file.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/random.h>
  24. #include "f2fs.h"
  25. #include "node.h"
  26. #include "segment.h"
  27. #include "xattr.h"
  28. #include "acl.h"
  29. #include "gc.h"
  30. #include "trace.h"
  31. #include <trace/events/f2fs.h>
  32. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  33. struct vm_fault *vmf)
  34. {
  35. struct page *page = vmf->page;
  36. struct inode *inode = file_inode(vma->vm_file);
  37. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  38. struct dnode_of_data dn;
  39. int err;
  40. sb_start_pagefault(inode->i_sb);
  41. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  42. /* block allocation */
  43. f2fs_lock_op(sbi);
  44. set_new_dnode(&dn, inode, NULL, NULL, 0);
  45. err = f2fs_reserve_block(&dn, page->index);
  46. if (err) {
  47. f2fs_unlock_op(sbi);
  48. goto out;
  49. }
  50. f2fs_put_dnode(&dn);
  51. f2fs_unlock_op(sbi);
  52. f2fs_balance_fs(sbi, dn.node_changed);
  53. file_update_time(vma->vm_file);
  54. lock_page(page);
  55. if (unlikely(page->mapping != inode->i_mapping ||
  56. page_offset(page) > i_size_read(inode) ||
  57. !PageUptodate(page))) {
  58. unlock_page(page);
  59. err = -EFAULT;
  60. goto out;
  61. }
  62. /*
  63. * check to see if the page is mapped already (no holes)
  64. */
  65. if (PageMappedToDisk(page))
  66. goto mapped;
  67. /* page is wholly or partially inside EOF */
  68. if (((loff_t)(page->index + 1) << PAGE_CACHE_SHIFT) >
  69. i_size_read(inode)) {
  70. unsigned offset;
  71. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  72. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  73. }
  74. set_page_dirty(page);
  75. SetPageUptodate(page);
  76. trace_f2fs_vm_page_mkwrite(page, DATA);
  77. mapped:
  78. /* fill the page */
  79. f2fs_wait_on_page_writeback(page, DATA);
  80. /* wait for GCed encrypted page writeback */
  81. if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  82. f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  83. /* if gced page is attached, don't write to cold segment */
  84. clear_cold_data(page);
  85. out:
  86. sb_end_pagefault(inode->i_sb);
  87. f2fs_update_time(sbi, REQ_TIME);
  88. return block_page_mkwrite_return(err);
  89. }
  90. static const struct vm_operations_struct f2fs_file_vm_ops = {
  91. .fault = filemap_fault,
  92. .map_pages = filemap_map_pages,
  93. .page_mkwrite = f2fs_vm_page_mkwrite,
  94. };
  95. static int get_parent_ino(struct inode *inode, nid_t *pino)
  96. {
  97. struct dentry *dentry;
  98. inode = igrab(inode);
  99. dentry = d_find_any_alias(inode);
  100. iput(inode);
  101. if (!dentry)
  102. return 0;
  103. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  104. dput(dentry);
  105. return 0;
  106. }
  107. *pino = parent_ino(dentry);
  108. dput(dentry);
  109. return 1;
  110. }
  111. static inline bool need_do_checkpoint(struct inode *inode)
  112. {
  113. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  114. bool need_cp = false;
  115. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  116. need_cp = true;
  117. else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
  118. need_cp = true;
  119. else if (file_wrong_pino(inode))
  120. need_cp = true;
  121. else if (!space_for_roll_forward(sbi))
  122. need_cp = true;
  123. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  124. need_cp = true;
  125. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  126. need_cp = true;
  127. else if (test_opt(sbi, FASTBOOT))
  128. need_cp = true;
  129. else if (sbi->active_logs == 2)
  130. need_cp = true;
  131. return need_cp;
  132. }
  133. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  134. {
  135. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  136. bool ret = false;
  137. /* But we need to avoid that there are some inode updates */
  138. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  139. ret = true;
  140. f2fs_put_page(i, 0);
  141. return ret;
  142. }
  143. static void try_to_fix_pino(struct inode *inode)
  144. {
  145. struct f2fs_inode_info *fi = F2FS_I(inode);
  146. nid_t pino;
  147. down_write(&fi->i_sem);
  148. fi->xattr_ver = 0;
  149. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  150. get_parent_ino(inode, &pino)) {
  151. fi->i_pino = pino;
  152. file_got_pino(inode);
  153. up_write(&fi->i_sem);
  154. mark_inode_dirty_sync(inode);
  155. f2fs_write_inode(inode, NULL);
  156. } else {
  157. up_write(&fi->i_sem);
  158. }
  159. }
  160. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  161. {
  162. struct inode *inode = file->f_mapping->host;
  163. struct f2fs_inode_info *fi = F2FS_I(inode);
  164. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  165. nid_t ino = inode->i_ino;
  166. int ret = 0;
  167. bool need_cp = false;
  168. struct writeback_control wbc = {
  169. .sync_mode = WB_SYNC_ALL,
  170. .nr_to_write = LONG_MAX,
  171. .for_reclaim = 0,
  172. };
  173. if (unlikely(f2fs_readonly(inode->i_sb)))
  174. return 0;
  175. trace_f2fs_sync_file_enter(inode);
  176. /* if fdatasync is triggered, let's do in-place-update */
  177. if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  178. set_inode_flag(fi, FI_NEED_IPU);
  179. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  180. clear_inode_flag(fi, FI_NEED_IPU);
  181. if (ret) {
  182. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  183. return ret;
  184. }
  185. /* if the inode is dirty, let's recover all the time */
  186. if (!datasync) {
  187. f2fs_write_inode(inode, NULL);
  188. goto go_write;
  189. }
  190. /*
  191. * if there is no written data, don't waste time to write recovery info.
  192. */
  193. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  194. !exist_written_data(sbi, ino, APPEND_INO)) {
  195. /* it may call write_inode just prior to fsync */
  196. if (need_inode_page_update(sbi, ino))
  197. goto go_write;
  198. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  199. exist_written_data(sbi, ino, UPDATE_INO))
  200. goto flush_out;
  201. goto out;
  202. }
  203. go_write:
  204. /*
  205. * Both of fdatasync() and fsync() are able to be recovered from
  206. * sudden-power-off.
  207. */
  208. down_read(&fi->i_sem);
  209. need_cp = need_do_checkpoint(inode);
  210. up_read(&fi->i_sem);
  211. if (need_cp) {
  212. /* all the dirty node pages should be flushed for POR */
  213. ret = f2fs_sync_fs(inode->i_sb, 1);
  214. /*
  215. * We've secured consistency through sync_fs. Following pino
  216. * will be used only for fsynced inodes after checkpoint.
  217. */
  218. try_to_fix_pino(inode);
  219. clear_inode_flag(fi, FI_APPEND_WRITE);
  220. clear_inode_flag(fi, FI_UPDATE_WRITE);
  221. goto out;
  222. }
  223. sync_nodes:
  224. sync_node_pages(sbi, ino, &wbc);
  225. /* if cp_error was enabled, we should avoid infinite loop */
  226. if (unlikely(f2fs_cp_error(sbi))) {
  227. ret = -EIO;
  228. goto out;
  229. }
  230. if (need_inode_block_update(sbi, ino)) {
  231. mark_inode_dirty_sync(inode);
  232. f2fs_write_inode(inode, NULL);
  233. goto sync_nodes;
  234. }
  235. ret = wait_on_node_pages_writeback(sbi, ino);
  236. if (ret)
  237. goto out;
  238. /* once recovery info is written, don't need to tack this */
  239. remove_ino_entry(sbi, ino, APPEND_INO);
  240. clear_inode_flag(fi, FI_APPEND_WRITE);
  241. flush_out:
  242. remove_ino_entry(sbi, ino, UPDATE_INO);
  243. clear_inode_flag(fi, FI_UPDATE_WRITE);
  244. ret = f2fs_issue_flush(sbi);
  245. f2fs_update_time(sbi, REQ_TIME);
  246. out:
  247. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  248. f2fs_trace_ios(NULL, 1);
  249. return ret;
  250. }
  251. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  252. pgoff_t pgofs, int whence)
  253. {
  254. struct pagevec pvec;
  255. int nr_pages;
  256. if (whence != SEEK_DATA)
  257. return 0;
  258. /* find first dirty page index */
  259. pagevec_init(&pvec, 0);
  260. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  261. PAGECACHE_TAG_DIRTY, 1);
  262. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  263. pagevec_release(&pvec);
  264. return pgofs;
  265. }
  266. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  267. int whence)
  268. {
  269. switch (whence) {
  270. case SEEK_DATA:
  271. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  272. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  273. return true;
  274. break;
  275. case SEEK_HOLE:
  276. if (blkaddr == NULL_ADDR)
  277. return true;
  278. break;
  279. }
  280. return false;
  281. }
  282. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  283. {
  284. struct inode *inode = file->f_mapping->host;
  285. loff_t maxbytes = inode->i_sb->s_maxbytes;
  286. struct dnode_of_data dn;
  287. pgoff_t pgofs, end_offset, dirty;
  288. loff_t data_ofs = offset;
  289. loff_t isize;
  290. int err = 0;
  291. inode_lock(inode);
  292. isize = i_size_read(inode);
  293. if (offset >= isize)
  294. goto fail;
  295. /* handle inline data case */
  296. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  297. if (whence == SEEK_HOLE)
  298. data_ofs = isize;
  299. goto found;
  300. }
  301. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  302. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  303. for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
  304. set_new_dnode(&dn, inode, NULL, NULL, 0);
  305. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  306. if (err && err != -ENOENT) {
  307. goto fail;
  308. } else if (err == -ENOENT) {
  309. /* direct node does not exists */
  310. if (whence == SEEK_DATA) {
  311. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  312. F2FS_I(inode));
  313. continue;
  314. } else {
  315. goto found;
  316. }
  317. }
  318. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  319. /* find data/hole in dnode block */
  320. for (; dn.ofs_in_node < end_offset;
  321. dn.ofs_in_node++, pgofs++,
  322. data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
  323. block_t blkaddr;
  324. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  325. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  326. f2fs_put_dnode(&dn);
  327. goto found;
  328. }
  329. }
  330. f2fs_put_dnode(&dn);
  331. }
  332. if (whence == SEEK_DATA)
  333. goto fail;
  334. found:
  335. if (whence == SEEK_HOLE && data_ofs > isize)
  336. data_ofs = isize;
  337. inode_unlock(inode);
  338. return vfs_setpos(file, data_ofs, maxbytes);
  339. fail:
  340. inode_unlock(inode);
  341. return -ENXIO;
  342. }
  343. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  344. {
  345. struct inode *inode = file->f_mapping->host;
  346. loff_t maxbytes = inode->i_sb->s_maxbytes;
  347. switch (whence) {
  348. case SEEK_SET:
  349. case SEEK_CUR:
  350. case SEEK_END:
  351. return generic_file_llseek_size(file, offset, whence,
  352. maxbytes, i_size_read(inode));
  353. case SEEK_DATA:
  354. case SEEK_HOLE:
  355. if (offset < 0)
  356. return -ENXIO;
  357. return f2fs_seek_block(file, offset, whence);
  358. }
  359. return -EINVAL;
  360. }
  361. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  362. {
  363. struct inode *inode = file_inode(file);
  364. int err;
  365. if (f2fs_encrypted_inode(inode)) {
  366. err = f2fs_get_encryption_info(inode);
  367. if (err)
  368. return 0;
  369. }
  370. /* we don't need to use inline_data strictly */
  371. err = f2fs_convert_inline_inode(inode);
  372. if (err)
  373. return err;
  374. file_accessed(file);
  375. vma->vm_ops = &f2fs_file_vm_ops;
  376. return 0;
  377. }
  378. static int f2fs_file_open(struct inode *inode, struct file *filp)
  379. {
  380. int ret = generic_file_open(inode, filp);
  381. if (!ret && f2fs_encrypted_inode(inode)) {
  382. ret = f2fs_get_encryption_info(inode);
  383. if (ret)
  384. ret = -EACCES;
  385. }
  386. return ret;
  387. }
  388. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  389. {
  390. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  391. struct f2fs_node *raw_node;
  392. int nr_free = 0, ofs = dn->ofs_in_node, len = count;
  393. __le32 *addr;
  394. raw_node = F2FS_NODE(dn->node_page);
  395. addr = blkaddr_in_node(raw_node) + ofs;
  396. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  397. block_t blkaddr = le32_to_cpu(*addr);
  398. if (blkaddr == NULL_ADDR)
  399. continue;
  400. dn->data_blkaddr = NULL_ADDR;
  401. set_data_blkaddr(dn);
  402. invalidate_blocks(sbi, blkaddr);
  403. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  404. clear_inode_flag(F2FS_I(dn->inode),
  405. FI_FIRST_BLOCK_WRITTEN);
  406. nr_free++;
  407. }
  408. if (nr_free) {
  409. pgoff_t fofs;
  410. /*
  411. * once we invalidate valid blkaddr in range [ofs, ofs + count],
  412. * we will invalidate all blkaddr in the whole range.
  413. */
  414. fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
  415. F2FS_I(dn->inode)) + ofs;
  416. f2fs_update_extent_cache_range(dn, fofs, 0, len);
  417. dec_valid_block_count(sbi, dn->inode, nr_free);
  418. sync_inode_page(dn);
  419. }
  420. dn->ofs_in_node = ofs;
  421. f2fs_update_time(sbi, REQ_TIME);
  422. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  423. dn->ofs_in_node, nr_free);
  424. return nr_free;
  425. }
  426. void truncate_data_blocks(struct dnode_of_data *dn)
  427. {
  428. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  429. }
  430. static int truncate_partial_data_page(struct inode *inode, u64 from,
  431. bool cache_only)
  432. {
  433. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  434. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  435. struct address_space *mapping = inode->i_mapping;
  436. struct page *page;
  437. if (!offset && !cache_only)
  438. return 0;
  439. if (cache_only) {
  440. page = f2fs_grab_cache_page(mapping, index, false);
  441. if (page && PageUptodate(page))
  442. goto truncate_out;
  443. f2fs_put_page(page, 1);
  444. return 0;
  445. }
  446. page = get_lock_data_page(inode, index, true);
  447. if (IS_ERR(page))
  448. return 0;
  449. truncate_out:
  450. f2fs_wait_on_page_writeback(page, DATA);
  451. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  452. if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
  453. set_page_dirty(page);
  454. f2fs_put_page(page, 1);
  455. return 0;
  456. }
  457. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  458. {
  459. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  460. unsigned int blocksize = inode->i_sb->s_blocksize;
  461. struct dnode_of_data dn;
  462. pgoff_t free_from;
  463. int count = 0, err = 0;
  464. struct page *ipage;
  465. bool truncate_page = false;
  466. trace_f2fs_truncate_blocks_enter(inode, from);
  467. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  468. if (lock)
  469. f2fs_lock_op(sbi);
  470. ipage = get_node_page(sbi, inode->i_ino);
  471. if (IS_ERR(ipage)) {
  472. err = PTR_ERR(ipage);
  473. goto out;
  474. }
  475. if (f2fs_has_inline_data(inode)) {
  476. if (truncate_inline_inode(ipage, from))
  477. set_page_dirty(ipage);
  478. f2fs_put_page(ipage, 1);
  479. truncate_page = true;
  480. goto out;
  481. }
  482. set_new_dnode(&dn, inode, ipage, NULL, 0);
  483. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  484. if (err) {
  485. if (err == -ENOENT)
  486. goto free_next;
  487. goto out;
  488. }
  489. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  490. count -= dn.ofs_in_node;
  491. f2fs_bug_on(sbi, count < 0);
  492. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  493. truncate_data_blocks_range(&dn, count);
  494. free_from += count;
  495. }
  496. f2fs_put_dnode(&dn);
  497. free_next:
  498. err = truncate_inode_blocks(inode, free_from);
  499. out:
  500. if (lock)
  501. f2fs_unlock_op(sbi);
  502. /* lastly zero out the first data page */
  503. if (!err)
  504. err = truncate_partial_data_page(inode, from, truncate_page);
  505. trace_f2fs_truncate_blocks_exit(inode, err);
  506. return err;
  507. }
  508. int f2fs_truncate(struct inode *inode, bool lock)
  509. {
  510. int err;
  511. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  512. S_ISLNK(inode->i_mode)))
  513. return 0;
  514. trace_f2fs_truncate(inode);
  515. /* we should check inline_data size */
  516. if (!f2fs_may_inline_data(inode)) {
  517. err = f2fs_convert_inline_inode(inode);
  518. if (err)
  519. return err;
  520. }
  521. err = truncate_blocks(inode, i_size_read(inode), lock);
  522. if (err)
  523. return err;
  524. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  525. mark_inode_dirty(inode);
  526. return 0;
  527. }
  528. int f2fs_getattr(struct vfsmount *mnt,
  529. struct dentry *dentry, struct kstat *stat)
  530. {
  531. struct inode *inode = d_inode(dentry);
  532. generic_fillattr(inode, stat);
  533. stat->blocks <<= 3;
  534. return 0;
  535. }
  536. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  537. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  538. {
  539. struct f2fs_inode_info *fi = F2FS_I(inode);
  540. unsigned int ia_valid = attr->ia_valid;
  541. if (ia_valid & ATTR_UID)
  542. inode->i_uid = attr->ia_uid;
  543. if (ia_valid & ATTR_GID)
  544. inode->i_gid = attr->ia_gid;
  545. if (ia_valid & ATTR_ATIME)
  546. inode->i_atime = timespec_trunc(attr->ia_atime,
  547. inode->i_sb->s_time_gran);
  548. if (ia_valid & ATTR_MTIME)
  549. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  550. inode->i_sb->s_time_gran);
  551. if (ia_valid & ATTR_CTIME)
  552. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  553. inode->i_sb->s_time_gran);
  554. if (ia_valid & ATTR_MODE) {
  555. umode_t mode = attr->ia_mode;
  556. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  557. mode &= ~S_ISGID;
  558. set_acl_inode(fi, mode);
  559. }
  560. }
  561. #else
  562. #define __setattr_copy setattr_copy
  563. #endif
  564. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  565. {
  566. struct inode *inode = d_inode(dentry);
  567. struct f2fs_inode_info *fi = F2FS_I(inode);
  568. int err;
  569. err = inode_change_ok(inode, attr);
  570. if (err)
  571. return err;
  572. if (attr->ia_valid & ATTR_SIZE) {
  573. if (f2fs_encrypted_inode(inode) &&
  574. f2fs_get_encryption_info(inode))
  575. return -EACCES;
  576. if (attr->ia_size <= i_size_read(inode)) {
  577. truncate_setsize(inode, attr->ia_size);
  578. err = f2fs_truncate(inode, true);
  579. if (err)
  580. return err;
  581. f2fs_balance_fs(F2FS_I_SB(inode), true);
  582. } else {
  583. /*
  584. * do not trim all blocks after i_size if target size is
  585. * larger than i_size.
  586. */
  587. truncate_setsize(inode, attr->ia_size);
  588. /* should convert inline inode here */
  589. if (!f2fs_may_inline_data(inode)) {
  590. err = f2fs_convert_inline_inode(inode);
  591. if (err)
  592. return err;
  593. }
  594. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  595. }
  596. }
  597. __setattr_copy(inode, attr);
  598. if (attr->ia_valid & ATTR_MODE) {
  599. err = posix_acl_chmod(inode, get_inode_mode(inode));
  600. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  601. inode->i_mode = fi->i_acl_mode;
  602. clear_inode_flag(fi, FI_ACL_MODE);
  603. }
  604. }
  605. mark_inode_dirty(inode);
  606. return err;
  607. }
  608. const struct inode_operations f2fs_file_inode_operations = {
  609. .getattr = f2fs_getattr,
  610. .setattr = f2fs_setattr,
  611. .get_acl = f2fs_get_acl,
  612. .set_acl = f2fs_set_acl,
  613. #ifdef CONFIG_F2FS_FS_XATTR
  614. .setxattr = generic_setxattr,
  615. .getxattr = generic_getxattr,
  616. .listxattr = f2fs_listxattr,
  617. .removexattr = generic_removexattr,
  618. #endif
  619. .fiemap = f2fs_fiemap,
  620. };
  621. static int fill_zero(struct inode *inode, pgoff_t index,
  622. loff_t start, loff_t len)
  623. {
  624. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  625. struct page *page;
  626. if (!len)
  627. return 0;
  628. f2fs_balance_fs(sbi, true);
  629. f2fs_lock_op(sbi);
  630. page = get_new_data_page(inode, NULL, index, false);
  631. f2fs_unlock_op(sbi);
  632. if (IS_ERR(page))
  633. return PTR_ERR(page);
  634. f2fs_wait_on_page_writeback(page, DATA);
  635. zero_user(page, start, len);
  636. set_page_dirty(page);
  637. f2fs_put_page(page, 1);
  638. return 0;
  639. }
  640. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  641. {
  642. int err;
  643. while (pg_start < pg_end) {
  644. struct dnode_of_data dn;
  645. pgoff_t end_offset, count;
  646. set_new_dnode(&dn, inode, NULL, NULL, 0);
  647. err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
  648. if (err) {
  649. if (err == -ENOENT) {
  650. pg_start++;
  651. continue;
  652. }
  653. return err;
  654. }
  655. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  656. count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
  657. f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
  658. truncate_data_blocks_range(&dn, count);
  659. f2fs_put_dnode(&dn);
  660. pg_start += count;
  661. }
  662. return 0;
  663. }
  664. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  665. {
  666. pgoff_t pg_start, pg_end;
  667. loff_t off_start, off_end;
  668. int ret;
  669. ret = f2fs_convert_inline_inode(inode);
  670. if (ret)
  671. return ret;
  672. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  673. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  674. off_start = offset & (PAGE_CACHE_SIZE - 1);
  675. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  676. if (pg_start == pg_end) {
  677. ret = fill_zero(inode, pg_start, off_start,
  678. off_end - off_start);
  679. if (ret)
  680. return ret;
  681. } else {
  682. if (off_start) {
  683. ret = fill_zero(inode, pg_start++, off_start,
  684. PAGE_CACHE_SIZE - off_start);
  685. if (ret)
  686. return ret;
  687. }
  688. if (off_end) {
  689. ret = fill_zero(inode, pg_end, 0, off_end);
  690. if (ret)
  691. return ret;
  692. }
  693. if (pg_start < pg_end) {
  694. struct address_space *mapping = inode->i_mapping;
  695. loff_t blk_start, blk_end;
  696. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  697. f2fs_balance_fs(sbi, true);
  698. blk_start = (loff_t)pg_start << PAGE_CACHE_SHIFT;
  699. blk_end = (loff_t)pg_end << PAGE_CACHE_SHIFT;
  700. truncate_inode_pages_range(mapping, blk_start,
  701. blk_end - 1);
  702. f2fs_lock_op(sbi);
  703. ret = truncate_hole(inode, pg_start, pg_end);
  704. f2fs_unlock_op(sbi);
  705. }
  706. }
  707. return ret;
  708. }
  709. static int __exchange_data_block(struct inode *inode, pgoff_t src,
  710. pgoff_t dst, bool full)
  711. {
  712. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  713. struct dnode_of_data dn;
  714. block_t new_addr;
  715. bool do_replace = false;
  716. int ret;
  717. set_new_dnode(&dn, inode, NULL, NULL, 0);
  718. ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
  719. if (ret && ret != -ENOENT) {
  720. return ret;
  721. } else if (ret == -ENOENT) {
  722. new_addr = NULL_ADDR;
  723. } else {
  724. new_addr = dn.data_blkaddr;
  725. if (!is_checkpointed_data(sbi, new_addr)) {
  726. dn.data_blkaddr = NULL_ADDR;
  727. /* do not invalidate this block address */
  728. set_data_blkaddr(&dn);
  729. f2fs_update_extent_cache(&dn);
  730. do_replace = true;
  731. }
  732. f2fs_put_dnode(&dn);
  733. }
  734. if (new_addr == NULL_ADDR)
  735. return full ? truncate_hole(inode, dst, dst + 1) : 0;
  736. if (do_replace) {
  737. struct page *ipage = get_node_page(sbi, inode->i_ino);
  738. struct node_info ni;
  739. if (IS_ERR(ipage)) {
  740. ret = PTR_ERR(ipage);
  741. goto err_out;
  742. }
  743. set_new_dnode(&dn, inode, ipage, NULL, 0);
  744. ret = f2fs_reserve_block(&dn, dst);
  745. if (ret)
  746. goto err_out;
  747. truncate_data_blocks_range(&dn, 1);
  748. get_node_info(sbi, dn.nid, &ni);
  749. f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
  750. ni.version, true);
  751. f2fs_put_dnode(&dn);
  752. } else {
  753. struct page *psrc, *pdst;
  754. psrc = get_lock_data_page(inode, src, true);
  755. if (IS_ERR(psrc))
  756. return PTR_ERR(psrc);
  757. pdst = get_new_data_page(inode, NULL, dst, false);
  758. if (IS_ERR(pdst)) {
  759. f2fs_put_page(psrc, 1);
  760. return PTR_ERR(pdst);
  761. }
  762. f2fs_copy_page(psrc, pdst);
  763. set_page_dirty(pdst);
  764. f2fs_put_page(pdst, 1);
  765. f2fs_put_page(psrc, 1);
  766. return truncate_hole(inode, src, src + 1);
  767. }
  768. return 0;
  769. err_out:
  770. if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
  771. dn.data_blkaddr = new_addr;
  772. set_data_blkaddr(&dn);
  773. f2fs_update_extent_cache(&dn);
  774. f2fs_put_dnode(&dn);
  775. }
  776. return ret;
  777. }
  778. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  779. {
  780. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  781. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  782. int ret = 0;
  783. for (; end < nrpages; start++, end++) {
  784. f2fs_balance_fs(sbi, true);
  785. f2fs_lock_op(sbi);
  786. ret = __exchange_data_block(inode, end, start, true);
  787. f2fs_unlock_op(sbi);
  788. if (ret)
  789. break;
  790. }
  791. return ret;
  792. }
  793. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  794. {
  795. pgoff_t pg_start, pg_end;
  796. loff_t new_size;
  797. int ret;
  798. if (offset + len >= i_size_read(inode))
  799. return -EINVAL;
  800. /* collapse range should be aligned to block size of f2fs. */
  801. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  802. return -EINVAL;
  803. ret = f2fs_convert_inline_inode(inode);
  804. if (ret)
  805. return ret;
  806. pg_start = offset >> PAGE_CACHE_SHIFT;
  807. pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
  808. /* write out all dirty pages from offset */
  809. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  810. if (ret)
  811. return ret;
  812. truncate_pagecache(inode, offset);
  813. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  814. if (ret)
  815. return ret;
  816. /* write out all moved pages, if possible */
  817. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  818. truncate_pagecache(inode, offset);
  819. new_size = i_size_read(inode) - len;
  820. truncate_pagecache(inode, new_size);
  821. ret = truncate_blocks(inode, new_size, true);
  822. if (!ret)
  823. i_size_write(inode, new_size);
  824. return ret;
  825. }
  826. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  827. int mode)
  828. {
  829. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  830. struct address_space *mapping = inode->i_mapping;
  831. pgoff_t index, pg_start, pg_end;
  832. loff_t new_size = i_size_read(inode);
  833. loff_t off_start, off_end;
  834. int ret = 0;
  835. ret = inode_newsize_ok(inode, (len + offset));
  836. if (ret)
  837. return ret;
  838. ret = f2fs_convert_inline_inode(inode);
  839. if (ret)
  840. return ret;
  841. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  842. if (ret)
  843. return ret;
  844. truncate_pagecache_range(inode, offset, offset + len - 1);
  845. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  846. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  847. off_start = offset & (PAGE_CACHE_SIZE - 1);
  848. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  849. if (pg_start == pg_end) {
  850. ret = fill_zero(inode, pg_start, off_start,
  851. off_end - off_start);
  852. if (ret)
  853. return ret;
  854. if (offset + len > new_size)
  855. new_size = offset + len;
  856. new_size = max_t(loff_t, new_size, offset + len);
  857. } else {
  858. if (off_start) {
  859. ret = fill_zero(inode, pg_start++, off_start,
  860. PAGE_CACHE_SIZE - off_start);
  861. if (ret)
  862. return ret;
  863. new_size = max_t(loff_t, new_size,
  864. (loff_t)pg_start << PAGE_CACHE_SHIFT);
  865. }
  866. for (index = pg_start; index < pg_end; index++) {
  867. struct dnode_of_data dn;
  868. struct page *ipage;
  869. f2fs_lock_op(sbi);
  870. ipage = get_node_page(sbi, inode->i_ino);
  871. if (IS_ERR(ipage)) {
  872. ret = PTR_ERR(ipage);
  873. f2fs_unlock_op(sbi);
  874. goto out;
  875. }
  876. set_new_dnode(&dn, inode, ipage, NULL, 0);
  877. ret = f2fs_reserve_block(&dn, index);
  878. if (ret) {
  879. f2fs_unlock_op(sbi);
  880. goto out;
  881. }
  882. if (dn.data_blkaddr != NEW_ADDR) {
  883. invalidate_blocks(sbi, dn.data_blkaddr);
  884. dn.data_blkaddr = NEW_ADDR;
  885. set_data_blkaddr(&dn);
  886. dn.data_blkaddr = NULL_ADDR;
  887. f2fs_update_extent_cache(&dn);
  888. }
  889. f2fs_put_dnode(&dn);
  890. f2fs_unlock_op(sbi);
  891. new_size = max_t(loff_t, new_size,
  892. (loff_t)(index + 1) << PAGE_CACHE_SHIFT);
  893. }
  894. if (off_end) {
  895. ret = fill_zero(inode, pg_end, 0, off_end);
  896. if (ret)
  897. goto out;
  898. new_size = max_t(loff_t, new_size, offset + len);
  899. }
  900. }
  901. out:
  902. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
  903. i_size_write(inode, new_size);
  904. mark_inode_dirty(inode);
  905. update_inode_page(inode);
  906. }
  907. return ret;
  908. }
  909. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  910. {
  911. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  912. pgoff_t pg_start, pg_end, delta, nrpages, idx;
  913. loff_t new_size;
  914. int ret = 0;
  915. new_size = i_size_read(inode) + len;
  916. if (new_size > inode->i_sb->s_maxbytes)
  917. return -EFBIG;
  918. if (offset >= i_size_read(inode))
  919. return -EINVAL;
  920. /* insert range should be aligned to block size of f2fs. */
  921. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  922. return -EINVAL;
  923. ret = f2fs_convert_inline_inode(inode);
  924. if (ret)
  925. return ret;
  926. f2fs_balance_fs(sbi, true);
  927. ret = truncate_blocks(inode, i_size_read(inode), true);
  928. if (ret)
  929. return ret;
  930. /* write out all dirty pages from offset */
  931. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  932. if (ret)
  933. return ret;
  934. truncate_pagecache(inode, offset);
  935. pg_start = offset >> PAGE_CACHE_SHIFT;
  936. pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
  937. delta = pg_end - pg_start;
  938. nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  939. for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
  940. f2fs_lock_op(sbi);
  941. ret = __exchange_data_block(inode, idx, idx + delta, false);
  942. f2fs_unlock_op(sbi);
  943. if (ret)
  944. break;
  945. }
  946. /* write out all moved pages, if possible */
  947. filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  948. truncate_pagecache(inode, offset);
  949. if (!ret)
  950. i_size_write(inode, new_size);
  951. return ret;
  952. }
  953. static int expand_inode_data(struct inode *inode, loff_t offset,
  954. loff_t len, int mode)
  955. {
  956. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  957. pgoff_t index, pg_start, pg_end;
  958. loff_t new_size = i_size_read(inode);
  959. loff_t off_start, off_end;
  960. int ret = 0;
  961. ret = inode_newsize_ok(inode, (len + offset));
  962. if (ret)
  963. return ret;
  964. ret = f2fs_convert_inline_inode(inode);
  965. if (ret)
  966. return ret;
  967. f2fs_balance_fs(sbi, true);
  968. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  969. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  970. off_start = offset & (PAGE_CACHE_SIZE - 1);
  971. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  972. f2fs_lock_op(sbi);
  973. for (index = pg_start; index <= pg_end; index++) {
  974. struct dnode_of_data dn;
  975. if (index == pg_end && !off_end)
  976. goto noalloc;
  977. set_new_dnode(&dn, inode, NULL, NULL, 0);
  978. ret = f2fs_reserve_block(&dn, index);
  979. if (ret)
  980. break;
  981. noalloc:
  982. if (pg_start == pg_end)
  983. new_size = offset + len;
  984. else if (index == pg_start && off_start)
  985. new_size = (loff_t)(index + 1) << PAGE_CACHE_SHIFT;
  986. else if (index == pg_end)
  987. new_size = ((loff_t)index << PAGE_CACHE_SHIFT) +
  988. off_end;
  989. else
  990. new_size += PAGE_CACHE_SIZE;
  991. }
  992. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  993. i_size_read(inode) < new_size) {
  994. i_size_write(inode, new_size);
  995. mark_inode_dirty(inode);
  996. update_inode_page(inode);
  997. }
  998. f2fs_unlock_op(sbi);
  999. return ret;
  1000. }
  1001. static long f2fs_fallocate(struct file *file, int mode,
  1002. loff_t offset, loff_t len)
  1003. {
  1004. struct inode *inode = file_inode(file);
  1005. long ret = 0;
  1006. /* f2fs only support ->fallocate for regular file */
  1007. if (!S_ISREG(inode->i_mode))
  1008. return -EINVAL;
  1009. if (f2fs_encrypted_inode(inode) &&
  1010. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  1011. return -EOPNOTSUPP;
  1012. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  1013. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  1014. FALLOC_FL_INSERT_RANGE))
  1015. return -EOPNOTSUPP;
  1016. inode_lock(inode);
  1017. if (mode & FALLOC_FL_PUNCH_HOLE) {
  1018. if (offset >= inode->i_size)
  1019. goto out;
  1020. ret = punch_hole(inode, offset, len);
  1021. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  1022. ret = f2fs_collapse_range(inode, offset, len);
  1023. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  1024. ret = f2fs_zero_range(inode, offset, len, mode);
  1025. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  1026. ret = f2fs_insert_range(inode, offset, len);
  1027. } else {
  1028. ret = expand_inode_data(inode, offset, len, mode);
  1029. }
  1030. if (!ret) {
  1031. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1032. mark_inode_dirty(inode);
  1033. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1034. }
  1035. out:
  1036. inode_unlock(inode);
  1037. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1038. return ret;
  1039. }
  1040. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1041. {
  1042. /* some remained atomic pages should discarded */
  1043. if (f2fs_is_atomic_file(inode))
  1044. commit_inmem_pages(inode, true);
  1045. if (f2fs_is_volatile_file(inode)) {
  1046. set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1047. filemap_fdatawrite(inode->i_mapping);
  1048. clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1049. }
  1050. return 0;
  1051. }
  1052. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1053. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1054. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1055. {
  1056. if (S_ISDIR(mode))
  1057. return flags;
  1058. else if (S_ISREG(mode))
  1059. return flags & F2FS_REG_FLMASK;
  1060. else
  1061. return flags & F2FS_OTHER_FLMASK;
  1062. }
  1063. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1064. {
  1065. struct inode *inode = file_inode(filp);
  1066. struct f2fs_inode_info *fi = F2FS_I(inode);
  1067. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1068. return put_user(flags, (int __user *)arg);
  1069. }
  1070. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1071. {
  1072. struct inode *inode = file_inode(filp);
  1073. struct f2fs_inode_info *fi = F2FS_I(inode);
  1074. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1075. unsigned int oldflags;
  1076. int ret;
  1077. ret = mnt_want_write_file(filp);
  1078. if (ret)
  1079. return ret;
  1080. if (!inode_owner_or_capable(inode)) {
  1081. ret = -EACCES;
  1082. goto out;
  1083. }
  1084. if (get_user(flags, (int __user *)arg)) {
  1085. ret = -EFAULT;
  1086. goto out;
  1087. }
  1088. flags = f2fs_mask_flags(inode->i_mode, flags);
  1089. inode_lock(inode);
  1090. oldflags = fi->i_flags;
  1091. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1092. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1093. inode_unlock(inode);
  1094. ret = -EPERM;
  1095. goto out;
  1096. }
  1097. }
  1098. flags = flags & FS_FL_USER_MODIFIABLE;
  1099. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1100. fi->i_flags = flags;
  1101. inode_unlock(inode);
  1102. f2fs_set_inode_flags(inode);
  1103. inode->i_ctime = CURRENT_TIME;
  1104. mark_inode_dirty(inode);
  1105. out:
  1106. mnt_drop_write_file(filp);
  1107. return ret;
  1108. }
  1109. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1110. {
  1111. struct inode *inode = file_inode(filp);
  1112. return put_user(inode->i_generation, (int __user *)arg);
  1113. }
  1114. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1115. {
  1116. struct inode *inode = file_inode(filp);
  1117. int ret;
  1118. if (!inode_owner_or_capable(inode))
  1119. return -EACCES;
  1120. if (f2fs_is_atomic_file(inode))
  1121. return 0;
  1122. ret = f2fs_convert_inline_inode(inode);
  1123. if (ret)
  1124. return ret;
  1125. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1126. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1127. return 0;
  1128. }
  1129. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1130. {
  1131. struct inode *inode = file_inode(filp);
  1132. int ret;
  1133. if (!inode_owner_or_capable(inode))
  1134. return -EACCES;
  1135. if (f2fs_is_volatile_file(inode))
  1136. return 0;
  1137. ret = mnt_want_write_file(filp);
  1138. if (ret)
  1139. return ret;
  1140. if (f2fs_is_atomic_file(inode)) {
  1141. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1142. ret = commit_inmem_pages(inode, false);
  1143. if (ret) {
  1144. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1145. goto err_out;
  1146. }
  1147. }
  1148. ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
  1149. err_out:
  1150. mnt_drop_write_file(filp);
  1151. return ret;
  1152. }
  1153. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1154. {
  1155. struct inode *inode = file_inode(filp);
  1156. int ret;
  1157. if (!inode_owner_or_capable(inode))
  1158. return -EACCES;
  1159. if (f2fs_is_volatile_file(inode))
  1160. return 0;
  1161. ret = f2fs_convert_inline_inode(inode);
  1162. if (ret)
  1163. return ret;
  1164. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1165. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1166. return 0;
  1167. }
  1168. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1169. {
  1170. struct inode *inode = file_inode(filp);
  1171. if (!inode_owner_or_capable(inode))
  1172. return -EACCES;
  1173. if (!f2fs_is_volatile_file(inode))
  1174. return 0;
  1175. if (!f2fs_is_first_block_written(inode))
  1176. return truncate_partial_data_page(inode, 0, true);
  1177. return punch_hole(inode, 0, F2FS_BLKSIZE);
  1178. }
  1179. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1180. {
  1181. struct inode *inode = file_inode(filp);
  1182. int ret;
  1183. if (!inode_owner_or_capable(inode))
  1184. return -EACCES;
  1185. ret = mnt_want_write_file(filp);
  1186. if (ret)
  1187. return ret;
  1188. if (f2fs_is_atomic_file(inode)) {
  1189. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1190. commit_inmem_pages(inode, true);
  1191. }
  1192. if (f2fs_is_volatile_file(inode)) {
  1193. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1194. ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
  1195. }
  1196. mnt_drop_write_file(filp);
  1197. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1198. return ret;
  1199. }
  1200. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1201. {
  1202. struct inode *inode = file_inode(filp);
  1203. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1204. struct super_block *sb = sbi->sb;
  1205. __u32 in;
  1206. if (!capable(CAP_SYS_ADMIN))
  1207. return -EPERM;
  1208. if (get_user(in, (__u32 __user *)arg))
  1209. return -EFAULT;
  1210. switch (in) {
  1211. case F2FS_GOING_DOWN_FULLSYNC:
  1212. sb = freeze_bdev(sb->s_bdev);
  1213. if (sb && !IS_ERR(sb)) {
  1214. f2fs_stop_checkpoint(sbi);
  1215. thaw_bdev(sb->s_bdev, sb);
  1216. }
  1217. break;
  1218. case F2FS_GOING_DOWN_METASYNC:
  1219. /* do checkpoint only */
  1220. f2fs_sync_fs(sb, 1);
  1221. f2fs_stop_checkpoint(sbi);
  1222. break;
  1223. case F2FS_GOING_DOWN_NOSYNC:
  1224. f2fs_stop_checkpoint(sbi);
  1225. break;
  1226. case F2FS_GOING_DOWN_METAFLUSH:
  1227. sync_meta_pages(sbi, META, LONG_MAX);
  1228. f2fs_stop_checkpoint(sbi);
  1229. break;
  1230. default:
  1231. return -EINVAL;
  1232. }
  1233. f2fs_update_time(sbi, REQ_TIME);
  1234. return 0;
  1235. }
  1236. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1237. {
  1238. struct inode *inode = file_inode(filp);
  1239. struct super_block *sb = inode->i_sb;
  1240. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1241. struct fstrim_range range;
  1242. int ret;
  1243. if (!capable(CAP_SYS_ADMIN))
  1244. return -EPERM;
  1245. if (!blk_queue_discard(q))
  1246. return -EOPNOTSUPP;
  1247. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1248. sizeof(range)))
  1249. return -EFAULT;
  1250. range.minlen = max((unsigned int)range.minlen,
  1251. q->limits.discard_granularity);
  1252. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1253. if (ret < 0)
  1254. return ret;
  1255. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1256. sizeof(range)))
  1257. return -EFAULT;
  1258. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1259. return 0;
  1260. }
  1261. static bool uuid_is_nonzero(__u8 u[16])
  1262. {
  1263. int i;
  1264. for (i = 0; i < 16; i++)
  1265. if (u[i])
  1266. return true;
  1267. return false;
  1268. }
  1269. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1270. {
  1271. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  1272. struct f2fs_encryption_policy policy;
  1273. struct inode *inode = file_inode(filp);
  1274. if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
  1275. sizeof(policy)))
  1276. return -EFAULT;
  1277. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1278. return f2fs_process_policy(&policy, inode);
  1279. #else
  1280. return -EOPNOTSUPP;
  1281. #endif
  1282. }
  1283. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1284. {
  1285. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  1286. struct f2fs_encryption_policy policy;
  1287. struct inode *inode = file_inode(filp);
  1288. int err;
  1289. err = f2fs_get_policy(inode, &policy);
  1290. if (err)
  1291. return err;
  1292. if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
  1293. sizeof(policy)))
  1294. return -EFAULT;
  1295. return 0;
  1296. #else
  1297. return -EOPNOTSUPP;
  1298. #endif
  1299. }
  1300. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1301. {
  1302. struct inode *inode = file_inode(filp);
  1303. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1304. int err;
  1305. if (!f2fs_sb_has_crypto(inode->i_sb))
  1306. return -EOPNOTSUPP;
  1307. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1308. goto got_it;
  1309. err = mnt_want_write_file(filp);
  1310. if (err)
  1311. return err;
  1312. /* update superblock with uuid */
  1313. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1314. err = f2fs_commit_super(sbi, false);
  1315. if (err) {
  1316. /* undo new data */
  1317. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1318. mnt_drop_write_file(filp);
  1319. return err;
  1320. }
  1321. mnt_drop_write_file(filp);
  1322. got_it:
  1323. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1324. 16))
  1325. return -EFAULT;
  1326. return 0;
  1327. }
  1328. static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
  1329. {
  1330. struct inode *inode = file_inode(filp);
  1331. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1332. __u32 sync;
  1333. if (!capable(CAP_SYS_ADMIN))
  1334. return -EPERM;
  1335. if (get_user(sync, (__u32 __user *)arg))
  1336. return -EFAULT;
  1337. if (f2fs_readonly(sbi->sb))
  1338. return -EROFS;
  1339. if (!sync) {
  1340. if (!mutex_trylock(&sbi->gc_mutex))
  1341. return -EBUSY;
  1342. } else {
  1343. mutex_lock(&sbi->gc_mutex);
  1344. }
  1345. return f2fs_gc(sbi, sync);
  1346. }
  1347. static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
  1348. {
  1349. struct inode *inode = file_inode(filp);
  1350. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1351. if (!capable(CAP_SYS_ADMIN))
  1352. return -EPERM;
  1353. if (f2fs_readonly(sbi->sb))
  1354. return -EROFS;
  1355. return f2fs_sync_fs(sbi->sb, 1);
  1356. }
  1357. static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
  1358. struct file *filp,
  1359. struct f2fs_defragment *range)
  1360. {
  1361. struct inode *inode = file_inode(filp);
  1362. struct f2fs_map_blocks map;
  1363. struct extent_info ei;
  1364. pgoff_t pg_start, pg_end;
  1365. unsigned int blk_per_seg = sbi->blocks_per_seg;
  1366. unsigned int total = 0, sec_num;
  1367. unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
  1368. block_t blk_end = 0;
  1369. bool fragmented = false;
  1370. int err;
  1371. /* if in-place-update policy is enabled, don't waste time here */
  1372. if (need_inplace_update(inode))
  1373. return -EINVAL;
  1374. pg_start = range->start >> PAGE_CACHE_SHIFT;
  1375. pg_end = (range->start + range->len) >> PAGE_CACHE_SHIFT;
  1376. f2fs_balance_fs(sbi, true);
  1377. inode_lock(inode);
  1378. /* writeback all dirty pages in the range */
  1379. err = filemap_write_and_wait_range(inode->i_mapping, range->start,
  1380. range->start + range->len - 1);
  1381. if (err)
  1382. goto out;
  1383. /*
  1384. * lookup mapping info in extent cache, skip defragmenting if physical
  1385. * block addresses are continuous.
  1386. */
  1387. if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
  1388. if (ei.fofs + ei.len >= pg_end)
  1389. goto out;
  1390. }
  1391. map.m_lblk = pg_start;
  1392. /*
  1393. * lookup mapping info in dnode page cache, skip defragmenting if all
  1394. * physical block addresses are continuous even if there are hole(s)
  1395. * in logical blocks.
  1396. */
  1397. while (map.m_lblk < pg_end) {
  1398. map.m_len = pg_end - map.m_lblk;
  1399. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1400. if (err)
  1401. goto out;
  1402. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1403. map.m_lblk++;
  1404. continue;
  1405. }
  1406. if (blk_end && blk_end != map.m_pblk) {
  1407. fragmented = true;
  1408. break;
  1409. }
  1410. blk_end = map.m_pblk + map.m_len;
  1411. map.m_lblk += map.m_len;
  1412. }
  1413. if (!fragmented)
  1414. goto out;
  1415. map.m_lblk = pg_start;
  1416. map.m_len = pg_end - pg_start;
  1417. sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
  1418. /*
  1419. * make sure there are enough free section for LFS allocation, this can
  1420. * avoid defragment running in SSR mode when free section are allocated
  1421. * intensively
  1422. */
  1423. if (has_not_enough_free_secs(sbi, sec_num)) {
  1424. err = -EAGAIN;
  1425. goto out;
  1426. }
  1427. while (map.m_lblk < pg_end) {
  1428. pgoff_t idx;
  1429. int cnt = 0;
  1430. do_map:
  1431. map.m_len = pg_end - map.m_lblk;
  1432. err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
  1433. if (err)
  1434. goto clear_out;
  1435. if (!(map.m_flags & F2FS_MAP_FLAGS)) {
  1436. map.m_lblk++;
  1437. continue;
  1438. }
  1439. set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
  1440. idx = map.m_lblk;
  1441. while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
  1442. struct page *page;
  1443. page = get_lock_data_page(inode, idx, true);
  1444. if (IS_ERR(page)) {
  1445. err = PTR_ERR(page);
  1446. goto clear_out;
  1447. }
  1448. set_page_dirty(page);
  1449. f2fs_put_page(page, 1);
  1450. idx++;
  1451. cnt++;
  1452. total++;
  1453. }
  1454. map.m_lblk = idx;
  1455. if (idx < pg_end && cnt < blk_per_seg)
  1456. goto do_map;
  1457. clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
  1458. err = filemap_fdatawrite(inode->i_mapping);
  1459. if (err)
  1460. goto out;
  1461. }
  1462. clear_out:
  1463. clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
  1464. out:
  1465. inode_unlock(inode);
  1466. if (!err)
  1467. range->len = (u64)total << PAGE_CACHE_SHIFT;
  1468. return err;
  1469. }
  1470. static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
  1471. {
  1472. struct inode *inode = file_inode(filp);
  1473. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1474. struct f2fs_defragment range;
  1475. int err;
  1476. if (!capable(CAP_SYS_ADMIN))
  1477. return -EPERM;
  1478. if (!S_ISREG(inode->i_mode))
  1479. return -EINVAL;
  1480. err = mnt_want_write_file(filp);
  1481. if (err)
  1482. return err;
  1483. if (f2fs_readonly(sbi->sb)) {
  1484. err = -EROFS;
  1485. goto out;
  1486. }
  1487. if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
  1488. sizeof(range))) {
  1489. err = -EFAULT;
  1490. goto out;
  1491. }
  1492. /* verify alignment of offset & size */
  1493. if (range.start & (F2FS_BLKSIZE - 1) ||
  1494. range.len & (F2FS_BLKSIZE - 1)) {
  1495. err = -EINVAL;
  1496. goto out;
  1497. }
  1498. err = f2fs_defragment_range(sbi, filp, &range);
  1499. f2fs_update_time(sbi, REQ_TIME);
  1500. if (err < 0)
  1501. goto out;
  1502. if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
  1503. sizeof(range)))
  1504. err = -EFAULT;
  1505. out:
  1506. mnt_drop_write_file(filp);
  1507. return err;
  1508. }
  1509. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1510. {
  1511. switch (cmd) {
  1512. case F2FS_IOC_GETFLAGS:
  1513. return f2fs_ioc_getflags(filp, arg);
  1514. case F2FS_IOC_SETFLAGS:
  1515. return f2fs_ioc_setflags(filp, arg);
  1516. case F2FS_IOC_GETVERSION:
  1517. return f2fs_ioc_getversion(filp, arg);
  1518. case F2FS_IOC_START_ATOMIC_WRITE:
  1519. return f2fs_ioc_start_atomic_write(filp);
  1520. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1521. return f2fs_ioc_commit_atomic_write(filp);
  1522. case F2FS_IOC_START_VOLATILE_WRITE:
  1523. return f2fs_ioc_start_volatile_write(filp);
  1524. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1525. return f2fs_ioc_release_volatile_write(filp);
  1526. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1527. return f2fs_ioc_abort_volatile_write(filp);
  1528. case F2FS_IOC_SHUTDOWN:
  1529. return f2fs_ioc_shutdown(filp, arg);
  1530. case FITRIM:
  1531. return f2fs_ioc_fitrim(filp, arg);
  1532. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1533. return f2fs_ioc_set_encryption_policy(filp, arg);
  1534. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1535. return f2fs_ioc_get_encryption_policy(filp, arg);
  1536. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1537. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1538. case F2FS_IOC_GARBAGE_COLLECT:
  1539. return f2fs_ioc_gc(filp, arg);
  1540. case F2FS_IOC_WRITE_CHECKPOINT:
  1541. return f2fs_ioc_write_checkpoint(filp, arg);
  1542. case F2FS_IOC_DEFRAGMENT:
  1543. return f2fs_ioc_defragment(filp, arg);
  1544. default:
  1545. return -ENOTTY;
  1546. }
  1547. }
  1548. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1549. {
  1550. struct inode *inode = file_inode(iocb->ki_filp);
  1551. if (f2fs_encrypted_inode(inode) &&
  1552. !f2fs_has_encryption_key(inode) &&
  1553. f2fs_get_encryption_info(inode))
  1554. return -EACCES;
  1555. return generic_file_write_iter(iocb, from);
  1556. }
  1557. #ifdef CONFIG_COMPAT
  1558. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1559. {
  1560. switch (cmd) {
  1561. case F2FS_IOC32_GETFLAGS:
  1562. cmd = F2FS_IOC_GETFLAGS;
  1563. break;
  1564. case F2FS_IOC32_SETFLAGS:
  1565. cmd = F2FS_IOC_SETFLAGS;
  1566. break;
  1567. case F2FS_IOC32_GETVERSION:
  1568. cmd = F2FS_IOC_GETVERSION;
  1569. break;
  1570. case F2FS_IOC_START_ATOMIC_WRITE:
  1571. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1572. case F2FS_IOC_START_VOLATILE_WRITE:
  1573. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1574. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1575. case F2FS_IOC_SHUTDOWN:
  1576. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1577. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1578. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1579. case F2FS_IOC_GARBAGE_COLLECT:
  1580. case F2FS_IOC_WRITE_CHECKPOINT:
  1581. case F2FS_IOC_DEFRAGMENT:
  1582. break;
  1583. default:
  1584. return -ENOIOCTLCMD;
  1585. }
  1586. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1587. }
  1588. #endif
  1589. const struct file_operations f2fs_file_operations = {
  1590. .llseek = f2fs_llseek,
  1591. .read_iter = generic_file_read_iter,
  1592. .write_iter = f2fs_file_write_iter,
  1593. .open = f2fs_file_open,
  1594. .release = f2fs_release_file,
  1595. .mmap = f2fs_file_mmap,
  1596. .fsync = f2fs_sync_file,
  1597. .fallocate = f2fs_fallocate,
  1598. .unlocked_ioctl = f2fs_ioctl,
  1599. #ifdef CONFIG_COMPAT
  1600. .compat_ioctl = f2fs_compat_ioctl,
  1601. #endif
  1602. .splice_read = generic_file_splice_read,
  1603. .splice_write = iter_file_splice_write,
  1604. };