ip_fragment.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The IP fragmentation functionality.
  7. *
  8. * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
  9. * Alan Cox <alan@lxorguk.ukuu.org.uk>
  10. *
  11. * Fixes:
  12. * Alan Cox : Split from ip.c , see ip_input.c for history.
  13. * David S. Miller : Begin massive cleanup...
  14. * Andi Kleen : Add sysctls.
  15. * xxxx : Overlapfrag bug.
  16. * Ultima : ip_expire() kernel panic.
  17. * Bill Hawes : Frag accounting and evictor fixes.
  18. * John McDonald : 0 length frag bug.
  19. * Alexey Kuznetsov: SMP races, threading, cleanup.
  20. * Patrick McHardy : LRU queue of frag heads for evictor.
  21. */
  22. #define pr_fmt(fmt) "IPv4: " fmt
  23. #include <linux/compiler.h>
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/mm.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/skbuff.h>
  29. #include <linux/list.h>
  30. #include <linux/ip.h>
  31. #include <linux/icmp.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/jhash.h>
  34. #include <linux/random.h>
  35. #include <linux/slab.h>
  36. #include <net/route.h>
  37. #include <net/dst.h>
  38. #include <net/sock.h>
  39. #include <net/ip.h>
  40. #include <net/icmp.h>
  41. #include <net/checksum.h>
  42. #include <net/inetpeer.h>
  43. #include <net/inet_frag.h>
  44. #include <linux/tcp.h>
  45. #include <linux/udp.h>
  46. #include <linux/inet.h>
  47. #include <linux/netfilter_ipv4.h>
  48. #include <net/inet_ecn.h>
  49. /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
  50. * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
  51. * as well. Or notify me, at least. --ANK
  52. */
  53. static int sysctl_ipfrag_max_dist __read_mostly = 64;
  54. static const char ip_frag_cache_name[] = "ip4-frags";
  55. struct ipfrag_skb_cb
  56. {
  57. struct inet_skb_parm h;
  58. int offset;
  59. };
  60. #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
  61. /* Describe an entry in the "incomplete datagrams" queue. */
  62. struct ipq {
  63. struct inet_frag_queue q;
  64. u32 user;
  65. __be32 saddr;
  66. __be32 daddr;
  67. __be16 id;
  68. u8 protocol;
  69. u8 ecn; /* RFC3168 support */
  70. u16 max_df_size; /* largest frag with DF set seen */
  71. int iif;
  72. unsigned int rid;
  73. struct inet_peer *peer;
  74. };
  75. static u8 ip4_frag_ecn(u8 tos)
  76. {
  77. return 1 << (tos & INET_ECN_MASK);
  78. }
  79. static struct inet_frags ip4_frags;
  80. int ip_frag_mem(struct net *net)
  81. {
  82. return sum_frag_mem_limit(&net->ipv4.frags);
  83. }
  84. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  85. struct net_device *dev);
  86. struct ip4_create_arg {
  87. struct iphdr *iph;
  88. u32 user;
  89. };
  90. static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
  91. {
  92. net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
  93. return jhash_3words((__force u32)id << 16 | prot,
  94. (__force u32)saddr, (__force u32)daddr,
  95. ip4_frags.rnd);
  96. }
  97. static unsigned int ip4_hashfn(const struct inet_frag_queue *q)
  98. {
  99. const struct ipq *ipq;
  100. ipq = container_of(q, struct ipq, q);
  101. return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
  102. }
  103. static bool ip4_frag_match(const struct inet_frag_queue *q, const void *a)
  104. {
  105. const struct ipq *qp;
  106. const struct ip4_create_arg *arg = a;
  107. qp = container_of(q, struct ipq, q);
  108. return qp->id == arg->iph->id &&
  109. qp->saddr == arg->iph->saddr &&
  110. qp->daddr == arg->iph->daddr &&
  111. qp->protocol == arg->iph->protocol &&
  112. qp->user == arg->user;
  113. }
  114. static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
  115. {
  116. struct ipq *qp = container_of(q, struct ipq, q);
  117. struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
  118. frags);
  119. struct net *net = container_of(ipv4, struct net, ipv4);
  120. const struct ip4_create_arg *arg = a;
  121. qp->protocol = arg->iph->protocol;
  122. qp->id = arg->iph->id;
  123. qp->ecn = ip4_frag_ecn(arg->iph->tos);
  124. qp->saddr = arg->iph->saddr;
  125. qp->daddr = arg->iph->daddr;
  126. qp->user = arg->user;
  127. qp->peer = sysctl_ipfrag_max_dist ?
  128. inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
  129. }
  130. static void ip4_frag_free(struct inet_frag_queue *q)
  131. {
  132. struct ipq *qp;
  133. qp = container_of(q, struct ipq, q);
  134. if (qp->peer)
  135. inet_putpeer(qp->peer);
  136. }
  137. /* Destruction primitives. */
  138. static void ipq_put(struct ipq *ipq)
  139. {
  140. inet_frag_put(&ipq->q, &ip4_frags);
  141. }
  142. /* Kill ipq entry. It is not destroyed immediately,
  143. * because caller (and someone more) holds reference count.
  144. */
  145. static void ipq_kill(struct ipq *ipq)
  146. {
  147. inet_frag_kill(&ipq->q, &ip4_frags);
  148. }
  149. static bool frag_expire_skip_icmp(u32 user)
  150. {
  151. return user == IP_DEFRAG_AF_PACKET ||
  152. ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
  153. __IP_DEFRAG_CONNTRACK_IN_END) ||
  154. ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
  155. __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
  156. }
  157. /*
  158. * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
  159. */
  160. static void ip_expire(unsigned long arg)
  161. {
  162. struct ipq *qp;
  163. struct net *net;
  164. qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
  165. net = container_of(qp->q.net, struct net, ipv4.frags);
  166. spin_lock(&qp->q.lock);
  167. if (qp->q.flags & INET_FRAG_COMPLETE)
  168. goto out;
  169. ipq_kill(qp);
  170. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  171. if (!inet_frag_evicting(&qp->q)) {
  172. struct sk_buff *head = qp->q.fragments;
  173. const struct iphdr *iph;
  174. int err;
  175. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
  176. if (!(qp->q.flags & INET_FRAG_FIRST_IN) || !qp->q.fragments)
  177. goto out;
  178. rcu_read_lock();
  179. head->dev = dev_get_by_index_rcu(net, qp->iif);
  180. if (!head->dev)
  181. goto out_rcu_unlock;
  182. /* skb has no dst, perform route lookup again */
  183. iph = ip_hdr(head);
  184. err = ip_route_input_noref(head, iph->daddr, iph->saddr,
  185. iph->tos, head->dev);
  186. if (err)
  187. goto out_rcu_unlock;
  188. /* Only an end host needs to send an ICMP
  189. * "Fragment Reassembly Timeout" message, per RFC792.
  190. */
  191. if (frag_expire_skip_icmp(qp->user) &&
  192. (skb_rtable(head)->rt_type != RTN_LOCAL))
  193. goto out_rcu_unlock;
  194. /* Send an ICMP "Fragment Reassembly Timeout" message. */
  195. icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
  196. out_rcu_unlock:
  197. rcu_read_unlock();
  198. }
  199. out:
  200. spin_unlock(&qp->q.lock);
  201. ipq_put(qp);
  202. }
  203. /* Find the correct entry in the "incomplete datagrams" queue for
  204. * this IP datagram, and create new one, if nothing is found.
  205. */
  206. static struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
  207. {
  208. struct inet_frag_queue *q;
  209. struct ip4_create_arg arg;
  210. unsigned int hash;
  211. arg.iph = iph;
  212. arg.user = user;
  213. hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
  214. q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
  215. if (IS_ERR_OR_NULL(q)) {
  216. inet_frag_maybe_warn_overflow(q, pr_fmt());
  217. return NULL;
  218. }
  219. return container_of(q, struct ipq, q);
  220. }
  221. /* Is the fragment too far ahead to be part of ipq? */
  222. static int ip_frag_too_far(struct ipq *qp)
  223. {
  224. struct inet_peer *peer = qp->peer;
  225. unsigned int max = sysctl_ipfrag_max_dist;
  226. unsigned int start, end;
  227. int rc;
  228. if (!peer || !max)
  229. return 0;
  230. start = qp->rid;
  231. end = atomic_inc_return(&peer->rid);
  232. qp->rid = end;
  233. rc = qp->q.fragments && (end - start) > max;
  234. if (rc) {
  235. struct net *net;
  236. net = container_of(qp->q.net, struct net, ipv4.frags);
  237. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  238. }
  239. return rc;
  240. }
  241. static int ip_frag_reinit(struct ipq *qp)
  242. {
  243. struct sk_buff *fp;
  244. unsigned int sum_truesize = 0;
  245. if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
  246. atomic_inc(&qp->q.refcnt);
  247. return -ETIMEDOUT;
  248. }
  249. fp = qp->q.fragments;
  250. do {
  251. struct sk_buff *xp = fp->next;
  252. sum_truesize += fp->truesize;
  253. kfree_skb(fp);
  254. fp = xp;
  255. } while (fp);
  256. sub_frag_mem_limit(qp->q.net, sum_truesize);
  257. qp->q.flags = 0;
  258. qp->q.len = 0;
  259. qp->q.meat = 0;
  260. qp->q.fragments = NULL;
  261. qp->q.fragments_tail = NULL;
  262. qp->iif = 0;
  263. qp->ecn = 0;
  264. return 0;
  265. }
  266. /* Add new segment to existing queue. */
  267. static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
  268. {
  269. struct sk_buff *prev, *next;
  270. struct net_device *dev;
  271. unsigned int fragsize;
  272. int flags, offset;
  273. int ihl, end;
  274. int err = -ENOENT;
  275. u8 ecn;
  276. if (qp->q.flags & INET_FRAG_COMPLETE)
  277. goto err;
  278. if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
  279. unlikely(ip_frag_too_far(qp)) &&
  280. unlikely(err = ip_frag_reinit(qp))) {
  281. ipq_kill(qp);
  282. goto err;
  283. }
  284. ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
  285. offset = ntohs(ip_hdr(skb)->frag_off);
  286. flags = offset & ~IP_OFFSET;
  287. offset &= IP_OFFSET;
  288. offset <<= 3; /* offset is in 8-byte chunks */
  289. ihl = ip_hdrlen(skb);
  290. /* Determine the position of this fragment. */
  291. end = offset + skb->len - skb_network_offset(skb) - ihl;
  292. err = -EINVAL;
  293. /* Is this the final fragment? */
  294. if ((flags & IP_MF) == 0) {
  295. /* If we already have some bits beyond end
  296. * or have different end, the segment is corrupted.
  297. */
  298. if (end < qp->q.len ||
  299. ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
  300. goto err;
  301. qp->q.flags |= INET_FRAG_LAST_IN;
  302. qp->q.len = end;
  303. } else {
  304. if (end&7) {
  305. end &= ~7;
  306. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  307. skb->ip_summed = CHECKSUM_NONE;
  308. }
  309. if (end > qp->q.len) {
  310. /* Some bits beyond end -> corruption. */
  311. if (qp->q.flags & INET_FRAG_LAST_IN)
  312. goto err;
  313. qp->q.len = end;
  314. }
  315. }
  316. if (end == offset)
  317. goto err;
  318. err = -ENOMEM;
  319. if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
  320. goto err;
  321. err = pskb_trim_rcsum(skb, end - offset);
  322. if (err)
  323. goto err;
  324. /* Find out which fragments are in front and at the back of us
  325. * in the chain of fragments so far. We must know where to put
  326. * this fragment, right?
  327. */
  328. prev = qp->q.fragments_tail;
  329. if (!prev || FRAG_CB(prev)->offset < offset) {
  330. next = NULL;
  331. goto found;
  332. }
  333. prev = NULL;
  334. for (next = qp->q.fragments; next != NULL; next = next->next) {
  335. if (FRAG_CB(next)->offset >= offset)
  336. break; /* bingo! */
  337. prev = next;
  338. }
  339. found:
  340. /* We found where to put this one. Check for overlap with
  341. * preceding fragment, and, if needed, align things so that
  342. * any overlaps are eliminated.
  343. */
  344. if (prev) {
  345. int i = (FRAG_CB(prev)->offset + prev->len) - offset;
  346. if (i > 0) {
  347. offset += i;
  348. err = -EINVAL;
  349. if (end <= offset)
  350. goto err;
  351. err = -ENOMEM;
  352. if (!pskb_pull(skb, i))
  353. goto err;
  354. if (skb->ip_summed != CHECKSUM_UNNECESSARY)
  355. skb->ip_summed = CHECKSUM_NONE;
  356. }
  357. }
  358. err = -ENOMEM;
  359. while (next && FRAG_CB(next)->offset < end) {
  360. int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
  361. if (i < next->len) {
  362. /* Eat head of the next overlapped fragment
  363. * and leave the loop. The next ones cannot overlap.
  364. */
  365. if (!pskb_pull(next, i))
  366. goto err;
  367. FRAG_CB(next)->offset += i;
  368. qp->q.meat -= i;
  369. if (next->ip_summed != CHECKSUM_UNNECESSARY)
  370. next->ip_summed = CHECKSUM_NONE;
  371. break;
  372. } else {
  373. struct sk_buff *free_it = next;
  374. /* Old fragment is completely overridden with
  375. * new one drop it.
  376. */
  377. next = next->next;
  378. if (prev)
  379. prev->next = next;
  380. else
  381. qp->q.fragments = next;
  382. qp->q.meat -= free_it->len;
  383. sub_frag_mem_limit(qp->q.net, free_it->truesize);
  384. kfree_skb(free_it);
  385. }
  386. }
  387. FRAG_CB(skb)->offset = offset;
  388. /* Insert this fragment in the chain of fragments. */
  389. skb->next = next;
  390. if (!next)
  391. qp->q.fragments_tail = skb;
  392. if (prev)
  393. prev->next = skb;
  394. else
  395. qp->q.fragments = skb;
  396. dev = skb->dev;
  397. if (dev) {
  398. qp->iif = dev->ifindex;
  399. skb->dev = NULL;
  400. }
  401. qp->q.stamp = skb->tstamp;
  402. qp->q.meat += skb->len;
  403. qp->ecn |= ecn;
  404. add_frag_mem_limit(qp->q.net, skb->truesize);
  405. if (offset == 0)
  406. qp->q.flags |= INET_FRAG_FIRST_IN;
  407. fragsize = skb->len + ihl;
  408. if (fragsize > qp->q.max_size)
  409. qp->q.max_size = fragsize;
  410. if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
  411. fragsize > qp->max_df_size)
  412. qp->max_df_size = fragsize;
  413. if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
  414. qp->q.meat == qp->q.len) {
  415. unsigned long orefdst = skb->_skb_refdst;
  416. skb->_skb_refdst = 0UL;
  417. err = ip_frag_reasm(qp, prev, dev);
  418. skb->_skb_refdst = orefdst;
  419. return err;
  420. }
  421. skb_dst_drop(skb);
  422. return -EINPROGRESS;
  423. err:
  424. kfree_skb(skb);
  425. return err;
  426. }
  427. /* Build a new IP datagram from all its fragments. */
  428. static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
  429. struct net_device *dev)
  430. {
  431. struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
  432. struct iphdr *iph;
  433. struct sk_buff *fp, *head = qp->q.fragments;
  434. int len;
  435. int ihlen;
  436. int err;
  437. int sum_truesize;
  438. u8 ecn;
  439. ipq_kill(qp);
  440. ecn = ip_frag_ecn_table[qp->ecn];
  441. if (unlikely(ecn == 0xff)) {
  442. err = -EINVAL;
  443. goto out_fail;
  444. }
  445. /* Make the one we just received the head. */
  446. if (prev) {
  447. head = prev->next;
  448. fp = skb_clone(head, GFP_ATOMIC);
  449. if (!fp)
  450. goto out_nomem;
  451. fp->next = head->next;
  452. if (!fp->next)
  453. qp->q.fragments_tail = fp;
  454. prev->next = fp;
  455. skb_morph(head, qp->q.fragments);
  456. head->next = qp->q.fragments->next;
  457. consume_skb(qp->q.fragments);
  458. qp->q.fragments = head;
  459. }
  460. WARN_ON(!head);
  461. WARN_ON(FRAG_CB(head)->offset != 0);
  462. /* Allocate a new buffer for the datagram. */
  463. ihlen = ip_hdrlen(head);
  464. len = ihlen + qp->q.len;
  465. err = -E2BIG;
  466. if (len > 65535)
  467. goto out_oversize;
  468. /* Head of list must not be cloned. */
  469. if (skb_unclone(head, GFP_ATOMIC))
  470. goto out_nomem;
  471. /* If the first fragment is fragmented itself, we split
  472. * it to two chunks: the first with data and paged part
  473. * and the second, holding only fragments. */
  474. if (skb_has_frag_list(head)) {
  475. struct sk_buff *clone;
  476. int i, plen = 0;
  477. clone = alloc_skb(0, GFP_ATOMIC);
  478. if (!clone)
  479. goto out_nomem;
  480. clone->next = head->next;
  481. head->next = clone;
  482. skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
  483. skb_frag_list_init(head);
  484. for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
  485. plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
  486. clone->len = clone->data_len = head->data_len - plen;
  487. head->data_len -= clone->len;
  488. head->len -= clone->len;
  489. clone->csum = 0;
  490. clone->ip_summed = head->ip_summed;
  491. add_frag_mem_limit(qp->q.net, clone->truesize);
  492. }
  493. skb_push(head, head->data - skb_network_header(head));
  494. sum_truesize = head->truesize;
  495. for (fp = head->next; fp;) {
  496. bool headstolen;
  497. int delta;
  498. struct sk_buff *next = fp->next;
  499. sum_truesize += fp->truesize;
  500. if (head->ip_summed != fp->ip_summed)
  501. head->ip_summed = CHECKSUM_NONE;
  502. else if (head->ip_summed == CHECKSUM_COMPLETE)
  503. head->csum = csum_add(head->csum, fp->csum);
  504. if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
  505. kfree_skb_partial(fp, headstolen);
  506. } else {
  507. if (!skb_shinfo(head)->frag_list)
  508. skb_shinfo(head)->frag_list = fp;
  509. head->data_len += fp->len;
  510. head->len += fp->len;
  511. head->truesize += fp->truesize;
  512. }
  513. fp = next;
  514. }
  515. sub_frag_mem_limit(qp->q.net, sum_truesize);
  516. head->next = NULL;
  517. head->dev = dev;
  518. head->tstamp = qp->q.stamp;
  519. IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
  520. iph = ip_hdr(head);
  521. iph->tot_len = htons(len);
  522. iph->tos |= ecn;
  523. /* When we set IP_DF on a refragmented skb we must also force a
  524. * call to ip_fragment to avoid forwarding a DF-skb of size s while
  525. * original sender only sent fragments of size f (where f < s).
  526. *
  527. * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
  528. * frag seen to avoid sending tiny DF-fragments in case skb was built
  529. * from one very small df-fragment and one large non-df frag.
  530. */
  531. if (qp->max_df_size == qp->q.max_size) {
  532. IPCB(head)->flags |= IPSKB_FRAG_PMTU;
  533. iph->frag_off = htons(IP_DF);
  534. } else {
  535. iph->frag_off = 0;
  536. }
  537. ip_send_check(iph);
  538. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
  539. qp->q.fragments = NULL;
  540. qp->q.fragments_tail = NULL;
  541. return 0;
  542. out_nomem:
  543. net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
  544. err = -ENOMEM;
  545. goto out_fail;
  546. out_oversize:
  547. net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
  548. out_fail:
  549. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  550. return err;
  551. }
  552. /* Process an incoming IP datagram fragment. */
  553. int ip_defrag(struct sk_buff *skb, u32 user)
  554. {
  555. struct ipq *qp;
  556. struct net *net;
  557. net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
  558. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
  559. /* Lookup (or create) queue header */
  560. qp = ip_find(net, ip_hdr(skb), user);
  561. if (qp) {
  562. int ret;
  563. spin_lock(&qp->q.lock);
  564. ret = ip_frag_queue(qp, skb);
  565. spin_unlock(&qp->q.lock);
  566. ipq_put(qp);
  567. return ret;
  568. }
  569. IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
  570. kfree_skb(skb);
  571. return -ENOMEM;
  572. }
  573. EXPORT_SYMBOL(ip_defrag);
  574. struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
  575. {
  576. struct iphdr iph;
  577. int netoff;
  578. u32 len;
  579. if (skb->protocol != htons(ETH_P_IP))
  580. return skb;
  581. netoff = skb_network_offset(skb);
  582. if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
  583. return skb;
  584. if (iph.ihl < 5 || iph.version != 4)
  585. return skb;
  586. len = ntohs(iph.tot_len);
  587. if (skb->len < netoff + len || len < (iph.ihl * 4))
  588. return skb;
  589. if (ip_is_fragment(&iph)) {
  590. skb = skb_share_check(skb, GFP_ATOMIC);
  591. if (skb) {
  592. if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
  593. return skb;
  594. if (pskb_trim_rcsum(skb, netoff + len))
  595. return skb;
  596. memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
  597. if (ip_defrag(skb, user))
  598. return NULL;
  599. skb_clear_hash(skb);
  600. }
  601. }
  602. return skb;
  603. }
  604. EXPORT_SYMBOL(ip_check_defrag);
  605. #ifdef CONFIG_SYSCTL
  606. static int zero;
  607. static struct ctl_table ip4_frags_ns_ctl_table[] = {
  608. {
  609. .procname = "ipfrag_high_thresh",
  610. .data = &init_net.ipv4.frags.high_thresh,
  611. .maxlen = sizeof(int),
  612. .mode = 0644,
  613. .proc_handler = proc_dointvec_minmax,
  614. .extra1 = &init_net.ipv4.frags.low_thresh
  615. },
  616. {
  617. .procname = "ipfrag_low_thresh",
  618. .data = &init_net.ipv4.frags.low_thresh,
  619. .maxlen = sizeof(int),
  620. .mode = 0644,
  621. .proc_handler = proc_dointvec_minmax,
  622. .extra1 = &zero,
  623. .extra2 = &init_net.ipv4.frags.high_thresh
  624. },
  625. {
  626. .procname = "ipfrag_time",
  627. .data = &init_net.ipv4.frags.timeout,
  628. .maxlen = sizeof(int),
  629. .mode = 0644,
  630. .proc_handler = proc_dointvec_jiffies,
  631. },
  632. { }
  633. };
  634. /* secret interval has been deprecated */
  635. static int ip4_frags_secret_interval_unused;
  636. static struct ctl_table ip4_frags_ctl_table[] = {
  637. {
  638. .procname = "ipfrag_secret_interval",
  639. .data = &ip4_frags_secret_interval_unused,
  640. .maxlen = sizeof(int),
  641. .mode = 0644,
  642. .proc_handler = proc_dointvec_jiffies,
  643. },
  644. {
  645. .procname = "ipfrag_max_dist",
  646. .data = &sysctl_ipfrag_max_dist,
  647. .maxlen = sizeof(int),
  648. .mode = 0644,
  649. .proc_handler = proc_dointvec_minmax,
  650. .extra1 = &zero
  651. },
  652. { }
  653. };
  654. static int __net_init ip4_frags_ns_ctl_register(struct net *net)
  655. {
  656. struct ctl_table *table;
  657. struct ctl_table_header *hdr;
  658. table = ip4_frags_ns_ctl_table;
  659. if (!net_eq(net, &init_net)) {
  660. table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
  661. if (!table)
  662. goto err_alloc;
  663. table[0].data = &net->ipv4.frags.high_thresh;
  664. table[0].extra1 = &net->ipv4.frags.low_thresh;
  665. table[0].extra2 = &init_net.ipv4.frags.high_thresh;
  666. table[1].data = &net->ipv4.frags.low_thresh;
  667. table[1].extra2 = &net->ipv4.frags.high_thresh;
  668. table[2].data = &net->ipv4.frags.timeout;
  669. /* Don't export sysctls to unprivileged users */
  670. if (net->user_ns != &init_user_ns)
  671. table[0].procname = NULL;
  672. }
  673. hdr = register_net_sysctl(net, "net/ipv4", table);
  674. if (!hdr)
  675. goto err_reg;
  676. net->ipv4.frags_hdr = hdr;
  677. return 0;
  678. err_reg:
  679. if (!net_eq(net, &init_net))
  680. kfree(table);
  681. err_alloc:
  682. return -ENOMEM;
  683. }
  684. static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
  685. {
  686. struct ctl_table *table;
  687. table = net->ipv4.frags_hdr->ctl_table_arg;
  688. unregister_net_sysctl_table(net->ipv4.frags_hdr);
  689. kfree(table);
  690. }
  691. static void __init ip4_frags_ctl_register(void)
  692. {
  693. register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
  694. }
  695. #else
  696. static int ip4_frags_ns_ctl_register(struct net *net)
  697. {
  698. return 0;
  699. }
  700. static void ip4_frags_ns_ctl_unregister(struct net *net)
  701. {
  702. }
  703. static void __init ip4_frags_ctl_register(void)
  704. {
  705. }
  706. #endif
  707. static int __net_init ipv4_frags_init_net(struct net *net)
  708. {
  709. /* Fragment cache limits.
  710. *
  711. * The fragment memory accounting code, (tries to) account for
  712. * the real memory usage, by measuring both the size of frag
  713. * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
  714. * and the SKB's truesize.
  715. *
  716. * A 64K fragment consumes 129736 bytes (44*2944)+200
  717. * (1500 truesize == 2944, sizeof(struct ipq) == 200)
  718. *
  719. * We will commit 4MB at one time. Should we cross that limit
  720. * we will prune down to 3MB, making room for approx 8 big 64K
  721. * fragments 8x128k.
  722. */
  723. net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
  724. net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
  725. /*
  726. * Important NOTE! Fragment queue must be destroyed before MSL expires.
  727. * RFC791 is wrong proposing to prolongate timer each fragment arrival
  728. * by TTL.
  729. */
  730. net->ipv4.frags.timeout = IP_FRAG_TIME;
  731. inet_frags_init_net(&net->ipv4.frags);
  732. return ip4_frags_ns_ctl_register(net);
  733. }
  734. static void __net_exit ipv4_frags_exit_net(struct net *net)
  735. {
  736. ip4_frags_ns_ctl_unregister(net);
  737. inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
  738. }
  739. static struct pernet_operations ip4_frags_ops = {
  740. .init = ipv4_frags_init_net,
  741. .exit = ipv4_frags_exit_net,
  742. };
  743. void __init ipfrag_init(void)
  744. {
  745. ip4_frags_ctl_register();
  746. register_pernet_subsys(&ip4_frags_ops);
  747. ip4_frags.hashfn = ip4_hashfn;
  748. ip4_frags.constructor = ip4_frag_init;
  749. ip4_frags.destructor = ip4_frag_free;
  750. ip4_frags.skb_free = NULL;
  751. ip4_frags.qsize = sizeof(struct ipq);
  752. ip4_frags.match = ip4_frag_match;
  753. ip4_frags.frag_expire = ip_expire;
  754. ip4_frags.frags_cache_name = ip_frag_cache_name;
  755. if (inet_frags_init(&ip4_frags))
  756. panic("IP: failed to allocate ip4_frags cache\n");
  757. }