 0,
  1137. [ C(RESULT_MISS) ] = 0,
  1138. },
  1139. },
  1140. [ C(DTLB) ] = {
  1141. [ C(OP_READ) ] = {
  1142. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1143. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  1144. },
  1145. [ C(OP_WRITE) ] = {
  1146. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1147. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  1148. },
  1149. [ C(OP_PREFETCH) ] = {
  1150. [ C(RESULT_ACCESS) ] = 0,
  1151. [ C(RESULT_MISS) ] = 0,
  1152. },
  1153. },
  1154. [ C(ITLB) ] = {
  1155. [ C(OP_READ) ] = {
  1156. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1157. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  1158. },
  1159. [ C(OP_WRITE) ] = {
  1160. [ C(RESULT_ACCESS) ] = -1,
  1161. [ C(RESULT_MISS) ] = -1,
  1162. },
  1163. [ C(OP_PREFETCH) ] = {
  1164. [ C(RESULT_ACCESS) ] = -1,
  1165. [ C(RESULT_MISS) ] = -1,
  1166. },
  1167. },
  1168. [ C(BPU ) ] = {
  1169. [ C(OP_READ) ] = {
  1170. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1171. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1172. },
  1173. [ C(OP_WRITE) ] = {
  1174. [ C(RESULT_ACCESS) ] = -1,
  1175. [ C(RESULT_MISS) ] = -1,
  1176. },
  1177. [ C(OP_PREFETCH) ] = {
  1178. [ C(RESULT_ACCESS) ] = -1,
  1179. [ C(RESULT_MISS) ] = -1,
  1180. },
  1181. },
  1182. };
  1183. static __initconst const u64 atom_hw_cache_event_ids
  1184. [PERF_COUNT_HW_CACHE_MAX]
  1185. [PERF_COUNT_HW_CACHE_OP_MAX]
  1186. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1187. {
  1188. [ C(L1D) ] = {
  1189. [ C(OP_READ) ] = {
  1190. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  1191. [ C(RESULT_MISS) ] = 0,
  1192. },
  1193. [ C(OP_WRITE) ] = {
  1194. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  1195. [ C(RESULT_MISS) ] = 0,
  1196. },
  1197. [ C(OP_PREFETCH) ] = {
  1198. [ C(RESULT_ACCESS) ] = 0x0,
  1199. [ C(RESULT_MISS) ] = 0,
  1200. },
  1201. },
  1202. [ C(L1I ) ] = {
  1203. [ C(OP_READ) ] = {
  1204. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1205. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1206. },
  1207. [ C(OP_WRITE) ] = {
  1208. [ C(RESULT_ACCESS) ] = -1,
  1209. [ C(RESULT_MISS) ] = -1,
  1210. },
  1211. [ C(OP_PREFETCH) ] = {
  1212. [ C(RESULT_ACCESS) ] = 0,
  1213. [ C(RESULT_MISS) ] = 0,
  1214. },
  1215. },
  1216. [ C(LL ) ] = {
  1217. [ C(OP_READ) ] = {
  1218. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1219. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1220. },
  1221. [ C(OP_WRITE) ] = {
  1222. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1223. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1224. },
  1225. [ C(OP_PREFETCH) ] = {
  1226. [ C(RESULT_ACCESS) ] = 0,
  1227. [ C(RESULT_MISS) ] = 0,
  1228. },
  1229. },
  1230. [ C(DTLB) ] = {
  1231. [ C(OP_READ) ] = {
  1232. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  1233. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  1234. },
  1235. [ C(OP_WRITE) ] = {
  1236. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  1237. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  1238. },
  1239. [ C(OP_PREFETCH) ] = {
  1240. [ C(RESULT_ACCESS) ] = 0,
  1241. [ C(RESULT_MISS) ] = 0,
  1242. },
  1243. },
  1244. [ C(ITLB) ] = {
  1245. [ C(OP_READ) ] = {
  1246. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1247. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  1248. },
  1249. [ C(OP_WRITE) ] = {
  1250. [ C(RESULT_ACCESS) ] = -1,
  1251. [ C(RESULT_MISS) ] = -1,
  1252. },
  1253. [ C(OP_PREFETCH) ] = {
  1254. [ C(RESULT_ACCESS) ] = -1,
  1255. [ C(RESULT_MISS) ] = -1,
  1256. },
  1257. },
  1258. [ C(BPU ) ] = {
  1259. [ C(OP_READ) ] = {
  1260. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1261. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1262. },
  1263. [ C(OP_WRITE) ] = {
  1264. [ C(RESULT_ACCESS) ] = -1,
  1265. [ C(RESULT_MISS) ] = -1,
  1266. },
  1267. [ C(OP_PREFETCH) ] = {
  1268. [ C(RESULT_ACCESS) ] = -1,
  1269. [ C(RESULT_MISS) ] = -1,
  1270. },
  1271. },
  1272. };
  1273. static struct extra_reg intel_slm_extra_regs[] __read_mostly =
  1274. {
  1275. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1276. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
  1277. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
  1278. EVENT_EXTRA_END
  1279. };
  1280. #define SLM_DMND_READ SNB_DMND_DATA_RD
  1281. #define SLM_DMND_WRITE SNB_DMND_RFO
  1282. #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1283. #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
  1284. #define SLM_LLC_ACCESS SNB_RESP_ANY
  1285. #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
  1286. static __initconst const u64 slm_hw_cache_extra_regs
  1287. [PERF_COUNT_HW_CACHE_MAX]
  1288. [PERF_COUNT_HW_CACHE_OP_MAX]
  1289. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1290. {
  1291. [ C(LL ) ] = {
  1292. [ C(OP_READ) ] = {
  1293. [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
  1294. [ C(RESULT_MISS) ] = 0,
  1295. },
  1296. [ C(OP_WRITE) ] = {
  1297. [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
  1298. [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
  1299. },
  1300. [ C(OP_PREFETCH) ] = {
  1301. [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
  1302. [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
  1303. },
  1304. },
  1305. };
  1306. static __initconst const u64 slm_hw_cache_event_ids
  1307. [PERF_COUNT_HW_CACHE_MAX]
  1308. [PERF_COUNT_HW_CACHE_OP_MAX]
  1309. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1310. {
  1311. [ C(L1D) ] = {
  1312. [ C(OP_READ) ] = {
  1313. [ C(RESULT_ACCESS) ] = 0,
  1314. [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
  1315. },
  1316. [ C(OP_WRITE) ] = {
  1317. [ C(RESULT_ACCESS) ] = 0,
  1318. [ C(RESULT_MISS) ] = 0,
  1319. },
  1320. [ C(OP_PREFETCH) ] = {
  1321. [ C(RESULT_ACCESS) ] = 0,
  1322. [ C(RESULT_MISS) ] = 0,
  1323. },
  1324. },
  1325. [ C(L1I ) ] = {
  1326. [ C(OP_READ) ] = {
  1327. [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
  1328. [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
  1329. },
  1330. [ C(OP_WRITE) ] = {
  1331. [ C(RESULT_ACCESS) ] = -1,
  1332. [ C(RESULT_MISS) ] = -1,
  1333. },
  1334. [ C(OP_PREFETCH) ] = {
  1335. [ C(RESULT_ACCESS) ] = 0,
  1336. [ C(RESULT_MISS) ] = 0,
  1337. },
  1338. },
  1339. [ C(LL ) ] = {
  1340. [ C(OP_READ) ] = {
  1341. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1342. [ C(RESULT_ACCESS) ] = 0x01b7,
  1343. [ C(RESULT_MISS) ] = 0,
  1344. },
  1345. [ C(OP_WRITE) ] = {
  1346. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1347. [ C(RESULT_ACCESS) ] = 0x01b7,
  1348. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1349. [ C(RESULT_MISS) ] = 0x01b7,
  1350. },
  1351. [ C(OP_PREFETCH) ] = {
  1352. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1353. [ C(RESULT_ACCESS) ] = 0x01b7,
  1354. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1355. [ C(RESULT_MISS) ] = 0x01b7,
  1356. },
  1357. },
  1358. [ C(DTLB) ] = {
  1359. [ C(OP_READ) ] = {
  1360. [ C(RESULT_ACCESS) ] = 0,
  1361. [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
  1362. },
  1363. [ C(OP_WRITE) ] = {
  1364. [ C(RESULT_ACCESS) ] = 0,
  1365. [ C(RESULT_MISS) ] = 0,
  1366. },
  1367. [ C(OP_PREFETCH) ] = {
  1368. [ C(RESULT_ACCESS) ] = 0,
  1369. [ C(RESULT_MISS) ] = 0,
  1370. },
  1371. },
  1372. [ C(ITLB) ] = {
  1373. [ C(OP_READ) ] = {
  1374. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1375. [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
  1376. },
  1377. [ C(OP_WRITE) ] = {
  1378. [ C(RESULT_ACCESS) ] = -1,
  1379. [ C(RESULT_MISS) ] = -1,
  1380. },
  1381. [ C(OP_PREFETCH) ] = {
  1382. [ C(RESULT_ACCESS) ] = -1,
  1383. [ C(RESULT_MISS) ] = -1,
  1384. },
  1385. },
  1386. [ C(BPU ) ] = {
  1387. [ C(OP_READ) ] = {
  1388. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1389. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1390. },
  1391. [ C(OP_WRITE) ] = {
  1392. [ C(RESULT_ACCESS) ] = -1,
  1393. [ C(RESULT_MISS) ] = -1,
  1394. },
  1395. [ C(OP_PREFETCH) ] = {
  1396. [ C(RESULT_ACCESS) ] = -1,
  1397. [ C(RESULT_MISS) ] = -1,
  1398. },
  1399. },
  1400. };
  1401. #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
  1402. #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
  1403. #define KNL_MCDRAM_LOCAL BIT_ULL(21)
  1404. #define KNL_MCDRAM_FAR BIT_ULL(22)
  1405. #define KNL_DDR_LOCAL BIT_ULL(23)
  1406. #define KNL_DDR_FAR BIT_ULL(24)
  1407. #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
  1408. KNL_DDR_LOCAL | KNL_DDR_FAR)
  1409. #define KNL_L2_READ SLM_DMND_READ
  1410. #define KNL_L2_WRITE SLM_DMND_WRITE
  1411. #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
  1412. #define KNL_L2_ACCESS SLM_LLC_ACCESS
  1413. #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
  1414. KNL_DRAM_ANY | SNB_SNP_ANY | \
  1415. SNB_NON_DRAM)
  1416. static __initconst const u64 knl_hw_cache_extra_regs
  1417. [PERF_COUNT_HW_CACHE_MAX]
  1418. [PERF_COUNT_HW_CACHE_OP_MAX]
  1419. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1420. [C(LL)] = {
  1421. [C(OP_READ)] = {
  1422. [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
  1423. [C(RESULT_MISS)] = 0,
  1424. },
  1425. [C(OP_WRITE)] = {
  1426. [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
  1427. [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
  1428. },
  1429. [C(OP_PREFETCH)] = {
  1430. [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
  1431. [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
  1432. },
  1433. },
  1434. };
  1435. /*
  1436. * Use from PMIs where the LBRs are already disabled.
  1437. */
  1438. static void __intel_pmu_disable_all(void)
  1439. {
  1440. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1441. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1442. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  1443. intel_pmu_disable_bts();
  1444. else
  1445. intel_bts_disable_local();
  1446. intel_pmu_pebs_disable_all();
  1447. }
  1448. static void intel_pmu_disable_all(void)
  1449. {
  1450. __intel_pmu_disable_all();
  1451. intel_pmu_lbr_disable_all();
  1452. }
  1453. static void __intel_pmu_enable_all(int added, bool pmi)
  1454. {
  1455. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1456. intel_pmu_pebs_enable_all();
  1457. intel_pmu_lbr_enable_all(pmi);
  1458. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  1459. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  1460. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  1461. struct perf_event *event =
  1462. cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
  1463. if (WARN_ON_ONCE(!event))
  1464. return;
  1465. intel_pmu_enable_bts(event->hw.config);
  1466. } else
  1467. intel_bts_enable_local();
  1468. }
  1469. static void intel_pmu_enable_all(int added)
  1470. {
  1471. __intel_pmu_enable_all(added, false);
  1472. }
  1473. /*
  1474. * Workaround for:
  1475. * Intel Errata AAK100 (model 26)
  1476. * Intel Errata AAP53 (model 30)
  1477. * Intel Errata BD53 (model 44)
  1478. *
  1479. * The official story:
  1480. * These chips need to be 'reset' when adding counters by programming the
  1481. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  1482. * in sequence on the same PMC or on different PMCs.
  1483. *
  1484. * In practise it appears some of these events do in fact count, and
  1485. * we need to programm all 4 events.
  1486. */
  1487. static void intel_pmu_nhm_workaround(void)
  1488. {
  1489. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1490. static const unsigned long nhm_magic[4] = {
  1491. 0x4300B5,
  1492. 0x4300D2,
  1493. 0x4300B1,
  1494. 0x4300B1
  1495. };
  1496. struct perf_event *event;
  1497. int i;
  1498. /*
  1499. * The Errata requires below steps:
  1500. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  1501. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  1502. * the corresponding PMCx;
  1503. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  1504. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  1505. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  1506. */
  1507. /*
  1508. * The real steps we choose are a little different from above.
  1509. * A) To reduce MSR operations, we don't run step 1) as they
  1510. * are already cleared before this function is called;
  1511. * B) Call x86_perf_event_update to save PMCx before configuring
  1512. * PERFEVTSELx with magic number;
  1513. * C) With step 5), we do clear only when the PERFEVTSELx is
  1514. * not used currently.
  1515. * D) Call x86_perf_event_set_period to restore PMCx;
  1516. */
  1517. /* We always operate 4 pairs of PERF Counters */
  1518. for (i = 0; i < 4; i++) {
  1519. event = cpuc->events[i];
  1520. if (event)
  1521. x86_perf_event_update(event);
  1522. }
  1523. for (i = 0; i < 4; i++) {
  1524. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  1525. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  1526. }
  1527. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  1528. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  1529. for (i = 0; i < 4; i++) {
  1530. event = cpuc->events[i];
  1531. if (event) {
  1532. x86_perf_event_set_period(event);
  1533. __x86_pmu_enable_event(&event->hw,
  1534. ARCH_PERFMON_EVENTSEL_ENABLE);
  1535. } else
  1536. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  1537. }
  1538. }
  1539. static void intel_pmu_nhm_enable_all(int added)
  1540. {
  1541. if (added)
  1542. intel_pmu_nhm_workaround();
  1543. intel_pmu_enable_all(added);
  1544. }
  1545. static inline u64 intel_pmu_get_status(void)
  1546. {
  1547. u64 status;
  1548. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  1549. return status;
  1550. }
  1551. static inline void intel_pmu_ack_status(u64 ack)
  1552. {
  1553. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  1554. }
  1555. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  1556. {
  1557. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1558. u64 ctrl_val, mask;
  1559. mask = 0xfULL << (idx * 4);
  1560. rdmsrl(hwc->config_base, ctrl_val);
  1561. ctrl_val &= ~mask;
  1562. wrmsrl(hwc->config_base, ctrl_val);
  1563. }
  1564. static inline bool event_is_checkpointed(struct perf_event *event)
  1565. {
  1566. return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
  1567. }
  1568. static void intel_pmu_disable_event(struct perf_event *event)
  1569. {
  1570. struct hw_perf_event *hwc = &event->hw;
  1571. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1572. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1573. intel_pmu_disable_bts();
  1574. intel_pmu_drain_bts_buffer();
  1575. return;
  1576. }
  1577. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  1578. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  1579. cpuc->intel_cp_status &= ~(1ull << hwc->idx);
  1580. /*
  1581. * must disable before any actual event
  1582. * because any event may be combined with LBR
  1583. */
  1584. if (needs_branch_stack(event))
  1585. intel_pmu_lbr_disable(event);
  1586. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1587. intel_pmu_disable_fixed(hwc);
  1588. return;
  1589. }
  1590. x86_pmu_disable_event(event);
  1591. if (unlikely(event->attr.precise_ip))
  1592. intel_pmu_pebs_disable(event);
  1593. }
  1594. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  1595. {
  1596. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1597. u64 ctrl_val, bits, mask;
  1598. /*
  1599. * Enable IRQ generation (0x8),
  1600. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  1601. * if requested:
  1602. */
  1603. bits = 0x8ULL;
  1604. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  1605. bits |= 0x2;
  1606. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  1607. bits |= 0x1;
  1608. /*
  1609. * ANY bit is supported in v3 and up
  1610. */
  1611. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  1612. bits |= 0x4;
  1613. bits <<= (idx * 4);
  1614. mask = 0xfULL << (idx * 4);
  1615. rdmsrl(hwc->config_base, ctrl_val);
  1616. ctrl_val &= ~mask;
  1617. ctrl_val |= bits;
  1618. wrmsrl(hwc->config_base, ctrl_val);
  1619. }
  1620. static void intel_pmu_enable_event(struct perf_event *event)
  1621. {
  1622. struct hw_perf_event *hwc = &event->hw;
  1623. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1624. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1625. if (!__this_cpu_read(cpu_hw_events.enabled))
  1626. return;
  1627. intel_pmu_enable_bts(hwc->config);
  1628. return;
  1629. }
  1630. /*
  1631. * must enabled before any actual event
  1632. * because any event may be combined with LBR
  1633. */
  1634. if (needs_branch_stack(event))
  1635. intel_pmu_lbr_enable(event);
  1636. if (event->attr.exclude_host)
  1637. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  1638. if (event->attr.exclude_guest)
  1639. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  1640. if (unlikely(event_is_checkpointed(event)))
  1641. cpuc->intel_cp_status |= (1ull << hwc->idx);
  1642. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1643. intel_pmu_enable_fixed(hwc);
  1644. return;
  1645. }
  1646. if (unlikely(event->attr.precise_ip))
  1647. intel_pmu_pebs_enable(event);
  1648. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1649. }
  1650. /*
  1651. * Save and restart an expired event. Called by NMI contexts,
  1652. * so it has to be careful about preempting normal event ops:
  1653. */
  1654. int intel_pmu_save_and_restart(struct perf_event *event)
  1655. {
  1656. x86_perf_event_update(event);
  1657. /*
  1658. * For a checkpointed counter always reset back to 0. This
  1659. * avoids a situation where the counter overflows, aborts the
  1660. * transaction and is then set back to shortly before the
  1661. * overflow, and overflows and aborts again.
  1662. */
  1663. if (unlikely(event_is_checkpointed(event))) {
  1664. /* No race with NMIs because the counter should not be armed */
  1665. wrmsrl(event->hw.event_base, 0);
  1666. local64_set(&event->hw.prev_count, 0);
  1667. }
  1668. return x86_perf_event_set_period(event);
  1669. }
  1670. static void intel_pmu_reset(void)
  1671. {
  1672. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  1673. unsigned long flags;
  1674. int idx;
  1675. if (!x86_pmu.num_counters)
  1676. return;
  1677. local_irq_save(flags);
  1678. pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
  1679. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1680. wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
  1681. wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
  1682. }
  1683. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  1684. wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  1685. if (ds)
  1686. ds->bts_index = ds->bts_buffer_base;
  1687. /* Ack all overflows and disable fixed counters */
  1688. if (x86_pmu.version >= 2) {
  1689. intel_pmu_ack_status(intel_pmu_get_status());
  1690. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1691. }
  1692. /* Reset LBRs and LBR freezing */
  1693. if (x86_pmu.lbr_nr) {
  1694. update_debugctlmsr(get_debugctlmsr() &
  1695. ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
  1696. }
  1697. local_irq_restore(flags);
  1698. }
  1699. /*
  1700. * This handler is triggered by the local APIC, so the APIC IRQ handling
  1701. * rules apply:
  1702. */
  1703. static int intel_pmu_handle_irq(struct pt_regs *regs)
  1704. {
  1705. struct perf_sample_data data;
  1706. struct cpu_hw_events *cpuc;
  1707. int bit, loops;
  1708. u64 status;
  1709. int handled;
  1710. cpuc = this_cpu_ptr(&cpu_hw_events);
  1711. /*
  1712. * No known reason to not always do late ACK,
  1713. * but just in case do it opt-in.
  1714. */
  1715. if (!x86_pmu.late_ack)
  1716. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1717. __intel_pmu_disable_all();
  1718. handled = intel_pmu_drain_bts_buffer();
  1719. handled += intel_bts_interrupt();
  1720. status = intel_pmu_get_status();
  1721. if (!status)
  1722. goto done;
  1723. loops = 0;
  1724. again:
  1725. intel_pmu_lbr_read();
  1726. intel_pmu_ack_status(status);
  1727. if (++loops > 100) {
  1728. static bool warned = false;
  1729. if (!warned) {
  1730. WARN(1, "perfevents: irq loop stuck!\n");
  1731. perf_event_print_debug();
  1732. warned = true;
  1733. }
  1734. intel_pmu_reset();
  1735. goto done;
  1736. }
  1737. inc_irq_stat(apic_perf_irqs);
  1738. /*
  1739. * Ignore a range of extra bits in status that do not indicate
  1740. * overflow by themselves.
  1741. */
  1742. status &= ~(GLOBAL_STATUS_COND_CHG |
  1743. GLOBAL_STATUS_ASIF |
  1744. GLOBAL_STATUS_LBRS_FROZEN);
  1745. if (!status)
  1746. goto done;
  1747. /*
  1748. * PEBS overflow sets bit 62 in the global status register
  1749. */
  1750. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  1751. handled++;
  1752. x86_pmu.drain_pebs(regs);
  1753. }
  1754. /*
  1755. * Intel PT
  1756. */
  1757. if (__test_and_clear_bit(55, (unsigned long *)&status)) {
  1758. handled++;
  1759. intel_pt_interrupt();
  1760. }
  1761. /*
  1762. * Checkpointed counters can lead to 'spurious' PMIs because the
  1763. * rollback caused by the PMI will have cleared the overflow status
  1764. * bit. Therefore always force probe these counters.
  1765. */
  1766. status |= cpuc->intel_cp_status;
  1767. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  1768. struct perf_event *event = cpuc->events[bit];
  1769. handled++;
  1770. if (!test_bit(bit, cpuc->active_mask))
  1771. continue;
  1772. if (!intel_pmu_save_and_restart(event))
  1773. continue;
  1774. perf_sample_data_init(&data, 0, event->hw.last_period);
  1775. if (has_branch_stack(event))
  1776. data.br_stack = &cpuc->lbr_stack;
  1777. if (perf_event_overflow(event, &data, regs))
  1778. x86_pmu_stop(event, 0);
  1779. }
  1780. /*
  1781. * Repeat if there is more work to be done:
  1782. */
  1783. status = intel_pmu_get_status();
  1784. if (status)
  1785. goto again;
  1786. done:
  1787. __intel_pmu_enable_all(0, true);
  1788. /*
  1789. * Only unmask the NMI after the overflow counters
  1790. * have been reset. This avoids spurious NMIs on
  1791. * Haswell CPUs.
  1792. */
  1793. if (x86_pmu.late_ack)
  1794. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1795. return handled;
  1796. }
  1797. static struct event_constraint *
  1798. intel_bts_constraints(struct perf_event *event)
  1799. {
  1800. struct hw_perf_event *hwc = &event->hw;
  1801. unsigned int hw_event, bts_event;
  1802. if (event->attr.freq)
  1803. return NULL;
  1804. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  1805. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  1806. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  1807. return &bts_constraint;
  1808. return NULL;
  1809. }
  1810. static int intel_alt_er(int idx, u64 config)
  1811. {
  1812. int alt_idx;
  1813. if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
  1814. return idx;
  1815. if (idx == EXTRA_REG_RSP_0)
  1816. alt_idx = EXTRA_REG_RSP_1;
  1817. if (idx == EXTRA_REG_RSP_1)
  1818. alt_idx = EXTRA_REG_RSP_0;
  1819. if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
  1820. return idx;
  1821. return alt_idx;
  1822. }
  1823. static void intel_fixup_er(struct perf_event *event, int idx)
  1824. {
  1825. event->hw.extra_reg.idx = idx;
  1826. if (idx == EXTRA_REG_RSP_0) {
  1827. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1828. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
  1829. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  1830. } else if (idx == EXTRA_REG_RSP_1) {
  1831. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  1832. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
  1833. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  1834. }
  1835. }
  1836. /*
  1837. * manage allocation of shared extra msr for certain events
  1838. *
  1839. * sharing can be:
  1840. * per-cpu: to be shared between the various events on a single PMU
  1841. * per-core: per-cpu + shared by HT threads
  1842. */
  1843. static struct event_constraint *
  1844. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  1845. struct perf_event *event,
  1846. struct hw_perf_event_extra *reg)
  1847. {
  1848. struct event_constraint *c = &emptyconstraint;
  1849. struct er_account *era;
  1850. unsigned long flags;
  1851. int idx = reg->idx;
  1852. /*
  1853. * reg->alloc can be set due to existing state, so for fake cpuc we
  1854. * need to ignore this, otherwise we might fail to allocate proper fake
  1855. * state for this extra reg constraint. Also see the comment below.
  1856. */
  1857. if (reg->alloc && !cpuc->is_fake)
  1858. return NULL; /* call x86_get_event_constraint() */
  1859. again:
  1860. era = &cpuc->shared_regs->regs[idx];
  1861. /*
  1862. * we use spin_lock_irqsave() to avoid lockdep issues when
  1863. * passing a fake cpuc
  1864. */
  1865. raw_spin_lock_irqsave(&era->lock, flags);
  1866. if (!atomic_read(&era->ref) || era->config == reg->config) {
  1867. /*
  1868. * If its a fake cpuc -- as per validate_{group,event}() we
  1869. * shouldn't touch event state and we can avoid doing so
  1870. * since both will only call get_event_constraints() once
  1871. * on each event, this avoids the need for reg->alloc.
  1872. *
  1873. * Not doing the ER fixup will only result in era->reg being
  1874. * wrong, but since we won't actually try and program hardware
  1875. * this isn't a problem either.
  1876. */
  1877. if (!cpuc->is_fake) {
  1878. if (idx != reg->idx)
  1879. intel_fixup_er(event, idx);
  1880. /*
  1881. * x86_schedule_events() can call get_event_constraints()
  1882. * multiple times on events in the case of incremental
  1883. * scheduling(). reg->alloc ensures we only do the ER
  1884. * allocation once.
  1885. */
  1886. reg->alloc = 1;
  1887. }
  1888. /* lock in msr value */
  1889. era->config = reg->config;
  1890. era->reg = reg->reg;
  1891. /* one more user */
  1892. atomic_inc(&era->ref);
  1893. /*
  1894. * need to call x86_get_event_constraint()
  1895. * to check if associated event has constraints
  1896. */
  1897. c = NULL;
  1898. } else {
  1899. idx = intel_alt_er(idx, reg->config);
  1900. if (idx != reg->idx) {
  1901. raw_spin_unlock_irqrestore(&era->lock, flags);
  1902. goto again;
  1903. }
  1904. }
  1905. raw_spin_unlock_irqrestore(&era->lock, flags);
  1906. return c;
  1907. }
  1908. static void
  1909. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  1910. struct hw_perf_event_extra *reg)
  1911. {
  1912. struct er_account *era;
  1913. /*
  1914. * Only put constraint if extra reg was actually allocated. Also takes
  1915. * care of event which do not use an extra shared reg.
  1916. *
  1917. * Also, if this is a fake cpuc we shouldn't touch any event state
  1918. * (reg->alloc) and we don't care about leaving inconsistent cpuc state
  1919. * either since it'll be thrown out.
  1920. */
  1921. if (!reg->alloc || cpuc->is_fake)
  1922. return;
  1923. era = &cpuc->shared_regs->regs[reg->idx];
  1924. /* one fewer user */
  1925. atomic_dec(&era->ref);
  1926. /* allocate again next time */
  1927. reg->alloc = 0;
  1928. }
  1929. static struct event_constraint *
  1930. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  1931. struct perf_event *event)
  1932. {
  1933. struct event_constraint *c = NULL, *d;
  1934. struct hw_perf_event_extra *xreg, *breg;
  1935. xreg = &event->hw.extra_reg;
  1936. if (xreg->idx != EXTRA_REG_NONE) {
  1937. c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
  1938. if (c == &emptyconstraint)
  1939. return c;
  1940. }
  1941. breg = &event->hw.branch_reg;
  1942. if (breg->idx != EXTRA_REG_NONE) {
  1943. d = __intel_shared_reg_get_constraints(cpuc, event, breg);
  1944. if (d == &emptyconstraint) {
  1945. __intel_shared_reg_put_constraints(cpuc, xreg);
  1946. c = d;
  1947. }
  1948. }
  1949. return c;
  1950. }
  1951. struct event_constraint *
  1952. x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  1953. struct perf_event *event)
  1954. {
  1955. struct event_constraint *c;
  1956. if (x86_pmu.event_constraints) {
  1957. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1958. if ((event->hw.config & c->cmask) == c->code) {
  1959. event->hw.flags |= c->flags;
  1960. return c;
  1961. }
  1962. }
  1963. }
  1964. return &unconstrained;
  1965. }
  1966. static struct event_constraint *
  1967. __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  1968. struct perf_event *event)
  1969. {
  1970. struct event_constraint *c;
  1971. c = intel_bts_constraints(event);
  1972. if (c)
  1973. return c;
  1974. c = intel_shared_regs_constraints(cpuc, event);
  1975. if (c)
  1976. return c;
  1977. c = intel_pebs_constraints(event);
  1978. if (c)
  1979. return c;
  1980. return x86_get_event_constraints(cpuc, idx, event);
  1981. }
  1982. static void
  1983. intel_start_scheduling(struct cpu_hw_events *cpuc)
  1984. {
  1985. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  1986. struct intel_excl_states *xl;
  1987. int tid = cpuc->excl_thread_id;
  1988. /*
  1989. * nothing needed if in group validation mode
  1990. */
  1991. if (cpuc->is_fake || !is_ht_workaround_enabled())
  1992. return;
  1993. /*
  1994. * no exclusion needed
  1995. */
  1996. if (WARN_ON_ONCE(!excl_cntrs))
  1997. return;
  1998. xl = &excl_cntrs->states[tid];
  1999. xl->sched_started = true;
  2000. /*
  2001. * lock shared state until we are done scheduling
  2002. * in stop_event_scheduling()
  2003. * makes scheduling appear as a transaction
  2004. */
  2005. raw_spin_lock(&excl_cntrs->lock);
  2006. }
  2007. static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
  2008. {
  2009. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2010. struct event_constraint *c = cpuc->event_constraint[idx];
  2011. struct intel_excl_states *xl;
  2012. int tid = cpuc->excl_thread_id;
  2013. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2014. return;
  2015. if (WARN_ON_ONCE(!excl_cntrs))
  2016. return;
  2017. if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
  2018. return;
  2019. xl = &excl_cntrs->states[tid];
  2020. lockdep_assert_held(&excl_cntrs->lock);
  2021. if (c->flags & PERF_X86_EVENT_EXCL)
  2022. xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
  2023. else
  2024. xl->state[cntr] = INTEL_EXCL_SHARED;
  2025. }
  2026. static void
  2027. intel_stop_scheduling(struct cpu_hw_events *cpuc)
  2028. {
  2029. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2030. struct intel_excl_states *xl;
  2031. int tid = cpuc->excl_thread_id;
  2032. /*
  2033. * nothing needed if in group validation mode
  2034. */
  2035. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2036. return;
  2037. /*
  2038. * no exclusion needed
  2039. */
  2040. if (WARN_ON_ONCE(!excl_cntrs))
  2041. return;
  2042. xl = &excl_cntrs->states[tid];
  2043. xl->sched_started = false;
  2044. /*
  2045. * release shared state lock (acquired in intel_start_scheduling())
  2046. */
  2047. raw_spin_unlock(&excl_cntrs->lock);
  2048. }
  2049. static struct event_constraint *
  2050. intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
  2051. int idx, struct event_constraint *c)
  2052. {
  2053. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2054. struct intel_excl_states *xlo;
  2055. int tid = cpuc->excl_thread_id;
  2056. int is_excl, i;
  2057. /*
  2058. * validating a group does not require
  2059. * enforcing cross-thread exclusion
  2060. */
  2061. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2062. return c;
  2063. /*
  2064. * no exclusion needed
  2065. */
  2066. if (WARN_ON_ONCE(!excl_cntrs))
  2067. return c;
  2068. /*
  2069. * because we modify the constraint, we need
  2070. * to make a copy. Static constraints come
  2071. * from static const tables.
  2072. *
  2073. * only needed when constraint has not yet
  2074. * been cloned (marked dynamic)
  2075. */
  2076. if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
  2077. struct event_constraint *cx;
  2078. /*
  2079. * grab pre-allocated constraint entry
  2080. */
  2081. cx = &cpuc->constraint_list[idx];
  2082. /*
  2083. * initialize dynamic constraint
  2084. * with static constraint
  2085. */
  2086. *cx = *c;
  2087. /*
  2088. * mark constraint as dynamic, so we
  2089. * can free it later on
  2090. */
  2091. cx->flags |= PERF_X86_EVENT_DYNAMIC;
  2092. c = cx;
  2093. }
  2094. /*
  2095. * From here on, the constraint is dynamic.
  2096. * Either it was just allocated above, or it
  2097. * was allocated during a earlier invocation
  2098. * of this function
  2099. */
  2100. /*
  2101. * state of sibling HT
  2102. */
  2103. xlo = &excl_cntrs->states[tid ^ 1];
  2104. /*
  2105. * event requires exclusive counter access
  2106. * across HT threads
  2107. */
  2108. is_excl = c->flags & PERF_X86_EVENT_EXCL;
  2109. if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
  2110. event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
  2111. if (!cpuc->n_excl++)
  2112. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
  2113. }
  2114. /*
  2115. * Modify static constraint with current dynamic
  2116. * state of thread
  2117. *
  2118. * EXCLUSIVE: sibling counter measuring exclusive event
  2119. * SHARED : sibling counter measuring non-exclusive event
  2120. * UNUSED : sibling counter unused
  2121. */
  2122. for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
  2123. /*
  2124. * exclusive event in sibling counter
  2125. * our corresponding counter cannot be used
  2126. * regardless of our event
  2127. */
  2128. if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
  2129. __clear_bit(i, c->idxmsk);
  2130. /*
  2131. * if measuring an exclusive event, sibling
  2132. * measuring non-exclusive, then counter cannot
  2133. * be used
  2134. */
  2135. if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
  2136. __clear_bit(i, c->idxmsk);
  2137. }
  2138. /*
  2139. * recompute actual bit weight for scheduling algorithm
  2140. */
  2141. c->weight = hweight64(c->idxmsk64);
  2142. /*
  2143. * if we return an empty mask, then switch
  2144. * back to static empty constraint to avoid
  2145. * the cost of freeing later on
  2146. */
  2147. if (c->weight == 0)
  2148. c = &emptyconstraint;
  2149. return c;
  2150. }
  2151. static struct event_constraint *
  2152. intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2153. struct perf_event *event)
  2154. {
  2155. struct event_constraint *c1 = NULL;
  2156. struct event_constraint *c2;
  2157. if (idx >= 0) /* fake does < 0 */
  2158. c1 = cpuc->event_constraint[idx];
  2159. /*
  2160. * first time only
  2161. * - static constraint: no change across incremental scheduling calls
  2162. * - dynamic constraint: handled by intel_get_excl_constraints()
  2163. */
  2164. c2 = __intel_get_event_constraints(cpuc, idx, event);
  2165. if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
  2166. bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
  2167. c1->weight = c2->weight;
  2168. c2 = c1;
  2169. }
  2170. if (cpuc->excl_cntrs)
  2171. return intel_get_excl_constraints(cpuc, event, idx, c2);
  2172. return c2;
  2173. }
  2174. static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
  2175. struct perf_event *event)
  2176. {
  2177. struct hw_perf_event *hwc = &event->hw;
  2178. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2179. int tid = cpuc->excl_thread_id;
  2180. struct intel_excl_states *xl;
  2181. /*
  2182. * nothing needed if in group validation mode
  2183. */
  2184. if (cpuc->is_fake)
  2185. return;
  2186. if (WARN_ON_ONCE(!excl_cntrs))
  2187. return;
  2188. if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
  2189. hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
  2190. if (!--cpuc->n_excl)
  2191. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
  2192. }
  2193. /*
  2194. * If event was actually assigned, then mark the counter state as
  2195. * unused now.
  2196. */
  2197. if (hwc->idx >= 0) {
  2198. xl = &excl_cntrs->states[tid];
  2199. /*
  2200. * put_constraint may be called from x86_schedule_events()
  2201. * which already has the lock held so here make locking
  2202. * conditional.
  2203. */
  2204. if (!xl->sched_started)
  2205. raw_spin_lock(&excl_cntrs->lock);
  2206. xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
  2207. if (!xl->sched_started)
  2208. raw_spin_unlock(&excl_cntrs->lock);
  2209. }
  2210. }
  2211. static void
  2212. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  2213. struct perf_event *event)
  2214. {
  2215. struct hw_perf_event_extra *reg;
  2216. reg = &event->hw.extra_reg;
  2217. if (reg->idx != EXTRA_REG_NONE)
  2218. __intel_shared_reg_put_constraints(cpuc, reg);
  2219. reg = &event->hw.branch_reg;
  2220. if (reg->idx != EXTRA_REG_NONE)
  2221. __intel_shared_reg_put_constraints(cpuc, reg);
  2222. }
  2223. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  2224. struct perf_event *event)
  2225. {
  2226. intel_put_shared_regs_event_constraints(cpuc, event);
  2227. /*
  2228. * is PMU has exclusive counter restrictions, then
  2229. * all events are subject to and must call the
  2230. * put_excl_constraints() routine
  2231. */
  2232. if (cpuc->excl_cntrs)
  2233. intel_put_excl_constraints(cpuc, event);
  2234. }
  2235. static void intel_pebs_aliases_core2(struct perf_event *event)
  2236. {
  2237. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2238. /*
  2239. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2240. * (0x003c) so that we can use it with PEBS.
  2241. *
  2242. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2243. * PEBS capable. However we can use INST_RETIRED.ANY_P
  2244. * (0x00c0), which is a PEBS capable event, to get the same
  2245. * count.
  2246. *
  2247. * INST_RETIRED.ANY_P counts the number of cycles that retires
  2248. * CNTMASK instructions. By setting CNTMASK to a value (16)
  2249. * larger than the maximum number of instructions that can be
  2250. * retired per cycle (4) and then inverting the condition, we
  2251. * count all cycles that retire 16 or less instructions, which
  2252. * is every cycle.
  2253. *
  2254. * Thereby we gain a PEBS capable cycle counter.
  2255. */
  2256. u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
  2257. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2258. event->hw.config = alt_config;
  2259. }
  2260. }
  2261. static void intel_pebs_aliases_snb(struct perf_event *event)
  2262. {
  2263. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2264. /*
  2265. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2266. * (0x003c) so that we can use it with PEBS.
  2267. *
  2268. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2269. * PEBS capable. However we can use UOPS_RETIRED.ALL
  2270. * (0x01c2), which is a PEBS capable event, to get the same
  2271. * count.
  2272. *
  2273. * UOPS_RETIRED.ALL counts the number of cycles that retires
  2274. * CNTMASK micro-ops. By setting CNTMASK to a value (16)
  2275. * larger than the maximum number of micro-ops that can be
  2276. * retired per cycle (4) and then inverting the condition, we
  2277. * count all cycles that retire 16 or less micro-ops, which
  2278. * is every cycle.
  2279. *
  2280. * Thereby we gain a PEBS capable cycle counter.
  2281. */
  2282. u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
  2283. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2284. event->hw.config = alt_config;
  2285. }
  2286. }
  2287. static void intel_pebs_aliases_precdist(struct perf_event *event)
  2288. {
  2289. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2290. /*
  2291. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2292. * (0x003c) so that we can use it with PEBS.
  2293. *
  2294. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2295. * PEBS capable. However we can use INST_RETIRED.PREC_DIST
  2296. * (0x01c0), which is a PEBS capable event, to get the same
  2297. * count.
  2298. *
  2299. * The PREC_DIST event has special support to minimize sample
  2300. * shadowing effects. One drawback is that it can be
  2301. * only programmed on counter 1, but that seems like an
  2302. * acceptable trade off.
  2303. */
  2304. u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
  2305. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2306. event->hw.config = alt_config;
  2307. }
  2308. }
  2309. static void intel_pebs_aliases_ivb(struct perf_event *event)
  2310. {
  2311. if (event->attr.precise_ip < 3)
  2312. return intel_pebs_aliases_snb(event);
  2313. return intel_pebs_aliases_precdist(event);
  2314. }
  2315. static void intel_pebs_aliases_skl(struct perf_event *event)
  2316. {
  2317. if (event->attr.precise_ip < 3)
  2318. return intel_pebs_aliases_core2(event);
  2319. return intel_pebs_aliases_precdist(event);
  2320. }
  2321. static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
  2322. {
  2323. unsigned long flags = x86_pmu.free_running_flags;
  2324. if (event->attr.use_clockid)
  2325. flags &= ~PERF_SAMPLE_TIME;
  2326. return flags;
  2327. }
  2328. static int intel_pmu_hw_config(struct perf_event *event)
  2329. {
  2330. int ret = x86_pmu_hw_config(event);
  2331. if (ret)
  2332. return ret;
  2333. if (event->attr.precise_ip) {
  2334. if (!event->attr.freq) {
  2335. event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
  2336. if (!(event->attr.sample_type &
  2337. ~intel_pmu_free_running_flags(event)))
  2338. event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
  2339. }
  2340. if (x86_pmu.pebs_aliases)
  2341. x86_pmu.pebs_aliases(event);
  2342. }
  2343. if (needs_branch_stack(event)) {
  2344. ret = intel_pmu_setup_lbr_filter(event);
  2345. if (ret)
  2346. return ret;
  2347. /*
  2348. * BTS is set up earlier in this path, so don't account twice
  2349. */
  2350. if (!intel_pmu_has_bts(event)) {
  2351. /* disallow lbr if conflicting events are present */
  2352. if (x86_add_exclusive(x86_lbr_exclusive_lbr))
  2353. return -EBUSY;
  2354. event->destroy = hw_perf_lbr_event_destroy;
  2355. }
  2356. }
  2357. if (event->attr.type != PERF_TYPE_RAW)
  2358. return 0;
  2359. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  2360. return 0;
  2361. if (x86_pmu.version < 3)
  2362. return -EINVAL;
  2363. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2364. return -EACCES;
  2365. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  2366. return 0;
  2367. }
  2368. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  2369. {
  2370. if (x86_pmu.guest_get_msrs)
  2371. return x86_pmu.guest_get_msrs(nr);
  2372. *nr = 0;
  2373. return NULL;
  2374. }
  2375. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  2376. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  2377. {
  2378. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2379. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2380. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  2381. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  2382. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  2383. /*
  2384. * If PMU counter has PEBS enabled it is not enough to disable counter
  2385. * on a guest entry since PEBS memory write can overshoot guest entry
  2386. * and corrupt guest memory. Disabling PEBS solves the problem.
  2387. */
  2388. arr[1].msr = MSR_IA32_PEBS_ENABLE;
  2389. arr[1].host = cpuc->pebs_enabled;
  2390. arr[1].guest = 0;
  2391. *nr = 2;
  2392. return arr;
  2393. }
  2394. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  2395. {
  2396. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2397. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2398. int idx;
  2399. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2400. struct perf_event *event = cpuc->events[idx];
  2401. arr[idx].msr = x86_pmu_config_addr(idx);
  2402. arr[idx].host = arr[idx].guest = 0;
  2403. if (!test_bit(idx, cpuc->active_mask))
  2404. continue;
  2405. arr[idx].host = arr[idx].guest =
  2406. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  2407. if (event->attr.exclude_host)
  2408. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2409. else if (event->attr.exclude_guest)
  2410. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2411. }
  2412. *nr = x86_pmu.num_counters;
  2413. return arr;
  2414. }
  2415. static void core_pmu_enable_event(struct perf_event *event)
  2416. {
  2417. if (!event->attr.exclude_host)
  2418. x86_pmu_enable_event(event);
  2419. }
  2420. static void core_pmu_enable_all(int added)
  2421. {
  2422. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2423. int idx;
  2424. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2425. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  2426. if (!test_bit(idx, cpuc->active_mask) ||
  2427. cpuc->events[idx]->attr.exclude_host)
  2428. continue;
  2429. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  2430. }
  2431. }
  2432. static int hsw_hw_config(struct perf_event *event)
  2433. {
  2434. int ret = intel_pmu_hw_config(event);
  2435. if (ret)
  2436. return ret;
  2437. if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
  2438. return 0;
  2439. event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
  2440. /*
  2441. * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
  2442. * PEBS or in ANY thread mode. Since the results are non-sensical forbid
  2443. * this combination.
  2444. */
  2445. if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
  2446. ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
  2447. event->attr.precise_ip > 0))
  2448. return -EOPNOTSUPP;
  2449. if (event_is_checkpointed(event)) {
  2450. /*
  2451. * Sampling of checkpointed events can cause situations where
  2452. * the CPU constantly aborts because of a overflow, which is
  2453. * then checkpointed back and ignored. Forbid checkpointing
  2454. * for sampling.
  2455. *
  2456. * But still allow a long sampling period, so that perf stat
  2457. * from KVM works.
  2458. */
  2459. if (event->attr.sample_period > 0 &&
  2460. event->attr.sample_period < 0x7fffffff)
  2461. return -EOPNOTSUPP;
  2462. }
  2463. return 0;
  2464. }
  2465. static struct event_constraint counter2_constraint =
  2466. EVENT_CONSTRAINT(0, 0x4, 0);
  2467. static struct event_constraint *
  2468. hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2469. struct perf_event *event)
  2470. {
  2471. struct event_constraint *c;
  2472. c = intel_get_event_constraints(cpuc, idx, event);
  2473. /* Handle special quirk on in_tx_checkpointed only in counter 2 */
  2474. if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
  2475. if (c->idxmsk64 & (1U << 2))
  2476. return &counter2_constraint;
  2477. return &emptyconstraint;
  2478. }
  2479. return c;
  2480. }
  2481. /*
  2482. * Broadwell:
  2483. *
  2484. * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
  2485. * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
  2486. * the two to enforce a minimum period of 128 (the smallest value that has bits
  2487. * 0-5 cleared and >= 100).
  2488. *
  2489. * Because of how the code in x86_perf_event_set_period() works, the truncation
  2490. * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
  2491. * to make up for the 'lost' events due to carrying the 'error' in period_left.
  2492. *
  2493. * Therefore the effective (average) period matches the requested period,
  2494. * despite coarser hardware granularity.
  2495. */
  2496. static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
  2497. {
  2498. if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
  2499. X86_CONFIG(.event=0xc0, .umask=0x01)) {
  2500. if (left < 128)
  2501. left = 128;
  2502. left &= ~0x3fu;
  2503. }
  2504. return left;
  2505. }
  2506. PMU_FORMAT_ATTR(event, "config:0-7" );
  2507. PMU_FORMAT_ATTR(umask, "config:8-15" );
  2508. PMU_FORMAT_ATTR(edge, "config:18" );
  2509. PMU_FORMAT_ATTR(pc, "config:19" );
  2510. PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
  2511. PMU_FORMAT_ATTR(inv, "config:23" );
  2512. PMU_FORMAT_ATTR(cmask, "config:24-31" );
  2513. PMU_FORMAT_ATTR(in_tx, "config:32");
  2514. PMU_FORMAT_ATTR(in_tx_cp, "config:33");
  2515. static struct attribute *intel_arch_formats_attr[] = {
  2516. &format_attr_event.attr,
  2517. &format_attr_umask.attr,
  2518. &format_attr_edge.attr,
  2519. &format_attr_pc.attr,
  2520. &format_attr_inv.attr,
  2521. &format_attr_cmask.attr,
  2522. NULL,
  2523. };
  2524. ssize_t intel_event_sysfs_show(char *page, u64 config)
  2525. {
  2526. u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
  2527. return x86_event_sysfs_show(page, config, event);
  2528. }
  2529. struct intel_shared_regs *allocate_shared_regs(int cpu)
  2530. {
  2531. struct intel_shared_regs *regs;
  2532. int i;
  2533. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  2534. GFP_KERNEL, cpu_to_node(cpu));
  2535. if (regs) {
  2536. /*
  2537. * initialize the locks to keep lockdep happy
  2538. */
  2539. for (i = 0; i < EXTRA_REG_MAX; i++)
  2540. raw_spin_lock_init(&regs->regs[i].lock);
  2541. regs->core_id = -1;
  2542. }
  2543. return regs;
  2544. }
  2545. static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
  2546. {
  2547. struct intel_excl_cntrs *c;
  2548. c = kzalloc_node(sizeof(struct intel_excl_cntrs),
  2549. GFP_KERNEL, cpu_to_node(cpu));
  2550. if (c) {
  2551. raw_spin_lock_init(&c->lock);
  2552. c->core_id = -1;
  2553. }
  2554. return c;
  2555. }
  2556. static int intel_pmu_cpu_prepare(int cpu)
  2557. {
  2558. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2559. if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
  2560. cpuc->shared_regs = allocate_shared_regs(cpu);
  2561. if (!cpuc->shared_regs)
  2562. goto err;
  2563. }
  2564. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2565. size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
  2566. cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
  2567. if (!cpuc->constraint_list)
  2568. goto err_shared_regs;
  2569. cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
  2570. if (!cpuc->excl_cntrs)
  2571. goto err_constraint_list;
  2572. cpuc->excl_thread_id = 0;
  2573. }
  2574. return NOTIFY_OK;
  2575. err_constraint_list:
  2576. kfree(cpuc->constraint_list);
  2577. cpuc->constraint_list = NULL;
  2578. err_shared_regs:
  2579. kfree(cpuc->shared_regs);
  2580. cpuc->shared_regs = NULL;
  2581. err:
  2582. return NOTIFY_BAD;
  2583. }
  2584. static void intel_pmu_cpu_starting(int cpu)
  2585. {
  2586. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2587. int core_id = topology_core_id(cpu);
  2588. int i;
  2589. init_debug_store_on_cpu(cpu);
  2590. /*
  2591. * Deal with CPUs that don't clear their LBRs on power-up.
  2592. */
  2593. intel_pmu_lbr_reset();
  2594. cpuc->lbr_sel = NULL;
  2595. if (!cpuc->shared_regs)
  2596. return;
  2597. if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
  2598. void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
  2599. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2600. struct intel_shared_regs *pc;
  2601. pc = per_cpu(cpu_hw_events, i).shared_regs;
  2602. if (pc && pc->core_id == core_id) {
  2603. *onln = cpuc->shared_regs;
  2604. cpuc->shared_regs = pc;
  2605. break;
  2606. }
  2607. }
  2608. cpuc->shared_regs->core_id = core_id;
  2609. cpuc->shared_regs->refcnt++;
  2610. }
  2611. if (x86_pmu.lbr_sel_map)
  2612. cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
  2613. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2614. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2615. struct intel_excl_cntrs *c;
  2616. c = per_cpu(cpu_hw_events, i).excl_cntrs;
  2617. if (c && c->core_id == core_id) {
  2618. cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
  2619. cpuc->excl_cntrs = c;
  2620. cpuc->excl_thread_id = 1;
  2621. break;
  2622. }
  2623. }
  2624. cpuc->excl_cntrs->core_id = core_id;
  2625. cpuc->excl_cntrs->refcnt++;
  2626. }
  2627. }
  2628. static void free_excl_cntrs(int cpu)
  2629. {
  2630. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2631. struct intel_excl_cntrs *c;
  2632. c = cpuc->excl_cntrs;
  2633. if (c) {
  2634. if (c->core_id == -1 || --c->refcnt == 0)
  2635. kfree(c);
  2636. cpuc->excl_cntrs = NULL;
  2637. kfree(cpuc->constraint_list);
  2638. cpuc->constraint_list = NULL;
  2639. }
  2640. }
  2641. static void intel_pmu_cpu_dying(int cpu)
  2642. {
  2643. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2644. struct intel_shared_regs *pc;
  2645. pc = cpuc->shared_regs;
  2646. if (pc) {
  2647. if (pc->core_id == -1 || --pc->refcnt == 0)
  2648. kfree(pc);
  2649. cpuc->shared_regs = NULL;
  2650. }
  2651. free_excl_cntrs(cpu);
  2652. fini_debug_store_on_cpu(cpu);
  2653. }
  2654. static void intel_pmu_sched_task(struct perf_event_context *ctx,
  2655. bool sched_in)
  2656. {
  2657. if (x86_pmu.pebs_active)
  2658. intel_pmu_pebs_sched_task(ctx, sched_in);
  2659. if (x86_pmu.lbr_nr)
  2660. intel_pmu_lbr_sched_task(ctx, sched_in);
  2661. }
  2662. PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
  2663. PMU_FORMAT_ATTR(ldlat, "config1:0-15");
  2664. PMU_FORMAT_ATTR(frontend, "config1:0-23");
  2665. static struct attribute *intel_arch3_formats_attr[] = {
  2666. &format_attr_event.attr,
  2667. &format_attr_umask.attr,
  2668. &format_attr_edge.attr,
  2669. &format_attr_pc.attr,
  2670. &format_attr_any.attr,
  2671. &format_attr_inv.attr,
  2672. &format_attr_cmask.attr,
  2673. &format_attr_in_tx.attr,
  2674. &format_attr_in_tx_cp.attr,
  2675. &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
  2676. &format_attr_ldlat.attr, /* PEBS load latency */
  2677. NULL,
  2678. };
  2679. static struct attribute *skl_format_attr[] = {
  2680. &format_attr_frontend.attr,
  2681. NULL,
  2682. };
  2683. static __initconst const struct x86_pmu core_pmu = {
  2684. .name = "core",
  2685. .handle_irq = x86_pmu_handle_irq,
  2686. .disable_all = x86_pmu_disable_all,
  2687. .enable_all = core_pmu_enable_all,
  2688. .enable = core_pmu_enable_event,
  2689. .disable = x86_pmu_disable_event,
  2690. .hw_config = x86_pmu_hw_config,
  2691. .schedule_events = x86_schedule_events,
  2692. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2693. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2694. .event_map = intel_pmu_event_map,
  2695. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2696. .apic = 1,
  2697. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2698. /*
  2699. * Intel PMCs cannot be accessed sanely above 32-bit width,
  2700. * so we install an artificial 1<<31 period regardless of
  2701. * the generic event period:
  2702. */
  2703. .max_period = (1ULL<<31) - 1,
  2704. .get_event_constraints = intel_get_event_constraints,
  2705. .put_event_constraints = intel_put_event_constraints,
  2706. .event_constraints = intel_core_event_constraints,
  2707. .guest_get_msrs = core_guest_get_msrs,
  2708. .format_attrs = intel_arch_formats_attr,
  2709. .events_sysfs_show = intel_event_sysfs_show,
  2710. /*
  2711. * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
  2712. * together with PMU version 1 and thus be using core_pmu with
  2713. * shared_regs. We need following callbacks here to allocate
  2714. * it properly.
  2715. */
  2716. .cpu_prepare = intel_pmu_cpu_prepare,
  2717. .cpu_starting = intel_pmu_cpu_starting,
  2718. .cpu_dying = intel_pmu_cpu_dying,
  2719. };
  2720. static __initconst const struct x86_pmu intel_pmu = {
  2721. .name = "Intel",
  2722. .handle_irq = intel_pmu_handle_irq,
  2723. .disable_all = intel_pmu_disable_all,
  2724. .enable_all = intel_pmu_enable_all,
  2725. .enable = intel_pmu_enable_event,
  2726. .disable = intel_pmu_disable_event,
  2727. .hw_config = intel_pmu_hw_config,
  2728. .schedule_events = x86_schedule_events,
  2729. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2730. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2731. .event_map = intel_pmu_event_map,
  2732. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2733. .apic = 1,
  2734. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2735. /*
  2736. * Intel PMCs cannot be accessed sanely above 32 bit width,
  2737. * so we install an artificial 1<<31 period regardless of
  2738. * the generic event period:
  2739. */
  2740. .max_period = (1ULL << 31) - 1,
  2741. .get_event_constraints = intel_get_event_constraints,
  2742. .put_event_constraints = intel_put_event_constraints,
  2743. .pebs_aliases = intel_pebs_aliases_core2,
  2744. .format_attrs = intel_arch3_formats_attr,
  2745. .events_sysfs_show = intel_event_sysfs_show,
  2746. .cpu_prepare = intel_pmu_cpu_prepare,
  2747. .cpu_starting = intel_pmu_cpu_starting,
  2748. .cpu_dying = intel_pmu_cpu_dying,
  2749. .guest_get_msrs = intel_guest_get_msrs,
  2750. .sched_task = intel_pmu_sched_task,
  2751. };
  2752. static __init void intel_clovertown_quirk(void)
  2753. {
  2754. /*
  2755. * PEBS is unreliable due to:
  2756. *
  2757. * AJ67 - PEBS may experience CPL leaks
  2758. * AJ68 - PEBS PMI may be delayed by one event
  2759. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  2760. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  2761. *
  2762. * AJ67 could be worked around by restricting the OS/USR flags.
  2763. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  2764. *
  2765. * AJ106 could possibly be worked around by not allowing LBR
  2766. * usage from PEBS, including the fixup.
  2767. * AJ68 could possibly be worked around by always programming
  2768. * a pebs_event_reset[0] value and coping with the lost events.
  2769. *
  2770. * But taken together it might just make sense to not enable PEBS on
  2771. * these chips.
  2772. */
  2773. pr_warn("PEBS disabled due to CPU errata\n");
  2774. x86_pmu.pebs = 0;
  2775. x86_pmu.pebs_constraints = NULL;
  2776. }
  2777. static int intel_snb_pebs_broken(int cpu)
  2778. {
  2779. u32 rev = UINT_MAX; /* default to broken for unknown models */
  2780. switch (cpu_data(cpu).x86_model) {
  2781. case 42: /* SNB */
  2782. rev = 0x28;
  2783. break;
  2784. case 45: /* SNB-EP */
  2785. switch (cpu_data(cpu).x86_mask) {
  2786. case 6: rev = 0x618; break;
  2787. case 7: rev = 0x70c; break;
  2788. }
  2789. }
  2790. return (cpu_data(cpu).microcode < rev);
  2791. }
  2792. static void intel_snb_check_microcode(void)
  2793. {
  2794. int pebs_broken = 0;
  2795. int cpu;
  2796. get_online_cpus();
  2797. for_each_online_cpu(cpu) {
  2798. if ((pebs_broken = intel_snb_pebs_broken(cpu)))
  2799. break;
  2800. }
  2801. put_online_cpus();
  2802. if (pebs_broken == x86_pmu.pebs_broken)
  2803. return;
  2804. /*
  2805. * Serialized by the microcode lock..
  2806. */
  2807. if (x86_pmu.pebs_broken) {
  2808. pr_info("PEBS enabled due to microcode update\n");
  2809. x86_pmu.pebs_broken = 0;
  2810. } else {
  2811. pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
  2812. x86_pmu.pebs_broken = 1;
  2813. }
  2814. }
  2815. /*
  2816. * Under certain circumstances, access certain MSR may cause #GP.
  2817. * The function tests if the input MSR can be safely accessed.
  2818. */
  2819. static bool check_msr(unsigned long msr, u64 mask)
  2820. {
  2821. u64 val_old, val_new, val_tmp;
  2822. /*
  2823. * Read the current value, change it and read it back to see if it
  2824. * matches, this is needed to detect certain hardware emulators
  2825. * (qemu/kvm) that don't trap on the MSR access and always return 0s.
  2826. */
  2827. if (rdmsrl_safe(msr, &val_old))
  2828. return false;
  2829. /*
  2830. * Only change the bits which can be updated by wrmsrl.
  2831. */
  2832. val_tmp = val_old ^ mask;
  2833. if (wrmsrl_safe(msr, val_tmp) ||
  2834. rdmsrl_safe(msr, &val_new))
  2835. return false;
  2836. if (val_new != val_tmp)
  2837. return false;
  2838. /* Here it's sure that the MSR can be safely accessed.
  2839. * Restore the old value and return.
  2840. */
  2841. wrmsrl(msr, val_old);
  2842. return true;
  2843. }
  2844. static __init void intel_sandybridge_quirk(void)
  2845. {
  2846. x86_pmu.check_microcode = intel_snb_check_microcode;
  2847. intel_snb_check_microcode();
  2848. }
  2849. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  2850. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  2851. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  2852. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  2853. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  2854. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  2855. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  2856. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  2857. };
  2858. static __init void intel_arch_events_quirk(void)
  2859. {
  2860. int bit;
  2861. /* disable event that reported as not presend by cpuid */
  2862. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  2863. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  2864. pr_warn("CPUID marked event: \'%s\' unavailable\n",
  2865. intel_arch_events_map[bit].name);
  2866. }
  2867. }
  2868. static __init void intel_nehalem_quirk(void)
  2869. {
  2870. union cpuid10_ebx ebx;
  2871. ebx.full = x86_pmu.events_maskl;
  2872. if (ebx.split.no_branch_misses_retired) {
  2873. /*
  2874. * Erratum AAJ80 detected, we work it around by using
  2875. * the BR_MISP_EXEC.ANY event. This will over-count
  2876. * branch-misses, but it's still much better than the
  2877. * architectural event which is often completely bogus:
  2878. */
  2879. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  2880. ebx.split.no_branch_misses_retired = 0;
  2881. x86_pmu.events_maskl = ebx.full;
  2882. pr_info("CPU erratum AAJ80 worked around\n");
  2883. }
  2884. }
  2885. /*
  2886. * enable software workaround for errata:
  2887. * SNB: BJ122
  2888. * IVB: BV98
  2889. * HSW: HSD29
  2890. *
  2891. * Only needed when HT is enabled. However detecting
  2892. * if HT is enabled is difficult (model specific). So instead,
  2893. * we enable the workaround in the early boot, and verify if
  2894. * it is needed in a later initcall phase once we have valid
  2895. * topology information to check if HT is actually enabled
  2896. */
  2897. static __init void intel_ht_bug(void)
  2898. {
  2899. x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
  2900. x86_pmu.start_scheduling = intel_start_scheduling;
  2901. x86_pmu.commit_scheduling = intel_commit_scheduling;
  2902. x86_pmu.stop_scheduling = intel_stop_scheduling;
  2903. }
  2904. EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
  2905. EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
  2906. /* Haswell special events */
  2907. EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
  2908. EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
  2909. EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
  2910. EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
  2911. EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
  2912. EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
  2913. EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
  2914. EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
  2915. EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
  2916. EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
  2917. EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
  2918. EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
  2919. static struct attribute *hsw_events_attrs[] = {
  2920. EVENT_PTR(tx_start),
  2921. EVENT_PTR(tx_commit),
  2922. EVENT_PTR(tx_abort),
  2923. EVENT_PTR(tx_capacity),
  2924. EVENT_PTR(tx_conflict),
  2925. EVENT_PTR(el_start),
  2926. EVENT_PTR(el_commit),
  2927. EVENT_PTR(el_abort),
  2928. EVENT_PTR(el_capacity),
  2929. EVENT_PTR(el_conflict),
  2930. EVENT_PTR(cycles_t),
  2931. EVENT_PTR(cycles_ct),
  2932. EVENT_PTR(mem_ld_hsw),
  2933. EVENT_PTR(mem_st_hsw),
  2934. NULL
  2935. };
  2936. __init int intel_pmu_init(void)
  2937. {
  2938. union cpuid10_edx edx;
  2939. union cpuid10_eax eax;
  2940. union cpuid10_ebx ebx;
  2941. struct event_constraint *c;
  2942. unsigned int unused;
  2943. struct extra_reg *er;
  2944. int version, i;
  2945. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  2946. switch (boot_cpu_data.x86) {
  2947. case 0x6:
  2948. return p6_pmu_init();
  2949. case 0xb:
  2950. return knc_pmu_init();
  2951. case 0xf:
  2952. return p4_pmu_init();
  2953. }
  2954. return -ENODEV;
  2955. }
  2956. /*
  2957. * Check whether the Architectural PerfMon supports
  2958. * Branch Misses Retired hw_event or not.
  2959. */
  2960. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  2961. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  2962. return -ENODEV;
  2963. version = eax.split.version_id;
  2964. if (version < 2)
  2965. x86_pmu = core_pmu;
  2966. else
  2967. x86_pmu = intel_pmu;
  2968. x86_pmu.version = version;
  2969. x86_pmu.num_counters = eax.split.num_counters;
  2970. x86_pmu.cntval_bits = eax.split.bit_width;
  2971. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  2972. x86_pmu.events_maskl = ebx.full;
  2973. x86_pmu.events_mask_len = eax.split.mask_length;
  2974. x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
  2975. /*
  2976. * Quirk: v2 perfmon does not report fixed-purpose events, so
  2977. * assume at least 3 events:
  2978. */
  2979. if (version > 1)
  2980. x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
  2981. if (boot_cpu_has(X86_FEATURE_PDCM)) {
  2982. u64 capabilities;
  2983. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  2984. x86_pmu.intel_cap.capabilities = capabilities;
  2985. }
  2986. intel_ds_init();
  2987. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  2988. /*
  2989. * Install the hw-cache-events table:
  2990. */
  2991. switch (boot_cpu_data.x86_model) {
  2992. case 14: /* 65nm Core "Yonah" */
  2993. pr_cont("Core events, ");
  2994. break;
  2995. case 15: /* 65nm Core2 "Merom" */
  2996. x86_add_quirk(intel_clovertown_quirk);
  2997. case 22: /* 65nm Core2 "Merom-L" */
  2998. case 23: /* 45nm Core2 "Penryn" */
  2999. case 29: /* 45nm Core2 "Dunnington (MP) */
  3000. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  3001. sizeof(hw_cache_event_ids));
  3002. intel_pmu_lbr_init_core();
  3003. x86_pmu.event_constraints = intel_core2_event_constraints;
  3004. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  3005. pr_cont("Core2 events, ");
  3006. break;
  3007. case 30: /* 45nm Nehalem */
  3008. case 26: /* 45nm Nehalem-EP */
  3009. case 46: /* 45nm Nehalem-EX */
  3010. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  3011. sizeof(hw_cache_event_ids));
  3012. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3013. sizeof(hw_cache_extra_regs));
  3014. intel_pmu_lbr_init_nhm();
  3015. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  3016. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  3017. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3018. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  3019. x86_pmu.cpu_events = nhm_events_attrs;
  3020. /* UOPS_ISSUED.STALLED_CYCLES */
  3021. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3022. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3023. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3024. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3025. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3026. x86_add_quirk(intel_nehalem_quirk);
  3027. pr_cont("Nehalem events, ");
  3028. break;
  3029. case 28: /* 45nm Atom "Pineview" */
  3030. case 38: /* 45nm Atom "Lincroft" */
  3031. case 39: /* 32nm Atom "Penwell" */
  3032. case 53: /* 32nm Atom "Cloverview" */
  3033. case 54: /* 32nm Atom "Cedarview" */
  3034. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  3035. sizeof(hw_cache_event_ids));
  3036. intel_pmu_lbr_init_atom();
  3037. x86_pmu.event_constraints = intel_gen_event_constraints;
  3038. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  3039. x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
  3040. pr_cont("Atom events, ");
  3041. break;
  3042. case 55: /* 22nm Atom "Silvermont" */
  3043. case 76: /* 14nm Atom "Airmont" */
  3044. case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
  3045. memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
  3046. sizeof(hw_cache_event_ids));
  3047. memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
  3048. sizeof(hw_cache_extra_regs));
  3049. intel_pmu_lbr_init_atom();
  3050. x86_pmu.event_constraints = intel_slm_event_constraints;
  3051. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3052. x86_pmu.extra_regs = intel_slm_extra_regs;
  3053. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3054. pr_cont("Silvermont events, ");
  3055. break;
  3056. case 37: /* 32nm Westmere */
  3057. case 44: /* 32nm Westmere-EP */
  3058. case 47: /* 32nm Westmere-EX */
  3059. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  3060. sizeof(hw_cache_event_ids));
  3061. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3062. sizeof(hw_cache_extra_regs));
  3063. intel_pmu_lbr_init_nhm();
  3064. x86_pmu.event_constraints = intel_westmere_event_constraints;
  3065. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3066. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  3067. x86_pmu.extra_regs = intel_westmere_extra_regs;
  3068. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3069. x86_pmu.cpu_events = nhm_events_attrs;
  3070. /* UOPS_ISSUED.STALLED_CYCLES */
  3071. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3072. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3073. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3074. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3075. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3076. pr_cont("Westmere events, ");
  3077. break;
  3078. case 42: /* 32nm SandyBridge */
  3079. case 45: /* 32nm SandyBridge-E/EN/EP */
  3080. x86_add_quirk(intel_sandybridge_quirk);
  3081. x86_add_quirk(intel_ht_bug);
  3082. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3083. sizeof(hw_cache_event_ids));
  3084. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3085. sizeof(hw_cache_extra_regs));
  3086. intel_pmu_lbr_init_snb();
  3087. x86_pmu.event_constraints = intel_snb_event_constraints;
  3088. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  3089. x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
  3090. if (boot_cpu_data.x86_model == 45)
  3091. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3092. else
  3093. x86_pmu.extra_regs = intel_snb_extra_regs;
  3094. /* all extra regs are per-cpu when HT is on */
  3095. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3096. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3097. x86_pmu.cpu_events = snb_events_attrs;
  3098. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3099. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3100. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3101. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  3102. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3103. X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
  3104. pr_cont("SandyBridge events, ");
  3105. break;
  3106. case 58: /* 22nm IvyBridge */
  3107. case 62: /* 22nm IvyBridge-EP/EX */
  3108. x86_add_quirk(intel_ht_bug);
  3109. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3110. sizeof(hw_cache_event_ids));
  3111. /* dTLB-load-misses on IVB is different than SNB */
  3112. hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
  3113. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3114. sizeof(hw_cache_extra_regs));
  3115. intel_pmu_lbr_init_snb();
  3116. x86_pmu.event_constraints = intel_ivb_event_constraints;
  3117. x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
  3118. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3119. x86_pmu.pebs_prec_dist = true;
  3120. if (boot_cpu_data.x86_model == 62)
  3121. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3122. else
  3123. x86_pmu.extra_regs = intel_snb_extra_regs;
  3124. /* all extra regs are per-cpu when HT is on */
  3125. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3126. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3127. x86_pmu.cpu_events = snb_events_attrs;
  3128. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3129. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3130. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3131. pr_cont("IvyBridge events, ");
  3132. break;
  3133. case 60: /* 22nm Haswell Core */
  3134. case 63: /* 22nm Haswell Server */
  3135. case 69: /* 22nm Haswell ULT */
  3136. case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
  3137. x86_add_quirk(intel_ht_bug);
  3138. x86_pmu.late_ack = true;
  3139. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3140. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3141. intel_pmu_lbr_init_hsw();
  3142. x86_pmu.event_constraints = intel_hsw_event_constraints;
  3143. x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
  3144. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3145. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3146. x86_pmu.pebs_prec_dist = true;
  3147. /* all extra regs are per-cpu when HT is on */
  3148. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3149. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3150. x86_pmu.hw_config = hsw_hw_config;
  3151. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3152. x86_pmu.cpu_events = hsw_events_attrs;
  3153. x86_pmu.lbr_double_abort = true;
  3154. pr_cont("Haswell events, ");
  3155. break;
  3156. case 61: /* 14nm Broadwell Core-M */
  3157. case 86: /* 14nm Broadwell Xeon D */
  3158. case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
  3159. case 79: /* 14nm Broadwell Server */
  3160. x86_pmu.late_ack = true;
  3161. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3162. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3163. /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
  3164. hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
  3165. BDW_L3_MISS|HSW_SNOOP_DRAM;
  3166. hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
  3167. HSW_SNOOP_DRAM;
  3168. hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
  3169. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3170. hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
  3171. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3172. intel_pmu_lbr_init_hsw();
  3173. x86_pmu.event_constraints = intel_bdw_event_constraints;
  3174. x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
  3175. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3176. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3177. x86_pmu.pebs_prec_dist = true;
  3178. /* all extra regs are per-cpu when HT is on */
  3179. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3180. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3181. x86_pmu.hw_config = hsw_hw_config;
  3182. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3183. x86_pmu.cpu_events = hsw_events_attrs;
  3184. x86_pmu.limit_period = bdw_limit_period;
  3185. pr_cont("Broadwell events, ");
  3186. break;
  3187. case 87: /* Knights Landing Xeon Phi */
  3188. memcpy(hw_cache_event_ids,
  3189. slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3190. memcpy(hw_cache_extra_regs,
  3191. knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3192. intel_pmu_lbr_init_knl();
  3193. x86_pmu.event_constraints = intel_slm_event_constraints;
  3194. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3195. x86_pmu.extra_regs = intel_knl_extra_regs;
  3196. /* all extra regs are per-cpu when HT is on */
  3197. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3198. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3199. pr_cont("Knights Landing events, ");
  3200. break;
  3201. case 78: /* 14nm Skylake Mobile */
  3202. case 94: /* 14nm Skylake Desktop */
  3203. x86_pmu.late_ack = true;
  3204. memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3205. memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3206. intel_pmu_lbr_init_skl();
  3207. x86_pmu.event_constraints = intel_skl_event_constraints;
  3208. x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
  3209. x86_pmu.extra_regs = intel_skl_extra_regs;
  3210. x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
  3211. x86_pmu.pebs_prec_dist = true;
  3212. /* all extra regs are per-cpu when HT is on */
  3213. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3214. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3215. x86_pmu.hw_config = hsw_hw_config;
  3216. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3217. x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
  3218. skl_format_attr);
  3219. WARN_ON(!x86_pmu.format_attrs);
  3220. x86_pmu.cpu_events = hsw_events_attrs;
  3221. pr_cont("Skylake events, ");
  3222. break;
  3223. default:
  3224. switch (x86_pmu.version) {
  3225. case 1:
  3226. x86_pmu.event_constraints = intel_v1_event_constraints;
  3227. pr_cont("generic architected perfmon v1, ");
  3228. break;
  3229. default:
  3230. /*
  3231. * default constraints for v2 and up
  3232. */
  3233. x86_pmu.event_constraints = intel_gen_event_constraints;
  3234. pr_cont("generic architected perfmon, ");
  3235. break;
  3236. }
  3237. }
  3238. if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
  3239. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  3240. x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
  3241. x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
  3242. }
  3243. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  3244. if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
  3245. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  3246. x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
  3247. x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
  3248. }
  3249. x86_pmu.intel_ctrl |=
  3250. ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
  3251. if (x86_pmu.event_constraints) {
  3252. /*
  3253. * event on fixed counter2 (REF_CYCLES) only works on this
  3254. * counter, so do not extend mask to generic counters
  3255. */
  3256. for_each_event_constraint(c, x86_pmu.event_constraints) {
  3257. if (c->cmask == FIXED_EVENT_FLAGS
  3258. && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
  3259. c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
  3260. }
  3261. c->idxmsk64 &=
  3262. ~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
  3263. c->weight = hweight64(c->idxmsk64);
  3264. }
  3265. }
  3266. /*
  3267. * Access LBR MSR may cause #GP under certain circumstances.
  3268. * E.g. KVM doesn't support LBR MSR
  3269. * Check all LBT MSR here.
  3270. * Disable LBR access if any LBR MSRs can not be accessed.
  3271. */
  3272. if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
  3273. x86_pmu.lbr_nr = 0;
  3274. for (i = 0; i < x86_pmu.lbr_nr; i++) {
  3275. if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
  3276. check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
  3277. x86_pmu.lbr_nr = 0;
  3278. }
  3279. /*
  3280. * Access extra MSR may cause #GP under certain circumstances.
  3281. * E.g. KVM doesn't support offcore event
  3282. * Check all extra_regs here.
  3283. */
  3284. if (x86_pmu.extra_regs) {
  3285. for (er = x86_pmu.extra_regs; er->msr; er++) {
  3286. er->extra_msr_access = check_msr(er->msr, 0x11UL);
  3287. /* Disable LBR select mapping */
  3288. if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
  3289. x86_pmu.lbr_sel_map = NULL;
  3290. }
  3291. }
  3292. /* Support full width counters using alternative MSR range */
  3293. if (x86_pmu.intel_cap.full_width_write) {
  3294. x86_pmu.max_period = x86_pmu.cntval_mask;
  3295. x86_pmu.perfctr = MSR_IA32_PMC0;
  3296. pr_cont("full-width counters, ");
  3297. }
  3298. return 0;
  3299. }
  3300. /*
  3301. * HT bug: phase 2 init
  3302. * Called once we have valid topology information to check
  3303. * whether or not HT is enabled
  3304. * If HT is off, then we disable the workaround
  3305. */
  3306. static __init int fixup_ht_bug(void)
  3307. {
  3308. int cpu = smp_processor_id();
  3309. int w, c;
  3310. /*
  3311. * problem not present on this CPU model, nothing to do
  3312. */
  3313. if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
  3314. return 0;
  3315. w = cpumask_weight(topology_sibling_cpumask(cpu));
  3316. if (w > 1) {
  3317. pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
  3318. return 0;
  3319. }
  3320. if (lockup_detector_suspend() != 0) {
  3321. pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
  3322. return 0;
  3323. }
  3324. x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
  3325. x86_pmu.start_scheduling = NULL;
  3326. x86_pmu.commit_scheduling = NULL;
  3327. x86_pmu.stop_scheduling = NULL;
  3328. lockup_detector_resume();
  3329. get_online_cpus();
  3330. for_each_online_cpu(c) {
  3331. free_excl_cntrs(c);
  3332. }
  3333. put_online_cpus();
  3334. pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
  3335. return 0;
  3336. }
  3337. subsys_initcall(fixup_ht_bug)