delayed-inode.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. if (delayed_node_cache)
  42. kmem_cache_destroy(delayed_node_cache);
  43. }
  44. static inline void btrfs_init_delayed_node(
  45. struct btrfs_delayed_node *delayed_node,
  46. struct btrfs_root *root, u64 inode_id)
  47. {
  48. delayed_node->root = root;
  49. delayed_node->inode_id = inode_id;
  50. atomic_set(&delayed_node->refs, 0);
  51. delayed_node->ins_root = RB_ROOT;
  52. delayed_node->del_root = RB_ROOT;
  53. mutex_init(&delayed_node->mutex);
  54. INIT_LIST_HEAD(&delayed_node->n_list);
  55. INIT_LIST_HEAD(&delayed_node->p_list);
  56. }
  57. static inline int btrfs_is_continuous_delayed_item(
  58. struct btrfs_delayed_item *item1,
  59. struct btrfs_delayed_item *item2)
  60. {
  61. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  62. item1->key.objectid == item2->key.objectid &&
  63. item1->key.type == item2->key.type &&
  64. item1->key.offset + 1 == item2->key.offset)
  65. return 1;
  66. return 0;
  67. }
  68. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  69. struct btrfs_root *root)
  70. {
  71. return root->fs_info->delayed_root;
  72. }
  73. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  74. {
  75. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  76. struct btrfs_root *root = btrfs_inode->root;
  77. u64 ino = btrfs_ino(inode);
  78. struct btrfs_delayed_node *node;
  79. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  80. if (node) {
  81. atomic_inc(&node->refs);
  82. return node;
  83. }
  84. spin_lock(&root->inode_lock);
  85. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  86. if (node) {
  87. if (btrfs_inode->delayed_node) {
  88. atomic_inc(&node->refs); /* can be accessed */
  89. BUG_ON(btrfs_inode->delayed_node != node);
  90. spin_unlock(&root->inode_lock);
  91. return node;
  92. }
  93. btrfs_inode->delayed_node = node;
  94. /* can be accessed and cached in the inode */
  95. atomic_add(2, &node->refs);
  96. spin_unlock(&root->inode_lock);
  97. return node;
  98. }
  99. spin_unlock(&root->inode_lock);
  100. return NULL;
  101. }
  102. /* Will return either the node or PTR_ERR(-ENOMEM) */
  103. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  104. struct inode *inode)
  105. {
  106. struct btrfs_delayed_node *node;
  107. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  108. struct btrfs_root *root = btrfs_inode->root;
  109. u64 ino = btrfs_ino(inode);
  110. int ret;
  111. again:
  112. node = btrfs_get_delayed_node(inode);
  113. if (node)
  114. return node;
  115. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  116. if (!node)
  117. return ERR_PTR(-ENOMEM);
  118. btrfs_init_delayed_node(node, root, ino);
  119. /* cached in the btrfs inode and can be accessed */
  120. atomic_add(2, &node->refs);
  121. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  122. if (ret) {
  123. kmem_cache_free(delayed_node_cache, node);
  124. return ERR_PTR(ret);
  125. }
  126. spin_lock(&root->inode_lock);
  127. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  128. if (ret == -EEXIST) {
  129. spin_unlock(&root->inode_lock);
  130. kmem_cache_free(delayed_node_cache, node);
  131. radix_tree_preload_end();
  132. goto again;
  133. }
  134. btrfs_inode->delayed_node = node;
  135. spin_unlock(&root->inode_lock);
  136. radix_tree_preload_end();
  137. return node;
  138. }
  139. /*
  140. * Call it when holding delayed_node->mutex
  141. *
  142. * If mod = 1, add this node into the prepared list.
  143. */
  144. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  145. struct btrfs_delayed_node *node,
  146. int mod)
  147. {
  148. spin_lock(&root->lock);
  149. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  150. if (!list_empty(&node->p_list))
  151. list_move_tail(&node->p_list, &root->prepare_list);
  152. else if (mod)
  153. list_add_tail(&node->p_list, &root->prepare_list);
  154. } else {
  155. list_add_tail(&node->n_list, &root->node_list);
  156. list_add_tail(&node->p_list, &root->prepare_list);
  157. atomic_inc(&node->refs); /* inserted into list */
  158. root->nodes++;
  159. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  160. }
  161. spin_unlock(&root->lock);
  162. }
  163. /* Call it when holding delayed_node->mutex */
  164. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  165. struct btrfs_delayed_node *node)
  166. {
  167. spin_lock(&root->lock);
  168. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  169. root->nodes--;
  170. atomic_dec(&node->refs); /* not in the list */
  171. list_del_init(&node->n_list);
  172. if (!list_empty(&node->p_list))
  173. list_del_init(&node->p_list);
  174. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  175. }
  176. spin_unlock(&root->lock);
  177. }
  178. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  179. struct btrfs_delayed_root *delayed_root)
  180. {
  181. struct list_head *p;
  182. struct btrfs_delayed_node *node = NULL;
  183. spin_lock(&delayed_root->lock);
  184. if (list_empty(&delayed_root->node_list))
  185. goto out;
  186. p = delayed_root->node_list.next;
  187. node = list_entry(p, struct btrfs_delayed_node, n_list);
  188. atomic_inc(&node->refs);
  189. out:
  190. spin_unlock(&delayed_root->lock);
  191. return node;
  192. }
  193. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  194. struct btrfs_delayed_node *node)
  195. {
  196. struct btrfs_delayed_root *delayed_root;
  197. struct list_head *p;
  198. struct btrfs_delayed_node *next = NULL;
  199. delayed_root = node->root->fs_info->delayed_root;
  200. spin_lock(&delayed_root->lock);
  201. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  202. /* not in the list */
  203. if (list_empty(&delayed_root->node_list))
  204. goto out;
  205. p = delayed_root->node_list.next;
  206. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  207. goto out;
  208. else
  209. p = node->n_list.next;
  210. next = list_entry(p, struct btrfs_delayed_node, n_list);
  211. atomic_inc(&next->refs);
  212. out:
  213. spin_unlock(&delayed_root->lock);
  214. return next;
  215. }
  216. static void __btrfs_release_delayed_node(
  217. struct btrfs_delayed_node *delayed_node,
  218. int mod)
  219. {
  220. struct btrfs_delayed_root *delayed_root;
  221. if (!delayed_node)
  222. return;
  223. delayed_root = delayed_node->root->fs_info->delayed_root;
  224. mutex_lock(&delayed_node->mutex);
  225. if (delayed_node->count)
  226. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  227. else
  228. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  229. mutex_unlock(&delayed_node->mutex);
  230. if (atomic_dec_and_test(&delayed_node->refs)) {
  231. bool free = false;
  232. struct btrfs_root *root = delayed_node->root;
  233. spin_lock(&root->inode_lock);
  234. if (atomic_read(&delayed_node->refs) == 0) {
  235. radix_tree_delete(&root->delayed_nodes_tree,
  236. delayed_node->inode_id);
  237. free = true;
  238. }
  239. spin_unlock(&root->inode_lock);
  240. if (free)
  241. kmem_cache_free(delayed_node_cache, delayed_node);
  242. }
  243. }
  244. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  245. {
  246. __btrfs_release_delayed_node(node, 0);
  247. }
  248. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  249. struct btrfs_delayed_root *delayed_root)
  250. {
  251. struct list_head *p;
  252. struct btrfs_delayed_node *node = NULL;
  253. spin_lock(&delayed_root->lock);
  254. if (list_empty(&delayed_root->prepare_list))
  255. goto out;
  256. p = delayed_root->prepare_list.next;
  257. list_del_init(p);
  258. node = list_entry(p, struct btrfs_delayed_node, p_list);
  259. atomic_inc(&node->refs);
  260. out:
  261. spin_unlock(&delayed_root->lock);
  262. return node;
  263. }
  264. static inline void btrfs_release_prepared_delayed_node(
  265. struct btrfs_delayed_node *node)
  266. {
  267. __btrfs_release_delayed_node(node, 1);
  268. }
  269. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  270. {
  271. struct btrfs_delayed_item *item;
  272. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  273. if (item) {
  274. item->data_len = data_len;
  275. item->ins_or_del = 0;
  276. item->bytes_reserved = 0;
  277. item->delayed_node = NULL;
  278. atomic_set(&item->refs, 1);
  279. }
  280. return item;
  281. }
  282. /*
  283. * __btrfs_lookup_delayed_item - look up the delayed item by key
  284. * @delayed_node: pointer to the delayed node
  285. * @key: the key to look up
  286. * @prev: used to store the prev item if the right item isn't found
  287. * @next: used to store the next item if the right item isn't found
  288. *
  289. * Note: if we don't find the right item, we will return the prev item and
  290. * the next item.
  291. */
  292. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  293. struct rb_root *root,
  294. struct btrfs_key *key,
  295. struct btrfs_delayed_item **prev,
  296. struct btrfs_delayed_item **next)
  297. {
  298. struct rb_node *node, *prev_node = NULL;
  299. struct btrfs_delayed_item *delayed_item = NULL;
  300. int ret = 0;
  301. node = root->rb_node;
  302. while (node) {
  303. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  304. rb_node);
  305. prev_node = node;
  306. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  307. if (ret < 0)
  308. node = node->rb_right;
  309. else if (ret > 0)
  310. node = node->rb_left;
  311. else
  312. return delayed_item;
  313. }
  314. if (prev) {
  315. if (!prev_node)
  316. *prev = NULL;
  317. else if (ret < 0)
  318. *prev = delayed_item;
  319. else if ((node = rb_prev(prev_node)) != NULL) {
  320. *prev = rb_entry(node, struct btrfs_delayed_item,
  321. rb_node);
  322. } else
  323. *prev = NULL;
  324. }
  325. if (next) {
  326. if (!prev_node)
  327. *next = NULL;
  328. else if (ret > 0)
  329. *next = delayed_item;
  330. else if ((node = rb_next(prev_node)) != NULL) {
  331. *next = rb_entry(node, struct btrfs_delayed_item,
  332. rb_node);
  333. } else
  334. *next = NULL;
  335. }
  336. return NULL;
  337. }
  338. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  339. struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_key *key)
  341. {
  342. struct btrfs_delayed_item *item;
  343. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  344. NULL, NULL);
  345. return item;
  346. }
  347. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  348. struct btrfs_delayed_item *ins,
  349. int action)
  350. {
  351. struct rb_node **p, *node;
  352. struct rb_node *parent_node = NULL;
  353. struct rb_root *root;
  354. struct btrfs_delayed_item *item;
  355. int cmp;
  356. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  357. root = &delayed_node->ins_root;
  358. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  359. root = &delayed_node->del_root;
  360. else
  361. BUG();
  362. p = &root->rb_node;
  363. node = &ins->rb_node;
  364. while (*p) {
  365. parent_node = *p;
  366. item = rb_entry(parent_node, struct btrfs_delayed_item,
  367. rb_node);
  368. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  369. if (cmp < 0)
  370. p = &(*p)->rb_right;
  371. else if (cmp > 0)
  372. p = &(*p)->rb_left;
  373. else
  374. return -EEXIST;
  375. }
  376. rb_link_node(node, parent_node, p);
  377. rb_insert_color(node, root);
  378. ins->delayed_node = delayed_node;
  379. ins->ins_or_del = action;
  380. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  381. action == BTRFS_DELAYED_INSERTION_ITEM &&
  382. ins->key.offset >= delayed_node->index_cnt)
  383. delayed_node->index_cnt = ins->key.offset + 1;
  384. delayed_node->count++;
  385. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  386. return 0;
  387. }
  388. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  389. struct btrfs_delayed_item *item)
  390. {
  391. return __btrfs_add_delayed_item(node, item,
  392. BTRFS_DELAYED_INSERTION_ITEM);
  393. }
  394. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  395. struct btrfs_delayed_item *item)
  396. {
  397. return __btrfs_add_delayed_item(node, item,
  398. BTRFS_DELAYED_DELETION_ITEM);
  399. }
  400. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  401. {
  402. int seq = atomic_inc_return(&delayed_root->items_seq);
  403. /*
  404. * atomic_dec_return implies a barrier for waitqueue_active
  405. */
  406. if ((atomic_dec_return(&delayed_root->items) <
  407. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  408. waitqueue_active(&delayed_root->wait))
  409. wake_up(&delayed_root->wait);
  410. }
  411. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  412. {
  413. struct rb_root *root;
  414. struct btrfs_delayed_root *delayed_root;
  415. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  416. BUG_ON(!delayed_root);
  417. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  418. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  419. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  420. root = &delayed_item->delayed_node->ins_root;
  421. else
  422. root = &delayed_item->delayed_node->del_root;
  423. rb_erase(&delayed_item->rb_node, root);
  424. delayed_item->delayed_node->count--;
  425. finish_one_item(delayed_root);
  426. }
  427. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  428. {
  429. if (item) {
  430. __btrfs_remove_delayed_item(item);
  431. if (atomic_dec_and_test(&item->refs))
  432. kfree(item);
  433. }
  434. }
  435. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  436. struct btrfs_delayed_node *delayed_node)
  437. {
  438. struct rb_node *p;
  439. struct btrfs_delayed_item *item = NULL;
  440. p = rb_first(&delayed_node->ins_root);
  441. if (p)
  442. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  443. return item;
  444. }
  445. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  446. struct btrfs_delayed_node *delayed_node)
  447. {
  448. struct rb_node *p;
  449. struct btrfs_delayed_item *item = NULL;
  450. p = rb_first(&delayed_node->del_root);
  451. if (p)
  452. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  453. return item;
  454. }
  455. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  456. struct btrfs_delayed_item *item)
  457. {
  458. struct rb_node *p;
  459. struct btrfs_delayed_item *next = NULL;
  460. p = rb_next(&item->rb_node);
  461. if (p)
  462. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  463. return next;
  464. }
  465. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  466. struct btrfs_root *root,
  467. struct btrfs_delayed_item *item)
  468. {
  469. struct btrfs_block_rsv *src_rsv;
  470. struct btrfs_block_rsv *dst_rsv;
  471. u64 num_bytes;
  472. int ret;
  473. if (!trans->bytes_reserved)
  474. return 0;
  475. src_rsv = trans->block_rsv;
  476. dst_rsv = &root->fs_info->delayed_block_rsv;
  477. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  478. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  479. if (!ret) {
  480. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  481. item->key.objectid,
  482. num_bytes, 1);
  483. item->bytes_reserved = num_bytes;
  484. }
  485. return ret;
  486. }
  487. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  488. struct btrfs_delayed_item *item)
  489. {
  490. struct btrfs_block_rsv *rsv;
  491. if (!item->bytes_reserved)
  492. return;
  493. rsv = &root->fs_info->delayed_block_rsv;
  494. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  495. item->key.objectid, item->bytes_reserved,
  496. 0);
  497. btrfs_block_rsv_release(root, rsv,
  498. item->bytes_reserved);
  499. }
  500. static int btrfs_delayed_inode_reserve_metadata(
  501. struct btrfs_trans_handle *trans,
  502. struct btrfs_root *root,
  503. struct inode *inode,
  504. struct btrfs_delayed_node *node)
  505. {
  506. struct btrfs_block_rsv *src_rsv;
  507. struct btrfs_block_rsv *dst_rsv;
  508. u64 num_bytes;
  509. int ret;
  510. bool release = false;
  511. src_rsv = trans->block_rsv;
  512. dst_rsv = &root->fs_info->delayed_block_rsv;
  513. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  514. /*
  515. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  516. * which doesn't reserve space for speed. This is a problem since we
  517. * still need to reserve space for this update, so try to reserve the
  518. * space.
  519. *
  520. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  521. * we're accounted for.
  522. */
  523. if (!src_rsv || (!trans->bytes_reserved &&
  524. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  525. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  526. BTRFS_RESERVE_NO_FLUSH);
  527. /*
  528. * Since we're under a transaction reserve_metadata_bytes could
  529. * try to commit the transaction which will make it return
  530. * EAGAIN to make us stop the transaction we have, so return
  531. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  532. */
  533. if (ret == -EAGAIN)
  534. ret = -ENOSPC;
  535. if (!ret) {
  536. node->bytes_reserved = num_bytes;
  537. trace_btrfs_space_reservation(root->fs_info,
  538. "delayed_inode",
  539. btrfs_ino(inode),
  540. num_bytes, 1);
  541. }
  542. return ret;
  543. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  544. spin_lock(&BTRFS_I(inode)->lock);
  545. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  546. &BTRFS_I(inode)->runtime_flags)) {
  547. spin_unlock(&BTRFS_I(inode)->lock);
  548. release = true;
  549. goto migrate;
  550. }
  551. spin_unlock(&BTRFS_I(inode)->lock);
  552. /* Ok we didn't have space pre-reserved. This shouldn't happen
  553. * too often but it can happen if we do delalloc to an existing
  554. * inode which gets dirtied because of the time update, and then
  555. * isn't touched again until after the transaction commits and
  556. * then we try to write out the data. First try to be nice and
  557. * reserve something strictly for us. If not be a pain and try
  558. * to steal from the delalloc block rsv.
  559. */
  560. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  561. BTRFS_RESERVE_NO_FLUSH);
  562. if (!ret)
  563. goto out;
  564. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  565. if (!WARN_ON(ret))
  566. goto out;
  567. /*
  568. * Ok this is a problem, let's just steal from the global rsv
  569. * since this really shouldn't happen that often.
  570. */
  571. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  572. dst_rsv, num_bytes);
  573. goto out;
  574. }
  575. migrate:
  576. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  577. out:
  578. /*
  579. * Migrate only takes a reservation, it doesn't touch the size of the
  580. * block_rsv. This is to simplify people who don't normally have things
  581. * migrated from their block rsv. If they go to release their
  582. * reservation, that will decrease the size as well, so if migrate
  583. * reduced size we'd end up with a negative size. But for the
  584. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  585. * but we could in fact do this reserve/migrate dance several times
  586. * between the time we did the original reservation and we'd clean it
  587. * up. So to take care of this, release the space for the meta
  588. * reservation here. I think it may be time for a documentation page on
  589. * how block rsvs. work.
  590. */
  591. if (!ret) {
  592. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  593. btrfs_ino(inode), num_bytes, 1);
  594. node->bytes_reserved = num_bytes;
  595. }
  596. if (release) {
  597. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  598. btrfs_ino(inode), num_bytes, 0);
  599. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  600. }
  601. return ret;
  602. }
  603. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  604. struct btrfs_delayed_node *node)
  605. {
  606. struct btrfs_block_rsv *rsv;
  607. if (!node->bytes_reserved)
  608. return;
  609. rsv = &root->fs_info->delayed_block_rsv;
  610. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  611. node->inode_id, node->bytes_reserved, 0);
  612. btrfs_block_rsv_release(root, rsv,
  613. node->bytes_reserved);
  614. node->bytes_reserved = 0;
  615. }
  616. /*
  617. * This helper will insert some continuous items into the same leaf according
  618. * to the free space of the leaf.
  619. */
  620. static int btrfs_batch_insert_items(struct btrfs_root *root,
  621. struct btrfs_path *path,
  622. struct btrfs_delayed_item *item)
  623. {
  624. struct btrfs_delayed_item *curr, *next;
  625. int free_space;
  626. int total_data_size = 0, total_size = 0;
  627. struct extent_buffer *leaf;
  628. char *data_ptr;
  629. struct btrfs_key *keys;
  630. u32 *data_size;
  631. struct list_head head;
  632. int slot;
  633. int nitems;
  634. int i;
  635. int ret = 0;
  636. BUG_ON(!path->nodes[0]);
  637. leaf = path->nodes[0];
  638. free_space = btrfs_leaf_free_space(root, leaf);
  639. INIT_LIST_HEAD(&head);
  640. next = item;
  641. nitems = 0;
  642. /*
  643. * count the number of the continuous items that we can insert in batch
  644. */
  645. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  646. free_space) {
  647. total_data_size += next->data_len;
  648. total_size += next->data_len + sizeof(struct btrfs_item);
  649. list_add_tail(&next->tree_list, &head);
  650. nitems++;
  651. curr = next;
  652. next = __btrfs_next_delayed_item(curr);
  653. if (!next)
  654. break;
  655. if (!btrfs_is_continuous_delayed_item(curr, next))
  656. break;
  657. }
  658. if (!nitems) {
  659. ret = 0;
  660. goto out;
  661. }
  662. /*
  663. * we need allocate some memory space, but it might cause the task
  664. * to sleep, so we set all locked nodes in the path to blocking locks
  665. * first.
  666. */
  667. btrfs_set_path_blocking(path);
  668. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  669. if (!keys) {
  670. ret = -ENOMEM;
  671. goto out;
  672. }
  673. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  674. if (!data_size) {
  675. ret = -ENOMEM;
  676. goto error;
  677. }
  678. /* get keys of all the delayed items */
  679. i = 0;
  680. list_for_each_entry(next, &head, tree_list) {
  681. keys[i] = next->key;
  682. data_size[i] = next->data_len;
  683. i++;
  684. }
  685. /* reset all the locked nodes in the patch to spinning locks. */
  686. btrfs_clear_path_blocking(path, NULL, 0);
  687. /* insert the keys of the items */
  688. setup_items_for_insert(root, path, keys, data_size,
  689. total_data_size, total_size, nitems);
  690. /* insert the dir index items */
  691. slot = path->slots[0];
  692. list_for_each_entry_safe(curr, next, &head, tree_list) {
  693. data_ptr = btrfs_item_ptr(leaf, slot, char);
  694. write_extent_buffer(leaf, &curr->data,
  695. (unsigned long)data_ptr,
  696. curr->data_len);
  697. slot++;
  698. btrfs_delayed_item_release_metadata(root, curr);
  699. list_del(&curr->tree_list);
  700. btrfs_release_delayed_item(curr);
  701. }
  702. error:
  703. kfree(data_size);
  704. kfree(keys);
  705. out:
  706. return ret;
  707. }
  708. /*
  709. * This helper can just do simple insertion that needn't extend item for new
  710. * data, such as directory name index insertion, inode insertion.
  711. */
  712. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  713. struct btrfs_root *root,
  714. struct btrfs_path *path,
  715. struct btrfs_delayed_item *delayed_item)
  716. {
  717. struct extent_buffer *leaf;
  718. char *ptr;
  719. int ret;
  720. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  721. delayed_item->data_len);
  722. if (ret < 0 && ret != -EEXIST)
  723. return ret;
  724. leaf = path->nodes[0];
  725. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  726. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  727. delayed_item->data_len);
  728. btrfs_mark_buffer_dirty(leaf);
  729. btrfs_delayed_item_release_metadata(root, delayed_item);
  730. return 0;
  731. }
  732. /*
  733. * we insert an item first, then if there are some continuous items, we try
  734. * to insert those items into the same leaf.
  735. */
  736. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  737. struct btrfs_path *path,
  738. struct btrfs_root *root,
  739. struct btrfs_delayed_node *node)
  740. {
  741. struct btrfs_delayed_item *curr, *prev;
  742. int ret = 0;
  743. do_again:
  744. mutex_lock(&node->mutex);
  745. curr = __btrfs_first_delayed_insertion_item(node);
  746. if (!curr)
  747. goto insert_end;
  748. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  749. if (ret < 0) {
  750. btrfs_release_path(path);
  751. goto insert_end;
  752. }
  753. prev = curr;
  754. curr = __btrfs_next_delayed_item(prev);
  755. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  756. /* insert the continuous items into the same leaf */
  757. path->slots[0]++;
  758. btrfs_batch_insert_items(root, path, curr);
  759. }
  760. btrfs_release_delayed_item(prev);
  761. btrfs_mark_buffer_dirty(path->nodes[0]);
  762. btrfs_release_path(path);
  763. mutex_unlock(&node->mutex);
  764. goto do_again;
  765. insert_end:
  766. mutex_unlock(&node->mutex);
  767. return ret;
  768. }
  769. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  770. struct btrfs_root *root,
  771. struct btrfs_path *path,
  772. struct btrfs_delayed_item *item)
  773. {
  774. struct btrfs_delayed_item *curr, *next;
  775. struct extent_buffer *leaf;
  776. struct btrfs_key key;
  777. struct list_head head;
  778. int nitems, i, last_item;
  779. int ret = 0;
  780. BUG_ON(!path->nodes[0]);
  781. leaf = path->nodes[0];
  782. i = path->slots[0];
  783. last_item = btrfs_header_nritems(leaf) - 1;
  784. if (i > last_item)
  785. return -ENOENT; /* FIXME: Is errno suitable? */
  786. next = item;
  787. INIT_LIST_HEAD(&head);
  788. btrfs_item_key_to_cpu(leaf, &key, i);
  789. nitems = 0;
  790. /*
  791. * count the number of the dir index items that we can delete in batch
  792. */
  793. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  794. list_add_tail(&next->tree_list, &head);
  795. nitems++;
  796. curr = next;
  797. next = __btrfs_next_delayed_item(curr);
  798. if (!next)
  799. break;
  800. if (!btrfs_is_continuous_delayed_item(curr, next))
  801. break;
  802. i++;
  803. if (i > last_item)
  804. break;
  805. btrfs_item_key_to_cpu(leaf, &key, i);
  806. }
  807. if (!nitems)
  808. return 0;
  809. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  810. if (ret)
  811. goto out;
  812. list_for_each_entry_safe(curr, next, &head, tree_list) {
  813. btrfs_delayed_item_release_metadata(root, curr);
  814. list_del(&curr->tree_list);
  815. btrfs_release_delayed_item(curr);
  816. }
  817. out:
  818. return ret;
  819. }
  820. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  821. struct btrfs_path *path,
  822. struct btrfs_root *root,
  823. struct btrfs_delayed_node *node)
  824. {
  825. struct btrfs_delayed_item *curr, *prev;
  826. int ret = 0;
  827. do_again:
  828. mutex_lock(&node->mutex);
  829. curr = __btrfs_first_delayed_deletion_item(node);
  830. if (!curr)
  831. goto delete_fail;
  832. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  833. if (ret < 0)
  834. goto delete_fail;
  835. else if (ret > 0) {
  836. /*
  837. * can't find the item which the node points to, so this node
  838. * is invalid, just drop it.
  839. */
  840. prev = curr;
  841. curr = __btrfs_next_delayed_item(prev);
  842. btrfs_release_delayed_item(prev);
  843. ret = 0;
  844. btrfs_release_path(path);
  845. if (curr) {
  846. mutex_unlock(&node->mutex);
  847. goto do_again;
  848. } else
  849. goto delete_fail;
  850. }
  851. btrfs_batch_delete_items(trans, root, path, curr);
  852. btrfs_release_path(path);
  853. mutex_unlock(&node->mutex);
  854. goto do_again;
  855. delete_fail:
  856. btrfs_release_path(path);
  857. mutex_unlock(&node->mutex);
  858. return ret;
  859. }
  860. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  861. {
  862. struct btrfs_delayed_root *delayed_root;
  863. if (delayed_node &&
  864. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  865. BUG_ON(!delayed_node->root);
  866. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  867. delayed_node->count--;
  868. delayed_root = delayed_node->root->fs_info->delayed_root;
  869. finish_one_item(delayed_root);
  870. }
  871. }
  872. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  873. {
  874. struct btrfs_delayed_root *delayed_root;
  875. ASSERT(delayed_node->root);
  876. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  877. delayed_node->count--;
  878. delayed_root = delayed_node->root->fs_info->delayed_root;
  879. finish_one_item(delayed_root);
  880. }
  881. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  882. struct btrfs_root *root,
  883. struct btrfs_path *path,
  884. struct btrfs_delayed_node *node)
  885. {
  886. struct btrfs_key key;
  887. struct btrfs_inode_item *inode_item;
  888. struct extent_buffer *leaf;
  889. int mod;
  890. int ret;
  891. key.objectid = node->inode_id;
  892. key.type = BTRFS_INODE_ITEM_KEY;
  893. key.offset = 0;
  894. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  895. mod = -1;
  896. else
  897. mod = 1;
  898. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  899. if (ret > 0) {
  900. btrfs_release_path(path);
  901. return -ENOENT;
  902. } else if (ret < 0) {
  903. return ret;
  904. }
  905. leaf = path->nodes[0];
  906. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  907. struct btrfs_inode_item);
  908. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  909. sizeof(struct btrfs_inode_item));
  910. btrfs_mark_buffer_dirty(leaf);
  911. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  912. goto no_iref;
  913. path->slots[0]++;
  914. if (path->slots[0] >= btrfs_header_nritems(leaf))
  915. goto search;
  916. again:
  917. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  918. if (key.objectid != node->inode_id)
  919. goto out;
  920. if (key.type != BTRFS_INODE_REF_KEY &&
  921. key.type != BTRFS_INODE_EXTREF_KEY)
  922. goto out;
  923. /*
  924. * Delayed iref deletion is for the inode who has only one link,
  925. * so there is only one iref. The case that several irefs are
  926. * in the same item doesn't exist.
  927. */
  928. btrfs_del_item(trans, root, path);
  929. out:
  930. btrfs_release_delayed_iref(node);
  931. no_iref:
  932. btrfs_release_path(path);
  933. err_out:
  934. btrfs_delayed_inode_release_metadata(root, node);
  935. btrfs_release_delayed_inode(node);
  936. return ret;
  937. search:
  938. btrfs_release_path(path);
  939. key.type = BTRFS_INODE_EXTREF_KEY;
  940. key.offset = -1;
  941. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  942. if (ret < 0)
  943. goto err_out;
  944. ASSERT(ret);
  945. ret = 0;
  946. leaf = path->nodes[0];
  947. path->slots[0]--;
  948. goto again;
  949. }
  950. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  951. struct btrfs_root *root,
  952. struct btrfs_path *path,
  953. struct btrfs_delayed_node *node)
  954. {
  955. int ret;
  956. mutex_lock(&node->mutex);
  957. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  958. mutex_unlock(&node->mutex);
  959. return 0;
  960. }
  961. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  962. mutex_unlock(&node->mutex);
  963. return ret;
  964. }
  965. static inline int
  966. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  967. struct btrfs_path *path,
  968. struct btrfs_delayed_node *node)
  969. {
  970. int ret;
  971. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  972. if (ret)
  973. return ret;
  974. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  975. if (ret)
  976. return ret;
  977. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  978. return ret;
  979. }
  980. /*
  981. * Called when committing the transaction.
  982. * Returns 0 on success.
  983. * Returns < 0 on error and returns with an aborted transaction with any
  984. * outstanding delayed items cleaned up.
  985. */
  986. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  987. struct btrfs_root *root, int nr)
  988. {
  989. struct btrfs_delayed_root *delayed_root;
  990. struct btrfs_delayed_node *curr_node, *prev_node;
  991. struct btrfs_path *path;
  992. struct btrfs_block_rsv *block_rsv;
  993. int ret = 0;
  994. bool count = (nr > 0);
  995. if (trans->aborted)
  996. return -EIO;
  997. path = btrfs_alloc_path();
  998. if (!path)
  999. return -ENOMEM;
  1000. path->leave_spinning = 1;
  1001. block_rsv = trans->block_rsv;
  1002. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1003. delayed_root = btrfs_get_delayed_root(root);
  1004. curr_node = btrfs_first_delayed_node(delayed_root);
  1005. while (curr_node && (!count || (count && nr--))) {
  1006. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1007. curr_node);
  1008. if (ret) {
  1009. btrfs_release_delayed_node(curr_node);
  1010. curr_node = NULL;
  1011. btrfs_abort_transaction(trans, root, ret);
  1012. break;
  1013. }
  1014. prev_node = curr_node;
  1015. curr_node = btrfs_next_delayed_node(curr_node);
  1016. btrfs_release_delayed_node(prev_node);
  1017. }
  1018. if (curr_node)
  1019. btrfs_release_delayed_node(curr_node);
  1020. btrfs_free_path(path);
  1021. trans->block_rsv = block_rsv;
  1022. return ret;
  1023. }
  1024. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1025. struct btrfs_root *root)
  1026. {
  1027. return __btrfs_run_delayed_items(trans, root, -1);
  1028. }
  1029. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1030. struct btrfs_root *root, int nr)
  1031. {
  1032. return __btrfs_run_delayed_items(trans, root, nr);
  1033. }
  1034. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1035. struct inode *inode)
  1036. {
  1037. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1038. struct btrfs_path *path;
  1039. struct btrfs_block_rsv *block_rsv;
  1040. int ret;
  1041. if (!delayed_node)
  1042. return 0;
  1043. mutex_lock(&delayed_node->mutex);
  1044. if (!delayed_node->count) {
  1045. mutex_unlock(&delayed_node->mutex);
  1046. btrfs_release_delayed_node(delayed_node);
  1047. return 0;
  1048. }
  1049. mutex_unlock(&delayed_node->mutex);
  1050. path = btrfs_alloc_path();
  1051. if (!path) {
  1052. btrfs_release_delayed_node(delayed_node);
  1053. return -ENOMEM;
  1054. }
  1055. path->leave_spinning = 1;
  1056. block_rsv = trans->block_rsv;
  1057. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1058. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1059. btrfs_release_delayed_node(delayed_node);
  1060. btrfs_free_path(path);
  1061. trans->block_rsv = block_rsv;
  1062. return ret;
  1063. }
  1064. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1065. {
  1066. struct btrfs_trans_handle *trans;
  1067. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1068. struct btrfs_path *path;
  1069. struct btrfs_block_rsv *block_rsv;
  1070. int ret;
  1071. if (!delayed_node)
  1072. return 0;
  1073. mutex_lock(&delayed_node->mutex);
  1074. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1075. mutex_unlock(&delayed_node->mutex);
  1076. btrfs_release_delayed_node(delayed_node);
  1077. return 0;
  1078. }
  1079. mutex_unlock(&delayed_node->mutex);
  1080. trans = btrfs_join_transaction(delayed_node->root);
  1081. if (IS_ERR(trans)) {
  1082. ret = PTR_ERR(trans);
  1083. goto out;
  1084. }
  1085. path = btrfs_alloc_path();
  1086. if (!path) {
  1087. ret = -ENOMEM;
  1088. goto trans_out;
  1089. }
  1090. path->leave_spinning = 1;
  1091. block_rsv = trans->block_rsv;
  1092. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1093. mutex_lock(&delayed_node->mutex);
  1094. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1095. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1096. path, delayed_node);
  1097. else
  1098. ret = 0;
  1099. mutex_unlock(&delayed_node->mutex);
  1100. btrfs_free_path(path);
  1101. trans->block_rsv = block_rsv;
  1102. trans_out:
  1103. btrfs_end_transaction(trans, delayed_node->root);
  1104. btrfs_btree_balance_dirty(delayed_node->root);
  1105. out:
  1106. btrfs_release_delayed_node(delayed_node);
  1107. return ret;
  1108. }
  1109. void btrfs_remove_delayed_node(struct inode *inode)
  1110. {
  1111. struct btrfs_delayed_node *delayed_node;
  1112. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1113. if (!delayed_node)
  1114. return;
  1115. BTRFS_I(inode)->delayed_node = NULL;
  1116. btrfs_release_delayed_node(delayed_node);
  1117. }
  1118. struct btrfs_async_delayed_work {
  1119. struct btrfs_delayed_root *delayed_root;
  1120. int nr;
  1121. struct btrfs_work work;
  1122. };
  1123. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1124. {
  1125. struct btrfs_async_delayed_work *async_work;
  1126. struct btrfs_delayed_root *delayed_root;
  1127. struct btrfs_trans_handle *trans;
  1128. struct btrfs_path *path;
  1129. struct btrfs_delayed_node *delayed_node = NULL;
  1130. struct btrfs_root *root;
  1131. struct btrfs_block_rsv *block_rsv;
  1132. int total_done = 0;
  1133. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1134. delayed_root = async_work->delayed_root;
  1135. path = btrfs_alloc_path();
  1136. if (!path)
  1137. goto out;
  1138. again:
  1139. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1140. goto free_path;
  1141. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1142. if (!delayed_node)
  1143. goto free_path;
  1144. path->leave_spinning = 1;
  1145. root = delayed_node->root;
  1146. trans = btrfs_join_transaction(root);
  1147. if (IS_ERR(trans))
  1148. goto release_path;
  1149. block_rsv = trans->block_rsv;
  1150. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1151. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1152. trans->block_rsv = block_rsv;
  1153. btrfs_end_transaction(trans, root);
  1154. btrfs_btree_balance_dirty_nodelay(root);
  1155. release_path:
  1156. btrfs_release_path(path);
  1157. total_done++;
  1158. btrfs_release_prepared_delayed_node(delayed_node);
  1159. if (async_work->nr == 0 || total_done < async_work->nr)
  1160. goto again;
  1161. free_path:
  1162. btrfs_free_path(path);
  1163. out:
  1164. wake_up(&delayed_root->wait);
  1165. kfree(async_work);
  1166. }
  1167. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1168. struct btrfs_fs_info *fs_info, int nr)
  1169. {
  1170. struct btrfs_async_delayed_work *async_work;
  1171. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1172. return 0;
  1173. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1174. if (!async_work)
  1175. return -ENOMEM;
  1176. async_work->delayed_root = delayed_root;
  1177. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1178. btrfs_async_run_delayed_root, NULL, NULL);
  1179. async_work->nr = nr;
  1180. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1181. return 0;
  1182. }
  1183. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1184. {
  1185. struct btrfs_delayed_root *delayed_root;
  1186. delayed_root = btrfs_get_delayed_root(root);
  1187. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1188. }
  1189. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1190. {
  1191. int val = atomic_read(&delayed_root->items_seq);
  1192. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1193. return 1;
  1194. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1195. return 1;
  1196. return 0;
  1197. }
  1198. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1199. {
  1200. struct btrfs_delayed_root *delayed_root;
  1201. struct btrfs_fs_info *fs_info = root->fs_info;
  1202. delayed_root = btrfs_get_delayed_root(root);
  1203. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1204. return;
  1205. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1206. int seq;
  1207. int ret;
  1208. seq = atomic_read(&delayed_root->items_seq);
  1209. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1210. if (ret)
  1211. return;
  1212. wait_event_interruptible(delayed_root->wait,
  1213. could_end_wait(delayed_root, seq));
  1214. return;
  1215. }
  1216. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1217. }
  1218. /* Will return 0 or -ENOMEM */
  1219. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1220. struct btrfs_root *root, const char *name,
  1221. int name_len, struct inode *dir,
  1222. struct btrfs_disk_key *disk_key, u8 type,
  1223. u64 index)
  1224. {
  1225. struct btrfs_delayed_node *delayed_node;
  1226. struct btrfs_delayed_item *delayed_item;
  1227. struct btrfs_dir_item *dir_item;
  1228. int ret;
  1229. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1230. if (IS_ERR(delayed_node))
  1231. return PTR_ERR(delayed_node);
  1232. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1233. if (!delayed_item) {
  1234. ret = -ENOMEM;
  1235. goto release_node;
  1236. }
  1237. delayed_item->key.objectid = btrfs_ino(dir);
  1238. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1239. delayed_item->key.offset = index;
  1240. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1241. dir_item->location = *disk_key;
  1242. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1243. btrfs_set_stack_dir_data_len(dir_item, 0);
  1244. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1245. btrfs_set_stack_dir_type(dir_item, type);
  1246. memcpy((char *)(dir_item + 1), name, name_len);
  1247. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1248. /*
  1249. * we have reserved enough space when we start a new transaction,
  1250. * so reserving metadata failure is impossible
  1251. */
  1252. BUG_ON(ret);
  1253. mutex_lock(&delayed_node->mutex);
  1254. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1255. if (unlikely(ret)) {
  1256. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1257. "into the insertion tree of the delayed node"
  1258. "(root id: %llu, inode id: %llu, errno: %d)",
  1259. name_len, name, delayed_node->root->objectid,
  1260. delayed_node->inode_id, ret);
  1261. BUG();
  1262. }
  1263. mutex_unlock(&delayed_node->mutex);
  1264. release_node:
  1265. btrfs_release_delayed_node(delayed_node);
  1266. return ret;
  1267. }
  1268. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1269. struct btrfs_delayed_node *node,
  1270. struct btrfs_key *key)
  1271. {
  1272. struct btrfs_delayed_item *item;
  1273. mutex_lock(&node->mutex);
  1274. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1275. if (!item) {
  1276. mutex_unlock(&node->mutex);
  1277. return 1;
  1278. }
  1279. btrfs_delayed_item_release_metadata(root, item);
  1280. btrfs_release_delayed_item(item);
  1281. mutex_unlock(&node->mutex);
  1282. return 0;
  1283. }
  1284. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1285. struct btrfs_root *root, struct inode *dir,
  1286. u64 index)
  1287. {
  1288. struct btrfs_delayed_node *node;
  1289. struct btrfs_delayed_item *item;
  1290. struct btrfs_key item_key;
  1291. int ret;
  1292. node = btrfs_get_or_create_delayed_node(dir);
  1293. if (IS_ERR(node))
  1294. return PTR_ERR(node);
  1295. item_key.objectid = btrfs_ino(dir);
  1296. item_key.type = BTRFS_DIR_INDEX_KEY;
  1297. item_key.offset = index;
  1298. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1299. if (!ret)
  1300. goto end;
  1301. item = btrfs_alloc_delayed_item(0);
  1302. if (!item) {
  1303. ret = -ENOMEM;
  1304. goto end;
  1305. }
  1306. item->key = item_key;
  1307. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1308. /*
  1309. * we have reserved enough space when we start a new transaction,
  1310. * so reserving metadata failure is impossible.
  1311. */
  1312. BUG_ON(ret);
  1313. mutex_lock(&node->mutex);
  1314. ret = __btrfs_add_delayed_deletion_item(node, item);
  1315. if (unlikely(ret)) {
  1316. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1317. "into the deletion tree of the delayed node"
  1318. "(root id: %llu, inode id: %llu, errno: %d)",
  1319. index, node->root->objectid, node->inode_id,
  1320. ret);
  1321. BUG();
  1322. }
  1323. mutex_unlock(&node->mutex);
  1324. end:
  1325. btrfs_release_delayed_node(node);
  1326. return ret;
  1327. }
  1328. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1329. {
  1330. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1331. if (!delayed_node)
  1332. return -ENOENT;
  1333. /*
  1334. * Since we have held i_mutex of this directory, it is impossible that
  1335. * a new directory index is added into the delayed node and index_cnt
  1336. * is updated now. So we needn't lock the delayed node.
  1337. */
  1338. if (!delayed_node->index_cnt) {
  1339. btrfs_release_delayed_node(delayed_node);
  1340. return -EINVAL;
  1341. }
  1342. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1343. btrfs_release_delayed_node(delayed_node);
  1344. return 0;
  1345. }
  1346. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1347. struct list_head *del_list)
  1348. {
  1349. struct btrfs_delayed_node *delayed_node;
  1350. struct btrfs_delayed_item *item;
  1351. delayed_node = btrfs_get_delayed_node(inode);
  1352. if (!delayed_node)
  1353. return;
  1354. mutex_lock(&delayed_node->mutex);
  1355. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1356. while (item) {
  1357. atomic_inc(&item->refs);
  1358. list_add_tail(&item->readdir_list, ins_list);
  1359. item = __btrfs_next_delayed_item(item);
  1360. }
  1361. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1362. while (item) {
  1363. atomic_inc(&item->refs);
  1364. list_add_tail(&item->readdir_list, del_list);
  1365. item = __btrfs_next_delayed_item(item);
  1366. }
  1367. mutex_unlock(&delayed_node->mutex);
  1368. /*
  1369. * This delayed node is still cached in the btrfs inode, so refs
  1370. * must be > 1 now, and we needn't check it is going to be freed
  1371. * or not.
  1372. *
  1373. * Besides that, this function is used to read dir, we do not
  1374. * insert/delete delayed items in this period. So we also needn't
  1375. * requeue or dequeue this delayed node.
  1376. */
  1377. atomic_dec(&delayed_node->refs);
  1378. }
  1379. void btrfs_put_delayed_items(struct list_head *ins_list,
  1380. struct list_head *del_list)
  1381. {
  1382. struct btrfs_delayed_item *curr, *next;
  1383. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1384. list_del(&curr->readdir_list);
  1385. if (atomic_dec_and_test(&curr->refs))
  1386. kfree(curr);
  1387. }
  1388. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1389. list_del(&curr->readdir_list);
  1390. if (atomic_dec_and_test(&curr->refs))
  1391. kfree(curr);
  1392. }
  1393. }
  1394. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1395. u64 index)
  1396. {
  1397. struct btrfs_delayed_item *curr, *next;
  1398. int ret;
  1399. if (list_empty(del_list))
  1400. return 0;
  1401. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1402. if (curr->key.offset > index)
  1403. break;
  1404. list_del(&curr->readdir_list);
  1405. ret = (curr->key.offset == index);
  1406. if (atomic_dec_and_test(&curr->refs))
  1407. kfree(curr);
  1408. if (ret)
  1409. return 1;
  1410. else
  1411. continue;
  1412. }
  1413. return 0;
  1414. }
  1415. /*
  1416. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1417. *
  1418. */
  1419. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1420. struct list_head *ins_list)
  1421. {
  1422. struct btrfs_dir_item *di;
  1423. struct btrfs_delayed_item *curr, *next;
  1424. struct btrfs_key location;
  1425. char *name;
  1426. int name_len;
  1427. int over = 0;
  1428. unsigned char d_type;
  1429. if (list_empty(ins_list))
  1430. return 0;
  1431. /*
  1432. * Changing the data of the delayed item is impossible. So
  1433. * we needn't lock them. And we have held i_mutex of the
  1434. * directory, nobody can delete any directory indexes now.
  1435. */
  1436. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1437. list_del(&curr->readdir_list);
  1438. if (curr->key.offset < ctx->pos) {
  1439. if (atomic_dec_and_test(&curr->refs))
  1440. kfree(curr);
  1441. continue;
  1442. }
  1443. ctx->pos = curr->key.offset;
  1444. di = (struct btrfs_dir_item *)curr->data;
  1445. name = (char *)(di + 1);
  1446. name_len = btrfs_stack_dir_name_len(di);
  1447. d_type = btrfs_filetype_table[di->type];
  1448. btrfs_disk_key_to_cpu(&location, &di->location);
  1449. over = !dir_emit(ctx, name, name_len,
  1450. location.objectid, d_type);
  1451. if (atomic_dec_and_test(&curr->refs))
  1452. kfree(curr);
  1453. if (over)
  1454. return 1;
  1455. }
  1456. return 0;
  1457. }
  1458. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1459. struct btrfs_inode_item *inode_item,
  1460. struct inode *inode)
  1461. {
  1462. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1463. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1464. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1465. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1466. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1467. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1468. btrfs_set_stack_inode_generation(inode_item,
  1469. BTRFS_I(inode)->generation);
  1470. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1471. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1472. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1473. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1474. btrfs_set_stack_inode_block_group(inode_item, 0);
  1475. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1476. inode->i_atime.tv_sec);
  1477. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1478. inode->i_atime.tv_nsec);
  1479. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1480. inode->i_mtime.tv_sec);
  1481. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1482. inode->i_mtime.tv_nsec);
  1483. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1484. inode->i_ctime.tv_sec);
  1485. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1486. inode->i_ctime.tv_nsec);
  1487. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1488. BTRFS_I(inode)->i_otime.tv_sec);
  1489. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1490. BTRFS_I(inode)->i_otime.tv_nsec);
  1491. }
  1492. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1493. {
  1494. struct btrfs_delayed_node *delayed_node;
  1495. struct btrfs_inode_item *inode_item;
  1496. delayed_node = btrfs_get_delayed_node(inode);
  1497. if (!delayed_node)
  1498. return -ENOENT;
  1499. mutex_lock(&delayed_node->mutex);
  1500. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1501. mutex_unlock(&delayed_node->mutex);
  1502. btrfs_release_delayed_node(delayed_node);
  1503. return -ENOENT;
  1504. }
  1505. inode_item = &delayed_node->inode_item;
  1506. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1507. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1508. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1509. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1510. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1511. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1512. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1513. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1514. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1515. inode->i_rdev = 0;
  1516. *rdev = btrfs_stack_inode_rdev(inode_item);
  1517. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1518. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1519. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1520. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1521. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1522. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1523. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1524. BTRFS_I(inode)->i_otime.tv_sec =
  1525. btrfs_stack_timespec_sec(&inode_item->otime);
  1526. BTRFS_I(inode)->i_otime.tv_nsec =
  1527. btrfs_stack_timespec_nsec(&inode_item->otime);
  1528. inode->i_generation = BTRFS_I(inode)->generation;
  1529. BTRFS_I(inode)->index_cnt = (u64)-1;
  1530. mutex_unlock(&delayed_node->mutex);
  1531. btrfs_release_delayed_node(delayed_node);
  1532. return 0;
  1533. }
  1534. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1535. struct btrfs_root *root, struct inode *inode)
  1536. {
  1537. struct btrfs_delayed_node *delayed_node;
  1538. int ret = 0;
  1539. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1540. if (IS_ERR(delayed_node))
  1541. return PTR_ERR(delayed_node);
  1542. mutex_lock(&delayed_node->mutex);
  1543. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1544. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1545. goto release_node;
  1546. }
  1547. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1548. delayed_node);
  1549. if (ret)
  1550. goto release_node;
  1551. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1552. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1553. delayed_node->count++;
  1554. atomic_inc(&root->fs_info->delayed_root->items);
  1555. release_node:
  1556. mutex_unlock(&delayed_node->mutex);
  1557. btrfs_release_delayed_node(delayed_node);
  1558. return ret;
  1559. }
  1560. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1561. {
  1562. struct btrfs_delayed_node *delayed_node;
  1563. /*
  1564. * we don't do delayed inode updates during log recovery because it
  1565. * leads to enospc problems. This means we also can't do
  1566. * delayed inode refs
  1567. */
  1568. if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
  1569. return -EAGAIN;
  1570. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1571. if (IS_ERR(delayed_node))
  1572. return PTR_ERR(delayed_node);
  1573. /*
  1574. * We don't reserve space for inode ref deletion is because:
  1575. * - We ONLY do async inode ref deletion for the inode who has only
  1576. * one link(i_nlink == 1), it means there is only one inode ref.
  1577. * And in most case, the inode ref and the inode item are in the
  1578. * same leaf, and we will deal with them at the same time.
  1579. * Since we are sure we will reserve the space for the inode item,
  1580. * it is unnecessary to reserve space for inode ref deletion.
  1581. * - If the inode ref and the inode item are not in the same leaf,
  1582. * We also needn't worry about enospc problem, because we reserve
  1583. * much more space for the inode update than it needs.
  1584. * - At the worst, we can steal some space from the global reservation.
  1585. * It is very rare.
  1586. */
  1587. mutex_lock(&delayed_node->mutex);
  1588. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1589. goto release_node;
  1590. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1591. delayed_node->count++;
  1592. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1593. release_node:
  1594. mutex_unlock(&delayed_node->mutex);
  1595. btrfs_release_delayed_node(delayed_node);
  1596. return 0;
  1597. }
  1598. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1599. {
  1600. struct btrfs_root *root = delayed_node->root;
  1601. struct btrfs_delayed_item *curr_item, *prev_item;
  1602. mutex_lock(&delayed_node->mutex);
  1603. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1604. while (curr_item) {
  1605. btrfs_delayed_item_release_metadata(root, curr_item);
  1606. prev_item = curr_item;
  1607. curr_item = __btrfs_next_delayed_item(prev_item);
  1608. btrfs_release_delayed_item(prev_item);
  1609. }
  1610. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1611. while (curr_item) {
  1612. btrfs_delayed_item_release_metadata(root, curr_item);
  1613. prev_item = curr_item;
  1614. curr_item = __btrfs_next_delayed_item(prev_item);
  1615. btrfs_release_delayed_item(prev_item);
  1616. }
  1617. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1618. btrfs_release_delayed_iref(delayed_node);
  1619. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1620. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1621. btrfs_release_delayed_inode(delayed_node);
  1622. }
  1623. mutex_unlock(&delayed_node->mutex);
  1624. }
  1625. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1626. {
  1627. struct btrfs_delayed_node *delayed_node;
  1628. delayed_node = btrfs_get_delayed_node(inode);
  1629. if (!delayed_node)
  1630. return;
  1631. __btrfs_kill_delayed_node(delayed_node);
  1632. btrfs_release_delayed_node(delayed_node);
  1633. }
  1634. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1635. {
  1636. u64 inode_id = 0;
  1637. struct btrfs_delayed_node *delayed_nodes[8];
  1638. int i, n;
  1639. while (1) {
  1640. spin_lock(&root->inode_lock);
  1641. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1642. (void **)delayed_nodes, inode_id,
  1643. ARRAY_SIZE(delayed_nodes));
  1644. if (!n) {
  1645. spin_unlock(&root->inode_lock);
  1646. break;
  1647. }
  1648. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1649. for (i = 0; i < n; i++)
  1650. atomic_inc(&delayed_nodes[i]->refs);
  1651. spin_unlock(&root->inode_lock);
  1652. for (i = 0; i < n; i++) {
  1653. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1654. btrfs_release_delayed_node(delayed_nodes[i]);
  1655. }
  1656. }
  1657. }
  1658. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1659. {
  1660. struct btrfs_delayed_root *delayed_root;
  1661. struct btrfs_delayed_node *curr_node, *prev_node;
  1662. delayed_root = btrfs_get_delayed_root(root);
  1663. curr_node = btrfs_first_delayed_node(delayed_root);
  1664. while (curr_node) {
  1665. __btrfs_kill_delayed_node(curr_node);
  1666. prev_node = curr_node;
  1667. curr_node = btrfs_next_delayed_node(curr_node);
  1668. btrfs_release_delayed_node(prev_node);
  1669. }
  1670. }