tcp_input.c 177 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_timestamps __read_mostly = 1;
  76. int sysctl_tcp_window_scaling __read_mostly = 1;
  77. int sysctl_tcp_sack __read_mostly = 1;
  78. int sysctl_tcp_fack __read_mostly = 1;
  79. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  80. int sysctl_tcp_max_reordering __read_mostly = 300;
  81. EXPORT_SYMBOL(sysctl_tcp_reordering);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 100;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_early_retrans __read_mostly = 3;
  95. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  96. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  97. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  98. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  99. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  100. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  101. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  102. #define FLAG_ECE 0x40 /* ECE in this ACK */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  109. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  110. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  111. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  112. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  200. {
  201. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  202. case INET_ECN_NOT_ECT:
  203. /* Funny extension: if ECT is not set on a segment,
  204. * and we already seen ECT on a previous segment,
  205. * it is probably a retransmit.
  206. */
  207. if (tp->ecn_flags & TCP_ECN_SEEN)
  208. tcp_enter_quickack_mode((struct sock *)tp);
  209. break;
  210. case INET_ECN_CE:
  211. if (tcp_ca_needs_ecn((struct sock *)tp))
  212. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  213. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  214. /* Better not delay acks, sender can have a very low cwnd */
  215. tcp_enter_quickack_mode((struct sock *)tp);
  216. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  217. }
  218. tp->ecn_flags |= TCP_ECN_SEEN;
  219. break;
  220. default:
  221. if (tcp_ca_needs_ecn((struct sock *)tp))
  222. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  223. tp->ecn_flags |= TCP_ECN_SEEN;
  224. break;
  225. }
  226. }
  227. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  228. {
  229. if (tp->ecn_flags & TCP_ECN_OK)
  230. __tcp_ecn_check_ce(tp, skb);
  231. }
  232. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  233. {
  234. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  235. tp->ecn_flags &= ~TCP_ECN_OK;
  236. }
  237. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  238. {
  239. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  240. tp->ecn_flags &= ~TCP_ECN_OK;
  241. }
  242. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  243. {
  244. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  245. return true;
  246. return false;
  247. }
  248. /* Buffer size and advertised window tuning.
  249. *
  250. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  251. */
  252. static void tcp_sndbuf_expand(struct sock *sk)
  253. {
  254. const struct tcp_sock *tp = tcp_sk(sk);
  255. int sndmem, per_mss;
  256. u32 nr_segs;
  257. /* Worst case is non GSO/TSO : each frame consumes one skb
  258. * and skb->head is kmalloced using power of two area of memory
  259. */
  260. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  261. MAX_TCP_HEADER +
  262. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  263. per_mss = roundup_pow_of_two(per_mss) +
  264. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  265. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  266. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  267. /* Fast Recovery (RFC 5681 3.2) :
  268. * Cubic needs 1.7 factor, rounded to 2 to include
  269. * extra cushion (application might react slowly to POLLOUT)
  270. */
  271. sndmem = 2 * nr_segs * per_mss;
  272. if (sk->sk_sndbuf < sndmem)
  273. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  274. }
  275. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  276. *
  277. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  278. * forward and advertised in receiver window (tp->rcv_wnd) and
  279. * "application buffer", required to isolate scheduling/application
  280. * latencies from network.
  281. * window_clamp is maximal advertised window. It can be less than
  282. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  283. * is reserved for "application" buffer. The less window_clamp is
  284. * the smoother our behaviour from viewpoint of network, but the lower
  285. * throughput and the higher sensitivity of the connection to losses. 8)
  286. *
  287. * rcv_ssthresh is more strict window_clamp used at "slow start"
  288. * phase to predict further behaviour of this connection.
  289. * It is used for two goals:
  290. * - to enforce header prediction at sender, even when application
  291. * requires some significant "application buffer". It is check #1.
  292. * - to prevent pruning of receive queue because of misprediction
  293. * of receiver window. Check #2.
  294. *
  295. * The scheme does not work when sender sends good segments opening
  296. * window and then starts to feed us spaghetti. But it should work
  297. * in common situations. Otherwise, we have to rely on queue collapsing.
  298. */
  299. /* Slow part of check#2. */
  300. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  301. {
  302. struct tcp_sock *tp = tcp_sk(sk);
  303. /* Optimize this! */
  304. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  305. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  306. while (tp->rcv_ssthresh <= window) {
  307. if (truesize <= skb->len)
  308. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  309. truesize >>= 1;
  310. window >>= 1;
  311. }
  312. return 0;
  313. }
  314. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  315. {
  316. struct tcp_sock *tp = tcp_sk(sk);
  317. /* Check #1 */
  318. if (tp->rcv_ssthresh < tp->window_clamp &&
  319. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  320. !tcp_under_memory_pressure(sk)) {
  321. int incr;
  322. /* Check #2. Increase window, if skb with such overhead
  323. * will fit to rcvbuf in future.
  324. */
  325. if (tcp_win_from_space(skb->truesize) <= skb->len)
  326. incr = 2 * tp->advmss;
  327. else
  328. incr = __tcp_grow_window(sk, skb);
  329. if (incr) {
  330. incr = max_t(int, incr, 2 * skb->len);
  331. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  332. tp->window_clamp);
  333. inet_csk(sk)->icsk_ack.quick |= 1;
  334. }
  335. }
  336. }
  337. /* 3. Tuning rcvbuf, when connection enters established state. */
  338. static void tcp_fixup_rcvbuf(struct sock *sk)
  339. {
  340. u32 mss = tcp_sk(sk)->advmss;
  341. int rcvmem;
  342. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  343. tcp_default_init_rwnd(mss);
  344. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  345. * Allow enough cushion so that sender is not limited by our window
  346. */
  347. if (sysctl_tcp_moderate_rcvbuf)
  348. rcvmem <<= 2;
  349. if (sk->sk_rcvbuf < rcvmem)
  350. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  351. }
  352. /* 4. Try to fixup all. It is made immediately after connection enters
  353. * established state.
  354. */
  355. void tcp_init_buffer_space(struct sock *sk)
  356. {
  357. struct tcp_sock *tp = tcp_sk(sk);
  358. int maxwin;
  359. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  360. tcp_fixup_rcvbuf(sk);
  361. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  362. tcp_sndbuf_expand(sk);
  363. tp->rcvq_space.space = tp->rcv_wnd;
  364. tp->rcvq_space.time = tcp_time_stamp;
  365. tp->rcvq_space.seq = tp->copied_seq;
  366. maxwin = tcp_full_space(sk);
  367. if (tp->window_clamp >= maxwin) {
  368. tp->window_clamp = maxwin;
  369. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  370. tp->window_clamp = max(maxwin -
  371. (maxwin >> sysctl_tcp_app_win),
  372. 4 * tp->advmss);
  373. }
  374. /* Force reservation of one segment. */
  375. if (sysctl_tcp_app_win &&
  376. tp->window_clamp > 2 * tp->advmss &&
  377. tp->window_clamp + tp->advmss > maxwin)
  378. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  379. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  380. tp->snd_cwnd_stamp = tcp_time_stamp;
  381. }
  382. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  383. static void tcp_clamp_window(struct sock *sk)
  384. {
  385. struct tcp_sock *tp = tcp_sk(sk);
  386. struct inet_connection_sock *icsk = inet_csk(sk);
  387. icsk->icsk_ack.quick = 0;
  388. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  389. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  390. !tcp_under_memory_pressure(sk) &&
  391. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  392. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  393. sysctl_tcp_rmem[2]);
  394. }
  395. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  396. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  397. }
  398. /* Initialize RCV_MSS value.
  399. * RCV_MSS is an our guess about MSS used by the peer.
  400. * We haven't any direct information about the MSS.
  401. * It's better to underestimate the RCV_MSS rather than overestimate.
  402. * Overestimations make us ACKing less frequently than needed.
  403. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  404. */
  405. void tcp_initialize_rcv_mss(struct sock *sk)
  406. {
  407. const struct tcp_sock *tp = tcp_sk(sk);
  408. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  409. hint = min(hint, tp->rcv_wnd / 2);
  410. hint = min(hint, TCP_MSS_DEFAULT);
  411. hint = max(hint, TCP_MIN_MSS);
  412. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  413. }
  414. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  415. /* Receiver "autotuning" code.
  416. *
  417. * The algorithm for RTT estimation w/o timestamps is based on
  418. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  419. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  420. *
  421. * More detail on this code can be found at
  422. * <http://staff.psc.edu/jheffner/>,
  423. * though this reference is out of date. A new paper
  424. * is pending.
  425. */
  426. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  427. {
  428. u32 new_sample = tp->rcv_rtt_est.rtt;
  429. long m = sample;
  430. if (m == 0)
  431. m = 1;
  432. if (new_sample != 0) {
  433. /* If we sample in larger samples in the non-timestamp
  434. * case, we could grossly overestimate the RTT especially
  435. * with chatty applications or bulk transfer apps which
  436. * are stalled on filesystem I/O.
  437. *
  438. * Also, since we are only going for a minimum in the
  439. * non-timestamp case, we do not smooth things out
  440. * else with timestamps disabled convergence takes too
  441. * long.
  442. */
  443. if (!win_dep) {
  444. m -= (new_sample >> 3);
  445. new_sample += m;
  446. } else {
  447. m <<= 3;
  448. if (m < new_sample)
  449. new_sample = m;
  450. }
  451. } else {
  452. /* No previous measure. */
  453. new_sample = m << 3;
  454. }
  455. if (tp->rcv_rtt_est.rtt != new_sample)
  456. tp->rcv_rtt_est.rtt = new_sample;
  457. }
  458. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  459. {
  460. if (tp->rcv_rtt_est.time == 0)
  461. goto new_measure;
  462. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  463. return;
  464. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  465. new_measure:
  466. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  467. tp->rcv_rtt_est.time = tcp_time_stamp;
  468. }
  469. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  470. const struct sk_buff *skb)
  471. {
  472. struct tcp_sock *tp = tcp_sk(sk);
  473. if (tp->rx_opt.rcv_tsecr &&
  474. (TCP_SKB_CB(skb)->end_seq -
  475. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  476. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  477. }
  478. /*
  479. * This function should be called every time data is copied to user space.
  480. * It calculates the appropriate TCP receive buffer space.
  481. */
  482. void tcp_rcv_space_adjust(struct sock *sk)
  483. {
  484. struct tcp_sock *tp = tcp_sk(sk);
  485. int time;
  486. int copied;
  487. time = tcp_time_stamp - tp->rcvq_space.time;
  488. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  489. return;
  490. /* Number of bytes copied to user in last RTT */
  491. copied = tp->copied_seq - tp->rcvq_space.seq;
  492. if (copied <= tp->rcvq_space.space)
  493. goto new_measure;
  494. /* A bit of theory :
  495. * copied = bytes received in previous RTT, our base window
  496. * To cope with packet losses, we need a 2x factor
  497. * To cope with slow start, and sender growing its cwin by 100 %
  498. * every RTT, we need a 4x factor, because the ACK we are sending
  499. * now is for the next RTT, not the current one :
  500. * <prev RTT . ><current RTT .. ><next RTT .... >
  501. */
  502. if (sysctl_tcp_moderate_rcvbuf &&
  503. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  504. int rcvwin, rcvmem, rcvbuf;
  505. /* minimal window to cope with packet losses, assuming
  506. * steady state. Add some cushion because of small variations.
  507. */
  508. rcvwin = (copied << 1) + 16 * tp->advmss;
  509. /* If rate increased by 25%,
  510. * assume slow start, rcvwin = 3 * copied
  511. * If rate increased by 50%,
  512. * assume sender can use 2x growth, rcvwin = 4 * copied
  513. */
  514. if (copied >=
  515. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  516. if (copied >=
  517. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  518. rcvwin <<= 1;
  519. else
  520. rcvwin += (rcvwin >> 1);
  521. }
  522. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  523. while (tcp_win_from_space(rcvmem) < tp->advmss)
  524. rcvmem += 128;
  525. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  526. if (rcvbuf > sk->sk_rcvbuf) {
  527. sk->sk_rcvbuf = rcvbuf;
  528. /* Make the window clamp follow along. */
  529. tp->window_clamp = rcvwin;
  530. }
  531. }
  532. tp->rcvq_space.space = copied;
  533. new_measure:
  534. tp->rcvq_space.seq = tp->copied_seq;
  535. tp->rcvq_space.time = tcp_time_stamp;
  536. }
  537. /* There is something which you must keep in mind when you analyze the
  538. * behavior of the tp->ato delayed ack timeout interval. When a
  539. * connection starts up, we want to ack as quickly as possible. The
  540. * problem is that "good" TCP's do slow start at the beginning of data
  541. * transmission. The means that until we send the first few ACK's the
  542. * sender will sit on his end and only queue most of his data, because
  543. * he can only send snd_cwnd unacked packets at any given time. For
  544. * each ACK we send, he increments snd_cwnd and transmits more of his
  545. * queue. -DaveM
  546. */
  547. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  548. {
  549. struct tcp_sock *tp = tcp_sk(sk);
  550. struct inet_connection_sock *icsk = inet_csk(sk);
  551. u32 now;
  552. inet_csk_schedule_ack(sk);
  553. tcp_measure_rcv_mss(sk, skb);
  554. tcp_rcv_rtt_measure(tp);
  555. now = tcp_time_stamp;
  556. if (!icsk->icsk_ack.ato) {
  557. /* The _first_ data packet received, initialize
  558. * delayed ACK engine.
  559. */
  560. tcp_incr_quickack(sk);
  561. icsk->icsk_ack.ato = TCP_ATO_MIN;
  562. } else {
  563. int m = now - icsk->icsk_ack.lrcvtime;
  564. if (m <= TCP_ATO_MIN / 2) {
  565. /* The fastest case is the first. */
  566. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  567. } else if (m < icsk->icsk_ack.ato) {
  568. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  569. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  570. icsk->icsk_ack.ato = icsk->icsk_rto;
  571. } else if (m > icsk->icsk_rto) {
  572. /* Too long gap. Apparently sender failed to
  573. * restart window, so that we send ACKs quickly.
  574. */
  575. tcp_incr_quickack(sk);
  576. sk_mem_reclaim(sk);
  577. }
  578. }
  579. icsk->icsk_ack.lrcvtime = now;
  580. tcp_ecn_check_ce(tp, skb);
  581. if (skb->len >= 128)
  582. tcp_grow_window(sk, skb);
  583. }
  584. /* Called to compute a smoothed rtt estimate. The data fed to this
  585. * routine either comes from timestamps, or from segments that were
  586. * known _not_ to have been retransmitted [see Karn/Partridge
  587. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  588. * piece by Van Jacobson.
  589. * NOTE: the next three routines used to be one big routine.
  590. * To save cycles in the RFC 1323 implementation it was better to break
  591. * it up into three procedures. -- erics
  592. */
  593. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  594. {
  595. struct tcp_sock *tp = tcp_sk(sk);
  596. long m = mrtt_us; /* RTT */
  597. u32 srtt = tp->srtt_us;
  598. /* The following amusing code comes from Jacobson's
  599. * article in SIGCOMM '88. Note that rtt and mdev
  600. * are scaled versions of rtt and mean deviation.
  601. * This is designed to be as fast as possible
  602. * m stands for "measurement".
  603. *
  604. * On a 1990 paper the rto value is changed to:
  605. * RTO = rtt + 4 * mdev
  606. *
  607. * Funny. This algorithm seems to be very broken.
  608. * These formulae increase RTO, when it should be decreased, increase
  609. * too slowly, when it should be increased quickly, decrease too quickly
  610. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  611. * does not matter how to _calculate_ it. Seems, it was trap
  612. * that VJ failed to avoid. 8)
  613. */
  614. if (srtt != 0) {
  615. m -= (srtt >> 3); /* m is now error in rtt est */
  616. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  617. if (m < 0) {
  618. m = -m; /* m is now abs(error) */
  619. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  620. /* This is similar to one of Eifel findings.
  621. * Eifel blocks mdev updates when rtt decreases.
  622. * This solution is a bit different: we use finer gain
  623. * for mdev in this case (alpha*beta).
  624. * Like Eifel it also prevents growth of rto,
  625. * but also it limits too fast rto decreases,
  626. * happening in pure Eifel.
  627. */
  628. if (m > 0)
  629. m >>= 3;
  630. } else {
  631. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  632. }
  633. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  634. if (tp->mdev_us > tp->mdev_max_us) {
  635. tp->mdev_max_us = tp->mdev_us;
  636. if (tp->mdev_max_us > tp->rttvar_us)
  637. tp->rttvar_us = tp->mdev_max_us;
  638. }
  639. if (after(tp->snd_una, tp->rtt_seq)) {
  640. if (tp->mdev_max_us < tp->rttvar_us)
  641. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  642. tp->rtt_seq = tp->snd_nxt;
  643. tp->mdev_max_us = tcp_rto_min_us(sk);
  644. }
  645. } else {
  646. /* no previous measure. */
  647. srtt = m << 3; /* take the measured time to be rtt */
  648. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  649. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  650. tp->mdev_max_us = tp->rttvar_us;
  651. tp->rtt_seq = tp->snd_nxt;
  652. }
  653. tp->srtt_us = max(1U, srtt);
  654. }
  655. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  656. * Note: TCP stack does not yet implement pacing.
  657. * FQ packet scheduler can be used to implement cheap but effective
  658. * TCP pacing, to smooth the burst on large writes when packets
  659. * in flight is significantly lower than cwnd (or rwin)
  660. */
  661. static void tcp_update_pacing_rate(struct sock *sk)
  662. {
  663. const struct tcp_sock *tp = tcp_sk(sk);
  664. u64 rate;
  665. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  666. rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
  667. rate *= max(tp->snd_cwnd, tp->packets_out);
  668. if (likely(tp->srtt_us))
  669. do_div(rate, tp->srtt_us);
  670. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  671. * without any lock. We want to make sure compiler wont store
  672. * intermediate values in this location.
  673. */
  674. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  675. sk->sk_max_pacing_rate);
  676. }
  677. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  678. * routine referred to above.
  679. */
  680. static void tcp_set_rto(struct sock *sk)
  681. {
  682. const struct tcp_sock *tp = tcp_sk(sk);
  683. /* Old crap is replaced with new one. 8)
  684. *
  685. * More seriously:
  686. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  687. * It cannot be less due to utterly erratic ACK generation made
  688. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  689. * to do with delayed acks, because at cwnd>2 true delack timeout
  690. * is invisible. Actually, Linux-2.4 also generates erratic
  691. * ACKs in some circumstances.
  692. */
  693. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  694. /* 2. Fixups made earlier cannot be right.
  695. * If we do not estimate RTO correctly without them,
  696. * all the algo is pure shit and should be replaced
  697. * with correct one. It is exactly, which we pretend to do.
  698. */
  699. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  700. * guarantees that rto is higher.
  701. */
  702. tcp_bound_rto(sk);
  703. }
  704. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  705. {
  706. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  707. if (!cwnd)
  708. cwnd = TCP_INIT_CWND;
  709. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  710. }
  711. /*
  712. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  713. * disables it when reordering is detected
  714. */
  715. void tcp_disable_fack(struct tcp_sock *tp)
  716. {
  717. /* RFC3517 uses different metric in lost marker => reset on change */
  718. if (tcp_is_fack(tp))
  719. tp->lost_skb_hint = NULL;
  720. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  721. }
  722. /* Take a notice that peer is sending D-SACKs */
  723. static void tcp_dsack_seen(struct tcp_sock *tp)
  724. {
  725. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  726. }
  727. static void tcp_update_reordering(struct sock *sk, const int metric,
  728. const int ts)
  729. {
  730. struct tcp_sock *tp = tcp_sk(sk);
  731. if (metric > tp->reordering) {
  732. int mib_idx;
  733. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  734. /* This exciting event is worth to be remembered. 8) */
  735. if (ts)
  736. mib_idx = LINUX_MIB_TCPTSREORDER;
  737. else if (tcp_is_reno(tp))
  738. mib_idx = LINUX_MIB_TCPRENOREORDER;
  739. else if (tcp_is_fack(tp))
  740. mib_idx = LINUX_MIB_TCPFACKREORDER;
  741. else
  742. mib_idx = LINUX_MIB_TCPSACKREORDER;
  743. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  744. #if FASTRETRANS_DEBUG > 1
  745. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  746. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  747. tp->reordering,
  748. tp->fackets_out,
  749. tp->sacked_out,
  750. tp->undo_marker ? tp->undo_retrans : 0);
  751. #endif
  752. tcp_disable_fack(tp);
  753. }
  754. if (metric > 0)
  755. tcp_disable_early_retrans(tp);
  756. }
  757. /* This must be called before lost_out is incremented */
  758. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  759. {
  760. if (!tp->retransmit_skb_hint ||
  761. before(TCP_SKB_CB(skb)->seq,
  762. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  763. tp->retransmit_skb_hint = skb;
  764. if (!tp->lost_out ||
  765. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  766. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  767. }
  768. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  769. {
  770. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  771. tcp_verify_retransmit_hint(tp, skb);
  772. tp->lost_out += tcp_skb_pcount(skb);
  773. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  774. }
  775. }
  776. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  777. struct sk_buff *skb)
  778. {
  779. tcp_verify_retransmit_hint(tp, skb);
  780. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  781. tp->lost_out += tcp_skb_pcount(skb);
  782. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  783. }
  784. }
  785. /* This procedure tags the retransmission queue when SACKs arrive.
  786. *
  787. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  788. * Packets in queue with these bits set are counted in variables
  789. * sacked_out, retrans_out and lost_out, correspondingly.
  790. *
  791. * Valid combinations are:
  792. * Tag InFlight Description
  793. * 0 1 - orig segment is in flight.
  794. * S 0 - nothing flies, orig reached receiver.
  795. * L 0 - nothing flies, orig lost by net.
  796. * R 2 - both orig and retransmit are in flight.
  797. * L|R 1 - orig is lost, retransmit is in flight.
  798. * S|R 1 - orig reached receiver, retrans is still in flight.
  799. * (L|S|R is logically valid, it could occur when L|R is sacked,
  800. * but it is equivalent to plain S and code short-curcuits it to S.
  801. * L|S is logically invalid, it would mean -1 packet in flight 8))
  802. *
  803. * These 6 states form finite state machine, controlled by the following events:
  804. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  805. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  806. * 3. Loss detection event of two flavors:
  807. * A. Scoreboard estimator decided the packet is lost.
  808. * A'. Reno "three dupacks" marks head of queue lost.
  809. * A''. Its FACK modification, head until snd.fack is lost.
  810. * B. SACK arrives sacking SND.NXT at the moment, when the
  811. * segment was retransmitted.
  812. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  813. *
  814. * It is pleasant to note, that state diagram turns out to be commutative,
  815. * so that we are allowed not to be bothered by order of our actions,
  816. * when multiple events arrive simultaneously. (see the function below).
  817. *
  818. * Reordering detection.
  819. * --------------------
  820. * Reordering metric is maximal distance, which a packet can be displaced
  821. * in packet stream. With SACKs we can estimate it:
  822. *
  823. * 1. SACK fills old hole and the corresponding segment was not
  824. * ever retransmitted -> reordering. Alas, we cannot use it
  825. * when segment was retransmitted.
  826. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  827. * for retransmitted and already SACKed segment -> reordering..
  828. * Both of these heuristics are not used in Loss state, when we cannot
  829. * account for retransmits accurately.
  830. *
  831. * SACK block validation.
  832. * ----------------------
  833. *
  834. * SACK block range validation checks that the received SACK block fits to
  835. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  836. * Note that SND.UNA is not included to the range though being valid because
  837. * it means that the receiver is rather inconsistent with itself reporting
  838. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  839. * perfectly valid, however, in light of RFC2018 which explicitly states
  840. * that "SACK block MUST reflect the newest segment. Even if the newest
  841. * segment is going to be discarded ...", not that it looks very clever
  842. * in case of head skb. Due to potentional receiver driven attacks, we
  843. * choose to avoid immediate execution of a walk in write queue due to
  844. * reneging and defer head skb's loss recovery to standard loss recovery
  845. * procedure that will eventually trigger (nothing forbids us doing this).
  846. *
  847. * Implements also blockage to start_seq wrap-around. Problem lies in the
  848. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  849. * there's no guarantee that it will be before snd_nxt (n). The problem
  850. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  851. * wrap (s_w):
  852. *
  853. * <- outs wnd -> <- wrapzone ->
  854. * u e n u_w e_w s n_w
  855. * | | | | | | |
  856. * |<------------+------+----- TCP seqno space --------------+---------->|
  857. * ...-- <2^31 ->| |<--------...
  858. * ...---- >2^31 ------>| |<--------...
  859. *
  860. * Current code wouldn't be vulnerable but it's better still to discard such
  861. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  862. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  863. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  864. * equal to the ideal case (infinite seqno space without wrap caused issues).
  865. *
  866. * With D-SACK the lower bound is extended to cover sequence space below
  867. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  868. * again, D-SACK block must not to go across snd_una (for the same reason as
  869. * for the normal SACK blocks, explained above). But there all simplicity
  870. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  871. * fully below undo_marker they do not affect behavior in anyway and can
  872. * therefore be safely ignored. In rare cases (which are more or less
  873. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  874. * fragmentation and packet reordering past skb's retransmission. To consider
  875. * them correctly, the acceptable range must be extended even more though
  876. * the exact amount is rather hard to quantify. However, tp->max_window can
  877. * be used as an exaggerated estimate.
  878. */
  879. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  880. u32 start_seq, u32 end_seq)
  881. {
  882. /* Too far in future, or reversed (interpretation is ambiguous) */
  883. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  884. return false;
  885. /* Nasty start_seq wrap-around check (see comments above) */
  886. if (!before(start_seq, tp->snd_nxt))
  887. return false;
  888. /* In outstanding window? ...This is valid exit for D-SACKs too.
  889. * start_seq == snd_una is non-sensical (see comments above)
  890. */
  891. if (after(start_seq, tp->snd_una))
  892. return true;
  893. if (!is_dsack || !tp->undo_marker)
  894. return false;
  895. /* ...Then it's D-SACK, and must reside below snd_una completely */
  896. if (after(end_seq, tp->snd_una))
  897. return false;
  898. if (!before(start_seq, tp->undo_marker))
  899. return true;
  900. /* Too old */
  901. if (!after(end_seq, tp->undo_marker))
  902. return false;
  903. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  904. * start_seq < undo_marker and end_seq >= undo_marker.
  905. */
  906. return !before(start_seq, end_seq - tp->max_window);
  907. }
  908. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  909. * Event "B". Later note: FACK people cheated me again 8), we have to account
  910. * for reordering! Ugly, but should help.
  911. *
  912. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  913. * less than what is now known to be received by the other end (derived from
  914. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  915. * retransmitted skbs to avoid some costly processing per ACKs.
  916. */
  917. static void tcp_mark_lost_retrans(struct sock *sk)
  918. {
  919. const struct inet_connection_sock *icsk = inet_csk(sk);
  920. struct tcp_sock *tp = tcp_sk(sk);
  921. struct sk_buff *skb;
  922. int cnt = 0;
  923. u32 new_low_seq = tp->snd_nxt;
  924. u32 received_upto = tcp_highest_sack_seq(tp);
  925. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  926. !after(received_upto, tp->lost_retrans_low) ||
  927. icsk->icsk_ca_state != TCP_CA_Recovery)
  928. return;
  929. tcp_for_write_queue(skb, sk) {
  930. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  931. if (skb == tcp_send_head(sk))
  932. break;
  933. if (cnt == tp->retrans_out)
  934. break;
  935. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  936. continue;
  937. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  938. continue;
  939. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  940. * constraint here (see above) but figuring out that at
  941. * least tp->reordering SACK blocks reside between ack_seq
  942. * and received_upto is not easy task to do cheaply with
  943. * the available datastructures.
  944. *
  945. * Whether FACK should check here for tp->reordering segs
  946. * in-between one could argue for either way (it would be
  947. * rather simple to implement as we could count fack_count
  948. * during the walk and do tp->fackets_out - fack_count).
  949. */
  950. if (after(received_upto, ack_seq)) {
  951. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  952. tp->retrans_out -= tcp_skb_pcount(skb);
  953. tcp_skb_mark_lost_uncond_verify(tp, skb);
  954. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  955. } else {
  956. if (before(ack_seq, new_low_seq))
  957. new_low_seq = ack_seq;
  958. cnt += tcp_skb_pcount(skb);
  959. }
  960. }
  961. if (tp->retrans_out)
  962. tp->lost_retrans_low = new_low_seq;
  963. }
  964. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  965. struct tcp_sack_block_wire *sp, int num_sacks,
  966. u32 prior_snd_una)
  967. {
  968. struct tcp_sock *tp = tcp_sk(sk);
  969. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  970. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  971. bool dup_sack = false;
  972. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  973. dup_sack = true;
  974. tcp_dsack_seen(tp);
  975. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  976. } else if (num_sacks > 1) {
  977. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  978. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  979. if (!after(end_seq_0, end_seq_1) &&
  980. !before(start_seq_0, start_seq_1)) {
  981. dup_sack = true;
  982. tcp_dsack_seen(tp);
  983. NET_INC_STATS_BH(sock_net(sk),
  984. LINUX_MIB_TCPDSACKOFORECV);
  985. }
  986. }
  987. /* D-SACK for already forgotten data... Do dumb counting. */
  988. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  989. !after(end_seq_0, prior_snd_una) &&
  990. after(end_seq_0, tp->undo_marker))
  991. tp->undo_retrans--;
  992. return dup_sack;
  993. }
  994. struct tcp_sacktag_state {
  995. int reord;
  996. int fack_count;
  997. /* Timestamps for earliest and latest never-retransmitted segment
  998. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  999. * but congestion control should still get an accurate delay signal.
  1000. */
  1001. struct skb_mstamp first_sackt;
  1002. struct skb_mstamp last_sackt;
  1003. int flag;
  1004. };
  1005. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1006. * the incoming SACK may not exactly match but we can find smaller MSS
  1007. * aligned portion of it that matches. Therefore we might need to fragment
  1008. * which may fail and creates some hassle (caller must handle error case
  1009. * returns).
  1010. *
  1011. * FIXME: this could be merged to shift decision code
  1012. */
  1013. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1014. u32 start_seq, u32 end_seq)
  1015. {
  1016. int err;
  1017. bool in_sack;
  1018. unsigned int pkt_len;
  1019. unsigned int mss;
  1020. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1021. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1022. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1023. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1024. mss = tcp_skb_mss(skb);
  1025. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1026. if (!in_sack) {
  1027. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1028. if (pkt_len < mss)
  1029. pkt_len = mss;
  1030. } else {
  1031. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1032. if (pkt_len < mss)
  1033. return -EINVAL;
  1034. }
  1035. /* Round if necessary so that SACKs cover only full MSSes
  1036. * and/or the remaining small portion (if present)
  1037. */
  1038. if (pkt_len > mss) {
  1039. unsigned int new_len = (pkt_len / mss) * mss;
  1040. if (!in_sack && new_len < pkt_len) {
  1041. new_len += mss;
  1042. if (new_len >= skb->len)
  1043. return 0;
  1044. }
  1045. pkt_len = new_len;
  1046. }
  1047. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1048. if (err < 0)
  1049. return err;
  1050. }
  1051. return in_sack;
  1052. }
  1053. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1054. static u8 tcp_sacktag_one(struct sock *sk,
  1055. struct tcp_sacktag_state *state, u8 sacked,
  1056. u32 start_seq, u32 end_seq,
  1057. int dup_sack, int pcount,
  1058. const struct skb_mstamp *xmit_time)
  1059. {
  1060. struct tcp_sock *tp = tcp_sk(sk);
  1061. int fack_count = state->fack_count;
  1062. /* Account D-SACK for retransmitted packet. */
  1063. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1064. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1065. after(end_seq, tp->undo_marker))
  1066. tp->undo_retrans--;
  1067. if (sacked & TCPCB_SACKED_ACKED)
  1068. state->reord = min(fack_count, state->reord);
  1069. }
  1070. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1071. if (!after(end_seq, tp->snd_una))
  1072. return sacked;
  1073. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1074. if (sacked & TCPCB_SACKED_RETRANS) {
  1075. /* If the segment is not tagged as lost,
  1076. * we do not clear RETRANS, believing
  1077. * that retransmission is still in flight.
  1078. */
  1079. if (sacked & TCPCB_LOST) {
  1080. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1081. tp->lost_out -= pcount;
  1082. tp->retrans_out -= pcount;
  1083. }
  1084. } else {
  1085. if (!(sacked & TCPCB_RETRANS)) {
  1086. /* New sack for not retransmitted frame,
  1087. * which was in hole. It is reordering.
  1088. */
  1089. if (before(start_seq,
  1090. tcp_highest_sack_seq(tp)))
  1091. state->reord = min(fack_count,
  1092. state->reord);
  1093. if (!after(end_seq, tp->high_seq))
  1094. state->flag |= FLAG_ORIG_SACK_ACKED;
  1095. if (state->first_sackt.v64 == 0)
  1096. state->first_sackt = *xmit_time;
  1097. state->last_sackt = *xmit_time;
  1098. }
  1099. if (sacked & TCPCB_LOST) {
  1100. sacked &= ~TCPCB_LOST;
  1101. tp->lost_out -= pcount;
  1102. }
  1103. }
  1104. sacked |= TCPCB_SACKED_ACKED;
  1105. state->flag |= FLAG_DATA_SACKED;
  1106. tp->sacked_out += pcount;
  1107. fack_count += pcount;
  1108. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1109. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1110. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1111. tp->lost_cnt_hint += pcount;
  1112. if (fack_count > tp->fackets_out)
  1113. tp->fackets_out = fack_count;
  1114. }
  1115. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1116. * frames and clear it. undo_retrans is decreased above, L|R frames
  1117. * are accounted above as well.
  1118. */
  1119. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1120. sacked &= ~TCPCB_SACKED_RETRANS;
  1121. tp->retrans_out -= pcount;
  1122. }
  1123. return sacked;
  1124. }
  1125. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1126. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1127. */
  1128. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1129. struct tcp_sacktag_state *state,
  1130. unsigned int pcount, int shifted, int mss,
  1131. bool dup_sack)
  1132. {
  1133. struct tcp_sock *tp = tcp_sk(sk);
  1134. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1135. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1136. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1137. BUG_ON(!pcount);
  1138. /* Adjust counters and hints for the newly sacked sequence
  1139. * range but discard the return value since prev is already
  1140. * marked. We must tag the range first because the seq
  1141. * advancement below implicitly advances
  1142. * tcp_highest_sack_seq() when skb is highest_sack.
  1143. */
  1144. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1145. start_seq, end_seq, dup_sack, pcount,
  1146. &skb->skb_mstamp);
  1147. if (skb == tp->lost_skb_hint)
  1148. tp->lost_cnt_hint += pcount;
  1149. TCP_SKB_CB(prev)->end_seq += shifted;
  1150. TCP_SKB_CB(skb)->seq += shifted;
  1151. tcp_skb_pcount_add(prev, pcount);
  1152. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1153. tcp_skb_pcount_add(skb, -pcount);
  1154. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1155. * in theory this shouldn't be necessary but as long as DSACK
  1156. * code can come after this skb later on it's better to keep
  1157. * setting gso_size to something.
  1158. */
  1159. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1160. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1161. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1162. if (tcp_skb_pcount(skb) <= 1)
  1163. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1164. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1165. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1166. if (skb->len > 0) {
  1167. BUG_ON(!tcp_skb_pcount(skb));
  1168. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1169. return false;
  1170. }
  1171. /* Whole SKB was eaten :-) */
  1172. if (skb == tp->retransmit_skb_hint)
  1173. tp->retransmit_skb_hint = prev;
  1174. if (skb == tp->lost_skb_hint) {
  1175. tp->lost_skb_hint = prev;
  1176. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1177. }
  1178. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1179. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1180. TCP_SKB_CB(prev)->end_seq++;
  1181. if (skb == tcp_highest_sack(sk))
  1182. tcp_advance_highest_sack(sk, skb);
  1183. tcp_unlink_write_queue(skb, sk);
  1184. sk_wmem_free_skb(sk, skb);
  1185. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1186. return true;
  1187. }
  1188. /* I wish gso_size would have a bit more sane initialization than
  1189. * something-or-zero which complicates things
  1190. */
  1191. static int tcp_skb_seglen(const struct sk_buff *skb)
  1192. {
  1193. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1194. }
  1195. /* Shifting pages past head area doesn't work */
  1196. static int skb_can_shift(const struct sk_buff *skb)
  1197. {
  1198. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1199. }
  1200. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1201. * skb.
  1202. */
  1203. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1204. struct tcp_sacktag_state *state,
  1205. u32 start_seq, u32 end_seq,
  1206. bool dup_sack)
  1207. {
  1208. struct tcp_sock *tp = tcp_sk(sk);
  1209. struct sk_buff *prev;
  1210. int mss;
  1211. int pcount = 0;
  1212. int len;
  1213. int in_sack;
  1214. if (!sk_can_gso(sk))
  1215. goto fallback;
  1216. /* Normally R but no L won't result in plain S */
  1217. if (!dup_sack &&
  1218. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1219. goto fallback;
  1220. if (!skb_can_shift(skb))
  1221. goto fallback;
  1222. /* This frame is about to be dropped (was ACKed). */
  1223. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1224. goto fallback;
  1225. /* Can only happen with delayed DSACK + discard craziness */
  1226. if (unlikely(skb == tcp_write_queue_head(sk)))
  1227. goto fallback;
  1228. prev = tcp_write_queue_prev(sk, skb);
  1229. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1230. goto fallback;
  1231. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1232. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1233. if (in_sack) {
  1234. len = skb->len;
  1235. pcount = tcp_skb_pcount(skb);
  1236. mss = tcp_skb_seglen(skb);
  1237. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1238. * drop this restriction as unnecessary
  1239. */
  1240. if (mss != tcp_skb_seglen(prev))
  1241. goto fallback;
  1242. } else {
  1243. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1244. goto noop;
  1245. /* CHECKME: This is non-MSS split case only?, this will
  1246. * cause skipped skbs due to advancing loop btw, original
  1247. * has that feature too
  1248. */
  1249. if (tcp_skb_pcount(skb) <= 1)
  1250. goto noop;
  1251. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1252. if (!in_sack) {
  1253. /* TODO: head merge to next could be attempted here
  1254. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1255. * though it might not be worth of the additional hassle
  1256. *
  1257. * ...we can probably just fallback to what was done
  1258. * previously. We could try merging non-SACKed ones
  1259. * as well but it probably isn't going to buy off
  1260. * because later SACKs might again split them, and
  1261. * it would make skb timestamp tracking considerably
  1262. * harder problem.
  1263. */
  1264. goto fallback;
  1265. }
  1266. len = end_seq - TCP_SKB_CB(skb)->seq;
  1267. BUG_ON(len < 0);
  1268. BUG_ON(len > skb->len);
  1269. /* MSS boundaries should be honoured or else pcount will
  1270. * severely break even though it makes things bit trickier.
  1271. * Optimize common case to avoid most of the divides
  1272. */
  1273. mss = tcp_skb_mss(skb);
  1274. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1275. * drop this restriction as unnecessary
  1276. */
  1277. if (mss != tcp_skb_seglen(prev))
  1278. goto fallback;
  1279. if (len == mss) {
  1280. pcount = 1;
  1281. } else if (len < mss) {
  1282. goto noop;
  1283. } else {
  1284. pcount = len / mss;
  1285. len = pcount * mss;
  1286. }
  1287. }
  1288. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1289. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1290. goto fallback;
  1291. if (!skb_shift(prev, skb, len))
  1292. goto fallback;
  1293. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1294. goto out;
  1295. /* Hole filled allows collapsing with the next as well, this is very
  1296. * useful when hole on every nth skb pattern happens
  1297. */
  1298. if (prev == tcp_write_queue_tail(sk))
  1299. goto out;
  1300. skb = tcp_write_queue_next(sk, prev);
  1301. if (!skb_can_shift(skb) ||
  1302. (skb == tcp_send_head(sk)) ||
  1303. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1304. (mss != tcp_skb_seglen(skb)))
  1305. goto out;
  1306. len = skb->len;
  1307. if (skb_shift(prev, skb, len)) {
  1308. pcount += tcp_skb_pcount(skb);
  1309. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1310. }
  1311. out:
  1312. state->fack_count += pcount;
  1313. return prev;
  1314. noop:
  1315. return skb;
  1316. fallback:
  1317. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1318. return NULL;
  1319. }
  1320. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1321. struct tcp_sack_block *next_dup,
  1322. struct tcp_sacktag_state *state,
  1323. u32 start_seq, u32 end_seq,
  1324. bool dup_sack_in)
  1325. {
  1326. struct tcp_sock *tp = tcp_sk(sk);
  1327. struct sk_buff *tmp;
  1328. tcp_for_write_queue_from(skb, sk) {
  1329. int in_sack = 0;
  1330. bool dup_sack = dup_sack_in;
  1331. if (skb == tcp_send_head(sk))
  1332. break;
  1333. /* queue is in-order => we can short-circuit the walk early */
  1334. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1335. break;
  1336. if (next_dup &&
  1337. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1338. in_sack = tcp_match_skb_to_sack(sk, skb,
  1339. next_dup->start_seq,
  1340. next_dup->end_seq);
  1341. if (in_sack > 0)
  1342. dup_sack = true;
  1343. }
  1344. /* skb reference here is a bit tricky to get right, since
  1345. * shifting can eat and free both this skb and the next,
  1346. * so not even _safe variant of the loop is enough.
  1347. */
  1348. if (in_sack <= 0) {
  1349. tmp = tcp_shift_skb_data(sk, skb, state,
  1350. start_seq, end_seq, dup_sack);
  1351. if (tmp) {
  1352. if (tmp != skb) {
  1353. skb = tmp;
  1354. continue;
  1355. }
  1356. in_sack = 0;
  1357. } else {
  1358. in_sack = tcp_match_skb_to_sack(sk, skb,
  1359. start_seq,
  1360. end_seq);
  1361. }
  1362. }
  1363. if (unlikely(in_sack < 0))
  1364. break;
  1365. if (in_sack) {
  1366. TCP_SKB_CB(skb)->sacked =
  1367. tcp_sacktag_one(sk,
  1368. state,
  1369. TCP_SKB_CB(skb)->sacked,
  1370. TCP_SKB_CB(skb)->seq,
  1371. TCP_SKB_CB(skb)->end_seq,
  1372. dup_sack,
  1373. tcp_skb_pcount(skb),
  1374. &skb->skb_mstamp);
  1375. if (!before(TCP_SKB_CB(skb)->seq,
  1376. tcp_highest_sack_seq(tp)))
  1377. tcp_advance_highest_sack(sk, skb);
  1378. }
  1379. state->fack_count += tcp_skb_pcount(skb);
  1380. }
  1381. return skb;
  1382. }
  1383. /* Avoid all extra work that is being done by sacktag while walking in
  1384. * a normal way
  1385. */
  1386. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1387. struct tcp_sacktag_state *state,
  1388. u32 skip_to_seq)
  1389. {
  1390. tcp_for_write_queue_from(skb, sk) {
  1391. if (skb == tcp_send_head(sk))
  1392. break;
  1393. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1394. break;
  1395. state->fack_count += tcp_skb_pcount(skb);
  1396. }
  1397. return skb;
  1398. }
  1399. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1400. struct sock *sk,
  1401. struct tcp_sack_block *next_dup,
  1402. struct tcp_sacktag_state *state,
  1403. u32 skip_to_seq)
  1404. {
  1405. if (!next_dup)
  1406. return skb;
  1407. if (before(next_dup->start_seq, skip_to_seq)) {
  1408. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1409. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1410. next_dup->start_seq, next_dup->end_seq,
  1411. 1);
  1412. }
  1413. return skb;
  1414. }
  1415. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1416. {
  1417. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1418. }
  1419. static int
  1420. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1421. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1422. {
  1423. struct tcp_sock *tp = tcp_sk(sk);
  1424. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1425. TCP_SKB_CB(ack_skb)->sacked);
  1426. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1427. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1428. struct tcp_sack_block *cache;
  1429. struct sk_buff *skb;
  1430. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1431. int used_sacks;
  1432. bool found_dup_sack = false;
  1433. int i, j;
  1434. int first_sack_index;
  1435. state->flag = 0;
  1436. state->reord = tp->packets_out;
  1437. if (!tp->sacked_out) {
  1438. if (WARN_ON(tp->fackets_out))
  1439. tp->fackets_out = 0;
  1440. tcp_highest_sack_reset(sk);
  1441. }
  1442. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1443. num_sacks, prior_snd_una);
  1444. if (found_dup_sack)
  1445. state->flag |= FLAG_DSACKING_ACK;
  1446. /* Eliminate too old ACKs, but take into
  1447. * account more or less fresh ones, they can
  1448. * contain valid SACK info.
  1449. */
  1450. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1451. return 0;
  1452. if (!tp->packets_out)
  1453. goto out;
  1454. used_sacks = 0;
  1455. first_sack_index = 0;
  1456. for (i = 0; i < num_sacks; i++) {
  1457. bool dup_sack = !i && found_dup_sack;
  1458. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1459. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1460. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1461. sp[used_sacks].start_seq,
  1462. sp[used_sacks].end_seq)) {
  1463. int mib_idx;
  1464. if (dup_sack) {
  1465. if (!tp->undo_marker)
  1466. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1467. else
  1468. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1469. } else {
  1470. /* Don't count olds caused by ACK reordering */
  1471. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1472. !after(sp[used_sacks].end_seq, tp->snd_una))
  1473. continue;
  1474. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1475. }
  1476. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1477. if (i == 0)
  1478. first_sack_index = -1;
  1479. continue;
  1480. }
  1481. /* Ignore very old stuff early */
  1482. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1483. continue;
  1484. used_sacks++;
  1485. }
  1486. /* order SACK blocks to allow in order walk of the retrans queue */
  1487. for (i = used_sacks - 1; i > 0; i--) {
  1488. for (j = 0; j < i; j++) {
  1489. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1490. swap(sp[j], sp[j + 1]);
  1491. /* Track where the first SACK block goes to */
  1492. if (j == first_sack_index)
  1493. first_sack_index = j + 1;
  1494. }
  1495. }
  1496. }
  1497. skb = tcp_write_queue_head(sk);
  1498. state->fack_count = 0;
  1499. i = 0;
  1500. if (!tp->sacked_out) {
  1501. /* It's already past, so skip checking against it */
  1502. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1503. } else {
  1504. cache = tp->recv_sack_cache;
  1505. /* Skip empty blocks in at head of the cache */
  1506. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1507. !cache->end_seq)
  1508. cache++;
  1509. }
  1510. while (i < used_sacks) {
  1511. u32 start_seq = sp[i].start_seq;
  1512. u32 end_seq = sp[i].end_seq;
  1513. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1514. struct tcp_sack_block *next_dup = NULL;
  1515. if (found_dup_sack && ((i + 1) == first_sack_index))
  1516. next_dup = &sp[i + 1];
  1517. /* Skip too early cached blocks */
  1518. while (tcp_sack_cache_ok(tp, cache) &&
  1519. !before(start_seq, cache->end_seq))
  1520. cache++;
  1521. /* Can skip some work by looking recv_sack_cache? */
  1522. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1523. after(end_seq, cache->start_seq)) {
  1524. /* Head todo? */
  1525. if (before(start_seq, cache->start_seq)) {
  1526. skb = tcp_sacktag_skip(skb, sk, state,
  1527. start_seq);
  1528. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1529. state,
  1530. start_seq,
  1531. cache->start_seq,
  1532. dup_sack);
  1533. }
  1534. /* Rest of the block already fully processed? */
  1535. if (!after(end_seq, cache->end_seq))
  1536. goto advance_sp;
  1537. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1538. state,
  1539. cache->end_seq);
  1540. /* ...tail remains todo... */
  1541. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1542. /* ...but better entrypoint exists! */
  1543. skb = tcp_highest_sack(sk);
  1544. if (!skb)
  1545. break;
  1546. state->fack_count = tp->fackets_out;
  1547. cache++;
  1548. goto walk;
  1549. }
  1550. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1551. /* Check overlap against next cached too (past this one already) */
  1552. cache++;
  1553. continue;
  1554. }
  1555. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1556. skb = tcp_highest_sack(sk);
  1557. if (!skb)
  1558. break;
  1559. state->fack_count = tp->fackets_out;
  1560. }
  1561. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1562. walk:
  1563. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1564. start_seq, end_seq, dup_sack);
  1565. advance_sp:
  1566. i++;
  1567. }
  1568. /* Clear the head of the cache sack blocks so we can skip it next time */
  1569. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1570. tp->recv_sack_cache[i].start_seq = 0;
  1571. tp->recv_sack_cache[i].end_seq = 0;
  1572. }
  1573. for (j = 0; j < used_sacks; j++)
  1574. tp->recv_sack_cache[i++] = sp[j];
  1575. if ((state->reord < tp->fackets_out) &&
  1576. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1577. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1578. tcp_mark_lost_retrans(sk);
  1579. tcp_verify_left_out(tp);
  1580. out:
  1581. #if FASTRETRANS_DEBUG > 0
  1582. WARN_ON((int)tp->sacked_out < 0);
  1583. WARN_ON((int)tp->lost_out < 0);
  1584. WARN_ON((int)tp->retrans_out < 0);
  1585. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1586. #endif
  1587. return state->flag;
  1588. }
  1589. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1590. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1591. */
  1592. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1593. {
  1594. u32 holes;
  1595. holes = max(tp->lost_out, 1U);
  1596. holes = min(holes, tp->packets_out);
  1597. if ((tp->sacked_out + holes) > tp->packets_out) {
  1598. tp->sacked_out = tp->packets_out - holes;
  1599. return true;
  1600. }
  1601. return false;
  1602. }
  1603. /* If we receive more dupacks than we expected counting segments
  1604. * in assumption of absent reordering, interpret this as reordering.
  1605. * The only another reason could be bug in receiver TCP.
  1606. */
  1607. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1608. {
  1609. struct tcp_sock *tp = tcp_sk(sk);
  1610. if (tcp_limit_reno_sacked(tp))
  1611. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1612. }
  1613. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1614. static void tcp_add_reno_sack(struct sock *sk)
  1615. {
  1616. struct tcp_sock *tp = tcp_sk(sk);
  1617. tp->sacked_out++;
  1618. tcp_check_reno_reordering(sk, 0);
  1619. tcp_verify_left_out(tp);
  1620. }
  1621. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1622. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1623. {
  1624. struct tcp_sock *tp = tcp_sk(sk);
  1625. if (acked > 0) {
  1626. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1627. if (acked - 1 >= tp->sacked_out)
  1628. tp->sacked_out = 0;
  1629. else
  1630. tp->sacked_out -= acked - 1;
  1631. }
  1632. tcp_check_reno_reordering(sk, acked);
  1633. tcp_verify_left_out(tp);
  1634. }
  1635. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1636. {
  1637. tp->sacked_out = 0;
  1638. }
  1639. void tcp_clear_retrans(struct tcp_sock *tp)
  1640. {
  1641. tp->retrans_out = 0;
  1642. tp->lost_out = 0;
  1643. tp->undo_marker = 0;
  1644. tp->undo_retrans = -1;
  1645. tp->fackets_out = 0;
  1646. tp->sacked_out = 0;
  1647. }
  1648. static inline void tcp_init_undo(struct tcp_sock *tp)
  1649. {
  1650. tp->undo_marker = tp->snd_una;
  1651. /* Retransmission still in flight may cause DSACKs later. */
  1652. tp->undo_retrans = tp->retrans_out ? : -1;
  1653. }
  1654. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1655. * and reset tags completely, otherwise preserve SACKs. If receiver
  1656. * dropped its ofo queue, we will know this due to reneging detection.
  1657. */
  1658. void tcp_enter_loss(struct sock *sk)
  1659. {
  1660. const struct inet_connection_sock *icsk = inet_csk(sk);
  1661. struct tcp_sock *tp = tcp_sk(sk);
  1662. struct sk_buff *skb;
  1663. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1664. bool is_reneg; /* is receiver reneging on SACKs? */
  1665. /* Reduce ssthresh if it has not yet been made inside this window. */
  1666. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1667. !after(tp->high_seq, tp->snd_una) ||
  1668. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1669. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1670. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1671. tcp_ca_event(sk, CA_EVENT_LOSS);
  1672. tcp_init_undo(tp);
  1673. }
  1674. tp->snd_cwnd = 1;
  1675. tp->snd_cwnd_cnt = 0;
  1676. tp->snd_cwnd_stamp = tcp_time_stamp;
  1677. tp->retrans_out = 0;
  1678. tp->lost_out = 0;
  1679. if (tcp_is_reno(tp))
  1680. tcp_reset_reno_sack(tp);
  1681. skb = tcp_write_queue_head(sk);
  1682. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1683. if (is_reneg) {
  1684. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1685. tp->sacked_out = 0;
  1686. tp->fackets_out = 0;
  1687. }
  1688. tcp_clear_all_retrans_hints(tp);
  1689. tcp_for_write_queue(skb, sk) {
  1690. if (skb == tcp_send_head(sk))
  1691. break;
  1692. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1693. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
  1694. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1695. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1696. tp->lost_out += tcp_skb_pcount(skb);
  1697. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1698. }
  1699. }
  1700. tcp_verify_left_out(tp);
  1701. /* Timeout in disordered state after receiving substantial DUPACKs
  1702. * suggests that the degree of reordering is over-estimated.
  1703. */
  1704. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1705. tp->sacked_out >= sysctl_tcp_reordering)
  1706. tp->reordering = min_t(unsigned int, tp->reordering,
  1707. sysctl_tcp_reordering);
  1708. tcp_set_ca_state(sk, TCP_CA_Loss);
  1709. tp->high_seq = tp->snd_nxt;
  1710. tcp_ecn_queue_cwr(tp);
  1711. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1712. * loss recovery is underway except recurring timeout(s) on
  1713. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1714. */
  1715. tp->frto = sysctl_tcp_frto &&
  1716. (new_recovery || icsk->icsk_retransmits) &&
  1717. !inet_csk(sk)->icsk_mtup.probe_size;
  1718. }
  1719. /* If ACK arrived pointing to a remembered SACK, it means that our
  1720. * remembered SACKs do not reflect real state of receiver i.e.
  1721. * receiver _host_ is heavily congested (or buggy).
  1722. *
  1723. * To avoid big spurious retransmission bursts due to transient SACK
  1724. * scoreboard oddities that look like reneging, we give the receiver a
  1725. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1726. * restore sanity to the SACK scoreboard. If the apparent reneging
  1727. * persists until this RTO then we'll clear the SACK scoreboard.
  1728. */
  1729. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1730. {
  1731. if (flag & FLAG_SACK_RENEGING) {
  1732. struct tcp_sock *tp = tcp_sk(sk);
  1733. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1734. msecs_to_jiffies(10));
  1735. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1736. delay, TCP_RTO_MAX);
  1737. return true;
  1738. }
  1739. return false;
  1740. }
  1741. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1742. {
  1743. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1744. }
  1745. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1746. * counter when SACK is enabled (without SACK, sacked_out is used for
  1747. * that purpose).
  1748. *
  1749. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1750. * segments up to the highest received SACK block so far and holes in
  1751. * between them.
  1752. *
  1753. * With reordering, holes may still be in flight, so RFC3517 recovery
  1754. * uses pure sacked_out (total number of SACKed segments) even though
  1755. * it violates the RFC that uses duplicate ACKs, often these are equal
  1756. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1757. * they differ. Since neither occurs due to loss, TCP should really
  1758. * ignore them.
  1759. */
  1760. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1761. {
  1762. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1763. }
  1764. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1765. {
  1766. struct tcp_sock *tp = tcp_sk(sk);
  1767. unsigned long delay;
  1768. /* Delay early retransmit and entering fast recovery for
  1769. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1770. * available, or RTO is scheduled to fire first.
  1771. */
  1772. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1773. (flag & FLAG_ECE) || !tp->srtt_us)
  1774. return false;
  1775. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1776. msecs_to_jiffies(2));
  1777. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1778. return false;
  1779. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1780. TCP_RTO_MAX);
  1781. return true;
  1782. }
  1783. /* Linux NewReno/SACK/FACK/ECN state machine.
  1784. * --------------------------------------
  1785. *
  1786. * "Open" Normal state, no dubious events, fast path.
  1787. * "Disorder" In all the respects it is "Open",
  1788. * but requires a bit more attention. It is entered when
  1789. * we see some SACKs or dupacks. It is split of "Open"
  1790. * mainly to move some processing from fast path to slow one.
  1791. * "CWR" CWND was reduced due to some Congestion Notification event.
  1792. * It can be ECN, ICMP source quench, local device congestion.
  1793. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1794. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1795. *
  1796. * tcp_fastretrans_alert() is entered:
  1797. * - each incoming ACK, if state is not "Open"
  1798. * - when arrived ACK is unusual, namely:
  1799. * * SACK
  1800. * * Duplicate ACK.
  1801. * * ECN ECE.
  1802. *
  1803. * Counting packets in flight is pretty simple.
  1804. *
  1805. * in_flight = packets_out - left_out + retrans_out
  1806. *
  1807. * packets_out is SND.NXT-SND.UNA counted in packets.
  1808. *
  1809. * retrans_out is number of retransmitted segments.
  1810. *
  1811. * left_out is number of segments left network, but not ACKed yet.
  1812. *
  1813. * left_out = sacked_out + lost_out
  1814. *
  1815. * sacked_out: Packets, which arrived to receiver out of order
  1816. * and hence not ACKed. With SACKs this number is simply
  1817. * amount of SACKed data. Even without SACKs
  1818. * it is easy to give pretty reliable estimate of this number,
  1819. * counting duplicate ACKs.
  1820. *
  1821. * lost_out: Packets lost by network. TCP has no explicit
  1822. * "loss notification" feedback from network (for now).
  1823. * It means that this number can be only _guessed_.
  1824. * Actually, it is the heuristics to predict lossage that
  1825. * distinguishes different algorithms.
  1826. *
  1827. * F.e. after RTO, when all the queue is considered as lost,
  1828. * lost_out = packets_out and in_flight = retrans_out.
  1829. *
  1830. * Essentially, we have now two algorithms counting
  1831. * lost packets.
  1832. *
  1833. * FACK: It is the simplest heuristics. As soon as we decided
  1834. * that something is lost, we decide that _all_ not SACKed
  1835. * packets until the most forward SACK are lost. I.e.
  1836. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1837. * It is absolutely correct estimate, if network does not reorder
  1838. * packets. And it loses any connection to reality when reordering
  1839. * takes place. We use FACK by default until reordering
  1840. * is suspected on the path to this destination.
  1841. *
  1842. * NewReno: when Recovery is entered, we assume that one segment
  1843. * is lost (classic Reno). While we are in Recovery and
  1844. * a partial ACK arrives, we assume that one more packet
  1845. * is lost (NewReno). This heuristics are the same in NewReno
  1846. * and SACK.
  1847. *
  1848. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1849. * deflation etc. CWND is real congestion window, never inflated, changes
  1850. * only according to classic VJ rules.
  1851. *
  1852. * Really tricky (and requiring careful tuning) part of algorithm
  1853. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1854. * The first determines the moment _when_ we should reduce CWND and,
  1855. * hence, slow down forward transmission. In fact, it determines the moment
  1856. * when we decide that hole is caused by loss, rather than by a reorder.
  1857. *
  1858. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1859. * holes, caused by lost packets.
  1860. *
  1861. * And the most logically complicated part of algorithm is undo
  1862. * heuristics. We detect false retransmits due to both too early
  1863. * fast retransmit (reordering) and underestimated RTO, analyzing
  1864. * timestamps and D-SACKs. When we detect that some segments were
  1865. * retransmitted by mistake and CWND reduction was wrong, we undo
  1866. * window reduction and abort recovery phase. This logic is hidden
  1867. * inside several functions named tcp_try_undo_<something>.
  1868. */
  1869. /* This function decides, when we should leave Disordered state
  1870. * and enter Recovery phase, reducing congestion window.
  1871. *
  1872. * Main question: may we further continue forward transmission
  1873. * with the same cwnd?
  1874. */
  1875. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1876. {
  1877. struct tcp_sock *tp = tcp_sk(sk);
  1878. __u32 packets_out;
  1879. /* Trick#1: The loss is proven. */
  1880. if (tp->lost_out)
  1881. return true;
  1882. /* Not-A-Trick#2 : Classic rule... */
  1883. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1884. return true;
  1885. /* Trick#4: It is still not OK... But will it be useful to delay
  1886. * recovery more?
  1887. */
  1888. packets_out = tp->packets_out;
  1889. if (packets_out <= tp->reordering &&
  1890. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1891. !tcp_may_send_now(sk)) {
  1892. /* We have nothing to send. This connection is limited
  1893. * either by receiver window or by application.
  1894. */
  1895. return true;
  1896. }
  1897. /* If a thin stream is detected, retransmit after first
  1898. * received dupack. Employ only if SACK is supported in order
  1899. * to avoid possible corner-case series of spurious retransmissions
  1900. * Use only if there are no unsent data.
  1901. */
  1902. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1903. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1904. tcp_is_sack(tp) && !tcp_send_head(sk))
  1905. return true;
  1906. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1907. * retransmissions due to small network reorderings, we implement
  1908. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1909. * interval if appropriate.
  1910. */
  1911. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1912. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1913. !tcp_may_send_now(sk))
  1914. return !tcp_pause_early_retransmit(sk, flag);
  1915. return false;
  1916. }
  1917. /* Detect loss in event "A" above by marking head of queue up as lost.
  1918. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1919. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1920. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1921. * the maximum SACKed segments to pass before reaching this limit.
  1922. */
  1923. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1924. {
  1925. struct tcp_sock *tp = tcp_sk(sk);
  1926. struct sk_buff *skb;
  1927. int cnt, oldcnt;
  1928. int err;
  1929. unsigned int mss;
  1930. /* Use SACK to deduce losses of new sequences sent during recovery */
  1931. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1932. WARN_ON(packets > tp->packets_out);
  1933. if (tp->lost_skb_hint) {
  1934. skb = tp->lost_skb_hint;
  1935. cnt = tp->lost_cnt_hint;
  1936. /* Head already handled? */
  1937. if (mark_head && skb != tcp_write_queue_head(sk))
  1938. return;
  1939. } else {
  1940. skb = tcp_write_queue_head(sk);
  1941. cnt = 0;
  1942. }
  1943. tcp_for_write_queue_from(skb, sk) {
  1944. if (skb == tcp_send_head(sk))
  1945. break;
  1946. /* TODO: do this better */
  1947. /* this is not the most efficient way to do this... */
  1948. tp->lost_skb_hint = skb;
  1949. tp->lost_cnt_hint = cnt;
  1950. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1951. break;
  1952. oldcnt = cnt;
  1953. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1954. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1955. cnt += tcp_skb_pcount(skb);
  1956. if (cnt > packets) {
  1957. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1958. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1959. (oldcnt >= packets))
  1960. break;
  1961. mss = tcp_skb_mss(skb);
  1962. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
  1963. mss, GFP_ATOMIC);
  1964. if (err < 0)
  1965. break;
  1966. cnt = packets;
  1967. }
  1968. tcp_skb_mark_lost(tp, skb);
  1969. if (mark_head)
  1970. break;
  1971. }
  1972. tcp_verify_left_out(tp);
  1973. }
  1974. /* Account newly detected lost packet(s) */
  1975. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1976. {
  1977. struct tcp_sock *tp = tcp_sk(sk);
  1978. if (tcp_is_reno(tp)) {
  1979. tcp_mark_head_lost(sk, 1, 1);
  1980. } else if (tcp_is_fack(tp)) {
  1981. int lost = tp->fackets_out - tp->reordering;
  1982. if (lost <= 0)
  1983. lost = 1;
  1984. tcp_mark_head_lost(sk, lost, 0);
  1985. } else {
  1986. int sacked_upto = tp->sacked_out - tp->reordering;
  1987. if (sacked_upto >= 0)
  1988. tcp_mark_head_lost(sk, sacked_upto, 0);
  1989. else if (fast_rexmit)
  1990. tcp_mark_head_lost(sk, 1, 1);
  1991. }
  1992. }
  1993. /* CWND moderation, preventing bursts due to too big ACKs
  1994. * in dubious situations.
  1995. */
  1996. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1997. {
  1998. tp->snd_cwnd = min(tp->snd_cwnd,
  1999. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2000. tp->snd_cwnd_stamp = tcp_time_stamp;
  2001. }
  2002. /* Nothing was retransmitted or returned timestamp is less
  2003. * than timestamp of the first retransmission.
  2004. */
  2005. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2006. {
  2007. return !tp->retrans_stamp ||
  2008. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2009. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2010. }
  2011. /* Undo procedures. */
  2012. /* We can clear retrans_stamp when there are no retransmissions in the
  2013. * window. It would seem that it is trivially available for us in
  2014. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2015. * what will happen if errors occur when sending retransmission for the
  2016. * second time. ...It could the that such segment has only
  2017. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2018. * the head skb is enough except for some reneging corner cases that
  2019. * are not worth the effort.
  2020. *
  2021. * Main reason for all this complexity is the fact that connection dying
  2022. * time now depends on the validity of the retrans_stamp, in particular,
  2023. * that successive retransmissions of a segment must not advance
  2024. * retrans_stamp under any conditions.
  2025. */
  2026. static bool tcp_any_retrans_done(const struct sock *sk)
  2027. {
  2028. const struct tcp_sock *tp = tcp_sk(sk);
  2029. struct sk_buff *skb;
  2030. if (tp->retrans_out)
  2031. return true;
  2032. skb = tcp_write_queue_head(sk);
  2033. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2034. return true;
  2035. return false;
  2036. }
  2037. #if FASTRETRANS_DEBUG > 1
  2038. static void DBGUNDO(struct sock *sk, const char *msg)
  2039. {
  2040. struct tcp_sock *tp = tcp_sk(sk);
  2041. struct inet_sock *inet = inet_sk(sk);
  2042. if (sk->sk_family == AF_INET) {
  2043. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2044. msg,
  2045. &inet->inet_daddr, ntohs(inet->inet_dport),
  2046. tp->snd_cwnd, tcp_left_out(tp),
  2047. tp->snd_ssthresh, tp->prior_ssthresh,
  2048. tp->packets_out);
  2049. }
  2050. #if IS_ENABLED(CONFIG_IPV6)
  2051. else if (sk->sk_family == AF_INET6) {
  2052. struct ipv6_pinfo *np = inet6_sk(sk);
  2053. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2054. msg,
  2055. &np->daddr, ntohs(inet->inet_dport),
  2056. tp->snd_cwnd, tcp_left_out(tp),
  2057. tp->snd_ssthresh, tp->prior_ssthresh,
  2058. tp->packets_out);
  2059. }
  2060. #endif
  2061. }
  2062. #else
  2063. #define DBGUNDO(x...) do { } while (0)
  2064. #endif
  2065. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2066. {
  2067. struct tcp_sock *tp = tcp_sk(sk);
  2068. if (unmark_loss) {
  2069. struct sk_buff *skb;
  2070. tcp_for_write_queue(skb, sk) {
  2071. if (skb == tcp_send_head(sk))
  2072. break;
  2073. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2074. }
  2075. tp->lost_out = 0;
  2076. tcp_clear_all_retrans_hints(tp);
  2077. }
  2078. if (tp->prior_ssthresh) {
  2079. const struct inet_connection_sock *icsk = inet_csk(sk);
  2080. if (icsk->icsk_ca_ops->undo_cwnd)
  2081. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2082. else
  2083. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2084. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2085. tp->snd_ssthresh = tp->prior_ssthresh;
  2086. tcp_ecn_withdraw_cwr(tp);
  2087. }
  2088. } else {
  2089. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2090. }
  2091. tp->snd_cwnd_stamp = tcp_time_stamp;
  2092. tp->undo_marker = 0;
  2093. }
  2094. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2095. {
  2096. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2097. }
  2098. /* People celebrate: "We love our President!" */
  2099. static bool tcp_try_undo_recovery(struct sock *sk)
  2100. {
  2101. struct tcp_sock *tp = tcp_sk(sk);
  2102. if (tcp_may_undo(tp)) {
  2103. int mib_idx;
  2104. /* Happy end! We did not retransmit anything
  2105. * or our original transmission succeeded.
  2106. */
  2107. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2108. tcp_undo_cwnd_reduction(sk, false);
  2109. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2110. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2111. else
  2112. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2113. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2114. }
  2115. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2116. /* Hold old state until something *above* high_seq
  2117. * is ACKed. For Reno it is MUST to prevent false
  2118. * fast retransmits (RFC2582). SACK TCP is safe. */
  2119. tcp_moderate_cwnd(tp);
  2120. if (!tcp_any_retrans_done(sk))
  2121. tp->retrans_stamp = 0;
  2122. return true;
  2123. }
  2124. tcp_set_ca_state(sk, TCP_CA_Open);
  2125. return false;
  2126. }
  2127. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2128. static bool tcp_try_undo_dsack(struct sock *sk)
  2129. {
  2130. struct tcp_sock *tp = tcp_sk(sk);
  2131. if (tp->undo_marker && !tp->undo_retrans) {
  2132. DBGUNDO(sk, "D-SACK");
  2133. tcp_undo_cwnd_reduction(sk, false);
  2134. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2135. return true;
  2136. }
  2137. return false;
  2138. }
  2139. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2140. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2141. {
  2142. struct tcp_sock *tp = tcp_sk(sk);
  2143. if (frto_undo || tcp_may_undo(tp)) {
  2144. tcp_undo_cwnd_reduction(sk, true);
  2145. DBGUNDO(sk, "partial loss");
  2146. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2147. if (frto_undo)
  2148. NET_INC_STATS_BH(sock_net(sk),
  2149. LINUX_MIB_TCPSPURIOUSRTOS);
  2150. inet_csk(sk)->icsk_retransmits = 0;
  2151. if (frto_undo || tcp_is_sack(tp))
  2152. tcp_set_ca_state(sk, TCP_CA_Open);
  2153. return true;
  2154. }
  2155. return false;
  2156. }
  2157. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2158. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2159. * It computes the number of packets to send (sndcnt) based on packets newly
  2160. * delivered:
  2161. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2162. * cwnd reductions across a full RTT.
  2163. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2164. * losses and/or application stalls), do not perform any further cwnd
  2165. * reductions, but instead slow start up to ssthresh.
  2166. */
  2167. static void tcp_init_cwnd_reduction(struct sock *sk)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. tp->high_seq = tp->snd_nxt;
  2171. tp->tlp_high_seq = 0;
  2172. tp->snd_cwnd_cnt = 0;
  2173. tp->prior_cwnd = tp->snd_cwnd;
  2174. tp->prr_delivered = 0;
  2175. tp->prr_out = 0;
  2176. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2177. tcp_ecn_queue_cwr(tp);
  2178. }
  2179. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2180. int fast_rexmit)
  2181. {
  2182. struct tcp_sock *tp = tcp_sk(sk);
  2183. int sndcnt = 0;
  2184. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2185. int newly_acked_sacked = prior_unsacked -
  2186. (tp->packets_out - tp->sacked_out);
  2187. tp->prr_delivered += newly_acked_sacked;
  2188. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2189. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2190. tp->prior_cwnd - 1;
  2191. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2192. } else {
  2193. sndcnt = min_t(int, delta,
  2194. max_t(int, tp->prr_delivered - tp->prr_out,
  2195. newly_acked_sacked) + 1);
  2196. }
  2197. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2198. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2199. }
  2200. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2201. {
  2202. struct tcp_sock *tp = tcp_sk(sk);
  2203. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2204. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2205. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2206. tp->snd_cwnd = tp->snd_ssthresh;
  2207. tp->snd_cwnd_stamp = tcp_time_stamp;
  2208. }
  2209. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2210. }
  2211. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2212. void tcp_enter_cwr(struct sock *sk)
  2213. {
  2214. struct tcp_sock *tp = tcp_sk(sk);
  2215. tp->prior_ssthresh = 0;
  2216. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2217. tp->undo_marker = 0;
  2218. tcp_init_cwnd_reduction(sk);
  2219. tcp_set_ca_state(sk, TCP_CA_CWR);
  2220. }
  2221. }
  2222. EXPORT_SYMBOL(tcp_enter_cwr);
  2223. static void tcp_try_keep_open(struct sock *sk)
  2224. {
  2225. struct tcp_sock *tp = tcp_sk(sk);
  2226. int state = TCP_CA_Open;
  2227. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2228. state = TCP_CA_Disorder;
  2229. if (inet_csk(sk)->icsk_ca_state != state) {
  2230. tcp_set_ca_state(sk, state);
  2231. tp->high_seq = tp->snd_nxt;
  2232. }
  2233. }
  2234. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2235. {
  2236. struct tcp_sock *tp = tcp_sk(sk);
  2237. tcp_verify_left_out(tp);
  2238. if (!tcp_any_retrans_done(sk))
  2239. tp->retrans_stamp = 0;
  2240. if (flag & FLAG_ECE)
  2241. tcp_enter_cwr(sk);
  2242. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2243. tcp_try_keep_open(sk);
  2244. } else {
  2245. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2246. }
  2247. }
  2248. static void tcp_mtup_probe_failed(struct sock *sk)
  2249. {
  2250. struct inet_connection_sock *icsk = inet_csk(sk);
  2251. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2252. icsk->icsk_mtup.probe_size = 0;
  2253. }
  2254. static void tcp_mtup_probe_success(struct sock *sk)
  2255. {
  2256. struct tcp_sock *tp = tcp_sk(sk);
  2257. struct inet_connection_sock *icsk = inet_csk(sk);
  2258. /* FIXME: breaks with very large cwnd */
  2259. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2260. tp->snd_cwnd = tp->snd_cwnd *
  2261. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2262. icsk->icsk_mtup.probe_size;
  2263. tp->snd_cwnd_cnt = 0;
  2264. tp->snd_cwnd_stamp = tcp_time_stamp;
  2265. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2266. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2267. icsk->icsk_mtup.probe_size = 0;
  2268. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2269. }
  2270. /* Do a simple retransmit without using the backoff mechanisms in
  2271. * tcp_timer. This is used for path mtu discovery.
  2272. * The socket is already locked here.
  2273. */
  2274. void tcp_simple_retransmit(struct sock *sk)
  2275. {
  2276. const struct inet_connection_sock *icsk = inet_csk(sk);
  2277. struct tcp_sock *tp = tcp_sk(sk);
  2278. struct sk_buff *skb;
  2279. unsigned int mss = tcp_current_mss(sk);
  2280. u32 prior_lost = tp->lost_out;
  2281. tcp_for_write_queue(skb, sk) {
  2282. if (skb == tcp_send_head(sk))
  2283. break;
  2284. if (tcp_skb_seglen(skb) > mss &&
  2285. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2286. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2287. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2288. tp->retrans_out -= tcp_skb_pcount(skb);
  2289. }
  2290. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2291. }
  2292. }
  2293. tcp_clear_retrans_hints_partial(tp);
  2294. if (prior_lost == tp->lost_out)
  2295. return;
  2296. if (tcp_is_reno(tp))
  2297. tcp_limit_reno_sacked(tp);
  2298. tcp_verify_left_out(tp);
  2299. /* Don't muck with the congestion window here.
  2300. * Reason is that we do not increase amount of _data_
  2301. * in network, but units changed and effective
  2302. * cwnd/ssthresh really reduced now.
  2303. */
  2304. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2305. tp->high_seq = tp->snd_nxt;
  2306. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2307. tp->prior_ssthresh = 0;
  2308. tp->undo_marker = 0;
  2309. tcp_set_ca_state(sk, TCP_CA_Loss);
  2310. }
  2311. tcp_xmit_retransmit_queue(sk);
  2312. }
  2313. EXPORT_SYMBOL(tcp_simple_retransmit);
  2314. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2315. {
  2316. struct tcp_sock *tp = tcp_sk(sk);
  2317. int mib_idx;
  2318. if (tcp_is_reno(tp))
  2319. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2320. else
  2321. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2322. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2323. tp->prior_ssthresh = 0;
  2324. tcp_init_undo(tp);
  2325. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2326. if (!ece_ack)
  2327. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2328. tcp_init_cwnd_reduction(sk);
  2329. }
  2330. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2331. }
  2332. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2333. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2334. */
  2335. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2336. {
  2337. struct tcp_sock *tp = tcp_sk(sk);
  2338. bool recovered = !before(tp->snd_una, tp->high_seq);
  2339. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2340. tcp_try_undo_loss(sk, false))
  2341. return;
  2342. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2343. /* Step 3.b. A timeout is spurious if not all data are
  2344. * lost, i.e., never-retransmitted data are (s)acked.
  2345. */
  2346. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2347. tcp_try_undo_loss(sk, true))
  2348. return;
  2349. if (after(tp->snd_nxt, tp->high_seq)) {
  2350. if (flag & FLAG_DATA_SACKED || is_dupack)
  2351. tp->frto = 0; /* Step 3.a. loss was real */
  2352. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2353. tp->high_seq = tp->snd_nxt;
  2354. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2355. TCP_NAGLE_OFF);
  2356. if (after(tp->snd_nxt, tp->high_seq))
  2357. return; /* Step 2.b */
  2358. tp->frto = 0;
  2359. }
  2360. }
  2361. if (recovered) {
  2362. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2363. tcp_try_undo_recovery(sk);
  2364. return;
  2365. }
  2366. if (tcp_is_reno(tp)) {
  2367. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2368. * delivered. Lower inflight to clock out (re)tranmissions.
  2369. */
  2370. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2371. tcp_add_reno_sack(sk);
  2372. else if (flag & FLAG_SND_UNA_ADVANCED)
  2373. tcp_reset_reno_sack(tp);
  2374. }
  2375. tcp_xmit_retransmit_queue(sk);
  2376. }
  2377. /* Undo during fast recovery after partial ACK. */
  2378. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2379. const int prior_unsacked)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2383. /* Plain luck! Hole if filled with delayed
  2384. * packet, rather than with a retransmit.
  2385. */
  2386. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2387. /* We are getting evidence that the reordering degree is higher
  2388. * than we realized. If there are no retransmits out then we
  2389. * can undo. Otherwise we clock out new packets but do not
  2390. * mark more packets lost or retransmit more.
  2391. */
  2392. if (tp->retrans_out) {
  2393. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2394. return true;
  2395. }
  2396. if (!tcp_any_retrans_done(sk))
  2397. tp->retrans_stamp = 0;
  2398. DBGUNDO(sk, "partial recovery");
  2399. tcp_undo_cwnd_reduction(sk, true);
  2400. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2401. tcp_try_keep_open(sk);
  2402. return true;
  2403. }
  2404. return false;
  2405. }
  2406. /* Process an event, which can update packets-in-flight not trivially.
  2407. * Main goal of this function is to calculate new estimate for left_out,
  2408. * taking into account both packets sitting in receiver's buffer and
  2409. * packets lost by network.
  2410. *
  2411. * Besides that it does CWND reduction, when packet loss is detected
  2412. * and changes state of machine.
  2413. *
  2414. * It does _not_ decide what to send, it is made in function
  2415. * tcp_xmit_retransmit_queue().
  2416. */
  2417. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2418. const int prior_unsacked,
  2419. bool is_dupack, int flag)
  2420. {
  2421. struct inet_connection_sock *icsk = inet_csk(sk);
  2422. struct tcp_sock *tp = tcp_sk(sk);
  2423. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2424. (tcp_fackets_out(tp) > tp->reordering));
  2425. int fast_rexmit = 0;
  2426. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2427. tp->sacked_out = 0;
  2428. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2429. tp->fackets_out = 0;
  2430. /* Now state machine starts.
  2431. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2432. if (flag & FLAG_ECE)
  2433. tp->prior_ssthresh = 0;
  2434. /* B. In all the states check for reneging SACKs. */
  2435. if (tcp_check_sack_reneging(sk, flag))
  2436. return;
  2437. /* C. Check consistency of the current state. */
  2438. tcp_verify_left_out(tp);
  2439. /* D. Check state exit conditions. State can be terminated
  2440. * when high_seq is ACKed. */
  2441. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2442. WARN_ON(tp->retrans_out != 0);
  2443. tp->retrans_stamp = 0;
  2444. } else if (!before(tp->snd_una, tp->high_seq)) {
  2445. switch (icsk->icsk_ca_state) {
  2446. case TCP_CA_CWR:
  2447. /* CWR is to be held something *above* high_seq
  2448. * is ACKed for CWR bit to reach receiver. */
  2449. if (tp->snd_una != tp->high_seq) {
  2450. tcp_end_cwnd_reduction(sk);
  2451. tcp_set_ca_state(sk, TCP_CA_Open);
  2452. }
  2453. break;
  2454. case TCP_CA_Recovery:
  2455. if (tcp_is_reno(tp))
  2456. tcp_reset_reno_sack(tp);
  2457. if (tcp_try_undo_recovery(sk))
  2458. return;
  2459. tcp_end_cwnd_reduction(sk);
  2460. break;
  2461. }
  2462. }
  2463. /* E. Process state. */
  2464. switch (icsk->icsk_ca_state) {
  2465. case TCP_CA_Recovery:
  2466. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2467. if (tcp_is_reno(tp) && is_dupack)
  2468. tcp_add_reno_sack(sk);
  2469. } else {
  2470. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2471. return;
  2472. /* Partial ACK arrived. Force fast retransmit. */
  2473. do_lost = tcp_is_reno(tp) ||
  2474. tcp_fackets_out(tp) > tp->reordering;
  2475. }
  2476. if (tcp_try_undo_dsack(sk)) {
  2477. tcp_try_keep_open(sk);
  2478. return;
  2479. }
  2480. break;
  2481. case TCP_CA_Loss:
  2482. tcp_process_loss(sk, flag, is_dupack);
  2483. if (icsk->icsk_ca_state != TCP_CA_Open)
  2484. return;
  2485. /* Fall through to processing in Open state. */
  2486. default:
  2487. if (tcp_is_reno(tp)) {
  2488. if (flag & FLAG_SND_UNA_ADVANCED)
  2489. tcp_reset_reno_sack(tp);
  2490. if (is_dupack)
  2491. tcp_add_reno_sack(sk);
  2492. }
  2493. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2494. tcp_try_undo_dsack(sk);
  2495. if (!tcp_time_to_recover(sk, flag)) {
  2496. tcp_try_to_open(sk, flag, prior_unsacked);
  2497. return;
  2498. }
  2499. /* MTU probe failure: don't reduce cwnd */
  2500. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2501. icsk->icsk_mtup.probe_size &&
  2502. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2503. tcp_mtup_probe_failed(sk);
  2504. /* Restores the reduction we did in tcp_mtup_probe() */
  2505. tp->snd_cwnd++;
  2506. tcp_simple_retransmit(sk);
  2507. return;
  2508. }
  2509. /* Otherwise enter Recovery state */
  2510. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2511. fast_rexmit = 1;
  2512. }
  2513. if (do_lost)
  2514. tcp_update_scoreboard(sk, fast_rexmit);
  2515. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2516. tcp_xmit_retransmit_queue(sk);
  2517. }
  2518. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2519. long seq_rtt_us, long sack_rtt_us)
  2520. {
  2521. const struct tcp_sock *tp = tcp_sk(sk);
  2522. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2523. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2524. * Karn's algorithm forbids taking RTT if some retransmitted data
  2525. * is acked (RFC6298).
  2526. */
  2527. if (flag & FLAG_RETRANS_DATA_ACKED)
  2528. seq_rtt_us = -1L;
  2529. if (seq_rtt_us < 0)
  2530. seq_rtt_us = sack_rtt_us;
  2531. /* RTTM Rule: A TSecr value received in a segment is used to
  2532. * update the averaged RTT measurement only if the segment
  2533. * acknowledges some new data, i.e., only if it advances the
  2534. * left edge of the send window.
  2535. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2536. */
  2537. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2538. flag & FLAG_ACKED)
  2539. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2540. if (seq_rtt_us < 0)
  2541. return false;
  2542. tcp_rtt_estimator(sk, seq_rtt_us);
  2543. tcp_set_rto(sk);
  2544. /* RFC6298: only reset backoff on valid RTT measurement. */
  2545. inet_csk(sk)->icsk_backoff = 0;
  2546. return true;
  2547. }
  2548. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2549. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2550. {
  2551. struct tcp_sock *tp = tcp_sk(sk);
  2552. long seq_rtt_us = -1L;
  2553. if (synack_stamp && !tp->total_retrans)
  2554. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2555. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2556. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2557. */
  2558. if (!tp->srtt_us)
  2559. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2560. }
  2561. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2562. {
  2563. const struct inet_connection_sock *icsk = inet_csk(sk);
  2564. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2565. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2566. }
  2567. /* Restart timer after forward progress on connection.
  2568. * RFC2988 recommends to restart timer to now+rto.
  2569. */
  2570. void tcp_rearm_rto(struct sock *sk)
  2571. {
  2572. const struct inet_connection_sock *icsk = inet_csk(sk);
  2573. struct tcp_sock *tp = tcp_sk(sk);
  2574. /* If the retrans timer is currently being used by Fast Open
  2575. * for SYN-ACK retrans purpose, stay put.
  2576. */
  2577. if (tp->fastopen_rsk)
  2578. return;
  2579. if (!tp->packets_out) {
  2580. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2581. } else {
  2582. u32 rto = inet_csk(sk)->icsk_rto;
  2583. /* Offset the time elapsed after installing regular RTO */
  2584. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2585. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2586. struct sk_buff *skb = tcp_write_queue_head(sk);
  2587. const u32 rto_time_stamp =
  2588. tcp_skb_timestamp(skb) + rto;
  2589. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2590. /* delta may not be positive if the socket is locked
  2591. * when the retrans timer fires and is rescheduled.
  2592. */
  2593. if (delta > 0)
  2594. rto = delta;
  2595. }
  2596. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2597. TCP_RTO_MAX);
  2598. }
  2599. }
  2600. /* This function is called when the delayed ER timer fires. TCP enters
  2601. * fast recovery and performs fast-retransmit.
  2602. */
  2603. void tcp_resume_early_retransmit(struct sock *sk)
  2604. {
  2605. struct tcp_sock *tp = tcp_sk(sk);
  2606. tcp_rearm_rto(sk);
  2607. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2608. if (!tp->do_early_retrans)
  2609. return;
  2610. tcp_enter_recovery(sk, false);
  2611. tcp_update_scoreboard(sk, 1);
  2612. tcp_xmit_retransmit_queue(sk);
  2613. }
  2614. /* If we get here, the whole TSO packet has not been acked. */
  2615. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2616. {
  2617. struct tcp_sock *tp = tcp_sk(sk);
  2618. u32 packets_acked;
  2619. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2620. packets_acked = tcp_skb_pcount(skb);
  2621. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2622. return 0;
  2623. packets_acked -= tcp_skb_pcount(skb);
  2624. if (packets_acked) {
  2625. BUG_ON(tcp_skb_pcount(skb) == 0);
  2626. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2627. }
  2628. return packets_acked;
  2629. }
  2630. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2631. u32 prior_snd_una)
  2632. {
  2633. const struct skb_shared_info *shinfo;
  2634. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2635. if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
  2636. return;
  2637. shinfo = skb_shinfo(skb);
  2638. if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
  2639. between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
  2640. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2641. }
  2642. /* Remove acknowledged frames from the retransmission queue. If our packet
  2643. * is before the ack sequence we can discard it as it's confirmed to have
  2644. * arrived at the other end.
  2645. */
  2646. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2647. u32 prior_snd_una,
  2648. struct tcp_sacktag_state *sack)
  2649. {
  2650. const struct inet_connection_sock *icsk = inet_csk(sk);
  2651. struct skb_mstamp first_ackt, last_ackt, now;
  2652. struct tcp_sock *tp = tcp_sk(sk);
  2653. u32 prior_sacked = tp->sacked_out;
  2654. u32 reord = tp->packets_out;
  2655. bool fully_acked = true;
  2656. long sack_rtt_us = -1L;
  2657. long seq_rtt_us = -1L;
  2658. long ca_rtt_us = -1L;
  2659. struct sk_buff *skb;
  2660. u32 pkts_acked = 0;
  2661. bool rtt_update;
  2662. int flag = 0;
  2663. first_ackt.v64 = 0;
  2664. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2665. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2666. u8 sacked = scb->sacked;
  2667. u32 acked_pcount;
  2668. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2669. /* Determine how many packets and what bytes were acked, tso and else */
  2670. if (after(scb->end_seq, tp->snd_una)) {
  2671. if (tcp_skb_pcount(skb) == 1 ||
  2672. !after(tp->snd_una, scb->seq))
  2673. break;
  2674. acked_pcount = tcp_tso_acked(sk, skb);
  2675. if (!acked_pcount)
  2676. break;
  2677. fully_acked = false;
  2678. } else {
  2679. /* Speedup tcp_unlink_write_queue() and next loop */
  2680. prefetchw(skb->next);
  2681. acked_pcount = tcp_skb_pcount(skb);
  2682. }
  2683. if (unlikely(sacked & TCPCB_RETRANS)) {
  2684. if (sacked & TCPCB_SACKED_RETRANS)
  2685. tp->retrans_out -= acked_pcount;
  2686. flag |= FLAG_RETRANS_DATA_ACKED;
  2687. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2688. last_ackt = skb->skb_mstamp;
  2689. WARN_ON_ONCE(last_ackt.v64 == 0);
  2690. if (!first_ackt.v64)
  2691. first_ackt = last_ackt;
  2692. reord = min(pkts_acked, reord);
  2693. if (!after(scb->end_seq, tp->high_seq))
  2694. flag |= FLAG_ORIG_SACK_ACKED;
  2695. }
  2696. if (sacked & TCPCB_SACKED_ACKED)
  2697. tp->sacked_out -= acked_pcount;
  2698. if (sacked & TCPCB_LOST)
  2699. tp->lost_out -= acked_pcount;
  2700. tp->packets_out -= acked_pcount;
  2701. pkts_acked += acked_pcount;
  2702. /* Initial outgoing SYN's get put onto the write_queue
  2703. * just like anything else we transmit. It is not
  2704. * true data, and if we misinform our callers that
  2705. * this ACK acks real data, we will erroneously exit
  2706. * connection startup slow start one packet too
  2707. * quickly. This is severely frowned upon behavior.
  2708. */
  2709. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2710. flag |= FLAG_DATA_ACKED;
  2711. } else {
  2712. flag |= FLAG_SYN_ACKED;
  2713. tp->retrans_stamp = 0;
  2714. }
  2715. if (!fully_acked)
  2716. break;
  2717. tcp_unlink_write_queue(skb, sk);
  2718. sk_wmem_free_skb(sk, skb);
  2719. if (unlikely(skb == tp->retransmit_skb_hint))
  2720. tp->retransmit_skb_hint = NULL;
  2721. if (unlikely(skb == tp->lost_skb_hint))
  2722. tp->lost_skb_hint = NULL;
  2723. }
  2724. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2725. tp->snd_up = tp->snd_una;
  2726. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2727. flag |= FLAG_SACK_RENEGING;
  2728. skb_mstamp_get(&now);
  2729. if (likely(first_ackt.v64)) {
  2730. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2731. ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2732. }
  2733. if (sack->first_sackt.v64) {
  2734. sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
  2735. ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
  2736. }
  2737. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2738. if (flag & FLAG_ACKED) {
  2739. tcp_rearm_rto(sk);
  2740. if (unlikely(icsk->icsk_mtup.probe_size &&
  2741. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2742. tcp_mtup_probe_success(sk);
  2743. }
  2744. if (tcp_is_reno(tp)) {
  2745. tcp_remove_reno_sacks(sk, pkts_acked);
  2746. } else {
  2747. int delta;
  2748. /* Non-retransmitted hole got filled? That's reordering */
  2749. if (reord < prior_fackets)
  2750. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2751. delta = tcp_is_fack(tp) ? pkts_acked :
  2752. prior_sacked - tp->sacked_out;
  2753. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2754. }
  2755. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2756. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2757. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2758. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2759. * after when the head was last (re)transmitted. Otherwise the
  2760. * timeout may continue to extend in loss recovery.
  2761. */
  2762. tcp_rearm_rto(sk);
  2763. }
  2764. if (icsk->icsk_ca_ops->pkts_acked)
  2765. icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
  2766. #if FASTRETRANS_DEBUG > 0
  2767. WARN_ON((int)tp->sacked_out < 0);
  2768. WARN_ON((int)tp->lost_out < 0);
  2769. WARN_ON((int)tp->retrans_out < 0);
  2770. if (!tp->packets_out && tcp_is_sack(tp)) {
  2771. icsk = inet_csk(sk);
  2772. if (tp->lost_out) {
  2773. pr_debug("Leak l=%u %d\n",
  2774. tp->lost_out, icsk->icsk_ca_state);
  2775. tp->lost_out = 0;
  2776. }
  2777. if (tp->sacked_out) {
  2778. pr_debug("Leak s=%u %d\n",
  2779. tp->sacked_out, icsk->icsk_ca_state);
  2780. tp->sacked_out = 0;
  2781. }
  2782. if (tp->retrans_out) {
  2783. pr_debug("Leak r=%u %d\n",
  2784. tp->retrans_out, icsk->icsk_ca_state);
  2785. tp->retrans_out = 0;
  2786. }
  2787. }
  2788. #endif
  2789. return flag;
  2790. }
  2791. static void tcp_ack_probe(struct sock *sk)
  2792. {
  2793. const struct tcp_sock *tp = tcp_sk(sk);
  2794. struct inet_connection_sock *icsk = inet_csk(sk);
  2795. /* Was it a usable window open? */
  2796. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2797. icsk->icsk_backoff = 0;
  2798. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2799. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2800. * This function is not for random using!
  2801. */
  2802. } else {
  2803. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2804. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2805. when, TCP_RTO_MAX);
  2806. }
  2807. }
  2808. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2809. {
  2810. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2811. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2812. }
  2813. /* Decide wheather to run the increase function of congestion control. */
  2814. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2815. {
  2816. if (tcp_in_cwnd_reduction(sk))
  2817. return false;
  2818. /* If reordering is high then always grow cwnd whenever data is
  2819. * delivered regardless of its ordering. Otherwise stay conservative
  2820. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2821. * new SACK or ECE mark may first advance cwnd here and later reduce
  2822. * cwnd in tcp_fastretrans_alert() based on more states.
  2823. */
  2824. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2825. return flag & FLAG_FORWARD_PROGRESS;
  2826. return flag & FLAG_DATA_ACKED;
  2827. }
  2828. /* Check that window update is acceptable.
  2829. * The function assumes that snd_una<=ack<=snd_next.
  2830. */
  2831. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2832. const u32 ack, const u32 ack_seq,
  2833. const u32 nwin)
  2834. {
  2835. return after(ack, tp->snd_una) ||
  2836. after(ack_seq, tp->snd_wl1) ||
  2837. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2838. }
  2839. /* If we update tp->snd_una, also update tp->bytes_acked */
  2840. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2841. {
  2842. u32 delta = ack - tp->snd_una;
  2843. u64_stats_update_begin(&tp->syncp);
  2844. tp->bytes_acked += delta;
  2845. u64_stats_update_end(&tp->syncp);
  2846. tp->snd_una = ack;
  2847. }
  2848. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2849. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2850. {
  2851. u32 delta = seq - tp->rcv_nxt;
  2852. u64_stats_update_begin(&tp->syncp);
  2853. tp->bytes_received += delta;
  2854. u64_stats_update_end(&tp->syncp);
  2855. tp->rcv_nxt = seq;
  2856. }
  2857. /* Update our send window.
  2858. *
  2859. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2860. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2861. */
  2862. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2863. u32 ack_seq)
  2864. {
  2865. struct tcp_sock *tp = tcp_sk(sk);
  2866. int flag = 0;
  2867. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2868. if (likely(!tcp_hdr(skb)->syn))
  2869. nwin <<= tp->rx_opt.snd_wscale;
  2870. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2871. flag |= FLAG_WIN_UPDATE;
  2872. tcp_update_wl(tp, ack_seq);
  2873. if (tp->snd_wnd != nwin) {
  2874. tp->snd_wnd = nwin;
  2875. /* Note, it is the only place, where
  2876. * fast path is recovered for sending TCP.
  2877. */
  2878. tp->pred_flags = 0;
  2879. tcp_fast_path_check(sk);
  2880. if (nwin > tp->max_window) {
  2881. tp->max_window = nwin;
  2882. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2883. }
  2884. }
  2885. }
  2886. tcp_snd_una_update(tp, ack);
  2887. return flag;
  2888. }
  2889. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2890. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2891. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2892. * attacks that send repeated SYNs or ACKs for the same connection. To
  2893. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2894. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2895. */
  2896. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2897. int mib_idx, u32 *last_oow_ack_time)
  2898. {
  2899. /* Data packets without SYNs are not likely part of an ACK loop. */
  2900. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2901. !tcp_hdr(skb)->syn)
  2902. goto not_rate_limited;
  2903. if (*last_oow_ack_time) {
  2904. s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
  2905. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2906. NET_INC_STATS_BH(net, mib_idx);
  2907. return true; /* rate-limited: don't send yet! */
  2908. }
  2909. }
  2910. *last_oow_ack_time = tcp_time_stamp;
  2911. not_rate_limited:
  2912. return false; /* not rate-limited: go ahead, send dupack now! */
  2913. }
  2914. /* RFC 5961 7 [ACK Throttling] */
  2915. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2916. {
  2917. /* unprotected vars, we dont care of overwrites */
  2918. static u32 challenge_timestamp;
  2919. static unsigned int challenge_count;
  2920. struct tcp_sock *tp = tcp_sk(sk);
  2921. u32 now;
  2922. /* First check our per-socket dupack rate limit. */
  2923. if (tcp_oow_rate_limited(sock_net(sk), skb,
  2924. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2925. &tp->last_oow_ack_time))
  2926. return;
  2927. /* Then check the check host-wide RFC 5961 rate limit. */
  2928. now = jiffies / HZ;
  2929. if (now != challenge_timestamp) {
  2930. challenge_timestamp = now;
  2931. challenge_count = 0;
  2932. }
  2933. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2934. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2935. tcp_send_ack(sk);
  2936. }
  2937. }
  2938. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2939. {
  2940. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2941. tp->rx_opt.ts_recent_stamp = get_seconds();
  2942. }
  2943. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2944. {
  2945. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2946. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2947. * extra check below makes sure this can only happen
  2948. * for pure ACK frames. -DaveM
  2949. *
  2950. * Not only, also it occurs for expired timestamps.
  2951. */
  2952. if (tcp_paws_check(&tp->rx_opt, 0))
  2953. tcp_store_ts_recent(tp);
  2954. }
  2955. }
  2956. /* This routine deals with acks during a TLP episode.
  2957. * We mark the end of a TLP episode on receiving TLP dupack or when
  2958. * ack is after tlp_high_seq.
  2959. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2960. */
  2961. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2962. {
  2963. struct tcp_sock *tp = tcp_sk(sk);
  2964. if (before(ack, tp->tlp_high_seq))
  2965. return;
  2966. if (flag & FLAG_DSACKING_ACK) {
  2967. /* This DSACK means original and TLP probe arrived; no loss */
  2968. tp->tlp_high_seq = 0;
  2969. } else if (after(ack, tp->tlp_high_seq)) {
  2970. /* ACK advances: there was a loss, so reduce cwnd. Reset
  2971. * tlp_high_seq in tcp_init_cwnd_reduction()
  2972. */
  2973. tcp_init_cwnd_reduction(sk);
  2974. tcp_set_ca_state(sk, TCP_CA_CWR);
  2975. tcp_end_cwnd_reduction(sk);
  2976. tcp_try_keep_open(sk);
  2977. NET_INC_STATS_BH(sock_net(sk),
  2978. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2979. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  2980. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  2981. /* Pure dupack: original and TLP probe arrived; no loss */
  2982. tp->tlp_high_seq = 0;
  2983. }
  2984. }
  2985. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  2986. {
  2987. const struct inet_connection_sock *icsk = inet_csk(sk);
  2988. if (icsk->icsk_ca_ops->in_ack_event)
  2989. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  2990. }
  2991. /* This routine deals with incoming acks, but not outgoing ones. */
  2992. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2993. {
  2994. struct inet_connection_sock *icsk = inet_csk(sk);
  2995. struct tcp_sock *tp = tcp_sk(sk);
  2996. struct tcp_sacktag_state sack_state;
  2997. u32 prior_snd_una = tp->snd_una;
  2998. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2999. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3000. bool is_dupack = false;
  3001. u32 prior_fackets;
  3002. int prior_packets = tp->packets_out;
  3003. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  3004. int acked = 0; /* Number of packets newly acked */
  3005. sack_state.first_sackt.v64 = 0;
  3006. /* We very likely will need to access write queue head. */
  3007. prefetchw(sk->sk_write_queue.next);
  3008. /* If the ack is older than previous acks
  3009. * then we can probably ignore it.
  3010. */
  3011. if (before(ack, prior_snd_una)) {
  3012. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3013. if (before(ack, prior_snd_una - tp->max_window)) {
  3014. tcp_send_challenge_ack(sk, skb);
  3015. return -1;
  3016. }
  3017. goto old_ack;
  3018. }
  3019. /* If the ack includes data we haven't sent yet, discard
  3020. * this segment (RFC793 Section 3.9).
  3021. */
  3022. if (after(ack, tp->snd_nxt))
  3023. goto invalid_ack;
  3024. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  3025. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  3026. tcp_rearm_rto(sk);
  3027. if (after(ack, prior_snd_una)) {
  3028. flag |= FLAG_SND_UNA_ADVANCED;
  3029. icsk->icsk_retransmits = 0;
  3030. }
  3031. prior_fackets = tp->fackets_out;
  3032. /* ts_recent update must be made after we are sure that the packet
  3033. * is in window.
  3034. */
  3035. if (flag & FLAG_UPDATE_TS_RECENT)
  3036. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3037. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3038. /* Window is constant, pure forward advance.
  3039. * No more checks are required.
  3040. * Note, we use the fact that SND.UNA>=SND.WL2.
  3041. */
  3042. tcp_update_wl(tp, ack_seq);
  3043. tcp_snd_una_update(tp, ack);
  3044. flag |= FLAG_WIN_UPDATE;
  3045. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3046. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3047. } else {
  3048. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3049. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3050. flag |= FLAG_DATA;
  3051. else
  3052. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3053. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3054. if (TCP_SKB_CB(skb)->sacked)
  3055. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3056. &sack_state);
  3057. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3058. flag |= FLAG_ECE;
  3059. ack_ev_flags |= CA_ACK_ECE;
  3060. }
  3061. if (flag & FLAG_WIN_UPDATE)
  3062. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3063. tcp_in_ack_event(sk, ack_ev_flags);
  3064. }
  3065. /* We passed data and got it acked, remove any soft error
  3066. * log. Something worked...
  3067. */
  3068. sk->sk_err_soft = 0;
  3069. icsk->icsk_probes_out = 0;
  3070. tp->rcv_tstamp = tcp_time_stamp;
  3071. if (!prior_packets)
  3072. goto no_queue;
  3073. /* See if we can take anything off of the retransmit queue. */
  3074. acked = tp->packets_out;
  3075. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  3076. &sack_state);
  3077. acked -= tp->packets_out;
  3078. /* Advance cwnd if state allows */
  3079. if (tcp_may_raise_cwnd(sk, flag))
  3080. tcp_cong_avoid(sk, ack, acked);
  3081. if (tcp_ack_is_dubious(sk, flag)) {
  3082. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3083. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3084. is_dupack, flag);
  3085. }
  3086. if (tp->tlp_high_seq)
  3087. tcp_process_tlp_ack(sk, ack, flag);
  3088. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3089. struct dst_entry *dst = __sk_dst_get(sk);
  3090. if (dst)
  3091. dst_confirm(dst);
  3092. }
  3093. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  3094. tcp_schedule_loss_probe(sk);
  3095. tcp_update_pacing_rate(sk);
  3096. return 1;
  3097. no_queue:
  3098. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3099. if (flag & FLAG_DSACKING_ACK)
  3100. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3101. is_dupack, flag);
  3102. /* If this ack opens up a zero window, clear backoff. It was
  3103. * being used to time the probes, and is probably far higher than
  3104. * it needs to be for normal retransmission.
  3105. */
  3106. if (tcp_send_head(sk))
  3107. tcp_ack_probe(sk);
  3108. if (tp->tlp_high_seq)
  3109. tcp_process_tlp_ack(sk, ack, flag);
  3110. return 1;
  3111. invalid_ack:
  3112. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3113. return -1;
  3114. old_ack:
  3115. /* If data was SACKed, tag it and see if we should send more data.
  3116. * If data was DSACKed, see if we can undo a cwnd reduction.
  3117. */
  3118. if (TCP_SKB_CB(skb)->sacked) {
  3119. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3120. &sack_state);
  3121. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3122. is_dupack, flag);
  3123. }
  3124. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3125. return 0;
  3126. }
  3127. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3128. bool syn, struct tcp_fastopen_cookie *foc,
  3129. bool exp_opt)
  3130. {
  3131. /* Valid only in SYN or SYN-ACK with an even length. */
  3132. if (!foc || !syn || len < 0 || (len & 1))
  3133. return;
  3134. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3135. len <= TCP_FASTOPEN_COOKIE_MAX)
  3136. memcpy(foc->val, cookie, len);
  3137. else if (len != 0)
  3138. len = -1;
  3139. foc->len = len;
  3140. foc->exp = exp_opt;
  3141. }
  3142. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3143. * But, this can also be called on packets in the established flow when
  3144. * the fast version below fails.
  3145. */
  3146. void tcp_parse_options(const struct sk_buff *skb,
  3147. struct tcp_options_received *opt_rx, int estab,
  3148. struct tcp_fastopen_cookie *foc)
  3149. {
  3150. const unsigned char *ptr;
  3151. const struct tcphdr *th = tcp_hdr(skb);
  3152. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3153. ptr = (const unsigned char *)(th + 1);
  3154. opt_rx->saw_tstamp = 0;
  3155. while (length > 0) {
  3156. int opcode = *ptr++;
  3157. int opsize;
  3158. switch (opcode) {
  3159. case TCPOPT_EOL:
  3160. return;
  3161. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3162. length--;
  3163. continue;
  3164. default:
  3165. opsize = *ptr++;
  3166. if (opsize < 2) /* "silly options" */
  3167. return;
  3168. if (opsize > length)
  3169. return; /* don't parse partial options */
  3170. switch (opcode) {
  3171. case TCPOPT_MSS:
  3172. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3173. u16 in_mss = get_unaligned_be16(ptr);
  3174. if (in_mss) {
  3175. if (opt_rx->user_mss &&
  3176. opt_rx->user_mss < in_mss)
  3177. in_mss = opt_rx->user_mss;
  3178. opt_rx->mss_clamp = in_mss;
  3179. }
  3180. }
  3181. break;
  3182. case TCPOPT_WINDOW:
  3183. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3184. !estab && sysctl_tcp_window_scaling) {
  3185. __u8 snd_wscale = *(__u8 *)ptr;
  3186. opt_rx->wscale_ok = 1;
  3187. if (snd_wscale > 14) {
  3188. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3189. __func__,
  3190. snd_wscale);
  3191. snd_wscale = 14;
  3192. }
  3193. opt_rx->snd_wscale = snd_wscale;
  3194. }
  3195. break;
  3196. case TCPOPT_TIMESTAMP:
  3197. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3198. ((estab && opt_rx->tstamp_ok) ||
  3199. (!estab && sysctl_tcp_timestamps))) {
  3200. opt_rx->saw_tstamp = 1;
  3201. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3202. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3203. }
  3204. break;
  3205. case TCPOPT_SACK_PERM:
  3206. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3207. !estab && sysctl_tcp_sack) {
  3208. opt_rx->sack_ok = TCP_SACK_SEEN;
  3209. tcp_sack_reset(opt_rx);
  3210. }
  3211. break;
  3212. case TCPOPT_SACK:
  3213. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3214. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3215. opt_rx->sack_ok) {
  3216. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3217. }
  3218. break;
  3219. #ifdef CONFIG_TCP_MD5SIG
  3220. case TCPOPT_MD5SIG:
  3221. /*
  3222. * The MD5 Hash has already been
  3223. * checked (see tcp_v{4,6}_do_rcv()).
  3224. */
  3225. break;
  3226. #endif
  3227. case TCPOPT_FASTOPEN:
  3228. tcp_parse_fastopen_option(
  3229. opsize - TCPOLEN_FASTOPEN_BASE,
  3230. ptr, th->syn, foc, false);
  3231. break;
  3232. case TCPOPT_EXP:
  3233. /* Fast Open option shares code 254 using a
  3234. * 16 bits magic number.
  3235. */
  3236. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3237. get_unaligned_be16(ptr) ==
  3238. TCPOPT_FASTOPEN_MAGIC)
  3239. tcp_parse_fastopen_option(opsize -
  3240. TCPOLEN_EXP_FASTOPEN_BASE,
  3241. ptr + 2, th->syn, foc, true);
  3242. break;
  3243. }
  3244. ptr += opsize-2;
  3245. length -= opsize;
  3246. }
  3247. }
  3248. }
  3249. EXPORT_SYMBOL(tcp_parse_options);
  3250. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3251. {
  3252. const __be32 *ptr = (const __be32 *)(th + 1);
  3253. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3254. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3255. tp->rx_opt.saw_tstamp = 1;
  3256. ++ptr;
  3257. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3258. ++ptr;
  3259. if (*ptr)
  3260. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3261. else
  3262. tp->rx_opt.rcv_tsecr = 0;
  3263. return true;
  3264. }
  3265. return false;
  3266. }
  3267. /* Fast parse options. This hopes to only see timestamps.
  3268. * If it is wrong it falls back on tcp_parse_options().
  3269. */
  3270. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3271. const struct tcphdr *th, struct tcp_sock *tp)
  3272. {
  3273. /* In the spirit of fast parsing, compare doff directly to constant
  3274. * values. Because equality is used, short doff can be ignored here.
  3275. */
  3276. if (th->doff == (sizeof(*th) / 4)) {
  3277. tp->rx_opt.saw_tstamp = 0;
  3278. return false;
  3279. } else if (tp->rx_opt.tstamp_ok &&
  3280. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3281. if (tcp_parse_aligned_timestamp(tp, th))
  3282. return true;
  3283. }
  3284. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3285. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3286. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3287. return true;
  3288. }
  3289. #ifdef CONFIG_TCP_MD5SIG
  3290. /*
  3291. * Parse MD5 Signature option
  3292. */
  3293. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3294. {
  3295. int length = (th->doff << 2) - sizeof(*th);
  3296. const u8 *ptr = (const u8 *)(th + 1);
  3297. /* If the TCP option is too short, we can short cut */
  3298. if (length < TCPOLEN_MD5SIG)
  3299. return NULL;
  3300. while (length > 0) {
  3301. int opcode = *ptr++;
  3302. int opsize;
  3303. switch (opcode) {
  3304. case TCPOPT_EOL:
  3305. return NULL;
  3306. case TCPOPT_NOP:
  3307. length--;
  3308. continue;
  3309. default:
  3310. opsize = *ptr++;
  3311. if (opsize < 2 || opsize > length)
  3312. return NULL;
  3313. if (opcode == TCPOPT_MD5SIG)
  3314. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3315. }
  3316. ptr += opsize - 2;
  3317. length -= opsize;
  3318. }
  3319. return NULL;
  3320. }
  3321. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3322. #endif
  3323. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3324. *
  3325. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3326. * it can pass through stack. So, the following predicate verifies that
  3327. * this segment is not used for anything but congestion avoidance or
  3328. * fast retransmit. Moreover, we even are able to eliminate most of such
  3329. * second order effects, if we apply some small "replay" window (~RTO)
  3330. * to timestamp space.
  3331. *
  3332. * All these measures still do not guarantee that we reject wrapped ACKs
  3333. * on networks with high bandwidth, when sequence space is recycled fastly,
  3334. * but it guarantees that such events will be very rare and do not affect
  3335. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3336. * buggy extension.
  3337. *
  3338. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3339. * states that events when retransmit arrives after original data are rare.
  3340. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3341. * the biggest problem on large power networks even with minor reordering.
  3342. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3343. * up to bandwidth of 18Gigabit/sec. 8) ]
  3344. */
  3345. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3346. {
  3347. const struct tcp_sock *tp = tcp_sk(sk);
  3348. const struct tcphdr *th = tcp_hdr(skb);
  3349. u32 seq = TCP_SKB_CB(skb)->seq;
  3350. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3351. return (/* 1. Pure ACK with correct sequence number. */
  3352. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3353. /* 2. ... and duplicate ACK. */
  3354. ack == tp->snd_una &&
  3355. /* 3. ... and does not update window. */
  3356. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3357. /* 4. ... and sits in replay window. */
  3358. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3359. }
  3360. static inline bool tcp_paws_discard(const struct sock *sk,
  3361. const struct sk_buff *skb)
  3362. {
  3363. const struct tcp_sock *tp = tcp_sk(sk);
  3364. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3365. !tcp_disordered_ack(sk, skb);
  3366. }
  3367. /* Check segment sequence number for validity.
  3368. *
  3369. * Segment controls are considered valid, if the segment
  3370. * fits to the window after truncation to the window. Acceptability
  3371. * of data (and SYN, FIN, of course) is checked separately.
  3372. * See tcp_data_queue(), for example.
  3373. *
  3374. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3375. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3376. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3377. * (borrowed from freebsd)
  3378. */
  3379. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3380. {
  3381. return !before(end_seq, tp->rcv_wup) &&
  3382. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3383. }
  3384. /* When we get a reset we do this. */
  3385. void tcp_reset(struct sock *sk)
  3386. {
  3387. /* We want the right error as BSD sees it (and indeed as we do). */
  3388. switch (sk->sk_state) {
  3389. case TCP_SYN_SENT:
  3390. sk->sk_err = ECONNREFUSED;
  3391. break;
  3392. case TCP_CLOSE_WAIT:
  3393. sk->sk_err = EPIPE;
  3394. break;
  3395. case TCP_CLOSE:
  3396. return;
  3397. default:
  3398. sk->sk_err = ECONNRESET;
  3399. }
  3400. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3401. smp_wmb();
  3402. if (!sock_flag(sk, SOCK_DEAD))
  3403. sk->sk_error_report(sk);
  3404. tcp_done(sk);
  3405. }
  3406. /*
  3407. * Process the FIN bit. This now behaves as it is supposed to work
  3408. * and the FIN takes effect when it is validly part of sequence
  3409. * space. Not before when we get holes.
  3410. *
  3411. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3412. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3413. * TIME-WAIT)
  3414. *
  3415. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3416. * close and we go into CLOSING (and later onto TIME-WAIT)
  3417. *
  3418. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3419. */
  3420. static void tcp_fin(struct sock *sk)
  3421. {
  3422. struct tcp_sock *tp = tcp_sk(sk);
  3423. const struct dst_entry *dst;
  3424. inet_csk_schedule_ack(sk);
  3425. sk->sk_shutdown |= RCV_SHUTDOWN;
  3426. sock_set_flag(sk, SOCK_DONE);
  3427. switch (sk->sk_state) {
  3428. case TCP_SYN_RECV:
  3429. case TCP_ESTABLISHED:
  3430. /* Move to CLOSE_WAIT */
  3431. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3432. dst = __sk_dst_get(sk);
  3433. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3434. inet_csk(sk)->icsk_ack.pingpong = 1;
  3435. break;
  3436. case TCP_CLOSE_WAIT:
  3437. case TCP_CLOSING:
  3438. /* Received a retransmission of the FIN, do
  3439. * nothing.
  3440. */
  3441. break;
  3442. case TCP_LAST_ACK:
  3443. /* RFC793: Remain in the LAST-ACK state. */
  3444. break;
  3445. case TCP_FIN_WAIT1:
  3446. /* This case occurs when a simultaneous close
  3447. * happens, we must ack the received FIN and
  3448. * enter the CLOSING state.
  3449. */
  3450. tcp_send_ack(sk);
  3451. tcp_set_state(sk, TCP_CLOSING);
  3452. break;
  3453. case TCP_FIN_WAIT2:
  3454. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3455. tcp_send_ack(sk);
  3456. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3457. break;
  3458. default:
  3459. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3460. * cases we should never reach this piece of code.
  3461. */
  3462. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3463. __func__, sk->sk_state);
  3464. break;
  3465. }
  3466. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3467. * Probably, we should reset in this case. For now drop them.
  3468. */
  3469. __skb_queue_purge(&tp->out_of_order_queue);
  3470. if (tcp_is_sack(tp))
  3471. tcp_sack_reset(&tp->rx_opt);
  3472. sk_mem_reclaim(sk);
  3473. if (!sock_flag(sk, SOCK_DEAD)) {
  3474. sk->sk_state_change(sk);
  3475. /* Do not send POLL_HUP for half duplex close. */
  3476. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3477. sk->sk_state == TCP_CLOSE)
  3478. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3479. else
  3480. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3481. }
  3482. }
  3483. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3484. u32 end_seq)
  3485. {
  3486. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3487. if (before(seq, sp->start_seq))
  3488. sp->start_seq = seq;
  3489. if (after(end_seq, sp->end_seq))
  3490. sp->end_seq = end_seq;
  3491. return true;
  3492. }
  3493. return false;
  3494. }
  3495. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3496. {
  3497. struct tcp_sock *tp = tcp_sk(sk);
  3498. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3499. int mib_idx;
  3500. if (before(seq, tp->rcv_nxt))
  3501. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3502. else
  3503. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3504. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3505. tp->rx_opt.dsack = 1;
  3506. tp->duplicate_sack[0].start_seq = seq;
  3507. tp->duplicate_sack[0].end_seq = end_seq;
  3508. }
  3509. }
  3510. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3511. {
  3512. struct tcp_sock *tp = tcp_sk(sk);
  3513. if (!tp->rx_opt.dsack)
  3514. tcp_dsack_set(sk, seq, end_seq);
  3515. else
  3516. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3517. }
  3518. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3519. {
  3520. struct tcp_sock *tp = tcp_sk(sk);
  3521. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3522. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3523. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3524. tcp_enter_quickack_mode(sk);
  3525. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3526. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3527. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3528. end_seq = tp->rcv_nxt;
  3529. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3530. }
  3531. }
  3532. tcp_send_ack(sk);
  3533. }
  3534. /* These routines update the SACK block as out-of-order packets arrive or
  3535. * in-order packets close up the sequence space.
  3536. */
  3537. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3538. {
  3539. int this_sack;
  3540. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3541. struct tcp_sack_block *swalk = sp + 1;
  3542. /* See if the recent change to the first SACK eats into
  3543. * or hits the sequence space of other SACK blocks, if so coalesce.
  3544. */
  3545. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3546. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3547. int i;
  3548. /* Zap SWALK, by moving every further SACK up by one slot.
  3549. * Decrease num_sacks.
  3550. */
  3551. tp->rx_opt.num_sacks--;
  3552. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3553. sp[i] = sp[i + 1];
  3554. continue;
  3555. }
  3556. this_sack++, swalk++;
  3557. }
  3558. }
  3559. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3560. {
  3561. struct tcp_sock *tp = tcp_sk(sk);
  3562. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3563. int cur_sacks = tp->rx_opt.num_sacks;
  3564. int this_sack;
  3565. if (!cur_sacks)
  3566. goto new_sack;
  3567. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3568. if (tcp_sack_extend(sp, seq, end_seq)) {
  3569. /* Rotate this_sack to the first one. */
  3570. for (; this_sack > 0; this_sack--, sp--)
  3571. swap(*sp, *(sp - 1));
  3572. if (cur_sacks > 1)
  3573. tcp_sack_maybe_coalesce(tp);
  3574. return;
  3575. }
  3576. }
  3577. /* Could not find an adjacent existing SACK, build a new one,
  3578. * put it at the front, and shift everyone else down. We
  3579. * always know there is at least one SACK present already here.
  3580. *
  3581. * If the sack array is full, forget about the last one.
  3582. */
  3583. if (this_sack >= TCP_NUM_SACKS) {
  3584. this_sack--;
  3585. tp->rx_opt.num_sacks--;
  3586. sp--;
  3587. }
  3588. for (; this_sack > 0; this_sack--, sp--)
  3589. *sp = *(sp - 1);
  3590. new_sack:
  3591. /* Build the new head SACK, and we're done. */
  3592. sp->start_seq = seq;
  3593. sp->end_seq = end_seq;
  3594. tp->rx_opt.num_sacks++;
  3595. }
  3596. /* RCV.NXT advances, some SACKs should be eaten. */
  3597. static void tcp_sack_remove(struct tcp_sock *tp)
  3598. {
  3599. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3600. int num_sacks = tp->rx_opt.num_sacks;
  3601. int this_sack;
  3602. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3603. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3604. tp->rx_opt.num_sacks = 0;
  3605. return;
  3606. }
  3607. for (this_sack = 0; this_sack < num_sacks;) {
  3608. /* Check if the start of the sack is covered by RCV.NXT. */
  3609. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3610. int i;
  3611. /* RCV.NXT must cover all the block! */
  3612. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3613. /* Zap this SACK, by moving forward any other SACKS. */
  3614. for (i = this_sack+1; i < num_sacks; i++)
  3615. tp->selective_acks[i-1] = tp->selective_acks[i];
  3616. num_sacks--;
  3617. continue;
  3618. }
  3619. this_sack++;
  3620. sp++;
  3621. }
  3622. tp->rx_opt.num_sacks = num_sacks;
  3623. }
  3624. /**
  3625. * tcp_try_coalesce - try to merge skb to prior one
  3626. * @sk: socket
  3627. * @to: prior buffer
  3628. * @from: buffer to add in queue
  3629. * @fragstolen: pointer to boolean
  3630. *
  3631. * Before queueing skb @from after @to, try to merge them
  3632. * to reduce overall memory use and queue lengths, if cost is small.
  3633. * Packets in ofo or receive queues can stay a long time.
  3634. * Better try to coalesce them right now to avoid future collapses.
  3635. * Returns true if caller should free @from instead of queueing it
  3636. */
  3637. static bool tcp_try_coalesce(struct sock *sk,
  3638. struct sk_buff *to,
  3639. struct sk_buff *from,
  3640. bool *fragstolen)
  3641. {
  3642. int delta;
  3643. *fragstolen = false;
  3644. /* Its possible this segment overlaps with prior segment in queue */
  3645. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3646. return false;
  3647. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3648. return false;
  3649. atomic_add(delta, &sk->sk_rmem_alloc);
  3650. sk_mem_charge(sk, delta);
  3651. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3652. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3653. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3654. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3655. return true;
  3656. }
  3657. /* This one checks to see if we can put data from the
  3658. * out_of_order queue into the receive_queue.
  3659. */
  3660. static void tcp_ofo_queue(struct sock *sk)
  3661. {
  3662. struct tcp_sock *tp = tcp_sk(sk);
  3663. __u32 dsack_high = tp->rcv_nxt;
  3664. struct sk_buff *skb, *tail;
  3665. bool fragstolen, eaten;
  3666. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3667. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3668. break;
  3669. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3670. __u32 dsack = dsack_high;
  3671. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3672. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3673. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3674. }
  3675. __skb_unlink(skb, &tp->out_of_order_queue);
  3676. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3677. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3678. __kfree_skb(skb);
  3679. continue;
  3680. }
  3681. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3682. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3683. TCP_SKB_CB(skb)->end_seq);
  3684. tail = skb_peek_tail(&sk->sk_receive_queue);
  3685. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3686. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3687. if (!eaten)
  3688. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3689. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3690. tcp_fin(sk);
  3691. if (eaten)
  3692. kfree_skb_partial(skb, fragstolen);
  3693. }
  3694. }
  3695. static bool tcp_prune_ofo_queue(struct sock *sk);
  3696. static int tcp_prune_queue(struct sock *sk);
  3697. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3698. unsigned int size)
  3699. {
  3700. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3701. !sk_rmem_schedule(sk, skb, size)) {
  3702. if (tcp_prune_queue(sk) < 0)
  3703. return -1;
  3704. if (!sk_rmem_schedule(sk, skb, size)) {
  3705. if (!tcp_prune_ofo_queue(sk))
  3706. return -1;
  3707. if (!sk_rmem_schedule(sk, skb, size))
  3708. return -1;
  3709. }
  3710. }
  3711. return 0;
  3712. }
  3713. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3714. {
  3715. struct tcp_sock *tp = tcp_sk(sk);
  3716. struct sk_buff *skb1;
  3717. u32 seq, end_seq;
  3718. tcp_ecn_check_ce(tp, skb);
  3719. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3720. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3721. __kfree_skb(skb);
  3722. return;
  3723. }
  3724. /* Disable header prediction. */
  3725. tp->pred_flags = 0;
  3726. inet_csk_schedule_ack(sk);
  3727. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3728. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3729. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3730. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3731. if (!skb1) {
  3732. /* Initial out of order segment, build 1 SACK. */
  3733. if (tcp_is_sack(tp)) {
  3734. tp->rx_opt.num_sacks = 1;
  3735. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3736. tp->selective_acks[0].end_seq =
  3737. TCP_SKB_CB(skb)->end_seq;
  3738. }
  3739. __skb_queue_head(&tp->out_of_order_queue, skb);
  3740. goto end;
  3741. }
  3742. seq = TCP_SKB_CB(skb)->seq;
  3743. end_seq = TCP_SKB_CB(skb)->end_seq;
  3744. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3745. bool fragstolen;
  3746. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3747. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3748. } else {
  3749. tcp_grow_window(sk, skb);
  3750. kfree_skb_partial(skb, fragstolen);
  3751. skb = NULL;
  3752. }
  3753. if (!tp->rx_opt.num_sacks ||
  3754. tp->selective_acks[0].end_seq != seq)
  3755. goto add_sack;
  3756. /* Common case: data arrive in order after hole. */
  3757. tp->selective_acks[0].end_seq = end_seq;
  3758. goto end;
  3759. }
  3760. /* Find place to insert this segment. */
  3761. while (1) {
  3762. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3763. break;
  3764. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3765. skb1 = NULL;
  3766. break;
  3767. }
  3768. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3769. }
  3770. /* Do skb overlap to previous one? */
  3771. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3772. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3773. /* All the bits are present. Drop. */
  3774. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3775. __kfree_skb(skb);
  3776. skb = NULL;
  3777. tcp_dsack_set(sk, seq, end_seq);
  3778. goto add_sack;
  3779. }
  3780. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3781. /* Partial overlap. */
  3782. tcp_dsack_set(sk, seq,
  3783. TCP_SKB_CB(skb1)->end_seq);
  3784. } else {
  3785. if (skb_queue_is_first(&tp->out_of_order_queue,
  3786. skb1))
  3787. skb1 = NULL;
  3788. else
  3789. skb1 = skb_queue_prev(
  3790. &tp->out_of_order_queue,
  3791. skb1);
  3792. }
  3793. }
  3794. if (!skb1)
  3795. __skb_queue_head(&tp->out_of_order_queue, skb);
  3796. else
  3797. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3798. /* And clean segments covered by new one as whole. */
  3799. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3800. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3801. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3802. break;
  3803. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3804. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3805. end_seq);
  3806. break;
  3807. }
  3808. __skb_unlink(skb1, &tp->out_of_order_queue);
  3809. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3810. TCP_SKB_CB(skb1)->end_seq);
  3811. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3812. __kfree_skb(skb1);
  3813. }
  3814. add_sack:
  3815. if (tcp_is_sack(tp))
  3816. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3817. end:
  3818. if (skb) {
  3819. tcp_grow_window(sk, skb);
  3820. skb_set_owner_r(skb, sk);
  3821. }
  3822. }
  3823. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3824. bool *fragstolen)
  3825. {
  3826. int eaten;
  3827. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3828. __skb_pull(skb, hdrlen);
  3829. eaten = (tail &&
  3830. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3831. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3832. if (!eaten) {
  3833. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3834. skb_set_owner_r(skb, sk);
  3835. }
  3836. return eaten;
  3837. }
  3838. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3839. {
  3840. struct sk_buff *skb;
  3841. bool fragstolen;
  3842. if (size == 0)
  3843. return 0;
  3844. skb = alloc_skb(size, sk->sk_allocation);
  3845. if (!skb)
  3846. goto err;
  3847. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3848. goto err_free;
  3849. if (memcpy_from_msg(skb_put(skb, size), msg, size))
  3850. goto err_free;
  3851. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3852. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3853. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3854. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3855. WARN_ON_ONCE(fragstolen); /* should not happen */
  3856. __kfree_skb(skb);
  3857. }
  3858. return size;
  3859. err_free:
  3860. kfree_skb(skb);
  3861. err:
  3862. return -ENOMEM;
  3863. }
  3864. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3865. {
  3866. struct tcp_sock *tp = tcp_sk(sk);
  3867. int eaten = -1;
  3868. bool fragstolen = false;
  3869. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3870. goto drop;
  3871. skb_dst_drop(skb);
  3872. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3873. tcp_ecn_accept_cwr(tp, skb);
  3874. tp->rx_opt.dsack = 0;
  3875. /* Queue data for delivery to the user.
  3876. * Packets in sequence go to the receive queue.
  3877. * Out of sequence packets to the out_of_order_queue.
  3878. */
  3879. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3880. if (tcp_receive_window(tp) == 0)
  3881. goto out_of_window;
  3882. /* Ok. In sequence. In window. */
  3883. if (tp->ucopy.task == current &&
  3884. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3885. sock_owned_by_user(sk) && !tp->urg_data) {
  3886. int chunk = min_t(unsigned int, skb->len,
  3887. tp->ucopy.len);
  3888. __set_current_state(TASK_RUNNING);
  3889. local_bh_enable();
  3890. if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
  3891. tp->ucopy.len -= chunk;
  3892. tp->copied_seq += chunk;
  3893. eaten = (chunk == skb->len);
  3894. tcp_rcv_space_adjust(sk);
  3895. }
  3896. local_bh_disable();
  3897. }
  3898. if (eaten <= 0) {
  3899. queue_and_out:
  3900. if (eaten < 0) {
  3901. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  3902. sk_forced_mem_schedule(sk, skb->truesize);
  3903. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3904. goto drop;
  3905. }
  3906. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3907. }
  3908. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3909. if (skb->len)
  3910. tcp_event_data_recv(sk, skb);
  3911. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  3912. tcp_fin(sk);
  3913. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3914. tcp_ofo_queue(sk);
  3915. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3916. * gap in queue is filled.
  3917. */
  3918. if (skb_queue_empty(&tp->out_of_order_queue))
  3919. inet_csk(sk)->icsk_ack.pingpong = 0;
  3920. }
  3921. if (tp->rx_opt.num_sacks)
  3922. tcp_sack_remove(tp);
  3923. tcp_fast_path_check(sk);
  3924. if (eaten > 0)
  3925. kfree_skb_partial(skb, fragstolen);
  3926. if (!sock_flag(sk, SOCK_DEAD))
  3927. sk->sk_data_ready(sk);
  3928. return;
  3929. }
  3930. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3931. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3932. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3933. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3934. out_of_window:
  3935. tcp_enter_quickack_mode(sk);
  3936. inet_csk_schedule_ack(sk);
  3937. drop:
  3938. __kfree_skb(skb);
  3939. return;
  3940. }
  3941. /* Out of window. F.e. zero window probe. */
  3942. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3943. goto out_of_window;
  3944. tcp_enter_quickack_mode(sk);
  3945. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3946. /* Partial packet, seq < rcv_next < end_seq */
  3947. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3948. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3949. TCP_SKB_CB(skb)->end_seq);
  3950. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3951. /* If window is closed, drop tail of packet. But after
  3952. * remembering D-SACK for its head made in previous line.
  3953. */
  3954. if (!tcp_receive_window(tp))
  3955. goto out_of_window;
  3956. goto queue_and_out;
  3957. }
  3958. tcp_data_queue_ofo(sk, skb);
  3959. }
  3960. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3961. struct sk_buff_head *list)
  3962. {
  3963. struct sk_buff *next = NULL;
  3964. if (!skb_queue_is_last(list, skb))
  3965. next = skb_queue_next(list, skb);
  3966. __skb_unlink(skb, list);
  3967. __kfree_skb(skb);
  3968. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3969. return next;
  3970. }
  3971. /* Collapse contiguous sequence of skbs head..tail with
  3972. * sequence numbers start..end.
  3973. *
  3974. * If tail is NULL, this means until the end of the list.
  3975. *
  3976. * Segments with FIN/SYN are not collapsed (only because this
  3977. * simplifies code)
  3978. */
  3979. static void
  3980. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3981. struct sk_buff *head, struct sk_buff *tail,
  3982. u32 start, u32 end)
  3983. {
  3984. struct sk_buff *skb, *n;
  3985. bool end_of_skbs;
  3986. /* First, check that queue is collapsible and find
  3987. * the point where collapsing can be useful. */
  3988. skb = head;
  3989. restart:
  3990. end_of_skbs = true;
  3991. skb_queue_walk_from_safe(list, skb, n) {
  3992. if (skb == tail)
  3993. break;
  3994. /* No new bits? It is possible on ofo queue. */
  3995. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3996. skb = tcp_collapse_one(sk, skb, list);
  3997. if (!skb)
  3998. break;
  3999. goto restart;
  4000. }
  4001. /* The first skb to collapse is:
  4002. * - not SYN/FIN and
  4003. * - bloated or contains data before "start" or
  4004. * overlaps to the next one.
  4005. */
  4006. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4007. (tcp_win_from_space(skb->truesize) > skb->len ||
  4008. before(TCP_SKB_CB(skb)->seq, start))) {
  4009. end_of_skbs = false;
  4010. break;
  4011. }
  4012. if (!skb_queue_is_last(list, skb)) {
  4013. struct sk_buff *next = skb_queue_next(list, skb);
  4014. if (next != tail &&
  4015. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4016. end_of_skbs = false;
  4017. break;
  4018. }
  4019. }
  4020. /* Decided to skip this, advance start seq. */
  4021. start = TCP_SKB_CB(skb)->end_seq;
  4022. }
  4023. if (end_of_skbs ||
  4024. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4025. return;
  4026. while (before(start, end)) {
  4027. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4028. struct sk_buff *nskb;
  4029. nskb = alloc_skb(copy, GFP_ATOMIC);
  4030. if (!nskb)
  4031. return;
  4032. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4033. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4034. __skb_queue_before(list, skb, nskb);
  4035. skb_set_owner_r(nskb, sk);
  4036. /* Copy data, releasing collapsed skbs. */
  4037. while (copy > 0) {
  4038. int offset = start - TCP_SKB_CB(skb)->seq;
  4039. int size = TCP_SKB_CB(skb)->end_seq - start;
  4040. BUG_ON(offset < 0);
  4041. if (size > 0) {
  4042. size = min(copy, size);
  4043. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4044. BUG();
  4045. TCP_SKB_CB(nskb)->end_seq += size;
  4046. copy -= size;
  4047. start += size;
  4048. }
  4049. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4050. skb = tcp_collapse_one(sk, skb, list);
  4051. if (!skb ||
  4052. skb == tail ||
  4053. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4054. return;
  4055. }
  4056. }
  4057. }
  4058. }
  4059. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4060. * and tcp_collapse() them until all the queue is collapsed.
  4061. */
  4062. static void tcp_collapse_ofo_queue(struct sock *sk)
  4063. {
  4064. struct tcp_sock *tp = tcp_sk(sk);
  4065. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4066. struct sk_buff *head;
  4067. u32 start, end;
  4068. if (!skb)
  4069. return;
  4070. start = TCP_SKB_CB(skb)->seq;
  4071. end = TCP_SKB_CB(skb)->end_seq;
  4072. head = skb;
  4073. for (;;) {
  4074. struct sk_buff *next = NULL;
  4075. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4076. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4077. skb = next;
  4078. /* Segment is terminated when we see gap or when
  4079. * we are at the end of all the queue. */
  4080. if (!skb ||
  4081. after(TCP_SKB_CB(skb)->seq, end) ||
  4082. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4083. tcp_collapse(sk, &tp->out_of_order_queue,
  4084. head, skb, start, end);
  4085. head = skb;
  4086. if (!skb)
  4087. break;
  4088. /* Start new segment */
  4089. start = TCP_SKB_CB(skb)->seq;
  4090. end = TCP_SKB_CB(skb)->end_seq;
  4091. } else {
  4092. if (before(TCP_SKB_CB(skb)->seq, start))
  4093. start = TCP_SKB_CB(skb)->seq;
  4094. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4095. end = TCP_SKB_CB(skb)->end_seq;
  4096. }
  4097. }
  4098. }
  4099. /*
  4100. * Purge the out-of-order queue.
  4101. * Return true if queue was pruned.
  4102. */
  4103. static bool tcp_prune_ofo_queue(struct sock *sk)
  4104. {
  4105. struct tcp_sock *tp = tcp_sk(sk);
  4106. bool res = false;
  4107. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4108. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4109. __skb_queue_purge(&tp->out_of_order_queue);
  4110. /* Reset SACK state. A conforming SACK implementation will
  4111. * do the same at a timeout based retransmit. When a connection
  4112. * is in a sad state like this, we care only about integrity
  4113. * of the connection not performance.
  4114. */
  4115. if (tp->rx_opt.sack_ok)
  4116. tcp_sack_reset(&tp->rx_opt);
  4117. sk_mem_reclaim(sk);
  4118. res = true;
  4119. }
  4120. return res;
  4121. }
  4122. /* Reduce allocated memory if we can, trying to get
  4123. * the socket within its memory limits again.
  4124. *
  4125. * Return less than zero if we should start dropping frames
  4126. * until the socket owning process reads some of the data
  4127. * to stabilize the situation.
  4128. */
  4129. static int tcp_prune_queue(struct sock *sk)
  4130. {
  4131. struct tcp_sock *tp = tcp_sk(sk);
  4132. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4133. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4134. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4135. tcp_clamp_window(sk);
  4136. else if (tcp_under_memory_pressure(sk))
  4137. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4138. tcp_collapse_ofo_queue(sk);
  4139. if (!skb_queue_empty(&sk->sk_receive_queue))
  4140. tcp_collapse(sk, &sk->sk_receive_queue,
  4141. skb_peek(&sk->sk_receive_queue),
  4142. NULL,
  4143. tp->copied_seq, tp->rcv_nxt);
  4144. sk_mem_reclaim(sk);
  4145. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4146. return 0;
  4147. /* Collapsing did not help, destructive actions follow.
  4148. * This must not ever occur. */
  4149. tcp_prune_ofo_queue(sk);
  4150. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4151. return 0;
  4152. /* If we are really being abused, tell the caller to silently
  4153. * drop receive data on the floor. It will get retransmitted
  4154. * and hopefully then we'll have sufficient space.
  4155. */
  4156. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4157. /* Massive buffer overcommit. */
  4158. tp->pred_flags = 0;
  4159. return -1;
  4160. }
  4161. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4162. {
  4163. const struct tcp_sock *tp = tcp_sk(sk);
  4164. /* If the user specified a specific send buffer setting, do
  4165. * not modify it.
  4166. */
  4167. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4168. return false;
  4169. /* If we are under global TCP memory pressure, do not expand. */
  4170. if (tcp_under_memory_pressure(sk))
  4171. return false;
  4172. /* If we are under soft global TCP memory pressure, do not expand. */
  4173. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4174. return false;
  4175. /* If we filled the congestion window, do not expand. */
  4176. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4177. return false;
  4178. return true;
  4179. }
  4180. /* When incoming ACK allowed to free some skb from write_queue,
  4181. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4182. * on the exit from tcp input handler.
  4183. *
  4184. * PROBLEM: sndbuf expansion does not work well with largesend.
  4185. */
  4186. static void tcp_new_space(struct sock *sk)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. if (tcp_should_expand_sndbuf(sk)) {
  4190. tcp_sndbuf_expand(sk);
  4191. tp->snd_cwnd_stamp = tcp_time_stamp;
  4192. }
  4193. sk->sk_write_space(sk);
  4194. }
  4195. static void tcp_check_space(struct sock *sk)
  4196. {
  4197. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4198. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4199. /* pairs with tcp_poll() */
  4200. smp_mb__after_atomic();
  4201. if (sk->sk_socket &&
  4202. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4203. tcp_new_space(sk);
  4204. }
  4205. }
  4206. static inline void tcp_data_snd_check(struct sock *sk)
  4207. {
  4208. tcp_push_pending_frames(sk);
  4209. tcp_check_space(sk);
  4210. }
  4211. /*
  4212. * Check if sending an ack is needed.
  4213. */
  4214. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4215. {
  4216. struct tcp_sock *tp = tcp_sk(sk);
  4217. /* More than one full frame received... */
  4218. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4219. /* ... and right edge of window advances far enough.
  4220. * (tcp_recvmsg() will send ACK otherwise). Or...
  4221. */
  4222. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4223. /* We ACK each frame or... */
  4224. tcp_in_quickack_mode(sk) ||
  4225. /* We have out of order data. */
  4226. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4227. /* Then ack it now */
  4228. tcp_send_ack(sk);
  4229. } else {
  4230. /* Else, send delayed ack. */
  4231. tcp_send_delayed_ack(sk);
  4232. }
  4233. }
  4234. static inline void tcp_ack_snd_check(struct sock *sk)
  4235. {
  4236. if (!inet_csk_ack_scheduled(sk)) {
  4237. /* We sent a data segment already. */
  4238. return;
  4239. }
  4240. __tcp_ack_snd_check(sk, 1);
  4241. }
  4242. /*
  4243. * This routine is only called when we have urgent data
  4244. * signaled. Its the 'slow' part of tcp_urg. It could be
  4245. * moved inline now as tcp_urg is only called from one
  4246. * place. We handle URGent data wrong. We have to - as
  4247. * BSD still doesn't use the correction from RFC961.
  4248. * For 1003.1g we should support a new option TCP_STDURG to permit
  4249. * either form (or just set the sysctl tcp_stdurg).
  4250. */
  4251. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4252. {
  4253. struct tcp_sock *tp = tcp_sk(sk);
  4254. u32 ptr = ntohs(th->urg_ptr);
  4255. if (ptr && !sysctl_tcp_stdurg)
  4256. ptr--;
  4257. ptr += ntohl(th->seq);
  4258. /* Ignore urgent data that we've already seen and read. */
  4259. if (after(tp->copied_seq, ptr))
  4260. return;
  4261. /* Do not replay urg ptr.
  4262. *
  4263. * NOTE: interesting situation not covered by specs.
  4264. * Misbehaving sender may send urg ptr, pointing to segment,
  4265. * which we already have in ofo queue. We are not able to fetch
  4266. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4267. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4268. * situations. But it is worth to think about possibility of some
  4269. * DoSes using some hypothetical application level deadlock.
  4270. */
  4271. if (before(ptr, tp->rcv_nxt))
  4272. return;
  4273. /* Do we already have a newer (or duplicate) urgent pointer? */
  4274. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4275. return;
  4276. /* Tell the world about our new urgent pointer. */
  4277. sk_send_sigurg(sk);
  4278. /* We may be adding urgent data when the last byte read was
  4279. * urgent. To do this requires some care. We cannot just ignore
  4280. * tp->copied_seq since we would read the last urgent byte again
  4281. * as data, nor can we alter copied_seq until this data arrives
  4282. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4283. *
  4284. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4285. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4286. * and expect that both A and B disappear from stream. This is _wrong_.
  4287. * Though this happens in BSD with high probability, this is occasional.
  4288. * Any application relying on this is buggy. Note also, that fix "works"
  4289. * only in this artificial test. Insert some normal data between A and B and we will
  4290. * decline of BSD again. Verdict: it is better to remove to trap
  4291. * buggy users.
  4292. */
  4293. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4294. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4295. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4296. tp->copied_seq++;
  4297. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4298. __skb_unlink(skb, &sk->sk_receive_queue);
  4299. __kfree_skb(skb);
  4300. }
  4301. }
  4302. tp->urg_data = TCP_URG_NOTYET;
  4303. tp->urg_seq = ptr;
  4304. /* Disable header prediction. */
  4305. tp->pred_flags = 0;
  4306. }
  4307. /* This is the 'fast' part of urgent handling. */
  4308. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4309. {
  4310. struct tcp_sock *tp = tcp_sk(sk);
  4311. /* Check if we get a new urgent pointer - normally not. */
  4312. if (th->urg)
  4313. tcp_check_urg(sk, th);
  4314. /* Do we wait for any urgent data? - normally not... */
  4315. if (tp->urg_data == TCP_URG_NOTYET) {
  4316. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4317. th->syn;
  4318. /* Is the urgent pointer pointing into this packet? */
  4319. if (ptr < skb->len) {
  4320. u8 tmp;
  4321. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4322. BUG();
  4323. tp->urg_data = TCP_URG_VALID | tmp;
  4324. if (!sock_flag(sk, SOCK_DEAD))
  4325. sk->sk_data_ready(sk);
  4326. }
  4327. }
  4328. }
  4329. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4330. {
  4331. struct tcp_sock *tp = tcp_sk(sk);
  4332. int chunk = skb->len - hlen;
  4333. int err;
  4334. local_bh_enable();
  4335. if (skb_csum_unnecessary(skb))
  4336. err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
  4337. else
  4338. err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
  4339. if (!err) {
  4340. tp->ucopy.len -= chunk;
  4341. tp->copied_seq += chunk;
  4342. tcp_rcv_space_adjust(sk);
  4343. }
  4344. local_bh_disable();
  4345. return err;
  4346. }
  4347. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4348. struct sk_buff *skb)
  4349. {
  4350. __sum16 result;
  4351. if (sock_owned_by_user(sk)) {
  4352. local_bh_enable();
  4353. result = __tcp_checksum_complete(skb);
  4354. local_bh_disable();
  4355. } else {
  4356. result = __tcp_checksum_complete(skb);
  4357. }
  4358. return result;
  4359. }
  4360. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4361. struct sk_buff *skb)
  4362. {
  4363. return !skb_csum_unnecessary(skb) &&
  4364. __tcp_checksum_complete_user(sk, skb);
  4365. }
  4366. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4367. * play significant role here.
  4368. */
  4369. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4370. const struct tcphdr *th, int syn_inerr)
  4371. {
  4372. struct tcp_sock *tp = tcp_sk(sk);
  4373. /* RFC1323: H1. Apply PAWS check first. */
  4374. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4375. tcp_paws_discard(sk, skb)) {
  4376. if (!th->rst) {
  4377. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4378. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4379. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4380. &tp->last_oow_ack_time))
  4381. tcp_send_dupack(sk, skb);
  4382. goto discard;
  4383. }
  4384. /* Reset is accepted even if it did not pass PAWS. */
  4385. }
  4386. /* Step 1: check sequence number */
  4387. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4388. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4389. * (RST) segments are validated by checking their SEQ-fields."
  4390. * And page 69: "If an incoming segment is not acceptable,
  4391. * an acknowledgment should be sent in reply (unless the RST
  4392. * bit is set, if so drop the segment and return)".
  4393. */
  4394. if (!th->rst) {
  4395. if (th->syn)
  4396. goto syn_challenge;
  4397. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4398. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4399. &tp->last_oow_ack_time))
  4400. tcp_send_dupack(sk, skb);
  4401. }
  4402. goto discard;
  4403. }
  4404. /* Step 2: check RST bit */
  4405. if (th->rst) {
  4406. /* RFC 5961 3.2 :
  4407. * If sequence number exactly matches RCV.NXT, then
  4408. * RESET the connection
  4409. * else
  4410. * Send a challenge ACK
  4411. */
  4412. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4413. tcp_reset(sk);
  4414. else
  4415. tcp_send_challenge_ack(sk, skb);
  4416. goto discard;
  4417. }
  4418. /* step 3: check security and precedence [ignored] */
  4419. /* step 4: Check for a SYN
  4420. * RFC 5961 4.2 : Send a challenge ack
  4421. */
  4422. if (th->syn) {
  4423. syn_challenge:
  4424. if (syn_inerr)
  4425. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4426. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4427. tcp_send_challenge_ack(sk, skb);
  4428. goto discard;
  4429. }
  4430. return true;
  4431. discard:
  4432. __kfree_skb(skb);
  4433. return false;
  4434. }
  4435. /*
  4436. * TCP receive function for the ESTABLISHED state.
  4437. *
  4438. * It is split into a fast path and a slow path. The fast path is
  4439. * disabled when:
  4440. * - A zero window was announced from us - zero window probing
  4441. * is only handled properly in the slow path.
  4442. * - Out of order segments arrived.
  4443. * - Urgent data is expected.
  4444. * - There is no buffer space left
  4445. * - Unexpected TCP flags/window values/header lengths are received
  4446. * (detected by checking the TCP header against pred_flags)
  4447. * - Data is sent in both directions. Fast path only supports pure senders
  4448. * or pure receivers (this means either the sequence number or the ack
  4449. * value must stay constant)
  4450. * - Unexpected TCP option.
  4451. *
  4452. * When these conditions are not satisfied it drops into a standard
  4453. * receive procedure patterned after RFC793 to handle all cases.
  4454. * The first three cases are guaranteed by proper pred_flags setting,
  4455. * the rest is checked inline. Fast processing is turned on in
  4456. * tcp_data_queue when everything is OK.
  4457. */
  4458. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4459. const struct tcphdr *th, unsigned int len)
  4460. {
  4461. struct tcp_sock *tp = tcp_sk(sk);
  4462. if (unlikely(!sk->sk_rx_dst))
  4463. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4464. /*
  4465. * Header prediction.
  4466. * The code loosely follows the one in the famous
  4467. * "30 instruction TCP receive" Van Jacobson mail.
  4468. *
  4469. * Van's trick is to deposit buffers into socket queue
  4470. * on a device interrupt, to call tcp_recv function
  4471. * on the receive process context and checksum and copy
  4472. * the buffer to user space. smart...
  4473. *
  4474. * Our current scheme is not silly either but we take the
  4475. * extra cost of the net_bh soft interrupt processing...
  4476. * We do checksum and copy also but from device to kernel.
  4477. */
  4478. tp->rx_opt.saw_tstamp = 0;
  4479. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4480. * if header_prediction is to be made
  4481. * 'S' will always be tp->tcp_header_len >> 2
  4482. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4483. * turn it off (when there are holes in the receive
  4484. * space for instance)
  4485. * PSH flag is ignored.
  4486. */
  4487. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4488. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4489. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4490. int tcp_header_len = tp->tcp_header_len;
  4491. /* Timestamp header prediction: tcp_header_len
  4492. * is automatically equal to th->doff*4 due to pred_flags
  4493. * match.
  4494. */
  4495. /* Check timestamp */
  4496. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4497. /* No? Slow path! */
  4498. if (!tcp_parse_aligned_timestamp(tp, th))
  4499. goto slow_path;
  4500. /* If PAWS failed, check it more carefully in slow path */
  4501. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4502. goto slow_path;
  4503. /* DO NOT update ts_recent here, if checksum fails
  4504. * and timestamp was corrupted part, it will result
  4505. * in a hung connection since we will drop all
  4506. * future packets due to the PAWS test.
  4507. */
  4508. }
  4509. if (len <= tcp_header_len) {
  4510. /* Bulk data transfer: sender */
  4511. if (len == tcp_header_len) {
  4512. /* Predicted packet is in window by definition.
  4513. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4514. * Hence, check seq<=rcv_wup reduces to:
  4515. */
  4516. if (tcp_header_len ==
  4517. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4518. tp->rcv_nxt == tp->rcv_wup)
  4519. tcp_store_ts_recent(tp);
  4520. /* We know that such packets are checksummed
  4521. * on entry.
  4522. */
  4523. tcp_ack(sk, skb, 0);
  4524. __kfree_skb(skb);
  4525. tcp_data_snd_check(sk);
  4526. return;
  4527. } else { /* Header too small */
  4528. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4529. goto discard;
  4530. }
  4531. } else {
  4532. int eaten = 0;
  4533. bool fragstolen = false;
  4534. if (tp->ucopy.task == current &&
  4535. tp->copied_seq == tp->rcv_nxt &&
  4536. len - tcp_header_len <= tp->ucopy.len &&
  4537. sock_owned_by_user(sk)) {
  4538. __set_current_state(TASK_RUNNING);
  4539. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  4540. /* Predicted packet is in window by definition.
  4541. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4542. * Hence, check seq<=rcv_wup reduces to:
  4543. */
  4544. if (tcp_header_len ==
  4545. (sizeof(struct tcphdr) +
  4546. TCPOLEN_TSTAMP_ALIGNED) &&
  4547. tp->rcv_nxt == tp->rcv_wup)
  4548. tcp_store_ts_recent(tp);
  4549. tcp_rcv_rtt_measure_ts(sk, skb);
  4550. __skb_pull(skb, tcp_header_len);
  4551. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4552. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4553. eaten = 1;
  4554. }
  4555. }
  4556. if (!eaten) {
  4557. if (tcp_checksum_complete_user(sk, skb))
  4558. goto csum_error;
  4559. if ((int)skb->truesize > sk->sk_forward_alloc)
  4560. goto step5;
  4561. /* Predicted packet is in window by definition.
  4562. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4563. * Hence, check seq<=rcv_wup reduces to:
  4564. */
  4565. if (tcp_header_len ==
  4566. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4567. tp->rcv_nxt == tp->rcv_wup)
  4568. tcp_store_ts_recent(tp);
  4569. tcp_rcv_rtt_measure_ts(sk, skb);
  4570. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4571. /* Bulk data transfer: receiver */
  4572. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4573. &fragstolen);
  4574. }
  4575. tcp_event_data_recv(sk, skb);
  4576. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4577. /* Well, only one small jumplet in fast path... */
  4578. tcp_ack(sk, skb, FLAG_DATA);
  4579. tcp_data_snd_check(sk);
  4580. if (!inet_csk_ack_scheduled(sk))
  4581. goto no_ack;
  4582. }
  4583. __tcp_ack_snd_check(sk, 0);
  4584. no_ack:
  4585. if (eaten)
  4586. kfree_skb_partial(skb, fragstolen);
  4587. sk->sk_data_ready(sk);
  4588. return;
  4589. }
  4590. }
  4591. slow_path:
  4592. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4593. goto csum_error;
  4594. if (!th->ack && !th->rst && !th->syn)
  4595. goto discard;
  4596. /*
  4597. * Standard slow path.
  4598. */
  4599. if (!tcp_validate_incoming(sk, skb, th, 1))
  4600. return;
  4601. step5:
  4602. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4603. goto discard;
  4604. tcp_rcv_rtt_measure_ts(sk, skb);
  4605. /* Process urgent data. */
  4606. tcp_urg(sk, skb, th);
  4607. /* step 7: process the segment text */
  4608. tcp_data_queue(sk, skb);
  4609. tcp_data_snd_check(sk);
  4610. tcp_ack_snd_check(sk);
  4611. return;
  4612. csum_error:
  4613. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4614. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4615. discard:
  4616. __kfree_skb(skb);
  4617. }
  4618. EXPORT_SYMBOL(tcp_rcv_established);
  4619. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4620. {
  4621. struct tcp_sock *tp = tcp_sk(sk);
  4622. struct inet_connection_sock *icsk = inet_csk(sk);
  4623. tcp_set_state(sk, TCP_ESTABLISHED);
  4624. if (skb) {
  4625. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4626. security_inet_conn_established(sk, skb);
  4627. }
  4628. /* Make sure socket is routed, for correct metrics. */
  4629. icsk->icsk_af_ops->rebuild_header(sk);
  4630. tcp_init_metrics(sk);
  4631. tcp_init_congestion_control(sk);
  4632. /* Prevent spurious tcp_cwnd_restart() on first data
  4633. * packet.
  4634. */
  4635. tp->lsndtime = tcp_time_stamp;
  4636. tcp_init_buffer_space(sk);
  4637. if (sock_flag(sk, SOCK_KEEPOPEN))
  4638. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4639. if (!tp->rx_opt.snd_wscale)
  4640. __tcp_fast_path_on(tp, tp->snd_wnd);
  4641. else
  4642. tp->pred_flags = 0;
  4643. if (!sock_flag(sk, SOCK_DEAD)) {
  4644. sk->sk_state_change(sk);
  4645. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4646. }
  4647. }
  4648. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4649. struct tcp_fastopen_cookie *cookie)
  4650. {
  4651. struct tcp_sock *tp = tcp_sk(sk);
  4652. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4653. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4654. bool syn_drop = false;
  4655. if (mss == tp->rx_opt.user_mss) {
  4656. struct tcp_options_received opt;
  4657. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4658. tcp_clear_options(&opt);
  4659. opt.user_mss = opt.mss_clamp = 0;
  4660. tcp_parse_options(synack, &opt, 0, NULL);
  4661. mss = opt.mss_clamp;
  4662. }
  4663. if (!tp->syn_fastopen) {
  4664. /* Ignore an unsolicited cookie */
  4665. cookie->len = -1;
  4666. } else if (tp->total_retrans) {
  4667. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4668. * acknowledges data. Presumably the remote received only
  4669. * the retransmitted (regular) SYNs: either the original
  4670. * SYN-data or the corresponding SYN-ACK was dropped.
  4671. */
  4672. syn_drop = (cookie->len < 0 && data);
  4673. } else if (cookie->len < 0 && !tp->syn_data) {
  4674. /* We requested a cookie but didn't get it. If we did not use
  4675. * the (old) exp opt format then try so next time (try_exp=1).
  4676. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4677. */
  4678. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4679. }
  4680. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4681. if (data) { /* Retransmit unacked data in SYN */
  4682. tcp_for_write_queue_from(data, sk) {
  4683. if (data == tcp_send_head(sk) ||
  4684. __tcp_retransmit_skb(sk, data))
  4685. break;
  4686. }
  4687. tcp_rearm_rto(sk);
  4688. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4689. return true;
  4690. }
  4691. tp->syn_data_acked = tp->syn_data;
  4692. if (tp->syn_data_acked)
  4693. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4694. return false;
  4695. }
  4696. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4697. const struct tcphdr *th, unsigned int len)
  4698. {
  4699. struct inet_connection_sock *icsk = inet_csk(sk);
  4700. struct tcp_sock *tp = tcp_sk(sk);
  4701. struct tcp_fastopen_cookie foc = { .len = -1 };
  4702. int saved_clamp = tp->rx_opt.mss_clamp;
  4703. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4704. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4705. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4706. if (th->ack) {
  4707. /* rfc793:
  4708. * "If the state is SYN-SENT then
  4709. * first check the ACK bit
  4710. * If the ACK bit is set
  4711. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4712. * a reset (unless the RST bit is set, if so drop
  4713. * the segment and return)"
  4714. */
  4715. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4716. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4717. goto reset_and_undo;
  4718. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4719. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4720. tcp_time_stamp)) {
  4721. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4722. goto reset_and_undo;
  4723. }
  4724. /* Now ACK is acceptable.
  4725. *
  4726. * "If the RST bit is set
  4727. * If the ACK was acceptable then signal the user "error:
  4728. * connection reset", drop the segment, enter CLOSED state,
  4729. * delete TCB, and return."
  4730. */
  4731. if (th->rst) {
  4732. tcp_reset(sk);
  4733. goto discard;
  4734. }
  4735. /* rfc793:
  4736. * "fifth, if neither of the SYN or RST bits is set then
  4737. * drop the segment and return."
  4738. *
  4739. * See note below!
  4740. * --ANK(990513)
  4741. */
  4742. if (!th->syn)
  4743. goto discard_and_undo;
  4744. /* rfc793:
  4745. * "If the SYN bit is on ...
  4746. * are acceptable then ...
  4747. * (our SYN has been ACKed), change the connection
  4748. * state to ESTABLISHED..."
  4749. */
  4750. tcp_ecn_rcv_synack(tp, th);
  4751. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4752. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4753. /* Ok.. it's good. Set up sequence numbers and
  4754. * move to established.
  4755. */
  4756. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4757. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4758. /* RFC1323: The window in SYN & SYN/ACK segments is
  4759. * never scaled.
  4760. */
  4761. tp->snd_wnd = ntohs(th->window);
  4762. if (!tp->rx_opt.wscale_ok) {
  4763. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4764. tp->window_clamp = min(tp->window_clamp, 65535U);
  4765. }
  4766. if (tp->rx_opt.saw_tstamp) {
  4767. tp->rx_opt.tstamp_ok = 1;
  4768. tp->tcp_header_len =
  4769. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4770. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4771. tcp_store_ts_recent(tp);
  4772. } else {
  4773. tp->tcp_header_len = sizeof(struct tcphdr);
  4774. }
  4775. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4776. tcp_enable_fack(tp);
  4777. tcp_mtup_init(sk);
  4778. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4779. tcp_initialize_rcv_mss(sk);
  4780. /* Remember, tcp_poll() does not lock socket!
  4781. * Change state from SYN-SENT only after copied_seq
  4782. * is initialized. */
  4783. tp->copied_seq = tp->rcv_nxt;
  4784. smp_mb();
  4785. tcp_finish_connect(sk, skb);
  4786. if ((tp->syn_fastopen || tp->syn_data) &&
  4787. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4788. return -1;
  4789. if (sk->sk_write_pending ||
  4790. icsk->icsk_accept_queue.rskq_defer_accept ||
  4791. icsk->icsk_ack.pingpong) {
  4792. /* Save one ACK. Data will be ready after
  4793. * several ticks, if write_pending is set.
  4794. *
  4795. * It may be deleted, but with this feature tcpdumps
  4796. * look so _wonderfully_ clever, that I was not able
  4797. * to stand against the temptation 8) --ANK
  4798. */
  4799. inet_csk_schedule_ack(sk);
  4800. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4801. tcp_enter_quickack_mode(sk);
  4802. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4803. TCP_DELACK_MAX, TCP_RTO_MAX);
  4804. discard:
  4805. __kfree_skb(skb);
  4806. return 0;
  4807. } else {
  4808. tcp_send_ack(sk);
  4809. }
  4810. return -1;
  4811. }
  4812. /* No ACK in the segment */
  4813. if (th->rst) {
  4814. /* rfc793:
  4815. * "If the RST bit is set
  4816. *
  4817. * Otherwise (no ACK) drop the segment and return."
  4818. */
  4819. goto discard_and_undo;
  4820. }
  4821. /* PAWS check. */
  4822. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4823. tcp_paws_reject(&tp->rx_opt, 0))
  4824. goto discard_and_undo;
  4825. if (th->syn) {
  4826. /* We see SYN without ACK. It is attempt of
  4827. * simultaneous connect with crossed SYNs.
  4828. * Particularly, it can be connect to self.
  4829. */
  4830. tcp_set_state(sk, TCP_SYN_RECV);
  4831. if (tp->rx_opt.saw_tstamp) {
  4832. tp->rx_opt.tstamp_ok = 1;
  4833. tcp_store_ts_recent(tp);
  4834. tp->tcp_header_len =
  4835. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4836. } else {
  4837. tp->tcp_header_len = sizeof(struct tcphdr);
  4838. }
  4839. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4840. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4841. /* RFC1323: The window in SYN & SYN/ACK segments is
  4842. * never scaled.
  4843. */
  4844. tp->snd_wnd = ntohs(th->window);
  4845. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4846. tp->max_window = tp->snd_wnd;
  4847. tcp_ecn_rcv_syn(tp, th);
  4848. tcp_mtup_init(sk);
  4849. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4850. tcp_initialize_rcv_mss(sk);
  4851. tcp_send_synack(sk);
  4852. #if 0
  4853. /* Note, we could accept data and URG from this segment.
  4854. * There are no obstacles to make this (except that we must
  4855. * either change tcp_recvmsg() to prevent it from returning data
  4856. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4857. *
  4858. * However, if we ignore data in ACKless segments sometimes,
  4859. * we have no reasons to accept it sometimes.
  4860. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4861. * is not flawless. So, discard packet for sanity.
  4862. * Uncomment this return to process the data.
  4863. */
  4864. return -1;
  4865. #else
  4866. goto discard;
  4867. #endif
  4868. }
  4869. /* "fifth, if neither of the SYN or RST bits is set then
  4870. * drop the segment and return."
  4871. */
  4872. discard_and_undo:
  4873. tcp_clear_options(&tp->rx_opt);
  4874. tp->rx_opt.mss_clamp = saved_clamp;
  4875. goto discard;
  4876. reset_and_undo:
  4877. tcp_clear_options(&tp->rx_opt);
  4878. tp->rx_opt.mss_clamp = saved_clamp;
  4879. return 1;
  4880. }
  4881. /*
  4882. * This function implements the receiving procedure of RFC 793 for
  4883. * all states except ESTABLISHED and TIME_WAIT.
  4884. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4885. * address independent.
  4886. */
  4887. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4888. const struct tcphdr *th, unsigned int len)
  4889. {
  4890. struct tcp_sock *tp = tcp_sk(sk);
  4891. struct inet_connection_sock *icsk = inet_csk(sk);
  4892. struct request_sock *req;
  4893. int queued = 0;
  4894. bool acceptable;
  4895. u32 synack_stamp;
  4896. tp->rx_opt.saw_tstamp = 0;
  4897. switch (sk->sk_state) {
  4898. case TCP_CLOSE:
  4899. goto discard;
  4900. case TCP_LISTEN:
  4901. if (th->ack)
  4902. return 1;
  4903. if (th->rst)
  4904. goto discard;
  4905. if (th->syn) {
  4906. if (th->fin)
  4907. goto discard;
  4908. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4909. return 1;
  4910. /* Now we have several options: In theory there is
  4911. * nothing else in the frame. KA9Q has an option to
  4912. * send data with the syn, BSD accepts data with the
  4913. * syn up to the [to be] advertised window and
  4914. * Solaris 2.1 gives you a protocol error. For now
  4915. * we just ignore it, that fits the spec precisely
  4916. * and avoids incompatibilities. It would be nice in
  4917. * future to drop through and process the data.
  4918. *
  4919. * Now that TTCP is starting to be used we ought to
  4920. * queue this data.
  4921. * But, this leaves one open to an easy denial of
  4922. * service attack, and SYN cookies can't defend
  4923. * against this problem. So, we drop the data
  4924. * in the interest of security over speed unless
  4925. * it's still in use.
  4926. */
  4927. kfree_skb(skb);
  4928. return 0;
  4929. }
  4930. goto discard;
  4931. case TCP_SYN_SENT:
  4932. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4933. if (queued >= 0)
  4934. return queued;
  4935. /* Do step6 onward by hand. */
  4936. tcp_urg(sk, skb, th);
  4937. __kfree_skb(skb);
  4938. tcp_data_snd_check(sk);
  4939. return 0;
  4940. }
  4941. req = tp->fastopen_rsk;
  4942. if (req) {
  4943. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4944. sk->sk_state != TCP_FIN_WAIT1);
  4945. if (!tcp_check_req(sk, skb, req, true))
  4946. goto discard;
  4947. }
  4948. if (!th->ack && !th->rst && !th->syn)
  4949. goto discard;
  4950. if (!tcp_validate_incoming(sk, skb, th, 0))
  4951. return 0;
  4952. /* step 5: check the ACK field */
  4953. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4954. FLAG_UPDATE_TS_RECENT) > 0;
  4955. switch (sk->sk_state) {
  4956. case TCP_SYN_RECV:
  4957. if (!acceptable)
  4958. return 1;
  4959. /* Once we leave TCP_SYN_RECV, we no longer need req
  4960. * so release it.
  4961. */
  4962. if (req) {
  4963. synack_stamp = tcp_rsk(req)->snt_synack;
  4964. tp->total_retrans = req->num_retrans;
  4965. reqsk_fastopen_remove(sk, req, false);
  4966. } else {
  4967. synack_stamp = tp->lsndtime;
  4968. /* Make sure socket is routed, for correct metrics. */
  4969. icsk->icsk_af_ops->rebuild_header(sk);
  4970. tcp_init_congestion_control(sk);
  4971. tcp_mtup_init(sk);
  4972. tp->copied_seq = tp->rcv_nxt;
  4973. tcp_init_buffer_space(sk);
  4974. }
  4975. smp_mb();
  4976. tcp_set_state(sk, TCP_ESTABLISHED);
  4977. sk->sk_state_change(sk);
  4978. /* Note, that this wakeup is only for marginal crossed SYN case.
  4979. * Passively open sockets are not waked up, because
  4980. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4981. */
  4982. if (sk->sk_socket)
  4983. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4984. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4985. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4986. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4987. tcp_synack_rtt_meas(sk, synack_stamp);
  4988. if (tp->rx_opt.tstamp_ok)
  4989. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4990. if (req) {
  4991. /* Re-arm the timer because data may have been sent out.
  4992. * This is similar to the regular data transmission case
  4993. * when new data has just been ack'ed.
  4994. *
  4995. * (TFO) - we could try to be more aggressive and
  4996. * retransmitting any data sooner based on when they
  4997. * are sent out.
  4998. */
  4999. tcp_rearm_rto(sk);
  5000. } else
  5001. tcp_init_metrics(sk);
  5002. tcp_update_pacing_rate(sk);
  5003. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5004. tp->lsndtime = tcp_time_stamp;
  5005. tcp_initialize_rcv_mss(sk);
  5006. tcp_fast_path_on(tp);
  5007. break;
  5008. case TCP_FIN_WAIT1: {
  5009. struct dst_entry *dst;
  5010. int tmo;
  5011. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5012. * Fast Open socket and this is the first acceptable
  5013. * ACK we have received, this would have acknowledged
  5014. * our SYNACK so stop the SYNACK timer.
  5015. */
  5016. if (req) {
  5017. /* Return RST if ack_seq is invalid.
  5018. * Note that RFC793 only says to generate a
  5019. * DUPACK for it but for TCP Fast Open it seems
  5020. * better to treat this case like TCP_SYN_RECV
  5021. * above.
  5022. */
  5023. if (!acceptable)
  5024. return 1;
  5025. /* We no longer need the request sock. */
  5026. reqsk_fastopen_remove(sk, req, false);
  5027. tcp_rearm_rto(sk);
  5028. }
  5029. if (tp->snd_una != tp->write_seq)
  5030. break;
  5031. tcp_set_state(sk, TCP_FIN_WAIT2);
  5032. sk->sk_shutdown |= SEND_SHUTDOWN;
  5033. dst = __sk_dst_get(sk);
  5034. if (dst)
  5035. dst_confirm(dst);
  5036. if (!sock_flag(sk, SOCK_DEAD)) {
  5037. /* Wake up lingering close() */
  5038. sk->sk_state_change(sk);
  5039. break;
  5040. }
  5041. if (tp->linger2 < 0 ||
  5042. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5043. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5044. tcp_done(sk);
  5045. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5046. return 1;
  5047. }
  5048. tmo = tcp_fin_time(sk);
  5049. if (tmo > TCP_TIMEWAIT_LEN) {
  5050. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5051. } else if (th->fin || sock_owned_by_user(sk)) {
  5052. /* Bad case. We could lose such FIN otherwise.
  5053. * It is not a big problem, but it looks confusing
  5054. * and not so rare event. We still can lose it now,
  5055. * if it spins in bh_lock_sock(), but it is really
  5056. * marginal case.
  5057. */
  5058. inet_csk_reset_keepalive_timer(sk, tmo);
  5059. } else {
  5060. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5061. goto discard;
  5062. }
  5063. break;
  5064. }
  5065. case TCP_CLOSING:
  5066. if (tp->snd_una == tp->write_seq) {
  5067. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5068. goto discard;
  5069. }
  5070. break;
  5071. case TCP_LAST_ACK:
  5072. if (tp->snd_una == tp->write_seq) {
  5073. tcp_update_metrics(sk);
  5074. tcp_done(sk);
  5075. goto discard;
  5076. }
  5077. break;
  5078. }
  5079. /* step 6: check the URG bit */
  5080. tcp_urg(sk, skb, th);
  5081. /* step 7: process the segment text */
  5082. switch (sk->sk_state) {
  5083. case TCP_CLOSE_WAIT:
  5084. case TCP_CLOSING:
  5085. case TCP_LAST_ACK:
  5086. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5087. break;
  5088. case TCP_FIN_WAIT1:
  5089. case TCP_FIN_WAIT2:
  5090. /* RFC 793 says to queue data in these states,
  5091. * RFC 1122 says we MUST send a reset.
  5092. * BSD 4.4 also does reset.
  5093. */
  5094. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5095. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5096. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5097. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5098. tcp_reset(sk);
  5099. return 1;
  5100. }
  5101. }
  5102. /* Fall through */
  5103. case TCP_ESTABLISHED:
  5104. tcp_data_queue(sk, skb);
  5105. queued = 1;
  5106. break;
  5107. }
  5108. /* tcp_data could move socket to TIME-WAIT */
  5109. if (sk->sk_state != TCP_CLOSE) {
  5110. tcp_data_snd_check(sk);
  5111. tcp_ack_snd_check(sk);
  5112. }
  5113. if (!queued) {
  5114. discard:
  5115. __kfree_skb(skb);
  5116. }
  5117. return 0;
  5118. }
  5119. EXPORT_SYMBOL(tcp_rcv_state_process);
  5120. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5121. {
  5122. struct inet_request_sock *ireq = inet_rsk(req);
  5123. if (family == AF_INET)
  5124. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5125. &ireq->ir_rmt_addr, port);
  5126. #if IS_ENABLED(CONFIG_IPV6)
  5127. else if (family == AF_INET6)
  5128. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5129. &ireq->ir_v6_rmt_addr, port);
  5130. #endif
  5131. }
  5132. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5133. *
  5134. * If we receive a SYN packet with these bits set, it means a
  5135. * network is playing bad games with TOS bits. In order to
  5136. * avoid possible false congestion notifications, we disable
  5137. * TCP ECN negotiation.
  5138. *
  5139. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5140. * congestion control: Linux DCTCP asserts ECT on all packets,
  5141. * including SYN, which is most optimal solution; however,
  5142. * others, such as FreeBSD do not.
  5143. */
  5144. static void tcp_ecn_create_request(struct request_sock *req,
  5145. const struct sk_buff *skb,
  5146. const struct sock *listen_sk,
  5147. const struct dst_entry *dst)
  5148. {
  5149. const struct tcphdr *th = tcp_hdr(skb);
  5150. const struct net *net = sock_net(listen_sk);
  5151. bool th_ecn = th->ece && th->cwr;
  5152. bool ect, ecn_ok;
  5153. if (!th_ecn)
  5154. return;
  5155. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5156. ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
  5157. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
  5158. inet_rsk(req)->ecn_ok = 1;
  5159. }
  5160. static void tcp_openreq_init(struct request_sock *req,
  5161. const struct tcp_options_received *rx_opt,
  5162. struct sk_buff *skb, const struct sock *sk)
  5163. {
  5164. struct inet_request_sock *ireq = inet_rsk(req);
  5165. req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5166. req->cookie_ts = 0;
  5167. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5168. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5169. tcp_rsk(req)->snt_synack = tcp_time_stamp;
  5170. tcp_rsk(req)->last_oow_ack_time = 0;
  5171. req->mss = rx_opt->mss_clamp;
  5172. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5173. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5174. ireq->sack_ok = rx_opt->sack_ok;
  5175. ireq->snd_wscale = rx_opt->snd_wscale;
  5176. ireq->wscale_ok = rx_opt->wscale_ok;
  5177. ireq->acked = 0;
  5178. ireq->ecn_ok = 0;
  5179. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5180. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5181. ireq->ir_mark = inet_request_mark(sk, skb);
  5182. }
  5183. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5184. struct sock *sk_listener)
  5185. {
  5186. struct request_sock *req = reqsk_alloc(ops, sk_listener);
  5187. if (req) {
  5188. struct inet_request_sock *ireq = inet_rsk(req);
  5189. kmemcheck_annotate_bitfield(ireq, flags);
  5190. ireq->opt = NULL;
  5191. atomic64_set(&ireq->ir_cookie, 0);
  5192. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5193. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5194. ireq->ireq_family = sk_listener->sk_family;
  5195. }
  5196. return req;
  5197. }
  5198. EXPORT_SYMBOL(inet_reqsk_alloc);
  5199. /*
  5200. * Return true if a syncookie should be sent
  5201. */
  5202. static bool tcp_syn_flood_action(struct sock *sk,
  5203. const struct sk_buff *skb,
  5204. const char *proto)
  5205. {
  5206. const char *msg = "Dropping request";
  5207. bool want_cookie = false;
  5208. struct listen_sock *lopt;
  5209. #ifdef CONFIG_SYN_COOKIES
  5210. if (sysctl_tcp_syncookies) {
  5211. msg = "Sending cookies";
  5212. want_cookie = true;
  5213. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5214. } else
  5215. #endif
  5216. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5217. lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
  5218. if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
  5219. lopt->synflood_warned = 1;
  5220. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5221. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5222. }
  5223. return want_cookie;
  5224. }
  5225. static void tcp_reqsk_record_syn(const struct sock *sk,
  5226. struct request_sock *req,
  5227. const struct sk_buff *skb)
  5228. {
  5229. if (tcp_sk(sk)->save_syn) {
  5230. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5231. u32 *copy;
  5232. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5233. if (copy) {
  5234. copy[0] = len;
  5235. memcpy(&copy[1], skb_network_header(skb), len);
  5236. req->saved_syn = copy;
  5237. }
  5238. }
  5239. }
  5240. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5241. const struct tcp_request_sock_ops *af_ops,
  5242. struct sock *sk, struct sk_buff *skb)
  5243. {
  5244. struct tcp_options_received tmp_opt;
  5245. struct request_sock *req;
  5246. struct tcp_sock *tp = tcp_sk(sk);
  5247. struct dst_entry *dst = NULL;
  5248. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5249. bool want_cookie = false, fastopen;
  5250. struct flowi fl;
  5251. struct tcp_fastopen_cookie foc = { .len = -1 };
  5252. int err;
  5253. /* TW buckets are converted to open requests without
  5254. * limitations, they conserve resources and peer is
  5255. * evidently real one.
  5256. */
  5257. if ((sysctl_tcp_syncookies == 2 ||
  5258. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5259. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5260. if (!want_cookie)
  5261. goto drop;
  5262. }
  5263. /* Accept backlog is full. If we have already queued enough
  5264. * of warm entries in syn queue, drop request. It is better than
  5265. * clogging syn queue with openreqs with exponentially increasing
  5266. * timeout.
  5267. */
  5268. if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
  5269. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5270. goto drop;
  5271. }
  5272. req = inet_reqsk_alloc(rsk_ops, sk);
  5273. if (!req)
  5274. goto drop;
  5275. tcp_rsk(req)->af_specific = af_ops;
  5276. tcp_clear_options(&tmp_opt);
  5277. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5278. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5279. tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
  5280. if (want_cookie && !tmp_opt.saw_tstamp)
  5281. tcp_clear_options(&tmp_opt);
  5282. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5283. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5284. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5285. inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
  5286. af_ops->init_req(req, sk, skb);
  5287. if (security_inet_conn_request(sk, skb, req))
  5288. goto drop_and_free;
  5289. if (!want_cookie && !isn) {
  5290. /* VJ's idea. We save last timestamp seen
  5291. * from the destination in peer table, when entering
  5292. * state TIME-WAIT, and check against it before
  5293. * accepting new connection request.
  5294. *
  5295. * If "isn" is not zero, this request hit alive
  5296. * timewait bucket, so that all the necessary checks
  5297. * are made in the function processing timewait state.
  5298. */
  5299. if (tcp_death_row.sysctl_tw_recycle) {
  5300. bool strict;
  5301. dst = af_ops->route_req(sk, &fl, req, &strict);
  5302. if (dst && strict &&
  5303. !tcp_peer_is_proven(req, dst, true,
  5304. tmp_opt.saw_tstamp)) {
  5305. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
  5306. goto drop_and_release;
  5307. }
  5308. }
  5309. /* Kill the following clause, if you dislike this way. */
  5310. else if (!sysctl_tcp_syncookies &&
  5311. (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5312. (sysctl_max_syn_backlog >> 2)) &&
  5313. !tcp_peer_is_proven(req, dst, false,
  5314. tmp_opt.saw_tstamp)) {
  5315. /* Without syncookies last quarter of
  5316. * backlog is filled with destinations,
  5317. * proven to be alive.
  5318. * It means that we continue to communicate
  5319. * to destinations, already remembered
  5320. * to the moment of synflood.
  5321. */
  5322. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5323. rsk_ops->family);
  5324. goto drop_and_release;
  5325. }
  5326. isn = af_ops->init_seq(skb);
  5327. }
  5328. if (!dst) {
  5329. dst = af_ops->route_req(sk, &fl, req, NULL);
  5330. if (!dst)
  5331. goto drop_and_free;
  5332. }
  5333. tcp_ecn_create_request(req, skb, sk, dst);
  5334. if (want_cookie) {
  5335. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5336. req->cookie_ts = tmp_opt.tstamp_ok;
  5337. if (!tmp_opt.tstamp_ok)
  5338. inet_rsk(req)->ecn_ok = 0;
  5339. }
  5340. tcp_rsk(req)->snt_isn = isn;
  5341. tcp_openreq_init_rwin(req, sk, dst);
  5342. fastopen = !want_cookie &&
  5343. tcp_try_fastopen(sk, skb, req, &foc, dst);
  5344. err = af_ops->send_synack(sk, dst, &fl, req,
  5345. skb_get_queue_mapping(skb), &foc);
  5346. if (!fastopen) {
  5347. if (err || want_cookie)
  5348. goto drop_and_free;
  5349. tcp_rsk(req)->tfo_listener = false;
  5350. af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
  5351. }
  5352. tcp_reqsk_record_syn(sk, req, skb);
  5353. return 0;
  5354. drop_and_release:
  5355. dst_release(dst);
  5356. drop_and_free:
  5357. reqsk_free(req);
  5358. drop:
  5359. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
  5360. return 0;
  5361. }
  5362. EXPORT_SYMBOL(tcp_conn_request);