spi-fsl-dspi.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097
  1. /*
  2. * drivers/spi/spi-fsl-dspi.c
  3. *
  4. * Copyright 2013 Freescale Semiconductor, Inc.
  5. *
  6. * Freescale DSPI driver
  7. * This file contains a driver for the Freescale DSPI
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/err.h>
  20. #include <linux/errno.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/io.h>
  23. #include <linux/kernel.h>
  24. #include <linux/math64.h>
  25. #include <linux/module.h>
  26. #include <linux/of.h>
  27. #include <linux/of_device.h>
  28. #include <linux/pinctrl/consumer.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/pm_runtime.h>
  31. #include <linux/regmap.h>
  32. #include <linux/sched.h>
  33. #include <linux/spi/spi.h>
  34. #include <linux/spi/spi-fsl-dspi.h>
  35. #include <linux/spi/spi_bitbang.h>
  36. #include <linux/time.h>
  37. #define DRIVER_NAME "fsl-dspi"
  38. #define DSPI_FIFO_SIZE 4
  39. #define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
  40. #define SPI_MCR 0x00
  41. #define SPI_MCR_MASTER (1 << 31)
  42. #define SPI_MCR_PCSIS (0x3F << 16)
  43. #define SPI_MCR_CLR_TXF (1 << 11)
  44. #define SPI_MCR_CLR_RXF (1 << 10)
  45. #define SPI_TCR 0x08
  46. #define SPI_TCR_GET_TCNT(x) (((x) & 0xffff0000) >> 16)
  47. #define SPI_CTAR(x) (0x0c + (((x) & 0x3) * 4))
  48. #define SPI_CTAR_FMSZ(x) (((x) & 0x0000000f) << 27)
  49. #define SPI_CTAR_CPOL(x) ((x) << 26)
  50. #define SPI_CTAR_CPHA(x) ((x) << 25)
  51. #define SPI_CTAR_LSBFE(x) ((x) << 24)
  52. #define SPI_CTAR_PCSSCK(x) (((x) & 0x00000003) << 22)
  53. #define SPI_CTAR_PASC(x) (((x) & 0x00000003) << 20)
  54. #define SPI_CTAR_PDT(x) (((x) & 0x00000003) << 18)
  55. #define SPI_CTAR_PBR(x) (((x) & 0x00000003) << 16)
  56. #define SPI_CTAR_CSSCK(x) (((x) & 0x0000000f) << 12)
  57. #define SPI_CTAR_ASC(x) (((x) & 0x0000000f) << 8)
  58. #define SPI_CTAR_DT(x) (((x) & 0x0000000f) << 4)
  59. #define SPI_CTAR_BR(x) ((x) & 0x0000000f)
  60. #define SPI_CTAR_SCALE_BITS 0xf
  61. #define SPI_CTAR0_SLAVE 0x0c
  62. #define SPI_SR 0x2c
  63. #define SPI_SR_EOQF 0x10000000
  64. #define SPI_SR_TCFQF 0x80000000
  65. #define SPI_SR_CLEAR 0xdaad0000
  66. #define SPI_RSER_TFFFE BIT(25)
  67. #define SPI_RSER_TFFFD BIT(24)
  68. #define SPI_RSER_RFDFE BIT(17)
  69. #define SPI_RSER_RFDFD BIT(16)
  70. #define SPI_RSER 0x30
  71. #define SPI_RSER_EOQFE 0x10000000
  72. #define SPI_RSER_TCFQE 0x80000000
  73. #define SPI_PUSHR 0x34
  74. #define SPI_PUSHR_CMD_CONT (1 << 15)
  75. #define SPI_PUSHR_CONT (SPI_PUSHR_CMD_CONT << 16)
  76. #define SPI_PUSHR_CMD_CTAS(x) (((x) & 0x0003) << 12)
  77. #define SPI_PUSHR_CTAS(x) (SPI_PUSHR_CMD_CTAS(x) << 16)
  78. #define SPI_PUSHR_CMD_EOQ (1 << 11)
  79. #define SPI_PUSHR_EOQ (SPI_PUSHR_CMD_EOQ << 16)
  80. #define SPI_PUSHR_CMD_CTCNT (1 << 10)
  81. #define SPI_PUSHR_CTCNT (SPI_PUSHR_CMD_CTCNT << 16)
  82. #define SPI_PUSHR_CMD_PCS(x) ((1 << x) & 0x003f)
  83. #define SPI_PUSHR_PCS(x) (SPI_PUSHR_CMD_PCS(x) << 16)
  84. #define SPI_PUSHR_TXDATA(x) ((x) & 0x0000ffff)
  85. #define SPI_PUSHR_SLAVE 0x34
  86. #define SPI_POPR 0x38
  87. #define SPI_POPR_RXDATA(x) ((x) & 0x0000ffff)
  88. #define SPI_TXFR0 0x3c
  89. #define SPI_TXFR1 0x40
  90. #define SPI_TXFR2 0x44
  91. #define SPI_TXFR3 0x48
  92. #define SPI_RXFR0 0x7c
  93. #define SPI_RXFR1 0x80
  94. #define SPI_RXFR2 0x84
  95. #define SPI_RXFR3 0x88
  96. #define SPI_CTARE(x) (0x11c + (((x) & 0x3) * 4))
  97. #define SPI_CTARE_FMSZE(x) (((x) & 0x1) << 16)
  98. #define SPI_CTARE_DTCP(x) ((x) & 0x7ff)
  99. #define SPI_SREX 0x13c
  100. #define SPI_FRAME_BITS(bits) SPI_CTAR_FMSZ((bits) - 1)
  101. #define SPI_FRAME_BITS_MASK SPI_CTAR_FMSZ(0xf)
  102. #define SPI_FRAME_BITS_16 SPI_CTAR_FMSZ(0xf)
  103. #define SPI_FRAME_BITS_8 SPI_CTAR_FMSZ(0x7)
  104. /* Register offsets for regmap_pushr */
  105. #define PUSHR_CMD 0x0
  106. #define PUSHR_TX 0x2
  107. #define SPI_CS_INIT 0x01
  108. #define SPI_CS_ASSERT 0x02
  109. #define SPI_CS_DROP 0x04
  110. #define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
  111. struct chip_data {
  112. u32 ctar_val;
  113. u16 void_write_data;
  114. };
  115. enum dspi_trans_mode {
  116. DSPI_EOQ_MODE = 0,
  117. DSPI_TCFQ_MODE,
  118. DSPI_DMA_MODE,
  119. };
  120. struct fsl_dspi_devtype_data {
  121. enum dspi_trans_mode trans_mode;
  122. u8 max_clock_factor;
  123. bool xspi_mode;
  124. };
  125. static const struct fsl_dspi_devtype_data vf610_data = {
  126. .trans_mode = DSPI_DMA_MODE,
  127. .max_clock_factor = 2,
  128. };
  129. static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
  130. .trans_mode = DSPI_TCFQ_MODE,
  131. .max_clock_factor = 8,
  132. .xspi_mode = true,
  133. };
  134. static const struct fsl_dspi_devtype_data ls2085a_data = {
  135. .trans_mode = DSPI_TCFQ_MODE,
  136. .max_clock_factor = 8,
  137. };
  138. static const struct fsl_dspi_devtype_data coldfire_data = {
  139. .trans_mode = DSPI_EOQ_MODE,
  140. .max_clock_factor = 8,
  141. };
  142. struct fsl_dspi_dma {
  143. /* Length of transfer in words of DSPI_FIFO_SIZE */
  144. u32 curr_xfer_len;
  145. u32 *tx_dma_buf;
  146. struct dma_chan *chan_tx;
  147. dma_addr_t tx_dma_phys;
  148. struct completion cmd_tx_complete;
  149. struct dma_async_tx_descriptor *tx_desc;
  150. u32 *rx_dma_buf;
  151. struct dma_chan *chan_rx;
  152. dma_addr_t rx_dma_phys;
  153. struct completion cmd_rx_complete;
  154. struct dma_async_tx_descriptor *rx_desc;
  155. };
  156. struct fsl_dspi {
  157. struct spi_master *master;
  158. struct platform_device *pdev;
  159. struct regmap *regmap;
  160. struct regmap *regmap_pushr;
  161. int irq;
  162. struct clk *clk;
  163. struct spi_transfer *cur_transfer;
  164. struct spi_message *cur_msg;
  165. struct chip_data *cur_chip;
  166. size_t len;
  167. const void *tx;
  168. void *rx;
  169. void *rx_end;
  170. u16 void_write_data;
  171. u16 tx_cmd;
  172. u8 bits_per_word;
  173. u8 bytes_per_word;
  174. const struct fsl_dspi_devtype_data *devtype_data;
  175. wait_queue_head_t waitq;
  176. u32 waitflags;
  177. struct fsl_dspi_dma *dma;
  178. };
  179. static u16 dspi_pop_tx(struct fsl_dspi *dspi)
  180. {
  181. u16 txdata = 0;
  182. if (dspi->tx) {
  183. if (dspi->bytes_per_word == 1)
  184. txdata = *(u8 *)dspi->tx;
  185. else /* dspi->bytes_per_word == 2 */
  186. txdata = *(u16 *)dspi->tx;
  187. dspi->tx += dspi->bytes_per_word;
  188. }
  189. dspi->len -= dspi->bytes_per_word;
  190. return txdata;
  191. }
  192. static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
  193. {
  194. u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
  195. if (dspi->len > 0)
  196. cmd |= SPI_PUSHR_CMD_CONT;
  197. return cmd << 16 | data;
  198. }
  199. static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
  200. {
  201. if (!dspi->rx)
  202. return;
  203. /* Mask of undefined bits */
  204. rxdata &= (1 << dspi->bits_per_word) - 1;
  205. if (dspi->bytes_per_word == 1)
  206. *(u8 *)dspi->rx = rxdata;
  207. else /* dspi->bytes_per_word == 2 */
  208. *(u16 *)dspi->rx = rxdata;
  209. dspi->rx += dspi->bytes_per_word;
  210. }
  211. static void dspi_tx_dma_callback(void *arg)
  212. {
  213. struct fsl_dspi *dspi = arg;
  214. struct fsl_dspi_dma *dma = dspi->dma;
  215. complete(&dma->cmd_tx_complete);
  216. }
  217. static void dspi_rx_dma_callback(void *arg)
  218. {
  219. struct fsl_dspi *dspi = arg;
  220. struct fsl_dspi_dma *dma = dspi->dma;
  221. int i;
  222. if (dspi->rx) {
  223. for (i = 0; i < dma->curr_xfer_len; i++)
  224. dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
  225. }
  226. complete(&dma->cmd_rx_complete);
  227. }
  228. static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
  229. {
  230. struct fsl_dspi_dma *dma = dspi->dma;
  231. struct device *dev = &dspi->pdev->dev;
  232. int time_left;
  233. int i;
  234. for (i = 0; i < dma->curr_xfer_len; i++)
  235. dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
  236. dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
  237. dma->tx_dma_phys,
  238. dma->curr_xfer_len *
  239. DMA_SLAVE_BUSWIDTH_4_BYTES,
  240. DMA_MEM_TO_DEV,
  241. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  242. if (!dma->tx_desc) {
  243. dev_err(dev, "Not able to get desc for DMA xfer\n");
  244. return -EIO;
  245. }
  246. dma->tx_desc->callback = dspi_tx_dma_callback;
  247. dma->tx_desc->callback_param = dspi;
  248. if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
  249. dev_err(dev, "DMA submit failed\n");
  250. return -EINVAL;
  251. }
  252. dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
  253. dma->rx_dma_phys,
  254. dma->curr_xfer_len *
  255. DMA_SLAVE_BUSWIDTH_4_BYTES,
  256. DMA_DEV_TO_MEM,
  257. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  258. if (!dma->rx_desc) {
  259. dev_err(dev, "Not able to get desc for DMA xfer\n");
  260. return -EIO;
  261. }
  262. dma->rx_desc->callback = dspi_rx_dma_callback;
  263. dma->rx_desc->callback_param = dspi;
  264. if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
  265. dev_err(dev, "DMA submit failed\n");
  266. return -EINVAL;
  267. }
  268. reinit_completion(&dspi->dma->cmd_rx_complete);
  269. reinit_completion(&dspi->dma->cmd_tx_complete);
  270. dma_async_issue_pending(dma->chan_rx);
  271. dma_async_issue_pending(dma->chan_tx);
  272. time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
  273. DMA_COMPLETION_TIMEOUT);
  274. if (time_left == 0) {
  275. dev_err(dev, "DMA tx timeout\n");
  276. dmaengine_terminate_all(dma->chan_tx);
  277. dmaengine_terminate_all(dma->chan_rx);
  278. return -ETIMEDOUT;
  279. }
  280. time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
  281. DMA_COMPLETION_TIMEOUT);
  282. if (time_left == 0) {
  283. dev_err(dev, "DMA rx timeout\n");
  284. dmaengine_terminate_all(dma->chan_tx);
  285. dmaengine_terminate_all(dma->chan_rx);
  286. return -ETIMEDOUT;
  287. }
  288. return 0;
  289. }
  290. static int dspi_dma_xfer(struct fsl_dspi *dspi)
  291. {
  292. struct fsl_dspi_dma *dma = dspi->dma;
  293. struct device *dev = &dspi->pdev->dev;
  294. int curr_remaining_bytes;
  295. int bytes_per_buffer;
  296. int ret = 0;
  297. curr_remaining_bytes = dspi->len;
  298. bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
  299. while (curr_remaining_bytes) {
  300. /* Check if current transfer fits the DMA buffer */
  301. dma->curr_xfer_len = curr_remaining_bytes
  302. / dspi->bytes_per_word;
  303. if (dma->curr_xfer_len > bytes_per_buffer)
  304. dma->curr_xfer_len = bytes_per_buffer;
  305. ret = dspi_next_xfer_dma_submit(dspi);
  306. if (ret) {
  307. dev_err(dev, "DMA transfer failed\n");
  308. goto exit;
  309. } else {
  310. curr_remaining_bytes -= dma->curr_xfer_len
  311. * dspi->bytes_per_word;
  312. if (curr_remaining_bytes < 0)
  313. curr_remaining_bytes = 0;
  314. }
  315. }
  316. exit:
  317. return ret;
  318. }
  319. static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
  320. {
  321. struct fsl_dspi_dma *dma;
  322. struct dma_slave_config cfg;
  323. struct device *dev = &dspi->pdev->dev;
  324. int ret;
  325. dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
  326. if (!dma)
  327. return -ENOMEM;
  328. dma->chan_rx = dma_request_slave_channel(dev, "rx");
  329. if (!dma->chan_rx) {
  330. dev_err(dev, "rx dma channel not available\n");
  331. ret = -ENODEV;
  332. return ret;
  333. }
  334. dma->chan_tx = dma_request_slave_channel(dev, "tx");
  335. if (!dma->chan_tx) {
  336. dev_err(dev, "tx dma channel not available\n");
  337. ret = -ENODEV;
  338. goto err_tx_channel;
  339. }
  340. dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
  341. &dma->tx_dma_phys, GFP_KERNEL);
  342. if (!dma->tx_dma_buf) {
  343. ret = -ENOMEM;
  344. goto err_tx_dma_buf;
  345. }
  346. dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
  347. &dma->rx_dma_phys, GFP_KERNEL);
  348. if (!dma->rx_dma_buf) {
  349. ret = -ENOMEM;
  350. goto err_rx_dma_buf;
  351. }
  352. cfg.src_addr = phy_addr + SPI_POPR;
  353. cfg.dst_addr = phy_addr + SPI_PUSHR;
  354. cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  355. cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  356. cfg.src_maxburst = 1;
  357. cfg.dst_maxburst = 1;
  358. cfg.direction = DMA_DEV_TO_MEM;
  359. ret = dmaengine_slave_config(dma->chan_rx, &cfg);
  360. if (ret) {
  361. dev_err(dev, "can't configure rx dma channel\n");
  362. ret = -EINVAL;
  363. goto err_slave_config;
  364. }
  365. cfg.direction = DMA_MEM_TO_DEV;
  366. ret = dmaengine_slave_config(dma->chan_tx, &cfg);
  367. if (ret) {
  368. dev_err(dev, "can't configure tx dma channel\n");
  369. ret = -EINVAL;
  370. goto err_slave_config;
  371. }
  372. dspi->dma = dma;
  373. init_completion(&dma->cmd_tx_complete);
  374. init_completion(&dma->cmd_rx_complete);
  375. return 0;
  376. err_slave_config:
  377. dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
  378. dma->rx_dma_buf, dma->rx_dma_phys);
  379. err_rx_dma_buf:
  380. dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
  381. dma->tx_dma_buf, dma->tx_dma_phys);
  382. err_tx_dma_buf:
  383. dma_release_channel(dma->chan_tx);
  384. err_tx_channel:
  385. dma_release_channel(dma->chan_rx);
  386. devm_kfree(dev, dma);
  387. dspi->dma = NULL;
  388. return ret;
  389. }
  390. static void dspi_release_dma(struct fsl_dspi *dspi)
  391. {
  392. struct fsl_dspi_dma *dma = dspi->dma;
  393. struct device *dev = &dspi->pdev->dev;
  394. if (dma) {
  395. if (dma->chan_tx) {
  396. dma_unmap_single(dev, dma->tx_dma_phys,
  397. DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
  398. dma_release_channel(dma->chan_tx);
  399. }
  400. if (dma->chan_rx) {
  401. dma_unmap_single(dev, dma->rx_dma_phys,
  402. DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
  403. dma_release_channel(dma->chan_rx);
  404. }
  405. }
  406. }
  407. static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
  408. unsigned long clkrate)
  409. {
  410. /* Valid baud rate pre-scaler values */
  411. int pbr_tbl[4] = {2, 3, 5, 7};
  412. int brs[16] = { 2, 4, 6, 8,
  413. 16, 32, 64, 128,
  414. 256, 512, 1024, 2048,
  415. 4096, 8192, 16384, 32768 };
  416. int scale_needed, scale, minscale = INT_MAX;
  417. int i, j;
  418. scale_needed = clkrate / speed_hz;
  419. if (clkrate % speed_hz)
  420. scale_needed++;
  421. for (i = 0; i < ARRAY_SIZE(brs); i++)
  422. for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
  423. scale = brs[i] * pbr_tbl[j];
  424. if (scale >= scale_needed) {
  425. if (scale < minscale) {
  426. minscale = scale;
  427. *br = i;
  428. *pbr = j;
  429. }
  430. break;
  431. }
  432. }
  433. if (minscale == INT_MAX) {
  434. pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
  435. speed_hz, clkrate);
  436. *pbr = ARRAY_SIZE(pbr_tbl) - 1;
  437. *br = ARRAY_SIZE(brs) - 1;
  438. }
  439. }
  440. static void ns_delay_scale(char *psc, char *sc, int delay_ns,
  441. unsigned long clkrate)
  442. {
  443. int pscale_tbl[4] = {1, 3, 5, 7};
  444. int scale_needed, scale, minscale = INT_MAX;
  445. int i, j;
  446. u32 remainder;
  447. scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
  448. &remainder);
  449. if (remainder)
  450. scale_needed++;
  451. for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
  452. for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
  453. scale = pscale_tbl[i] * (2 << j);
  454. if (scale >= scale_needed) {
  455. if (scale < minscale) {
  456. minscale = scale;
  457. *psc = i;
  458. *sc = j;
  459. }
  460. break;
  461. }
  462. }
  463. if (minscale == INT_MAX) {
  464. pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
  465. delay_ns, clkrate);
  466. *psc = ARRAY_SIZE(pscale_tbl) - 1;
  467. *sc = SPI_CTAR_SCALE_BITS;
  468. }
  469. }
  470. static void fifo_write(struct fsl_dspi *dspi)
  471. {
  472. regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
  473. }
  474. static void dspi_tcfq_write(struct fsl_dspi *dspi)
  475. {
  476. /* Clear transfer count */
  477. dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
  478. /* Write one entry to both TX FIFO and CMD FIFO simultaneously */
  479. fifo_write(dspi);
  480. }
  481. static u32 fifo_read(struct fsl_dspi *dspi)
  482. {
  483. u32 rxdata = 0;
  484. regmap_read(dspi->regmap, SPI_POPR, &rxdata);
  485. return rxdata;
  486. }
  487. static void dspi_tcfq_read(struct fsl_dspi *dspi)
  488. {
  489. dspi_push_rx(dspi, fifo_read(dspi));
  490. }
  491. static void dspi_eoq_write(struct fsl_dspi *dspi)
  492. {
  493. int fifo_size = DSPI_FIFO_SIZE;
  494. /* Fill TX FIFO with as many transfers as possible */
  495. while (dspi->len && fifo_size--) {
  496. /* Request EOQF for last transfer in FIFO */
  497. if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
  498. dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
  499. /* Clear transfer count for first transfer in FIFO */
  500. if (fifo_size == (DSPI_FIFO_SIZE - 1))
  501. dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
  502. /* Write combined TX FIFO and CMD FIFO entry */
  503. fifo_write(dspi);
  504. }
  505. }
  506. static void dspi_eoq_read(struct fsl_dspi *dspi)
  507. {
  508. int fifo_size = DSPI_FIFO_SIZE;
  509. /* Read one FIFO entry at and push to rx buffer */
  510. while ((dspi->rx < dspi->rx_end) && fifo_size--)
  511. dspi_push_rx(dspi, fifo_read(dspi));
  512. }
  513. static int dspi_transfer_one_message(struct spi_master *master,
  514. struct spi_message *message)
  515. {
  516. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  517. struct spi_device *spi = message->spi;
  518. struct spi_transfer *transfer;
  519. int status = 0;
  520. enum dspi_trans_mode trans_mode;
  521. message->actual_length = 0;
  522. list_for_each_entry(transfer, &message->transfers, transfer_list) {
  523. dspi->cur_transfer = transfer;
  524. dspi->cur_msg = message;
  525. dspi->cur_chip = spi_get_ctldata(spi);
  526. /* Prepare command word for CMD FIFO */
  527. dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
  528. SPI_PUSHR_CMD_PCS(spi->chip_select);
  529. if (list_is_last(&dspi->cur_transfer->transfer_list,
  530. &dspi->cur_msg->transfers)) {
  531. /* Leave PCS activated after last transfer when
  532. * cs_change is set.
  533. */
  534. if (transfer->cs_change)
  535. dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
  536. } else {
  537. /* Keep PCS active between transfers in same message
  538. * when cs_change is not set, and de-activate PCS
  539. * between transfers in the same message when
  540. * cs_change is set.
  541. */
  542. if (!transfer->cs_change)
  543. dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
  544. }
  545. dspi->void_write_data = dspi->cur_chip->void_write_data;
  546. dspi->tx = transfer->tx_buf;
  547. dspi->rx = transfer->rx_buf;
  548. dspi->rx_end = dspi->rx + transfer->len;
  549. dspi->len = transfer->len;
  550. /* Validated transfer specific frame size (defaults applied) */
  551. dspi->bits_per_word = transfer->bits_per_word;
  552. if (transfer->bits_per_word <= 8)
  553. dspi->bytes_per_word = 1;
  554. else
  555. dspi->bytes_per_word = 2;
  556. regmap_update_bits(dspi->regmap, SPI_MCR,
  557. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
  558. SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
  559. regmap_write(dspi->regmap, SPI_CTAR(0),
  560. dspi->cur_chip->ctar_val |
  561. SPI_FRAME_BITS(transfer->bits_per_word));
  562. trans_mode = dspi->devtype_data->trans_mode;
  563. switch (trans_mode) {
  564. case DSPI_EOQ_MODE:
  565. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
  566. dspi_eoq_write(dspi);
  567. break;
  568. case DSPI_TCFQ_MODE:
  569. regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
  570. dspi_tcfq_write(dspi);
  571. break;
  572. case DSPI_DMA_MODE:
  573. regmap_write(dspi->regmap, SPI_RSER,
  574. SPI_RSER_TFFFE | SPI_RSER_TFFFD |
  575. SPI_RSER_RFDFE | SPI_RSER_RFDFD);
  576. status = dspi_dma_xfer(dspi);
  577. break;
  578. default:
  579. dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
  580. trans_mode);
  581. status = -EINVAL;
  582. goto out;
  583. }
  584. if (trans_mode != DSPI_DMA_MODE) {
  585. if (wait_event_interruptible(dspi->waitq,
  586. dspi->waitflags))
  587. dev_err(&dspi->pdev->dev,
  588. "wait transfer complete fail!\n");
  589. dspi->waitflags = 0;
  590. }
  591. if (transfer->delay_usecs)
  592. udelay(transfer->delay_usecs);
  593. }
  594. out:
  595. message->status = status;
  596. spi_finalize_current_message(master);
  597. return status;
  598. }
  599. static int dspi_setup(struct spi_device *spi)
  600. {
  601. struct chip_data *chip;
  602. struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
  603. struct fsl_dspi_platform_data *pdata;
  604. u32 cs_sck_delay = 0, sck_cs_delay = 0;
  605. unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
  606. unsigned char pasc = 0, asc = 0;
  607. unsigned long clkrate;
  608. /* Only alloc on first setup */
  609. chip = spi_get_ctldata(spi);
  610. if (chip == NULL) {
  611. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  612. if (!chip)
  613. return -ENOMEM;
  614. }
  615. pdata = dev_get_platdata(&dspi->pdev->dev);
  616. if (!pdata) {
  617. of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
  618. &cs_sck_delay);
  619. of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
  620. &sck_cs_delay);
  621. } else {
  622. cs_sck_delay = pdata->cs_sck_delay;
  623. sck_cs_delay = pdata->sck_cs_delay;
  624. }
  625. chip->void_write_data = 0;
  626. clkrate = clk_get_rate(dspi->clk);
  627. hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
  628. /* Set PCS to SCK delay scale values */
  629. ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
  630. /* Set After SCK delay scale values */
  631. ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
  632. chip->ctar_val = SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
  633. | SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
  634. | SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
  635. | SPI_CTAR_PCSSCK(pcssck)
  636. | SPI_CTAR_CSSCK(cssck)
  637. | SPI_CTAR_PASC(pasc)
  638. | SPI_CTAR_ASC(asc)
  639. | SPI_CTAR_PBR(pbr)
  640. | SPI_CTAR_BR(br);
  641. spi_set_ctldata(spi, chip);
  642. return 0;
  643. }
  644. static void dspi_cleanup(struct spi_device *spi)
  645. {
  646. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  647. dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
  648. spi->master->bus_num, spi->chip_select);
  649. kfree(chip);
  650. }
  651. static irqreturn_t dspi_interrupt(int irq, void *dev_id)
  652. {
  653. struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
  654. struct spi_message *msg = dspi->cur_msg;
  655. enum dspi_trans_mode trans_mode;
  656. u32 spi_sr, spi_tcr;
  657. u16 spi_tcnt;
  658. regmap_read(dspi->regmap, SPI_SR, &spi_sr);
  659. regmap_write(dspi->regmap, SPI_SR, spi_sr);
  660. if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
  661. /* Get transfer counter (in number of SPI transfers). It was
  662. * reset to 0 when transfer(s) were started.
  663. */
  664. regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
  665. spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
  666. /* Update total number of bytes that were transferred */
  667. msg->actual_length += spi_tcnt * dspi->bytes_per_word;
  668. trans_mode = dspi->devtype_data->trans_mode;
  669. switch (trans_mode) {
  670. case DSPI_EOQ_MODE:
  671. dspi_eoq_read(dspi);
  672. break;
  673. case DSPI_TCFQ_MODE:
  674. dspi_tcfq_read(dspi);
  675. break;
  676. default:
  677. dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
  678. trans_mode);
  679. return IRQ_HANDLED;
  680. }
  681. if (!dspi->len) {
  682. dspi->waitflags = 1;
  683. wake_up_interruptible(&dspi->waitq);
  684. } else {
  685. switch (trans_mode) {
  686. case DSPI_EOQ_MODE:
  687. dspi_eoq_write(dspi);
  688. break;
  689. case DSPI_TCFQ_MODE:
  690. dspi_tcfq_write(dspi);
  691. break;
  692. default:
  693. dev_err(&dspi->pdev->dev,
  694. "unsupported trans_mode %u\n",
  695. trans_mode);
  696. }
  697. }
  698. }
  699. return IRQ_HANDLED;
  700. }
  701. static const struct of_device_id fsl_dspi_dt_ids[] = {
  702. { .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
  703. { .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
  704. { .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
  705. { /* sentinel */ }
  706. };
  707. MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
  708. #ifdef CONFIG_PM_SLEEP
  709. static int dspi_suspend(struct device *dev)
  710. {
  711. struct spi_master *master = dev_get_drvdata(dev);
  712. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  713. spi_master_suspend(master);
  714. clk_disable_unprepare(dspi->clk);
  715. pinctrl_pm_select_sleep_state(dev);
  716. return 0;
  717. }
  718. static int dspi_resume(struct device *dev)
  719. {
  720. struct spi_master *master = dev_get_drvdata(dev);
  721. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  722. int ret;
  723. pinctrl_pm_select_default_state(dev);
  724. ret = clk_prepare_enable(dspi->clk);
  725. if (ret)
  726. return ret;
  727. spi_master_resume(master);
  728. return 0;
  729. }
  730. #endif /* CONFIG_PM_SLEEP */
  731. static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
  732. static const struct regmap_range dspi_volatile_ranges[] = {
  733. regmap_reg_range(SPI_MCR, SPI_TCR),
  734. regmap_reg_range(SPI_SR, SPI_SR),
  735. regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
  736. };
  737. static const struct regmap_access_table dspi_volatile_table = {
  738. .yes_ranges = dspi_volatile_ranges,
  739. .n_yes_ranges = ARRAY_SIZE(dspi_volatile_ranges),
  740. };
  741. static const struct regmap_config dspi_regmap_config = {
  742. .reg_bits = 32,
  743. .val_bits = 32,
  744. .reg_stride = 4,
  745. .max_register = 0x88,
  746. .volatile_table = &dspi_volatile_table,
  747. };
  748. static const struct regmap_range dspi_xspi_volatile_ranges[] = {
  749. regmap_reg_range(SPI_MCR, SPI_TCR),
  750. regmap_reg_range(SPI_SR, SPI_SR),
  751. regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
  752. regmap_reg_range(SPI_SREX, SPI_SREX),
  753. };
  754. static const struct regmap_access_table dspi_xspi_volatile_table = {
  755. .yes_ranges = dspi_xspi_volatile_ranges,
  756. .n_yes_ranges = ARRAY_SIZE(dspi_xspi_volatile_ranges),
  757. };
  758. static const struct regmap_config dspi_xspi_regmap_config[] = {
  759. {
  760. .reg_bits = 32,
  761. .val_bits = 32,
  762. .reg_stride = 4,
  763. .max_register = 0x13c,
  764. .volatile_table = &dspi_xspi_volatile_table,
  765. },
  766. {
  767. .name = "pushr",
  768. .reg_bits = 16,
  769. .val_bits = 16,
  770. .reg_stride = 2,
  771. .max_register = 0x2,
  772. },
  773. };
  774. static void dspi_init(struct fsl_dspi *dspi)
  775. {
  776. regmap_write(dspi->regmap, SPI_MCR, SPI_MCR_MASTER | SPI_MCR_PCSIS);
  777. regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
  778. }
  779. static int dspi_probe(struct platform_device *pdev)
  780. {
  781. struct device_node *np = pdev->dev.of_node;
  782. struct spi_master *master;
  783. struct fsl_dspi *dspi;
  784. struct resource *res;
  785. const struct regmap_config *regmap_config;
  786. void __iomem *base;
  787. struct fsl_dspi_platform_data *pdata;
  788. int ret = 0, cs_num, bus_num;
  789. master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
  790. if (!master)
  791. return -ENOMEM;
  792. dspi = spi_master_get_devdata(master);
  793. dspi->pdev = pdev;
  794. dspi->master = master;
  795. master->transfer = NULL;
  796. master->setup = dspi_setup;
  797. master->transfer_one_message = dspi_transfer_one_message;
  798. master->dev.of_node = pdev->dev.of_node;
  799. master->cleanup = dspi_cleanup;
  800. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  801. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  802. pdata = dev_get_platdata(&pdev->dev);
  803. if (pdata) {
  804. master->num_chipselect = pdata->cs_num;
  805. master->bus_num = pdata->bus_num;
  806. dspi->devtype_data = &coldfire_data;
  807. } else {
  808. ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
  809. if (ret < 0) {
  810. dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
  811. goto out_master_put;
  812. }
  813. master->num_chipselect = cs_num;
  814. ret = of_property_read_u32(np, "bus-num", &bus_num);
  815. if (ret < 0) {
  816. dev_err(&pdev->dev, "can't get bus-num\n");
  817. goto out_master_put;
  818. }
  819. master->bus_num = bus_num;
  820. dspi->devtype_data = of_device_get_match_data(&pdev->dev);
  821. if (!dspi->devtype_data) {
  822. dev_err(&pdev->dev, "can't get devtype_data\n");
  823. ret = -EFAULT;
  824. goto out_master_put;
  825. }
  826. }
  827. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  828. base = devm_ioremap_resource(&pdev->dev, res);
  829. if (IS_ERR(base)) {
  830. ret = PTR_ERR(base);
  831. goto out_master_put;
  832. }
  833. if (dspi->devtype_data->xspi_mode)
  834. regmap_config = &dspi_xspi_regmap_config[0];
  835. else
  836. regmap_config = &dspi_regmap_config;
  837. dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
  838. if (IS_ERR(dspi->regmap)) {
  839. dev_err(&pdev->dev, "failed to init regmap: %ld\n",
  840. PTR_ERR(dspi->regmap));
  841. ret = PTR_ERR(dspi->regmap);
  842. goto out_master_put;
  843. }
  844. if (dspi->devtype_data->xspi_mode) {
  845. dspi->regmap_pushr = devm_regmap_init_mmio(
  846. &pdev->dev, base + SPI_PUSHR,
  847. &dspi_xspi_regmap_config[1]);
  848. if (IS_ERR(dspi->regmap_pushr)) {
  849. dev_err(&pdev->dev,
  850. "failed to init pushr regmap: %ld\n",
  851. PTR_ERR(dspi->regmap_pushr));
  852. ret = PTR_ERR(dspi->regmap);
  853. goto out_master_put;
  854. }
  855. }
  856. dspi_init(dspi);
  857. dspi->irq = platform_get_irq(pdev, 0);
  858. if (dspi->irq < 0) {
  859. dev_err(&pdev->dev, "can't get platform irq\n");
  860. ret = dspi->irq;
  861. goto out_master_put;
  862. }
  863. ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
  864. pdev->name, dspi);
  865. if (ret < 0) {
  866. dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
  867. goto out_master_put;
  868. }
  869. dspi->clk = devm_clk_get(&pdev->dev, "dspi");
  870. if (IS_ERR(dspi->clk)) {
  871. ret = PTR_ERR(dspi->clk);
  872. dev_err(&pdev->dev, "unable to get clock\n");
  873. goto out_master_put;
  874. }
  875. ret = clk_prepare_enable(dspi->clk);
  876. if (ret)
  877. goto out_master_put;
  878. if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
  879. ret = dspi_request_dma(dspi, res->start);
  880. if (ret < 0) {
  881. dev_err(&pdev->dev, "can't get dma channels\n");
  882. goto out_clk_put;
  883. }
  884. }
  885. master->max_speed_hz =
  886. clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
  887. init_waitqueue_head(&dspi->waitq);
  888. platform_set_drvdata(pdev, master);
  889. ret = spi_register_master(master);
  890. if (ret != 0) {
  891. dev_err(&pdev->dev, "Problem registering DSPI master\n");
  892. goto out_clk_put;
  893. }
  894. return ret;
  895. out_clk_put:
  896. clk_disable_unprepare(dspi->clk);
  897. out_master_put:
  898. spi_master_put(master);
  899. return ret;
  900. }
  901. static int dspi_remove(struct platform_device *pdev)
  902. {
  903. struct spi_master *master = platform_get_drvdata(pdev);
  904. struct fsl_dspi *dspi = spi_master_get_devdata(master);
  905. /* Disconnect from the SPI framework */
  906. dspi_release_dma(dspi);
  907. clk_disable_unprepare(dspi->clk);
  908. spi_unregister_master(dspi->master);
  909. return 0;
  910. }
  911. static struct platform_driver fsl_dspi_driver = {
  912. .driver.name = DRIVER_NAME,
  913. .driver.of_match_table = fsl_dspi_dt_ids,
  914. .driver.owner = THIS_MODULE,
  915. .driver.pm = &dspi_pm,
  916. .probe = dspi_probe,
  917. .remove = dspi_remove,
  918. };
  919. module_platform_driver(fsl_dspi_driver);
  920. MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
  921. MODULE_LICENSE("GPL");
  922. MODULE_ALIAS("platform:" DRIVER_NAME);