ehci-q.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (C) 2001-2004 by David Brownell
  4. */
  5. /* this file is part of ehci-hcd.c */
  6. /*-------------------------------------------------------------------------*/
  7. /*
  8. * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
  9. *
  10. * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
  11. * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
  12. * buffers needed for the larger number). We use one QH per endpoint, queue
  13. * multiple urbs (all three types) per endpoint. URBs may need several qtds.
  14. *
  15. * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
  16. * interrupts) needs careful scheduling. Performance improvements can be
  17. * an ongoing challenge. That's in "ehci-sched.c".
  18. *
  19. * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
  20. * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
  21. * (b) special fields in qh entries or (c) split iso entries. TTs will
  22. * buffer low/full speed data so the host collects it at high speed.
  23. */
  24. /*-------------------------------------------------------------------------*/
  25. /* fill a qtd, returning how much of the buffer we were able to queue up */
  26. static int
  27. qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
  28. size_t len, int token, int maxpacket)
  29. {
  30. int i, count;
  31. u64 addr = buf;
  32. /* one buffer entry per 4K ... first might be short or unaligned */
  33. qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
  34. qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
  35. count = 0x1000 - (buf & 0x0fff); /* rest of that page */
  36. if (likely (len < count)) /* ... iff needed */
  37. count = len;
  38. else {
  39. buf += 0x1000;
  40. buf &= ~0x0fff;
  41. /* per-qtd limit: from 16K to 20K (best alignment) */
  42. for (i = 1; count < len && i < 5; i++) {
  43. addr = buf;
  44. qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
  45. qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
  46. (u32)(addr >> 32));
  47. buf += 0x1000;
  48. if ((count + 0x1000) < len)
  49. count += 0x1000;
  50. else
  51. count = len;
  52. }
  53. /* short packets may only terminate transfers */
  54. if (count != len)
  55. count -= (count % maxpacket);
  56. }
  57. qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
  58. qtd->length = count;
  59. return count;
  60. }
  61. /*-------------------------------------------------------------------------*/
  62. static inline void
  63. qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
  64. {
  65. struct ehci_qh_hw *hw = qh->hw;
  66. /* writes to an active overlay are unsafe */
  67. WARN_ON(qh->qh_state != QH_STATE_IDLE);
  68. hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
  69. hw->hw_alt_next = EHCI_LIST_END(ehci);
  70. /* Except for control endpoints, we make hardware maintain data
  71. * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
  72. * and set the pseudo-toggle in udev. Only usb_clear_halt() will
  73. * ever clear it.
  74. */
  75. if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
  76. unsigned is_out, epnum;
  77. is_out = qh->is_out;
  78. epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
  79. if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
  80. hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
  81. usb_settoggle(qh->ps.udev, epnum, is_out, 1);
  82. }
  83. }
  84. hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
  85. }
  86. /* if it weren't for a common silicon quirk (writing the dummy into the qh
  87. * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
  88. * recovery (including urb dequeue) would need software changes to a QH...
  89. */
  90. static void
  91. qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
  92. {
  93. struct ehci_qtd *qtd;
  94. qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
  95. /*
  96. * first qtd may already be partially processed.
  97. * If we come here during unlink, the QH overlay region
  98. * might have reference to the just unlinked qtd. The
  99. * qtd is updated in qh_completions(). Update the QH
  100. * overlay here.
  101. */
  102. if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
  103. qh->hw->hw_qtd_next = qtd->hw_next;
  104. if (qh->should_be_inactive)
  105. ehci_warn(ehci, "qh %p should be inactive!\n", qh);
  106. } else {
  107. qh_update(ehci, qh, qtd);
  108. }
  109. qh->should_be_inactive = 0;
  110. }
  111. /*-------------------------------------------------------------------------*/
  112. static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
  113. static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
  114. struct usb_host_endpoint *ep)
  115. {
  116. struct ehci_hcd *ehci = hcd_to_ehci(hcd);
  117. struct ehci_qh *qh = ep->hcpriv;
  118. unsigned long flags;
  119. spin_lock_irqsave(&ehci->lock, flags);
  120. qh->clearing_tt = 0;
  121. if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
  122. && ehci->rh_state == EHCI_RH_RUNNING)
  123. qh_link_async(ehci, qh);
  124. spin_unlock_irqrestore(&ehci->lock, flags);
  125. }
  126. static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
  127. struct urb *urb, u32 token)
  128. {
  129. /* If an async split transaction gets an error or is unlinked,
  130. * the TT buffer may be left in an indeterminate state. We
  131. * have to clear the TT buffer.
  132. *
  133. * Note: this routine is never called for Isochronous transfers.
  134. */
  135. if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
  136. #ifdef CONFIG_DYNAMIC_DEBUG
  137. struct usb_device *tt = urb->dev->tt->hub;
  138. dev_dbg(&tt->dev,
  139. "clear tt buffer port %d, a%d ep%d t%08x\n",
  140. urb->dev->ttport, urb->dev->devnum,
  141. usb_pipeendpoint(urb->pipe), token);
  142. #endif /* CONFIG_DYNAMIC_DEBUG */
  143. if (!ehci_is_TDI(ehci)
  144. || urb->dev->tt->hub !=
  145. ehci_to_hcd(ehci)->self.root_hub) {
  146. if (usb_hub_clear_tt_buffer(urb) == 0)
  147. qh->clearing_tt = 1;
  148. } else {
  149. /* REVISIT ARC-derived cores don't clear the root
  150. * hub TT buffer in this way...
  151. */
  152. }
  153. }
  154. }
  155. static int qtd_copy_status (
  156. struct ehci_hcd *ehci,
  157. struct urb *urb,
  158. size_t length,
  159. u32 token
  160. )
  161. {
  162. int status = -EINPROGRESS;
  163. /* count IN/OUT bytes, not SETUP (even short packets) */
  164. if (likely (QTD_PID (token) != 2))
  165. urb->actual_length += length - QTD_LENGTH (token);
  166. /* don't modify error codes */
  167. if (unlikely(urb->unlinked))
  168. return status;
  169. /* force cleanup after short read; not always an error */
  170. if (unlikely (IS_SHORT_READ (token)))
  171. status = -EREMOTEIO;
  172. /* serious "can't proceed" faults reported by the hardware */
  173. if (token & QTD_STS_HALT) {
  174. if (token & QTD_STS_BABBLE) {
  175. /* FIXME "must" disable babbling device's port too */
  176. status = -EOVERFLOW;
  177. /* CERR nonzero + halt --> stall */
  178. } else if (QTD_CERR(token)) {
  179. status = -EPIPE;
  180. /* In theory, more than one of the following bits can be set
  181. * since they are sticky and the transaction is retried.
  182. * Which to test first is rather arbitrary.
  183. */
  184. } else if (token & QTD_STS_MMF) {
  185. /* fs/ls interrupt xfer missed the complete-split */
  186. status = -EPROTO;
  187. } else if (token & QTD_STS_DBE) {
  188. status = (QTD_PID (token) == 1) /* IN ? */
  189. ? -ENOSR /* hc couldn't read data */
  190. : -ECOMM; /* hc couldn't write data */
  191. } else if (token & QTD_STS_XACT) {
  192. /* timeout, bad CRC, wrong PID, etc */
  193. ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
  194. urb->dev->devpath,
  195. usb_pipeendpoint(urb->pipe),
  196. usb_pipein(urb->pipe) ? "in" : "out");
  197. status = -EPROTO;
  198. } else { /* unknown */
  199. status = -EPROTO;
  200. }
  201. }
  202. return status;
  203. }
  204. static void
  205. ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
  206. {
  207. if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
  208. /* ... update hc-wide periodic stats */
  209. ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
  210. }
  211. if (unlikely(urb->unlinked)) {
  212. COUNT(ehci->stats.unlink);
  213. } else {
  214. /* report non-error and short read status as zero */
  215. if (status == -EINPROGRESS || status == -EREMOTEIO)
  216. status = 0;
  217. COUNT(ehci->stats.complete);
  218. }
  219. #ifdef EHCI_URB_TRACE
  220. ehci_dbg (ehci,
  221. "%s %s urb %p ep%d%s status %d len %d/%d\n",
  222. __func__, urb->dev->devpath, urb,
  223. usb_pipeendpoint (urb->pipe),
  224. usb_pipein (urb->pipe) ? "in" : "out",
  225. status,
  226. urb->actual_length, urb->transfer_buffer_length);
  227. #endif
  228. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  229. usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
  230. }
  231. static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
  232. /*
  233. * Process and free completed qtds for a qh, returning URBs to drivers.
  234. * Chases up to qh->hw_current. Returns nonzero if the caller should
  235. * unlink qh.
  236. */
  237. static unsigned
  238. qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
  239. {
  240. struct ehci_qtd *last, *end = qh->dummy;
  241. struct list_head *entry, *tmp;
  242. int last_status;
  243. int stopped;
  244. u8 state;
  245. struct ehci_qh_hw *hw = qh->hw;
  246. /* completions (or tasks on other cpus) must never clobber HALT
  247. * till we've gone through and cleaned everything up, even when
  248. * they add urbs to this qh's queue or mark them for unlinking.
  249. *
  250. * NOTE: unlinking expects to be done in queue order.
  251. *
  252. * It's a bug for qh->qh_state to be anything other than
  253. * QH_STATE_IDLE, unless our caller is scan_async() or
  254. * scan_intr().
  255. */
  256. state = qh->qh_state;
  257. qh->qh_state = QH_STATE_COMPLETING;
  258. stopped = (state == QH_STATE_IDLE);
  259. rescan:
  260. last = NULL;
  261. last_status = -EINPROGRESS;
  262. qh->dequeue_during_giveback = 0;
  263. /* remove de-activated QTDs from front of queue.
  264. * after faults (including short reads), cleanup this urb
  265. * then let the queue advance.
  266. * if queue is stopped, handles unlinks.
  267. */
  268. list_for_each_safe (entry, tmp, &qh->qtd_list) {
  269. struct ehci_qtd *qtd;
  270. struct urb *urb;
  271. u32 token = 0;
  272. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  273. urb = qtd->urb;
  274. /* clean up any state from previous QTD ...*/
  275. if (last) {
  276. if (likely (last->urb != urb)) {
  277. ehci_urb_done(ehci, last->urb, last_status);
  278. last_status = -EINPROGRESS;
  279. }
  280. ehci_qtd_free (ehci, last);
  281. last = NULL;
  282. }
  283. /* ignore urbs submitted during completions we reported */
  284. if (qtd == end)
  285. break;
  286. /* hardware copies qtd out of qh overlay */
  287. rmb ();
  288. token = hc32_to_cpu(ehci, qtd->hw_token);
  289. /* always clean up qtds the hc de-activated */
  290. retry_xacterr:
  291. if ((token & QTD_STS_ACTIVE) == 0) {
  292. /* Report Data Buffer Error: non-fatal but useful */
  293. if (token & QTD_STS_DBE)
  294. ehci_dbg(ehci,
  295. "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  296. urb,
  297. usb_endpoint_num(&urb->ep->desc),
  298. usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
  299. urb->transfer_buffer_length,
  300. qtd,
  301. qh);
  302. /* on STALL, error, and short reads this urb must
  303. * complete and all its qtds must be recycled.
  304. */
  305. if ((token & QTD_STS_HALT) != 0) {
  306. /* retry transaction errors until we
  307. * reach the software xacterr limit
  308. */
  309. if ((token & QTD_STS_XACT) &&
  310. QTD_CERR(token) == 0 &&
  311. ++qh->xacterrs < QH_XACTERR_MAX &&
  312. !urb->unlinked) {
  313. ehci_dbg(ehci,
  314. "detected XactErr len %zu/%zu retry %d\n",
  315. qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
  316. /* reset the token in the qtd and the
  317. * qh overlay (which still contains
  318. * the qtd) so that we pick up from
  319. * where we left off
  320. */
  321. token &= ~QTD_STS_HALT;
  322. token |= QTD_STS_ACTIVE |
  323. (EHCI_TUNE_CERR << 10);
  324. qtd->hw_token = cpu_to_hc32(ehci,
  325. token);
  326. wmb();
  327. hw->hw_token = cpu_to_hc32(ehci,
  328. token);
  329. goto retry_xacterr;
  330. }
  331. stopped = 1;
  332. qh->unlink_reason |= QH_UNLINK_HALTED;
  333. /* magic dummy for some short reads; qh won't advance.
  334. * that silicon quirk can kick in with this dummy too.
  335. *
  336. * other short reads won't stop the queue, including
  337. * control transfers (status stage handles that) or
  338. * most other single-qtd reads ... the queue stops if
  339. * URB_SHORT_NOT_OK was set so the driver submitting
  340. * the urbs could clean it up.
  341. */
  342. } else if (IS_SHORT_READ (token)
  343. && !(qtd->hw_alt_next
  344. & EHCI_LIST_END(ehci))) {
  345. stopped = 1;
  346. qh->unlink_reason |= QH_UNLINK_SHORT_READ;
  347. }
  348. /* stop scanning when we reach qtds the hc is using */
  349. } else if (likely (!stopped
  350. && ehci->rh_state >= EHCI_RH_RUNNING)) {
  351. break;
  352. /* scan the whole queue for unlinks whenever it stops */
  353. } else {
  354. stopped = 1;
  355. /* cancel everything if we halt, suspend, etc */
  356. if (ehci->rh_state < EHCI_RH_RUNNING) {
  357. last_status = -ESHUTDOWN;
  358. qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
  359. }
  360. /* this qtd is active; skip it unless a previous qtd
  361. * for its urb faulted, or its urb was canceled.
  362. */
  363. else if (last_status == -EINPROGRESS && !urb->unlinked)
  364. continue;
  365. /*
  366. * If this was the active qtd when the qh was unlinked
  367. * and the overlay's token is active, then the overlay
  368. * hasn't been written back to the qtd yet so use its
  369. * token instead of the qtd's. After the qtd is
  370. * processed and removed, the overlay won't be valid
  371. * any more.
  372. */
  373. if (state == QH_STATE_IDLE &&
  374. qh->qtd_list.next == &qtd->qtd_list &&
  375. (hw->hw_token & ACTIVE_BIT(ehci))) {
  376. token = hc32_to_cpu(ehci, hw->hw_token);
  377. hw->hw_token &= ~ACTIVE_BIT(ehci);
  378. qh->should_be_inactive = 1;
  379. /* An unlink may leave an incomplete
  380. * async transaction in the TT buffer.
  381. * We have to clear it.
  382. */
  383. ehci_clear_tt_buffer(ehci, qh, urb, token);
  384. }
  385. }
  386. /* unless we already know the urb's status, collect qtd status
  387. * and update count of bytes transferred. in common short read
  388. * cases with only one data qtd (including control transfers),
  389. * queue processing won't halt. but with two or more qtds (for
  390. * example, with a 32 KB transfer), when the first qtd gets a
  391. * short read the second must be removed by hand.
  392. */
  393. if (last_status == -EINPROGRESS) {
  394. last_status = qtd_copy_status(ehci, urb,
  395. qtd->length, token);
  396. if (last_status == -EREMOTEIO
  397. && (qtd->hw_alt_next
  398. & EHCI_LIST_END(ehci)))
  399. last_status = -EINPROGRESS;
  400. /* As part of low/full-speed endpoint-halt processing
  401. * we must clear the TT buffer (11.17.5).
  402. */
  403. if (unlikely(last_status != -EINPROGRESS &&
  404. last_status != -EREMOTEIO)) {
  405. /* The TT's in some hubs malfunction when they
  406. * receive this request following a STALL (they
  407. * stop sending isochronous packets). Since a
  408. * STALL can't leave the TT buffer in a busy
  409. * state (if you believe Figures 11-48 - 11-51
  410. * in the USB 2.0 spec), we won't clear the TT
  411. * buffer in this case. Strictly speaking this
  412. * is a violation of the spec.
  413. */
  414. if (last_status != -EPIPE)
  415. ehci_clear_tt_buffer(ehci, qh, urb,
  416. token);
  417. }
  418. }
  419. /* if we're removing something not at the queue head,
  420. * patch the hardware queue pointer.
  421. */
  422. if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
  423. last = list_entry (qtd->qtd_list.prev,
  424. struct ehci_qtd, qtd_list);
  425. last->hw_next = qtd->hw_next;
  426. }
  427. /* remove qtd; it's recycled after possible urb completion */
  428. list_del (&qtd->qtd_list);
  429. last = qtd;
  430. /* reinit the xacterr counter for the next qtd */
  431. qh->xacterrs = 0;
  432. }
  433. /* last urb's completion might still need calling */
  434. if (likely (last != NULL)) {
  435. ehci_urb_done(ehci, last->urb, last_status);
  436. ehci_qtd_free (ehci, last);
  437. }
  438. /* Do we need to rescan for URBs dequeued during a giveback? */
  439. if (unlikely(qh->dequeue_during_giveback)) {
  440. /* If the QH is already unlinked, do the rescan now. */
  441. if (state == QH_STATE_IDLE)
  442. goto rescan;
  443. /* Otherwise the caller must unlink the QH. */
  444. }
  445. /* restore original state; caller must unlink or relink */
  446. qh->qh_state = state;
  447. /* be sure the hardware's done with the qh before refreshing
  448. * it after fault cleanup, or recovering from silicon wrongly
  449. * overlaying the dummy qtd (which reduces DMA chatter).
  450. *
  451. * We won't refresh a QH that's linked (after the HC
  452. * stopped the queue). That avoids a race:
  453. * - HC reads first part of QH;
  454. * - CPU updates that first part and the token;
  455. * - HC reads rest of that QH, including token
  456. * Result: HC gets an inconsistent image, and then
  457. * DMAs to/from the wrong memory (corrupting it).
  458. *
  459. * That should be rare for interrupt transfers,
  460. * except maybe high bandwidth ...
  461. */
  462. if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
  463. qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
  464. /* Let the caller know if the QH needs to be unlinked. */
  465. return qh->unlink_reason;
  466. }
  467. /*-------------------------------------------------------------------------*/
  468. /*
  469. * reverse of qh_urb_transaction: free a list of TDs.
  470. * used for cleanup after errors, before HC sees an URB's TDs.
  471. */
  472. static void qtd_list_free (
  473. struct ehci_hcd *ehci,
  474. struct urb *urb,
  475. struct list_head *qtd_list
  476. ) {
  477. struct list_head *entry, *temp;
  478. list_for_each_safe (entry, temp, qtd_list) {
  479. struct ehci_qtd *qtd;
  480. qtd = list_entry (entry, struct ehci_qtd, qtd_list);
  481. list_del (&qtd->qtd_list);
  482. ehci_qtd_free (ehci, qtd);
  483. }
  484. }
  485. /*
  486. * create a list of filled qtds for this URB; won't link into qh.
  487. */
  488. static struct list_head *
  489. qh_urb_transaction (
  490. struct ehci_hcd *ehci,
  491. struct urb *urb,
  492. struct list_head *head,
  493. gfp_t flags
  494. ) {
  495. struct ehci_qtd *qtd, *qtd_prev;
  496. dma_addr_t buf;
  497. int len, this_sg_len, maxpacket;
  498. int is_input;
  499. u32 token;
  500. int i;
  501. struct scatterlist *sg;
  502. /*
  503. * URBs map to sequences of QTDs: one logical transaction
  504. */
  505. qtd = ehci_qtd_alloc (ehci, flags);
  506. if (unlikely (!qtd))
  507. return NULL;
  508. list_add_tail (&qtd->qtd_list, head);
  509. qtd->urb = urb;
  510. token = QTD_STS_ACTIVE;
  511. token |= (EHCI_TUNE_CERR << 10);
  512. /* for split transactions, SplitXState initialized to zero */
  513. len = urb->transfer_buffer_length;
  514. is_input = usb_pipein (urb->pipe);
  515. if (usb_pipecontrol (urb->pipe)) {
  516. /* SETUP pid */
  517. qtd_fill(ehci, qtd, urb->setup_dma,
  518. sizeof (struct usb_ctrlrequest),
  519. token | (2 /* "setup" */ << 8), 8);
  520. /* ... and always at least one more pid */
  521. token ^= QTD_TOGGLE;
  522. qtd_prev = qtd;
  523. qtd = ehci_qtd_alloc (ehci, flags);
  524. if (unlikely (!qtd))
  525. goto cleanup;
  526. qtd->urb = urb;
  527. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  528. list_add_tail (&qtd->qtd_list, head);
  529. /* for zero length DATA stages, STATUS is always IN */
  530. if (len == 0)
  531. token |= (1 /* "in" */ << 8);
  532. }
  533. /*
  534. * data transfer stage: buffer setup
  535. */
  536. i = urb->num_mapped_sgs;
  537. if (len > 0 && i > 0) {
  538. sg = urb->sg;
  539. buf = sg_dma_address(sg);
  540. /* urb->transfer_buffer_length may be smaller than the
  541. * size of the scatterlist (or vice versa)
  542. */
  543. this_sg_len = min_t(int, sg_dma_len(sg), len);
  544. } else {
  545. sg = NULL;
  546. buf = urb->transfer_dma;
  547. this_sg_len = len;
  548. }
  549. if (is_input)
  550. token |= (1 /* "in" */ << 8);
  551. /* else it's already initted to "out" pid (0 << 8) */
  552. maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
  553. /*
  554. * buffer gets wrapped in one or more qtds;
  555. * last one may be "short" (including zero len)
  556. * and may serve as a control status ack
  557. */
  558. for (;;) {
  559. int this_qtd_len;
  560. this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
  561. maxpacket);
  562. this_sg_len -= this_qtd_len;
  563. len -= this_qtd_len;
  564. buf += this_qtd_len;
  565. /*
  566. * short reads advance to a "magic" dummy instead of the next
  567. * qtd ... that forces the queue to stop, for manual cleanup.
  568. * (this will usually be overridden later.)
  569. */
  570. if (is_input)
  571. qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
  572. /* qh makes control packets use qtd toggle; maybe switch it */
  573. if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
  574. token ^= QTD_TOGGLE;
  575. if (likely(this_sg_len <= 0)) {
  576. if (--i <= 0 || len <= 0)
  577. break;
  578. sg = sg_next(sg);
  579. buf = sg_dma_address(sg);
  580. this_sg_len = min_t(int, sg_dma_len(sg), len);
  581. }
  582. qtd_prev = qtd;
  583. qtd = ehci_qtd_alloc (ehci, flags);
  584. if (unlikely (!qtd))
  585. goto cleanup;
  586. qtd->urb = urb;
  587. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  588. list_add_tail (&qtd->qtd_list, head);
  589. }
  590. /*
  591. * unless the caller requires manual cleanup after short reads,
  592. * have the alt_next mechanism keep the queue running after the
  593. * last data qtd (the only one, for control and most other cases).
  594. */
  595. if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
  596. || usb_pipecontrol (urb->pipe)))
  597. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  598. /*
  599. * control requests may need a terminating data "status" ack;
  600. * other OUT ones may need a terminating short packet
  601. * (zero length).
  602. */
  603. if (likely (urb->transfer_buffer_length != 0)) {
  604. int one_more = 0;
  605. if (usb_pipecontrol (urb->pipe)) {
  606. one_more = 1;
  607. token ^= 0x0100; /* "in" <--> "out" */
  608. token |= QTD_TOGGLE; /* force DATA1 */
  609. } else if (usb_pipeout(urb->pipe)
  610. && (urb->transfer_flags & URB_ZERO_PACKET)
  611. && !(urb->transfer_buffer_length % maxpacket)) {
  612. one_more = 1;
  613. }
  614. if (one_more) {
  615. qtd_prev = qtd;
  616. qtd = ehci_qtd_alloc (ehci, flags);
  617. if (unlikely (!qtd))
  618. goto cleanup;
  619. qtd->urb = urb;
  620. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  621. list_add_tail (&qtd->qtd_list, head);
  622. /* never any data in such packets */
  623. qtd_fill(ehci, qtd, 0, 0, token, 0);
  624. }
  625. }
  626. /* by default, enable interrupt on urb completion */
  627. if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
  628. qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
  629. return head;
  630. cleanup:
  631. qtd_list_free (ehci, urb, head);
  632. return NULL;
  633. }
  634. /*-------------------------------------------------------------------------*/
  635. // Would be best to create all qh's from config descriptors,
  636. // when each interface/altsetting is established. Unlink
  637. // any previous qh and cancel its urbs first; endpoints are
  638. // implicitly reset then (data toggle too).
  639. // That'd mean updating how usbcore talks to HCDs. (2.7?)
  640. /*
  641. * Each QH holds a qtd list; a QH is used for everything except iso.
  642. *
  643. * For interrupt urbs, the scheduler must set the microframe scheduling
  644. * mask(s) each time the QH gets scheduled. For highspeed, that's
  645. * just one microframe in the s-mask. For split interrupt transactions
  646. * there are additional complications: c-mask, maybe FSTNs.
  647. */
  648. static struct ehci_qh *
  649. qh_make (
  650. struct ehci_hcd *ehci,
  651. struct urb *urb,
  652. gfp_t flags
  653. ) {
  654. struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
  655. struct usb_host_endpoint *ep;
  656. u32 info1 = 0, info2 = 0;
  657. int is_input, type;
  658. int maxp = 0;
  659. int mult;
  660. struct usb_tt *tt = urb->dev->tt;
  661. struct ehci_qh_hw *hw;
  662. if (!qh)
  663. return qh;
  664. /*
  665. * init endpoint/device data for this QH
  666. */
  667. info1 |= usb_pipeendpoint (urb->pipe) << 8;
  668. info1 |= usb_pipedevice (urb->pipe) << 0;
  669. is_input = usb_pipein (urb->pipe);
  670. type = usb_pipetype (urb->pipe);
  671. ep = usb_pipe_endpoint (urb->dev, urb->pipe);
  672. maxp = usb_endpoint_maxp (&ep->desc);
  673. mult = usb_endpoint_maxp_mult (&ep->desc);
  674. /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
  675. * acts like up to 3KB, but is built from smaller packets.
  676. */
  677. if (maxp > 1024) {
  678. ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
  679. goto done;
  680. }
  681. /* Compute interrupt scheduling parameters just once, and save.
  682. * - allowing for high bandwidth, how many nsec/uframe are used?
  683. * - split transactions need a second CSPLIT uframe; same question
  684. * - splits also need a schedule gap (for full/low speed I/O)
  685. * - qh has a polling interval
  686. *
  687. * For control/bulk requests, the HC or TT handles these.
  688. */
  689. if (type == PIPE_INTERRUPT) {
  690. unsigned tmp;
  691. qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
  692. is_input, 0, mult * maxp));
  693. qh->ps.phase = NO_FRAME;
  694. if (urb->dev->speed == USB_SPEED_HIGH) {
  695. qh->ps.c_usecs = 0;
  696. qh->gap_uf = 0;
  697. if (urb->interval > 1 && urb->interval < 8) {
  698. /* NOTE interval 2 or 4 uframes could work.
  699. * But interval 1 scheduling is simpler, and
  700. * includes high bandwidth.
  701. */
  702. urb->interval = 1;
  703. } else if (urb->interval > ehci->periodic_size << 3) {
  704. urb->interval = ehci->periodic_size << 3;
  705. }
  706. qh->ps.period = urb->interval >> 3;
  707. /* period for bandwidth allocation */
  708. tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
  709. 1 << (urb->ep->desc.bInterval - 1));
  710. /* Allow urb->interval to override */
  711. qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
  712. qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
  713. } else {
  714. int think_time;
  715. /* gap is f(FS/LS transfer times) */
  716. qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
  717. is_input, 0, maxp) / (125 * 1000);
  718. /* FIXME this just approximates SPLIT/CSPLIT times */
  719. if (is_input) { // SPLIT, gap, CSPLIT+DATA
  720. qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
  721. qh->ps.usecs = HS_USECS(1);
  722. } else { // SPLIT+DATA, gap, CSPLIT
  723. qh->ps.usecs += HS_USECS(1);
  724. qh->ps.c_usecs = HS_USECS(0);
  725. }
  726. think_time = tt ? tt->think_time : 0;
  727. qh->ps.tt_usecs = NS_TO_US(think_time +
  728. usb_calc_bus_time (urb->dev->speed,
  729. is_input, 0, maxp));
  730. if (urb->interval > ehci->periodic_size)
  731. urb->interval = ehci->periodic_size;
  732. qh->ps.period = urb->interval;
  733. /* period for bandwidth allocation */
  734. tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
  735. urb->ep->desc.bInterval);
  736. tmp = rounddown_pow_of_two(tmp);
  737. /* Allow urb->interval to override */
  738. qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
  739. qh->ps.bw_uperiod = qh->ps.bw_period << 3;
  740. }
  741. }
  742. /* support for tt scheduling, and access to toggles */
  743. qh->ps.udev = urb->dev;
  744. qh->ps.ep = urb->ep;
  745. /* using TT? */
  746. switch (urb->dev->speed) {
  747. case USB_SPEED_LOW:
  748. info1 |= QH_LOW_SPEED;
  749. /* FALL THROUGH */
  750. case USB_SPEED_FULL:
  751. /* EPS 0 means "full" */
  752. if (type != PIPE_INTERRUPT)
  753. info1 |= (EHCI_TUNE_RL_TT << 28);
  754. if (type == PIPE_CONTROL) {
  755. info1 |= QH_CONTROL_EP; /* for TT */
  756. info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
  757. }
  758. info1 |= maxp << 16;
  759. info2 |= (EHCI_TUNE_MULT_TT << 30);
  760. /* Some Freescale processors have an erratum in which the
  761. * port number in the queue head was 0..N-1 instead of 1..N.
  762. */
  763. if (ehci_has_fsl_portno_bug(ehci))
  764. info2 |= (urb->dev->ttport-1) << 23;
  765. else
  766. info2 |= urb->dev->ttport << 23;
  767. /* set the address of the TT; for TDI's integrated
  768. * root hub tt, leave it zeroed.
  769. */
  770. if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
  771. info2 |= tt->hub->devnum << 16;
  772. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
  773. break;
  774. case USB_SPEED_HIGH: /* no TT involved */
  775. info1 |= QH_HIGH_SPEED;
  776. if (type == PIPE_CONTROL) {
  777. info1 |= (EHCI_TUNE_RL_HS << 28);
  778. info1 |= 64 << 16; /* usb2 fixed maxpacket */
  779. info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
  780. info2 |= (EHCI_TUNE_MULT_HS << 30);
  781. } else if (type == PIPE_BULK) {
  782. info1 |= (EHCI_TUNE_RL_HS << 28);
  783. /* The USB spec says that high speed bulk endpoints
  784. * always use 512 byte maxpacket. But some device
  785. * vendors decided to ignore that, and MSFT is happy
  786. * to help them do so. So now people expect to use
  787. * such nonconformant devices with Linux too; sigh.
  788. */
  789. info1 |= maxp << 16;
  790. info2 |= (EHCI_TUNE_MULT_HS << 30);
  791. } else { /* PIPE_INTERRUPT */
  792. info1 |= maxp << 16;
  793. info2 |= mult << 30;
  794. }
  795. break;
  796. default:
  797. ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
  798. urb->dev->speed);
  799. done:
  800. qh_destroy(ehci, qh);
  801. return NULL;
  802. }
  803. /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
  804. /* init as live, toggle clear */
  805. qh->qh_state = QH_STATE_IDLE;
  806. hw = qh->hw;
  807. hw->hw_info1 = cpu_to_hc32(ehci, info1);
  808. hw->hw_info2 = cpu_to_hc32(ehci, info2);
  809. qh->is_out = !is_input;
  810. usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
  811. return qh;
  812. }
  813. /*-------------------------------------------------------------------------*/
  814. static void enable_async(struct ehci_hcd *ehci)
  815. {
  816. if (ehci->async_count++)
  817. return;
  818. /* Stop waiting to turn off the async schedule */
  819. ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
  820. /* Don't start the schedule until ASS is 0 */
  821. ehci_poll_ASS(ehci);
  822. turn_on_io_watchdog(ehci);
  823. }
  824. static void disable_async(struct ehci_hcd *ehci)
  825. {
  826. if (--ehci->async_count)
  827. return;
  828. /* The async schedule and unlink lists are supposed to be empty */
  829. WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
  830. !list_empty(&ehci->async_idle));
  831. /* Don't turn off the schedule until ASS is 1 */
  832. ehci_poll_ASS(ehci);
  833. }
  834. /* move qh (and its qtds) onto async queue; maybe enable queue. */
  835. static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
  836. {
  837. __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
  838. struct ehci_qh *head;
  839. /* Don't link a QH if there's a Clear-TT-Buffer pending */
  840. if (unlikely(qh->clearing_tt))
  841. return;
  842. WARN_ON(qh->qh_state != QH_STATE_IDLE);
  843. /* clear halt and/or toggle; and maybe recover from silicon quirk */
  844. qh_refresh(ehci, qh);
  845. /* splice right after start */
  846. head = ehci->async;
  847. qh->qh_next = head->qh_next;
  848. qh->hw->hw_next = head->hw->hw_next;
  849. wmb ();
  850. head->qh_next.qh = qh;
  851. head->hw->hw_next = dma;
  852. qh->qh_state = QH_STATE_LINKED;
  853. qh->xacterrs = 0;
  854. qh->unlink_reason = 0;
  855. /* qtd completions reported later by interrupt */
  856. enable_async(ehci);
  857. }
  858. /*-------------------------------------------------------------------------*/
  859. /*
  860. * For control/bulk/interrupt, return QH with these TDs appended.
  861. * Allocates and initializes the QH if necessary.
  862. * Returns null if it can't allocate a QH it needs to.
  863. * If the QH has TDs (urbs) already, that's great.
  864. */
  865. static struct ehci_qh *qh_append_tds (
  866. struct ehci_hcd *ehci,
  867. struct urb *urb,
  868. struct list_head *qtd_list,
  869. int epnum,
  870. void **ptr
  871. )
  872. {
  873. struct ehci_qh *qh = NULL;
  874. __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
  875. qh = (struct ehci_qh *) *ptr;
  876. if (unlikely (qh == NULL)) {
  877. /* can't sleep here, we have ehci->lock... */
  878. qh = qh_make (ehci, urb, GFP_ATOMIC);
  879. *ptr = qh;
  880. }
  881. if (likely (qh != NULL)) {
  882. struct ehci_qtd *qtd;
  883. if (unlikely (list_empty (qtd_list)))
  884. qtd = NULL;
  885. else
  886. qtd = list_entry (qtd_list->next, struct ehci_qtd,
  887. qtd_list);
  888. /* control qh may need patching ... */
  889. if (unlikely (epnum == 0)) {
  890. /* usb_reset_device() briefly reverts to address 0 */
  891. if (usb_pipedevice (urb->pipe) == 0)
  892. qh->hw->hw_info1 &= ~qh_addr_mask;
  893. }
  894. /* just one way to queue requests: swap with the dummy qtd.
  895. * only hc or qh_refresh() ever modify the overlay.
  896. */
  897. if (likely (qtd != NULL)) {
  898. struct ehci_qtd *dummy;
  899. dma_addr_t dma;
  900. __hc32 token;
  901. /* to avoid racing the HC, use the dummy td instead of
  902. * the first td of our list (becomes new dummy). both
  903. * tds stay deactivated until we're done, when the
  904. * HC is allowed to fetch the old dummy (4.10.2).
  905. */
  906. token = qtd->hw_token;
  907. qtd->hw_token = HALT_BIT(ehci);
  908. dummy = qh->dummy;
  909. dma = dummy->qtd_dma;
  910. *dummy = *qtd;
  911. dummy->qtd_dma = dma;
  912. list_del (&qtd->qtd_list);
  913. list_add (&dummy->qtd_list, qtd_list);
  914. list_splice_tail(qtd_list, &qh->qtd_list);
  915. ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
  916. qh->dummy = qtd;
  917. /* hc must see the new dummy at list end */
  918. dma = qtd->qtd_dma;
  919. qtd = list_entry (qh->qtd_list.prev,
  920. struct ehci_qtd, qtd_list);
  921. qtd->hw_next = QTD_NEXT(ehci, dma);
  922. /* let the hc process these next qtds */
  923. wmb ();
  924. dummy->hw_token = token;
  925. urb->hcpriv = qh;
  926. }
  927. }
  928. return qh;
  929. }
  930. /*-------------------------------------------------------------------------*/
  931. static int
  932. submit_async (
  933. struct ehci_hcd *ehci,
  934. struct urb *urb,
  935. struct list_head *qtd_list,
  936. gfp_t mem_flags
  937. ) {
  938. int epnum;
  939. unsigned long flags;
  940. struct ehci_qh *qh = NULL;
  941. int rc;
  942. epnum = urb->ep->desc.bEndpointAddress;
  943. #ifdef EHCI_URB_TRACE
  944. {
  945. struct ehci_qtd *qtd;
  946. qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
  947. ehci_dbg(ehci,
  948. "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
  949. __func__, urb->dev->devpath, urb,
  950. epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
  951. urb->transfer_buffer_length,
  952. qtd, urb->ep->hcpriv);
  953. }
  954. #endif
  955. spin_lock_irqsave (&ehci->lock, flags);
  956. if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
  957. rc = -ESHUTDOWN;
  958. goto done;
  959. }
  960. rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
  961. if (unlikely(rc))
  962. goto done;
  963. qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
  964. if (unlikely(qh == NULL)) {
  965. usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
  966. rc = -ENOMEM;
  967. goto done;
  968. }
  969. /* Control/bulk operations through TTs don't need scheduling,
  970. * the HC and TT handle it when the TT has a buffer ready.
  971. */
  972. if (likely (qh->qh_state == QH_STATE_IDLE))
  973. qh_link_async(ehci, qh);
  974. done:
  975. spin_unlock_irqrestore (&ehci->lock, flags);
  976. if (unlikely (qh == NULL))
  977. qtd_list_free (ehci, urb, qtd_list);
  978. return rc;
  979. }
  980. /*-------------------------------------------------------------------------*/
  981. #ifdef CONFIG_USB_HCD_TEST_MODE
  982. /*
  983. * This function creates the qtds and submits them for the
  984. * SINGLE_STEP_SET_FEATURE Test.
  985. * This is done in two parts: first SETUP req for GetDesc is sent then
  986. * 15 seconds later, the IN stage for GetDesc starts to req data from dev
  987. *
  988. * is_setup : i/p arguement decides which of the two stage needs to be
  989. * performed; TRUE - SETUP and FALSE - IN+STATUS
  990. * Returns 0 if success
  991. */
  992. static int submit_single_step_set_feature(
  993. struct usb_hcd *hcd,
  994. struct urb *urb,
  995. int is_setup
  996. ) {
  997. struct ehci_hcd *ehci = hcd_to_ehci(hcd);
  998. struct list_head qtd_list;
  999. struct list_head *head;
  1000. struct ehci_qtd *qtd, *qtd_prev;
  1001. dma_addr_t buf;
  1002. int len, maxpacket;
  1003. u32 token;
  1004. INIT_LIST_HEAD(&qtd_list);
  1005. head = &qtd_list;
  1006. /* URBs map to sequences of QTDs: one logical transaction */
  1007. qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
  1008. if (unlikely(!qtd))
  1009. return -1;
  1010. list_add_tail(&qtd->qtd_list, head);
  1011. qtd->urb = urb;
  1012. token = QTD_STS_ACTIVE;
  1013. token |= (EHCI_TUNE_CERR << 10);
  1014. len = urb->transfer_buffer_length;
  1015. /*
  1016. * Check if the request is to perform just the SETUP stage (getDesc)
  1017. * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
  1018. * 15 secs after the setup
  1019. */
  1020. if (is_setup) {
  1021. /* SETUP pid, and interrupt after SETUP completion */
  1022. qtd_fill(ehci, qtd, urb->setup_dma,
  1023. sizeof(struct usb_ctrlrequest),
  1024. QTD_IOC | token | (2 /* "setup" */ << 8), 8);
  1025. submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
  1026. return 0; /*Return now; we shall come back after 15 seconds*/
  1027. }
  1028. /*
  1029. * IN: data transfer stage: buffer setup : start the IN txn phase for
  1030. * the get_Desc SETUP which was sent 15seconds back
  1031. */
  1032. token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
  1033. buf = urb->transfer_dma;
  1034. token |= (1 /* "in" */ << 8); /*This is IN stage*/
  1035. maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
  1036. qtd_fill(ehci, qtd, buf, len, token, maxpacket);
  1037. /*
  1038. * Our IN phase shall always be a short read; so keep the queue running
  1039. * and let it advance to the next qtd which zero length OUT status
  1040. */
  1041. qtd->hw_alt_next = EHCI_LIST_END(ehci);
  1042. /* STATUS stage for GetDesc control request */
  1043. token ^= 0x0100; /* "in" <--> "out" */
  1044. token |= QTD_TOGGLE; /* force DATA1 */
  1045. qtd_prev = qtd;
  1046. qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
  1047. if (unlikely(!qtd))
  1048. goto cleanup;
  1049. qtd->urb = urb;
  1050. qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
  1051. list_add_tail(&qtd->qtd_list, head);
  1052. /* Interrupt after STATUS completion */
  1053. qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
  1054. submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
  1055. return 0;
  1056. cleanup:
  1057. qtd_list_free(ehci, urb, head);
  1058. return -1;
  1059. }
  1060. #endif /* CONFIG_USB_HCD_TEST_MODE */
  1061. /*-------------------------------------------------------------------------*/
  1062. static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
  1063. {
  1064. struct ehci_qh *prev;
  1065. /* Add to the end of the list of QHs waiting for the next IAAD */
  1066. qh->qh_state = QH_STATE_UNLINK_WAIT;
  1067. list_add_tail(&qh->unlink_node, &ehci->async_unlink);
  1068. /* Unlink it from the schedule */
  1069. prev = ehci->async;
  1070. while (prev->qh_next.qh != qh)
  1071. prev = prev->qh_next.qh;
  1072. prev->hw->hw_next = qh->hw->hw_next;
  1073. prev->qh_next = qh->qh_next;
  1074. if (ehci->qh_scan_next == qh)
  1075. ehci->qh_scan_next = qh->qh_next.qh;
  1076. }
  1077. static void start_iaa_cycle(struct ehci_hcd *ehci)
  1078. {
  1079. /* If the controller isn't running, we don't have to wait for it */
  1080. if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
  1081. end_unlink_async(ehci);
  1082. /* Otherwise start a new IAA cycle if one isn't already running */
  1083. } else if (ehci->rh_state == EHCI_RH_RUNNING &&
  1084. !ehci->iaa_in_progress) {
  1085. /* Make sure the unlinks are all visible to the hardware */
  1086. wmb();
  1087. ehci_writel(ehci, ehci->command | CMD_IAAD,
  1088. &ehci->regs->command);
  1089. ehci_readl(ehci, &ehci->regs->command);
  1090. ehci->iaa_in_progress = true;
  1091. ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
  1092. }
  1093. }
  1094. static void end_iaa_cycle(struct ehci_hcd *ehci)
  1095. {
  1096. if (ehci->has_synopsys_hc_bug)
  1097. ehci_writel(ehci, (u32) ehci->async->qh_dma,
  1098. &ehci->regs->async_next);
  1099. /* The current IAA cycle has ended */
  1100. ehci->iaa_in_progress = false;
  1101. end_unlink_async(ehci);
  1102. }
  1103. /* See if the async qh for the qtds being unlinked are now gone from the HC */
  1104. static void end_unlink_async(struct ehci_hcd *ehci)
  1105. {
  1106. struct ehci_qh *qh;
  1107. bool early_exit;
  1108. if (list_empty(&ehci->async_unlink))
  1109. return;
  1110. qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
  1111. unlink_node); /* QH whose IAA cycle just ended */
  1112. /*
  1113. * If async_unlinking is set then this routine is already running,
  1114. * either on the stack or on another CPU.
  1115. */
  1116. early_exit = ehci->async_unlinking;
  1117. /* If the controller isn't running, process all the waiting QHs */
  1118. if (ehci->rh_state < EHCI_RH_RUNNING)
  1119. list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
  1120. /*
  1121. * Intel (?) bug: The HC can write back the overlay region even
  1122. * after the IAA interrupt occurs. In self-defense, always go
  1123. * through two IAA cycles for each QH.
  1124. */
  1125. else if (qh->qh_state == QH_STATE_UNLINK) {
  1126. /*
  1127. * Second IAA cycle has finished. Process only the first
  1128. * waiting QH (NVIDIA (?) bug).
  1129. */
  1130. list_move_tail(&qh->unlink_node, &ehci->async_idle);
  1131. }
  1132. /*
  1133. * AMD/ATI (?) bug: The HC can continue to use an active QH long
  1134. * after the IAA interrupt occurs. To prevent problems, QHs that
  1135. * may still be active will wait until 2 ms have passed with no
  1136. * change to the hw_current and hw_token fields (this delay occurs
  1137. * between the two IAA cycles).
  1138. *
  1139. * The EHCI spec (4.8.2) says that active QHs must not be removed
  1140. * from the async schedule and recommends waiting until the QH
  1141. * goes inactive. This is ridiculous because the QH will _never_
  1142. * become inactive if the endpoint NAKs indefinitely.
  1143. */
  1144. /* Some reasons for unlinking guarantee the QH can't be active */
  1145. else if (qh->unlink_reason & (QH_UNLINK_HALTED |
  1146. QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
  1147. goto DelayDone;
  1148. /* The QH can't be active if the queue was and still is empty... */
  1149. else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
  1150. list_empty(&qh->qtd_list))
  1151. goto DelayDone;
  1152. /* ... or if the QH has halted */
  1153. else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
  1154. goto DelayDone;
  1155. /* Otherwise we have to wait until the QH stops changing */
  1156. else {
  1157. __hc32 qh_current, qh_token;
  1158. qh_current = qh->hw->hw_current;
  1159. qh_token = qh->hw->hw_token;
  1160. if (qh_current != ehci->old_current ||
  1161. qh_token != ehci->old_token) {
  1162. ehci->old_current = qh_current;
  1163. ehci->old_token = qh_token;
  1164. ehci_enable_event(ehci,
  1165. EHCI_HRTIMER_ACTIVE_UNLINK, true);
  1166. return;
  1167. }
  1168. DelayDone:
  1169. qh->qh_state = QH_STATE_UNLINK;
  1170. early_exit = true;
  1171. }
  1172. ehci->old_current = ~0; /* Prepare for next QH */
  1173. /* Start a new IAA cycle if any QHs are waiting for it */
  1174. if (!list_empty(&ehci->async_unlink))
  1175. start_iaa_cycle(ehci);
  1176. /*
  1177. * Don't allow nesting or concurrent calls,
  1178. * or wait for the second IAA cycle for the next QH.
  1179. */
  1180. if (early_exit)
  1181. return;
  1182. /* Process the idle QHs */
  1183. ehci->async_unlinking = true;
  1184. while (!list_empty(&ehci->async_idle)) {
  1185. qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
  1186. unlink_node);
  1187. list_del(&qh->unlink_node);
  1188. qh->qh_state = QH_STATE_IDLE;
  1189. qh->qh_next.qh = NULL;
  1190. if (!list_empty(&qh->qtd_list))
  1191. qh_completions(ehci, qh);
  1192. if (!list_empty(&qh->qtd_list) &&
  1193. ehci->rh_state == EHCI_RH_RUNNING)
  1194. qh_link_async(ehci, qh);
  1195. disable_async(ehci);
  1196. }
  1197. ehci->async_unlinking = false;
  1198. }
  1199. static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
  1200. static void unlink_empty_async(struct ehci_hcd *ehci)
  1201. {
  1202. struct ehci_qh *qh;
  1203. struct ehci_qh *qh_to_unlink = NULL;
  1204. int count = 0;
  1205. /* Find the last async QH which has been empty for a timer cycle */
  1206. for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
  1207. if (list_empty(&qh->qtd_list) &&
  1208. qh->qh_state == QH_STATE_LINKED) {
  1209. ++count;
  1210. if (qh->unlink_cycle != ehci->async_unlink_cycle)
  1211. qh_to_unlink = qh;
  1212. }
  1213. }
  1214. /* If nothing else is being unlinked, unlink the last empty QH */
  1215. if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
  1216. qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
  1217. start_unlink_async(ehci, qh_to_unlink);
  1218. --count;
  1219. }
  1220. /* Other QHs will be handled later */
  1221. if (count > 0) {
  1222. ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
  1223. ++ehci->async_unlink_cycle;
  1224. }
  1225. }
  1226. #ifdef CONFIG_PM
  1227. /* The root hub is suspended; unlink all the async QHs */
  1228. static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
  1229. {
  1230. struct ehci_qh *qh;
  1231. while (ehci->async->qh_next.qh) {
  1232. qh = ehci->async->qh_next.qh;
  1233. WARN_ON(!list_empty(&qh->qtd_list));
  1234. single_unlink_async(ehci, qh);
  1235. }
  1236. }
  1237. #endif
  1238. /* makes sure the async qh will become idle */
  1239. /* caller must own ehci->lock */
  1240. static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
  1241. {
  1242. /* If the QH isn't linked then there's nothing we can do. */
  1243. if (qh->qh_state != QH_STATE_LINKED)
  1244. return;
  1245. single_unlink_async(ehci, qh);
  1246. start_iaa_cycle(ehci);
  1247. }
  1248. /*-------------------------------------------------------------------------*/
  1249. static void scan_async (struct ehci_hcd *ehci)
  1250. {
  1251. struct ehci_qh *qh;
  1252. bool check_unlinks_later = false;
  1253. ehci->qh_scan_next = ehci->async->qh_next.qh;
  1254. while (ehci->qh_scan_next) {
  1255. qh = ehci->qh_scan_next;
  1256. ehci->qh_scan_next = qh->qh_next.qh;
  1257. /* clean any finished work for this qh */
  1258. if (!list_empty(&qh->qtd_list)) {
  1259. int temp;
  1260. /*
  1261. * Unlinks could happen here; completion reporting
  1262. * drops the lock. That's why ehci->qh_scan_next
  1263. * always holds the next qh to scan; if the next qh
  1264. * gets unlinked then ehci->qh_scan_next is adjusted
  1265. * in single_unlink_async().
  1266. */
  1267. temp = qh_completions(ehci, qh);
  1268. if (unlikely(temp)) {
  1269. start_unlink_async(ehci, qh);
  1270. } else if (list_empty(&qh->qtd_list)
  1271. && qh->qh_state == QH_STATE_LINKED) {
  1272. qh->unlink_cycle = ehci->async_unlink_cycle;
  1273. check_unlinks_later = true;
  1274. }
  1275. }
  1276. }
  1277. /*
  1278. * Unlink empty entries, reducing DMA usage as well
  1279. * as HCD schedule-scanning costs. Delay for any qh
  1280. * we just scanned, there's a not-unusual case that it
  1281. * doesn't stay idle for long.
  1282. */
  1283. if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
  1284. !(ehci->enabled_hrtimer_events &
  1285. BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
  1286. ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
  1287. ++ehci->async_unlink_cycle;
  1288. }
  1289. }