fib_trie.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version
  5. * 2 of the License, or (at your option) any later version.
  6. *
  7. * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
  8. * & Swedish University of Agricultural Sciences.
  9. *
  10. * Jens Laas <jens.laas@data.slu.se> Swedish University of
  11. * Agricultural Sciences.
  12. *
  13. * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
  14. *
  15. * This work is based on the LPC-trie which is originally described in:
  16. *
  17. * An experimental study of compression methods for dynamic tries
  18. * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19. * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20. *
  21. *
  22. * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23. * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24. *
  25. *
  26. * Code from fib_hash has been reused which includes the following header:
  27. *
  28. *
  29. * INET An implementation of the TCP/IP protocol suite for the LINUX
  30. * operating system. INET is implemented using the BSD Socket
  31. * interface as the means of communication with the user level.
  32. *
  33. * IPv4 FIB: lookup engine and maintenance routines.
  34. *
  35. *
  36. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37. *
  38. * This program is free software; you can redistribute it and/or
  39. * modify it under the terms of the GNU General Public License
  40. * as published by the Free Software Foundation; either version
  41. * 2 of the License, or (at your option) any later version.
  42. *
  43. * Substantial contributions to this work comes from:
  44. *
  45. * David S. Miller, <davem@davemloft.net>
  46. * Stephen Hemminger <shemminger@osdl.org>
  47. * Paul E. McKenney <paulmck@us.ibm.com>
  48. * Patrick McHardy <kaber@trash.net>
  49. */
  50. #define VERSION "0.409"
  51. #include <asm/uaccess.h>
  52. #include <linux/bitops.h>
  53. #include <linux/types.h>
  54. #include <linux/kernel.h>
  55. #include <linux/mm.h>
  56. #include <linux/string.h>
  57. #include <linux/socket.h>
  58. #include <linux/sockios.h>
  59. #include <linux/errno.h>
  60. #include <linux/in.h>
  61. #include <linux/inet.h>
  62. #include <linux/inetdevice.h>
  63. #include <linux/netdevice.h>
  64. #include <linux/if_arp.h>
  65. #include <linux/proc_fs.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/netlink.h>
  69. #include <linux/init.h>
  70. #include <linux/list.h>
  71. #include <linux/slab.h>
  72. #include <linux/export.h>
  73. #include <linux/vmalloc.h>
  74. #include <net/net_namespace.h>
  75. #include <net/ip.h>
  76. #include <net/protocol.h>
  77. #include <net/route.h>
  78. #include <net/tcp.h>
  79. #include <net/sock.h>
  80. #include <net/ip_fib.h>
  81. #include <net/switchdev.h>
  82. #include "fib_lookup.h"
  83. #define MAX_STAT_DEPTH 32
  84. #define KEYLENGTH (8*sizeof(t_key))
  85. #define KEY_MAX ((t_key)~0)
  86. typedef unsigned int t_key;
  87. #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
  88. #define IS_TNODE(n) ((n)->bits)
  89. #define IS_LEAF(n) (!(n)->bits)
  90. struct key_vector {
  91. t_key key;
  92. unsigned char pos; /* 2log(KEYLENGTH) bits needed */
  93. unsigned char bits; /* 2log(KEYLENGTH) bits needed */
  94. unsigned char slen;
  95. union {
  96. /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
  97. struct hlist_head leaf;
  98. /* This array is valid if (pos | bits) > 0 (TNODE) */
  99. struct key_vector __rcu *tnode[0];
  100. };
  101. };
  102. struct tnode {
  103. struct rcu_head rcu;
  104. t_key empty_children; /* KEYLENGTH bits needed */
  105. t_key full_children; /* KEYLENGTH bits needed */
  106. struct key_vector __rcu *parent;
  107. struct key_vector kv[1];
  108. #define tn_bits kv[0].bits
  109. };
  110. #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
  111. #define LEAF_SIZE TNODE_SIZE(1)
  112. #ifdef CONFIG_IP_FIB_TRIE_STATS
  113. struct trie_use_stats {
  114. unsigned int gets;
  115. unsigned int backtrack;
  116. unsigned int semantic_match_passed;
  117. unsigned int semantic_match_miss;
  118. unsigned int null_node_hit;
  119. unsigned int resize_node_skipped;
  120. };
  121. #endif
  122. struct trie_stat {
  123. unsigned int totdepth;
  124. unsigned int maxdepth;
  125. unsigned int tnodes;
  126. unsigned int leaves;
  127. unsigned int nullpointers;
  128. unsigned int prefixes;
  129. unsigned int nodesizes[MAX_STAT_DEPTH];
  130. };
  131. struct trie {
  132. struct key_vector kv[1];
  133. #ifdef CONFIG_IP_FIB_TRIE_STATS
  134. struct trie_use_stats __percpu *stats;
  135. #endif
  136. };
  137. static struct key_vector *resize(struct trie *t, struct key_vector *tn);
  138. static size_t tnode_free_size;
  139. /*
  140. * synchronize_rcu after call_rcu for that many pages; it should be especially
  141. * useful before resizing the root node with PREEMPT_NONE configs; the value was
  142. * obtained experimentally, aiming to avoid visible slowdown.
  143. */
  144. static const int sync_pages = 128;
  145. static struct kmem_cache *fn_alias_kmem __read_mostly;
  146. static struct kmem_cache *trie_leaf_kmem __read_mostly;
  147. static inline struct tnode *tn_info(struct key_vector *kv)
  148. {
  149. return container_of(kv, struct tnode, kv[0]);
  150. }
  151. /* caller must hold RTNL */
  152. #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
  153. #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
  154. /* caller must hold RCU read lock or RTNL */
  155. #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
  156. #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
  157. /* wrapper for rcu_assign_pointer */
  158. static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
  159. {
  160. if (n)
  161. rcu_assign_pointer(tn_info(n)->parent, tp);
  162. }
  163. #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
  164. /* This provides us with the number of children in this node, in the case of a
  165. * leaf this will return 0 meaning none of the children are accessible.
  166. */
  167. static inline unsigned long child_length(const struct key_vector *tn)
  168. {
  169. return (1ul << tn->bits) & ~(1ul);
  170. }
  171. #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
  172. static inline unsigned long get_index(t_key key, struct key_vector *kv)
  173. {
  174. unsigned long index = key ^ kv->key;
  175. if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
  176. return 0;
  177. return index >> kv->pos;
  178. }
  179. /* To understand this stuff, an understanding of keys and all their bits is
  180. * necessary. Every node in the trie has a key associated with it, but not
  181. * all of the bits in that key are significant.
  182. *
  183. * Consider a node 'n' and its parent 'tp'.
  184. *
  185. * If n is a leaf, every bit in its key is significant. Its presence is
  186. * necessitated by path compression, since during a tree traversal (when
  187. * searching for a leaf - unless we are doing an insertion) we will completely
  188. * ignore all skipped bits we encounter. Thus we need to verify, at the end of
  189. * a potentially successful search, that we have indeed been walking the
  190. * correct key path.
  191. *
  192. * Note that we can never "miss" the correct key in the tree if present by
  193. * following the wrong path. Path compression ensures that segments of the key
  194. * that are the same for all keys with a given prefix are skipped, but the
  195. * skipped part *is* identical for each node in the subtrie below the skipped
  196. * bit! trie_insert() in this implementation takes care of that.
  197. *
  198. * if n is an internal node - a 'tnode' here, the various parts of its key
  199. * have many different meanings.
  200. *
  201. * Example:
  202. * _________________________________________________________________
  203. * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
  204. * -----------------------------------------------------------------
  205. * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
  206. *
  207. * _________________________________________________________________
  208. * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
  209. * -----------------------------------------------------------------
  210. * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
  211. *
  212. * tp->pos = 22
  213. * tp->bits = 3
  214. * n->pos = 13
  215. * n->bits = 4
  216. *
  217. * First, let's just ignore the bits that come before the parent tp, that is
  218. * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
  219. * point we do not use them for anything.
  220. *
  221. * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
  222. * index into the parent's child array. That is, they will be used to find
  223. * 'n' among tp's children.
  224. *
  225. * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
  226. * for the node n.
  227. *
  228. * All the bits we have seen so far are significant to the node n. The rest
  229. * of the bits are really not needed or indeed known in n->key.
  230. *
  231. * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
  232. * n's child array, and will of course be different for each child.
  233. *
  234. * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
  235. * at this point.
  236. */
  237. static const int halve_threshold = 25;
  238. static const int inflate_threshold = 50;
  239. static const int halve_threshold_root = 15;
  240. static const int inflate_threshold_root = 30;
  241. static void __alias_free_mem(struct rcu_head *head)
  242. {
  243. struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
  244. kmem_cache_free(fn_alias_kmem, fa);
  245. }
  246. static inline void alias_free_mem_rcu(struct fib_alias *fa)
  247. {
  248. call_rcu(&fa->rcu, __alias_free_mem);
  249. }
  250. #define TNODE_KMALLOC_MAX \
  251. ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  252. #define TNODE_VMALLOC_MAX \
  253. ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
  254. static void __node_free_rcu(struct rcu_head *head)
  255. {
  256. struct tnode *n = container_of(head, struct tnode, rcu);
  257. if (!n->tn_bits)
  258. kmem_cache_free(trie_leaf_kmem, n);
  259. else if (n->tn_bits <= TNODE_KMALLOC_MAX)
  260. kfree(n);
  261. else
  262. vfree(n);
  263. }
  264. #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
  265. static struct tnode *tnode_alloc(int bits)
  266. {
  267. size_t size;
  268. /* verify bits is within bounds */
  269. if (bits > TNODE_VMALLOC_MAX)
  270. return NULL;
  271. /* determine size and verify it is non-zero and didn't overflow */
  272. size = TNODE_SIZE(1ul << bits);
  273. if (size <= PAGE_SIZE)
  274. return kzalloc(size, GFP_KERNEL);
  275. else
  276. return vzalloc(size);
  277. }
  278. static inline void empty_child_inc(struct key_vector *n)
  279. {
  280. ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
  281. }
  282. static inline void empty_child_dec(struct key_vector *n)
  283. {
  284. tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
  285. }
  286. static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
  287. {
  288. struct key_vector *l;
  289. struct tnode *kv;
  290. kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
  291. if (!kv)
  292. return NULL;
  293. /* initialize key vector */
  294. l = kv->kv;
  295. l->key = key;
  296. l->pos = 0;
  297. l->bits = 0;
  298. l->slen = fa->fa_slen;
  299. /* link leaf to fib alias */
  300. INIT_HLIST_HEAD(&l->leaf);
  301. hlist_add_head(&fa->fa_list, &l->leaf);
  302. return l;
  303. }
  304. static struct key_vector *tnode_new(t_key key, int pos, int bits)
  305. {
  306. unsigned int shift = pos + bits;
  307. struct key_vector *tn;
  308. struct tnode *tnode;
  309. /* verify bits and pos their msb bits clear and values are valid */
  310. BUG_ON(!bits || (shift > KEYLENGTH));
  311. tnode = tnode_alloc(bits);
  312. if (!tnode)
  313. return NULL;
  314. pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
  315. sizeof(struct key_vector *) << bits);
  316. if (bits == KEYLENGTH)
  317. tnode->full_children = 1;
  318. else
  319. tnode->empty_children = 1ul << bits;
  320. tn = tnode->kv;
  321. tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
  322. tn->pos = pos;
  323. tn->bits = bits;
  324. tn->slen = pos;
  325. return tn;
  326. }
  327. /* Check whether a tnode 'n' is "full", i.e. it is an internal node
  328. * and no bits are skipped. See discussion in dyntree paper p. 6
  329. */
  330. static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
  331. {
  332. return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
  333. }
  334. /* Add a child at position i overwriting the old value.
  335. * Update the value of full_children and empty_children.
  336. */
  337. static void put_child(struct key_vector *tn, unsigned long i,
  338. struct key_vector *n)
  339. {
  340. struct key_vector *chi = get_child(tn, i);
  341. int isfull, wasfull;
  342. BUG_ON(i >= child_length(tn));
  343. /* update emptyChildren, overflow into fullChildren */
  344. if (!n && chi)
  345. empty_child_inc(tn);
  346. if (n && !chi)
  347. empty_child_dec(tn);
  348. /* update fullChildren */
  349. wasfull = tnode_full(tn, chi);
  350. isfull = tnode_full(tn, n);
  351. if (wasfull && !isfull)
  352. tn_info(tn)->full_children--;
  353. else if (!wasfull && isfull)
  354. tn_info(tn)->full_children++;
  355. if (n && (tn->slen < n->slen))
  356. tn->slen = n->slen;
  357. rcu_assign_pointer(tn->tnode[i], n);
  358. }
  359. static void update_children(struct key_vector *tn)
  360. {
  361. unsigned long i;
  362. /* update all of the child parent pointers */
  363. for (i = child_length(tn); i;) {
  364. struct key_vector *inode = get_child(tn, --i);
  365. if (!inode)
  366. continue;
  367. /* Either update the children of a tnode that
  368. * already belongs to us or update the child
  369. * to point to ourselves.
  370. */
  371. if (node_parent(inode) == tn)
  372. update_children(inode);
  373. else
  374. node_set_parent(inode, tn);
  375. }
  376. }
  377. static inline void put_child_root(struct key_vector *tp, t_key key,
  378. struct key_vector *n)
  379. {
  380. if (IS_TRIE(tp))
  381. rcu_assign_pointer(tp->tnode[0], n);
  382. else
  383. put_child(tp, get_index(key, tp), n);
  384. }
  385. static inline void tnode_free_init(struct key_vector *tn)
  386. {
  387. tn_info(tn)->rcu.next = NULL;
  388. }
  389. static inline void tnode_free_append(struct key_vector *tn,
  390. struct key_vector *n)
  391. {
  392. tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
  393. tn_info(tn)->rcu.next = &tn_info(n)->rcu;
  394. }
  395. static void tnode_free(struct key_vector *tn)
  396. {
  397. struct callback_head *head = &tn_info(tn)->rcu;
  398. while (head) {
  399. head = head->next;
  400. tnode_free_size += TNODE_SIZE(1ul << tn->bits);
  401. node_free(tn);
  402. tn = container_of(head, struct tnode, rcu)->kv;
  403. }
  404. if (tnode_free_size >= PAGE_SIZE * sync_pages) {
  405. tnode_free_size = 0;
  406. synchronize_rcu();
  407. }
  408. }
  409. static struct key_vector *replace(struct trie *t,
  410. struct key_vector *oldtnode,
  411. struct key_vector *tn)
  412. {
  413. struct key_vector *tp = node_parent(oldtnode);
  414. unsigned long i;
  415. /* setup the parent pointer out of and back into this node */
  416. NODE_INIT_PARENT(tn, tp);
  417. put_child_root(tp, tn->key, tn);
  418. /* update all of the child parent pointers */
  419. update_children(tn);
  420. /* all pointers should be clean so we are done */
  421. tnode_free(oldtnode);
  422. /* resize children now that oldtnode is freed */
  423. for (i = child_length(tn); i;) {
  424. struct key_vector *inode = get_child(tn, --i);
  425. /* resize child node */
  426. if (tnode_full(tn, inode))
  427. tn = resize(t, inode);
  428. }
  429. return tp;
  430. }
  431. static struct key_vector *inflate(struct trie *t,
  432. struct key_vector *oldtnode)
  433. {
  434. struct key_vector *tn;
  435. unsigned long i;
  436. t_key m;
  437. pr_debug("In inflate\n");
  438. tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
  439. if (!tn)
  440. goto notnode;
  441. /* prepare oldtnode to be freed */
  442. tnode_free_init(oldtnode);
  443. /* Assemble all of the pointers in our cluster, in this case that
  444. * represents all of the pointers out of our allocated nodes that
  445. * point to existing tnodes and the links between our allocated
  446. * nodes.
  447. */
  448. for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
  449. struct key_vector *inode = get_child(oldtnode, --i);
  450. struct key_vector *node0, *node1;
  451. unsigned long j, k;
  452. /* An empty child */
  453. if (!inode)
  454. continue;
  455. /* A leaf or an internal node with skipped bits */
  456. if (!tnode_full(oldtnode, inode)) {
  457. put_child(tn, get_index(inode->key, tn), inode);
  458. continue;
  459. }
  460. /* drop the node in the old tnode free list */
  461. tnode_free_append(oldtnode, inode);
  462. /* An internal node with two children */
  463. if (inode->bits == 1) {
  464. put_child(tn, 2 * i + 1, get_child(inode, 1));
  465. put_child(tn, 2 * i, get_child(inode, 0));
  466. continue;
  467. }
  468. /* We will replace this node 'inode' with two new
  469. * ones, 'node0' and 'node1', each with half of the
  470. * original children. The two new nodes will have
  471. * a position one bit further down the key and this
  472. * means that the "significant" part of their keys
  473. * (see the discussion near the top of this file)
  474. * will differ by one bit, which will be "0" in
  475. * node0's key and "1" in node1's key. Since we are
  476. * moving the key position by one step, the bit that
  477. * we are moving away from - the bit at position
  478. * (tn->pos) - is the one that will differ between
  479. * node0 and node1. So... we synthesize that bit in the
  480. * two new keys.
  481. */
  482. node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
  483. if (!node1)
  484. goto nomem;
  485. node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
  486. tnode_free_append(tn, node1);
  487. if (!node0)
  488. goto nomem;
  489. tnode_free_append(tn, node0);
  490. /* populate child pointers in new nodes */
  491. for (k = child_length(inode), j = k / 2; j;) {
  492. put_child(node1, --j, get_child(inode, --k));
  493. put_child(node0, j, get_child(inode, j));
  494. put_child(node1, --j, get_child(inode, --k));
  495. put_child(node0, j, get_child(inode, j));
  496. }
  497. /* link new nodes to parent */
  498. NODE_INIT_PARENT(node1, tn);
  499. NODE_INIT_PARENT(node0, tn);
  500. /* link parent to nodes */
  501. put_child(tn, 2 * i + 1, node1);
  502. put_child(tn, 2 * i, node0);
  503. }
  504. /* setup the parent pointers into and out of this node */
  505. return replace(t, oldtnode, tn);
  506. nomem:
  507. /* all pointers should be clean so we are done */
  508. tnode_free(tn);
  509. notnode:
  510. return NULL;
  511. }
  512. static struct key_vector *halve(struct trie *t,
  513. struct key_vector *oldtnode)
  514. {
  515. struct key_vector *tn;
  516. unsigned long i;
  517. pr_debug("In halve\n");
  518. tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
  519. if (!tn)
  520. goto notnode;
  521. /* prepare oldtnode to be freed */
  522. tnode_free_init(oldtnode);
  523. /* Assemble all of the pointers in our cluster, in this case that
  524. * represents all of the pointers out of our allocated nodes that
  525. * point to existing tnodes and the links between our allocated
  526. * nodes.
  527. */
  528. for (i = child_length(oldtnode); i;) {
  529. struct key_vector *node1 = get_child(oldtnode, --i);
  530. struct key_vector *node0 = get_child(oldtnode, --i);
  531. struct key_vector *inode;
  532. /* At least one of the children is empty */
  533. if (!node1 || !node0) {
  534. put_child(tn, i / 2, node1 ? : node0);
  535. continue;
  536. }
  537. /* Two nonempty children */
  538. inode = tnode_new(node0->key, oldtnode->pos, 1);
  539. if (!inode)
  540. goto nomem;
  541. tnode_free_append(tn, inode);
  542. /* initialize pointers out of node */
  543. put_child(inode, 1, node1);
  544. put_child(inode, 0, node0);
  545. NODE_INIT_PARENT(inode, tn);
  546. /* link parent to node */
  547. put_child(tn, i / 2, inode);
  548. }
  549. /* setup the parent pointers into and out of this node */
  550. return replace(t, oldtnode, tn);
  551. nomem:
  552. /* all pointers should be clean so we are done */
  553. tnode_free(tn);
  554. notnode:
  555. return NULL;
  556. }
  557. static struct key_vector *collapse(struct trie *t,
  558. struct key_vector *oldtnode)
  559. {
  560. struct key_vector *n, *tp;
  561. unsigned long i;
  562. /* scan the tnode looking for that one child that might still exist */
  563. for (n = NULL, i = child_length(oldtnode); !n && i;)
  564. n = get_child(oldtnode, --i);
  565. /* compress one level */
  566. tp = node_parent(oldtnode);
  567. put_child_root(tp, oldtnode->key, n);
  568. node_set_parent(n, tp);
  569. /* drop dead node */
  570. node_free(oldtnode);
  571. return tp;
  572. }
  573. static unsigned char update_suffix(struct key_vector *tn)
  574. {
  575. unsigned char slen = tn->pos;
  576. unsigned long stride, i;
  577. /* search though the list of children looking for nodes that might
  578. * have a suffix greater than the one we currently have. This is
  579. * why we start with a stride of 2 since a stride of 1 would
  580. * represent the nodes with suffix length equal to tn->pos
  581. */
  582. for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
  583. struct key_vector *n = get_child(tn, i);
  584. if (!n || (n->slen <= slen))
  585. continue;
  586. /* update stride and slen based on new value */
  587. stride <<= (n->slen - slen);
  588. slen = n->slen;
  589. i &= ~(stride - 1);
  590. /* if slen covers all but the last bit we can stop here
  591. * there will be nothing longer than that since only node
  592. * 0 and 1 << (bits - 1) could have that as their suffix
  593. * length.
  594. */
  595. if ((slen + 1) >= (tn->pos + tn->bits))
  596. break;
  597. }
  598. tn->slen = slen;
  599. return slen;
  600. }
  601. /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
  602. * the Helsinki University of Technology and Matti Tikkanen of Nokia
  603. * Telecommunications, page 6:
  604. * "A node is doubled if the ratio of non-empty children to all
  605. * children in the *doubled* node is at least 'high'."
  606. *
  607. * 'high' in this instance is the variable 'inflate_threshold'. It
  608. * is expressed as a percentage, so we multiply it with
  609. * child_length() and instead of multiplying by 2 (since the
  610. * child array will be doubled by inflate()) and multiplying
  611. * the left-hand side by 100 (to handle the percentage thing) we
  612. * multiply the left-hand side by 50.
  613. *
  614. * The left-hand side may look a bit weird: child_length(tn)
  615. * - tn->empty_children is of course the number of non-null children
  616. * in the current node. tn->full_children is the number of "full"
  617. * children, that is non-null tnodes with a skip value of 0.
  618. * All of those will be doubled in the resulting inflated tnode, so
  619. * we just count them one extra time here.
  620. *
  621. * A clearer way to write this would be:
  622. *
  623. * to_be_doubled = tn->full_children;
  624. * not_to_be_doubled = child_length(tn) - tn->empty_children -
  625. * tn->full_children;
  626. *
  627. * new_child_length = child_length(tn) * 2;
  628. *
  629. * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
  630. * new_child_length;
  631. * if (new_fill_factor >= inflate_threshold)
  632. *
  633. * ...and so on, tho it would mess up the while () loop.
  634. *
  635. * anyway,
  636. * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
  637. * inflate_threshold
  638. *
  639. * avoid a division:
  640. * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
  641. * inflate_threshold * new_child_length
  642. *
  643. * expand not_to_be_doubled and to_be_doubled, and shorten:
  644. * 100 * (child_length(tn) - tn->empty_children +
  645. * tn->full_children) >= inflate_threshold * new_child_length
  646. *
  647. * expand new_child_length:
  648. * 100 * (child_length(tn) - tn->empty_children +
  649. * tn->full_children) >=
  650. * inflate_threshold * child_length(tn) * 2
  651. *
  652. * shorten again:
  653. * 50 * (tn->full_children + child_length(tn) -
  654. * tn->empty_children) >= inflate_threshold *
  655. * child_length(tn)
  656. *
  657. */
  658. static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
  659. {
  660. unsigned long used = child_length(tn);
  661. unsigned long threshold = used;
  662. /* Keep root node larger */
  663. threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
  664. used -= tn_info(tn)->empty_children;
  665. used += tn_info(tn)->full_children;
  666. /* if bits == KEYLENGTH then pos = 0, and will fail below */
  667. return (used > 1) && tn->pos && ((50 * used) >= threshold);
  668. }
  669. static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
  670. {
  671. unsigned long used = child_length(tn);
  672. unsigned long threshold = used;
  673. /* Keep root node larger */
  674. threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
  675. used -= tn_info(tn)->empty_children;
  676. /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
  677. return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
  678. }
  679. static inline bool should_collapse(struct key_vector *tn)
  680. {
  681. unsigned long used = child_length(tn);
  682. used -= tn_info(tn)->empty_children;
  683. /* account for bits == KEYLENGTH case */
  684. if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
  685. used -= KEY_MAX;
  686. /* One child or none, time to drop us from the trie */
  687. return used < 2;
  688. }
  689. #define MAX_WORK 10
  690. static struct key_vector *resize(struct trie *t, struct key_vector *tn)
  691. {
  692. #ifdef CONFIG_IP_FIB_TRIE_STATS
  693. struct trie_use_stats __percpu *stats = t->stats;
  694. #endif
  695. struct key_vector *tp = node_parent(tn);
  696. unsigned long cindex = get_index(tn->key, tp);
  697. int max_work = MAX_WORK;
  698. pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
  699. tn, inflate_threshold, halve_threshold);
  700. /* track the tnode via the pointer from the parent instead of
  701. * doing it ourselves. This way we can let RCU fully do its
  702. * thing without us interfering
  703. */
  704. BUG_ON(tn != get_child(tp, cindex));
  705. /* Double as long as the resulting node has a number of
  706. * nonempty nodes that are above the threshold.
  707. */
  708. while (should_inflate(tp, tn) && max_work) {
  709. tp = inflate(t, tn);
  710. if (!tp) {
  711. #ifdef CONFIG_IP_FIB_TRIE_STATS
  712. this_cpu_inc(stats->resize_node_skipped);
  713. #endif
  714. break;
  715. }
  716. max_work--;
  717. tn = get_child(tp, cindex);
  718. }
  719. /* update parent in case inflate failed */
  720. tp = node_parent(tn);
  721. /* Return if at least one inflate is run */
  722. if (max_work != MAX_WORK)
  723. return tp;
  724. /* Halve as long as the number of empty children in this
  725. * node is above threshold.
  726. */
  727. while (should_halve(tp, tn) && max_work) {
  728. tp = halve(t, tn);
  729. if (!tp) {
  730. #ifdef CONFIG_IP_FIB_TRIE_STATS
  731. this_cpu_inc(stats->resize_node_skipped);
  732. #endif
  733. break;
  734. }
  735. max_work--;
  736. tn = get_child(tp, cindex);
  737. }
  738. /* Only one child remains */
  739. if (should_collapse(tn))
  740. return collapse(t, tn);
  741. /* update parent in case halve failed */
  742. tp = node_parent(tn);
  743. /* Return if at least one deflate was run */
  744. if (max_work != MAX_WORK)
  745. return tp;
  746. /* push the suffix length to the parent node */
  747. if (tn->slen > tn->pos) {
  748. unsigned char slen = update_suffix(tn);
  749. if (slen > tp->slen)
  750. tp->slen = slen;
  751. }
  752. return tp;
  753. }
  754. static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
  755. {
  756. while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
  757. if (update_suffix(tp) > l->slen)
  758. break;
  759. tp = node_parent(tp);
  760. }
  761. }
  762. static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
  763. {
  764. /* if this is a new leaf then tn will be NULL and we can sort
  765. * out parent suffix lengths as a part of trie_rebalance
  766. */
  767. while (tn->slen < l->slen) {
  768. tn->slen = l->slen;
  769. tn = node_parent(tn);
  770. }
  771. }
  772. /* rcu_read_lock needs to be hold by caller from readside */
  773. static struct key_vector *fib_find_node(struct trie *t,
  774. struct key_vector **tp, u32 key)
  775. {
  776. struct key_vector *pn, *n = t->kv;
  777. unsigned long index = 0;
  778. do {
  779. pn = n;
  780. n = get_child_rcu(n, index);
  781. if (!n)
  782. break;
  783. index = get_cindex(key, n);
  784. /* This bit of code is a bit tricky but it combines multiple
  785. * checks into a single check. The prefix consists of the
  786. * prefix plus zeros for the bits in the cindex. The index
  787. * is the difference between the key and this value. From
  788. * this we can actually derive several pieces of data.
  789. * if (index >= (1ul << bits))
  790. * we have a mismatch in skip bits and failed
  791. * else
  792. * we know the value is cindex
  793. *
  794. * This check is safe even if bits == KEYLENGTH due to the
  795. * fact that we can only allocate a node with 32 bits if a
  796. * long is greater than 32 bits.
  797. */
  798. if (index >= (1ul << n->bits)) {
  799. n = NULL;
  800. break;
  801. }
  802. /* keep searching until we find a perfect match leaf or NULL */
  803. } while (IS_TNODE(n));
  804. *tp = pn;
  805. return n;
  806. }
  807. /* Return the first fib alias matching TOS with
  808. * priority less than or equal to PRIO.
  809. */
  810. static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
  811. u8 tos, u32 prio, u32 tb_id)
  812. {
  813. struct fib_alias *fa;
  814. if (!fah)
  815. return NULL;
  816. hlist_for_each_entry(fa, fah, fa_list) {
  817. if (fa->fa_slen < slen)
  818. continue;
  819. if (fa->fa_slen != slen)
  820. break;
  821. if (fa->tb_id > tb_id)
  822. continue;
  823. if (fa->tb_id != tb_id)
  824. break;
  825. if (fa->fa_tos > tos)
  826. continue;
  827. if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
  828. return fa;
  829. }
  830. return NULL;
  831. }
  832. static void trie_rebalance(struct trie *t, struct key_vector *tn)
  833. {
  834. while (!IS_TRIE(tn))
  835. tn = resize(t, tn);
  836. }
  837. static int fib_insert_node(struct trie *t, struct key_vector *tp,
  838. struct fib_alias *new, t_key key)
  839. {
  840. struct key_vector *n, *l;
  841. l = leaf_new(key, new);
  842. if (!l)
  843. goto noleaf;
  844. /* retrieve child from parent node */
  845. n = get_child(tp, get_index(key, tp));
  846. /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
  847. *
  848. * Add a new tnode here
  849. * first tnode need some special handling
  850. * leaves us in position for handling as case 3
  851. */
  852. if (n) {
  853. struct key_vector *tn;
  854. tn = tnode_new(key, __fls(key ^ n->key), 1);
  855. if (!tn)
  856. goto notnode;
  857. /* initialize routes out of node */
  858. NODE_INIT_PARENT(tn, tp);
  859. put_child(tn, get_index(key, tn) ^ 1, n);
  860. /* start adding routes into the node */
  861. put_child_root(tp, key, tn);
  862. node_set_parent(n, tn);
  863. /* parent now has a NULL spot where the leaf can go */
  864. tp = tn;
  865. }
  866. /* Case 3: n is NULL, and will just insert a new leaf */
  867. NODE_INIT_PARENT(l, tp);
  868. put_child_root(tp, key, l);
  869. trie_rebalance(t, tp);
  870. return 0;
  871. notnode:
  872. node_free(l);
  873. noleaf:
  874. return -ENOMEM;
  875. }
  876. static int fib_insert_alias(struct trie *t, struct key_vector *tp,
  877. struct key_vector *l, struct fib_alias *new,
  878. struct fib_alias *fa, t_key key)
  879. {
  880. if (!l)
  881. return fib_insert_node(t, tp, new, key);
  882. if (fa) {
  883. hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
  884. } else {
  885. struct fib_alias *last;
  886. hlist_for_each_entry(last, &l->leaf, fa_list) {
  887. if (new->fa_slen < last->fa_slen)
  888. break;
  889. if ((new->fa_slen == last->fa_slen) &&
  890. (new->tb_id > last->tb_id))
  891. break;
  892. fa = last;
  893. }
  894. if (fa)
  895. hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
  896. else
  897. hlist_add_head_rcu(&new->fa_list, &l->leaf);
  898. }
  899. /* if we added to the tail node then we need to update slen */
  900. if (l->slen < new->fa_slen) {
  901. l->slen = new->fa_slen;
  902. leaf_push_suffix(tp, l);
  903. }
  904. return 0;
  905. }
  906. /* Caller must hold RTNL. */
  907. int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
  908. {
  909. struct trie *t = (struct trie *)tb->tb_data;
  910. struct fib_alias *fa, *new_fa;
  911. struct key_vector *l, *tp;
  912. unsigned int nlflags = 0;
  913. struct fib_info *fi;
  914. u8 plen = cfg->fc_dst_len;
  915. u8 slen = KEYLENGTH - plen;
  916. u8 tos = cfg->fc_tos;
  917. u32 key;
  918. int err;
  919. if (plen > KEYLENGTH)
  920. return -EINVAL;
  921. key = ntohl(cfg->fc_dst);
  922. pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
  923. if ((plen < KEYLENGTH) && (key << plen))
  924. return -EINVAL;
  925. fi = fib_create_info(cfg);
  926. if (IS_ERR(fi)) {
  927. err = PTR_ERR(fi);
  928. goto err;
  929. }
  930. l = fib_find_node(t, &tp, key);
  931. fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
  932. tb->tb_id) : NULL;
  933. /* Now fa, if non-NULL, points to the first fib alias
  934. * with the same keys [prefix,tos,priority], if such key already
  935. * exists or to the node before which we will insert new one.
  936. *
  937. * If fa is NULL, we will need to allocate a new one and
  938. * insert to the tail of the section matching the suffix length
  939. * of the new alias.
  940. */
  941. if (fa && fa->fa_tos == tos &&
  942. fa->fa_info->fib_priority == fi->fib_priority) {
  943. struct fib_alias *fa_first, *fa_match;
  944. err = -EEXIST;
  945. if (cfg->fc_nlflags & NLM_F_EXCL)
  946. goto out;
  947. /* We have 2 goals:
  948. * 1. Find exact match for type, scope, fib_info to avoid
  949. * duplicate routes
  950. * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
  951. */
  952. fa_match = NULL;
  953. fa_first = fa;
  954. hlist_for_each_entry_from(fa, fa_list) {
  955. if ((fa->fa_slen != slen) ||
  956. (fa->tb_id != tb->tb_id) ||
  957. (fa->fa_tos != tos))
  958. break;
  959. if (fa->fa_info->fib_priority != fi->fib_priority)
  960. break;
  961. if (fa->fa_type == cfg->fc_type &&
  962. fa->fa_info == fi) {
  963. fa_match = fa;
  964. break;
  965. }
  966. }
  967. if (cfg->fc_nlflags & NLM_F_REPLACE) {
  968. struct fib_info *fi_drop;
  969. u8 state;
  970. fa = fa_first;
  971. if (fa_match) {
  972. if (fa == fa_match)
  973. err = 0;
  974. goto out;
  975. }
  976. err = -ENOBUFS;
  977. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  978. if (!new_fa)
  979. goto out;
  980. fi_drop = fa->fa_info;
  981. new_fa->fa_tos = fa->fa_tos;
  982. new_fa->fa_info = fi;
  983. new_fa->fa_type = cfg->fc_type;
  984. state = fa->fa_state;
  985. new_fa->fa_state = state & ~FA_S_ACCESSED;
  986. new_fa->fa_slen = fa->fa_slen;
  987. new_fa->tb_id = tb->tb_id;
  988. new_fa->fa_default = -1;
  989. err = switchdev_fib_ipv4_add(key, plen, fi,
  990. new_fa->fa_tos,
  991. cfg->fc_type,
  992. cfg->fc_nlflags,
  993. tb->tb_id);
  994. if (err) {
  995. switchdev_fib_ipv4_abort(fi);
  996. kmem_cache_free(fn_alias_kmem, new_fa);
  997. goto out;
  998. }
  999. hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
  1000. alias_free_mem_rcu(fa);
  1001. fib_release_info(fi_drop);
  1002. if (state & FA_S_ACCESSED)
  1003. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1004. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
  1005. tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
  1006. goto succeeded;
  1007. }
  1008. /* Error if we find a perfect match which
  1009. * uses the same scope, type, and nexthop
  1010. * information.
  1011. */
  1012. if (fa_match)
  1013. goto out;
  1014. if (cfg->fc_nlflags & NLM_F_APPEND)
  1015. nlflags = NLM_F_APPEND;
  1016. else
  1017. fa = fa_first;
  1018. }
  1019. err = -ENOENT;
  1020. if (!(cfg->fc_nlflags & NLM_F_CREATE))
  1021. goto out;
  1022. err = -ENOBUFS;
  1023. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1024. if (!new_fa)
  1025. goto out;
  1026. new_fa->fa_info = fi;
  1027. new_fa->fa_tos = tos;
  1028. new_fa->fa_type = cfg->fc_type;
  1029. new_fa->fa_state = 0;
  1030. new_fa->fa_slen = slen;
  1031. new_fa->tb_id = tb->tb_id;
  1032. new_fa->fa_default = -1;
  1033. /* (Optionally) offload fib entry to switch hardware. */
  1034. err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
  1035. cfg->fc_nlflags, tb->tb_id);
  1036. if (err) {
  1037. switchdev_fib_ipv4_abort(fi);
  1038. goto out_free_new_fa;
  1039. }
  1040. /* Insert new entry to the list. */
  1041. err = fib_insert_alias(t, tp, l, new_fa, fa, key);
  1042. if (err)
  1043. goto out_sw_fib_del;
  1044. if (!plen)
  1045. tb->tb_num_default++;
  1046. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1047. rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
  1048. &cfg->fc_nlinfo, nlflags);
  1049. succeeded:
  1050. return 0;
  1051. out_sw_fib_del:
  1052. switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
  1053. out_free_new_fa:
  1054. kmem_cache_free(fn_alias_kmem, new_fa);
  1055. out:
  1056. fib_release_info(fi);
  1057. err:
  1058. return err;
  1059. }
  1060. static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
  1061. {
  1062. t_key prefix = n->key;
  1063. return (key ^ prefix) & (prefix | -prefix);
  1064. }
  1065. /* should be called with rcu_read_lock */
  1066. int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
  1067. struct fib_result *res, int fib_flags)
  1068. {
  1069. struct trie *t = (struct trie *) tb->tb_data;
  1070. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1071. struct trie_use_stats __percpu *stats = t->stats;
  1072. #endif
  1073. const t_key key = ntohl(flp->daddr);
  1074. struct key_vector *n, *pn;
  1075. struct fib_alias *fa;
  1076. unsigned long index;
  1077. t_key cindex;
  1078. pn = t->kv;
  1079. cindex = 0;
  1080. n = get_child_rcu(pn, cindex);
  1081. if (!n)
  1082. return -EAGAIN;
  1083. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1084. this_cpu_inc(stats->gets);
  1085. #endif
  1086. /* Step 1: Travel to the longest prefix match in the trie */
  1087. for (;;) {
  1088. index = get_cindex(key, n);
  1089. /* This bit of code is a bit tricky but it combines multiple
  1090. * checks into a single check. The prefix consists of the
  1091. * prefix plus zeros for the "bits" in the prefix. The index
  1092. * is the difference between the key and this value. From
  1093. * this we can actually derive several pieces of data.
  1094. * if (index >= (1ul << bits))
  1095. * we have a mismatch in skip bits and failed
  1096. * else
  1097. * we know the value is cindex
  1098. *
  1099. * This check is safe even if bits == KEYLENGTH due to the
  1100. * fact that we can only allocate a node with 32 bits if a
  1101. * long is greater than 32 bits.
  1102. */
  1103. if (index >= (1ul << n->bits))
  1104. break;
  1105. /* we have found a leaf. Prefixes have already been compared */
  1106. if (IS_LEAF(n))
  1107. goto found;
  1108. /* only record pn and cindex if we are going to be chopping
  1109. * bits later. Otherwise we are just wasting cycles.
  1110. */
  1111. if (n->slen > n->pos) {
  1112. pn = n;
  1113. cindex = index;
  1114. }
  1115. n = get_child_rcu(n, index);
  1116. if (unlikely(!n))
  1117. goto backtrace;
  1118. }
  1119. /* Step 2: Sort out leaves and begin backtracing for longest prefix */
  1120. for (;;) {
  1121. /* record the pointer where our next node pointer is stored */
  1122. struct key_vector __rcu **cptr = n->tnode;
  1123. /* This test verifies that none of the bits that differ
  1124. * between the key and the prefix exist in the region of
  1125. * the lsb and higher in the prefix.
  1126. */
  1127. if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
  1128. goto backtrace;
  1129. /* exit out and process leaf */
  1130. if (unlikely(IS_LEAF(n)))
  1131. break;
  1132. /* Don't bother recording parent info. Since we are in
  1133. * prefix match mode we will have to come back to wherever
  1134. * we started this traversal anyway
  1135. */
  1136. while ((n = rcu_dereference(*cptr)) == NULL) {
  1137. backtrace:
  1138. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1139. if (!n)
  1140. this_cpu_inc(stats->null_node_hit);
  1141. #endif
  1142. /* If we are at cindex 0 there are no more bits for
  1143. * us to strip at this level so we must ascend back
  1144. * up one level to see if there are any more bits to
  1145. * be stripped there.
  1146. */
  1147. while (!cindex) {
  1148. t_key pkey = pn->key;
  1149. /* If we don't have a parent then there is
  1150. * nothing for us to do as we do not have any
  1151. * further nodes to parse.
  1152. */
  1153. if (IS_TRIE(pn))
  1154. return -EAGAIN;
  1155. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1156. this_cpu_inc(stats->backtrack);
  1157. #endif
  1158. /* Get Child's index */
  1159. pn = node_parent_rcu(pn);
  1160. cindex = get_index(pkey, pn);
  1161. }
  1162. /* strip the least significant bit from the cindex */
  1163. cindex &= cindex - 1;
  1164. /* grab pointer for next child node */
  1165. cptr = &pn->tnode[cindex];
  1166. }
  1167. }
  1168. found:
  1169. /* this line carries forward the xor from earlier in the function */
  1170. index = key ^ n->key;
  1171. /* Step 3: Process the leaf, if that fails fall back to backtracing */
  1172. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1173. struct fib_info *fi = fa->fa_info;
  1174. int nhsel, err;
  1175. if ((index >= (1ul << fa->fa_slen)) &&
  1176. ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
  1177. continue;
  1178. if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
  1179. continue;
  1180. if (fi->fib_dead)
  1181. continue;
  1182. if (fa->fa_info->fib_scope < flp->flowi4_scope)
  1183. continue;
  1184. fib_alias_accessed(fa);
  1185. err = fib_props[fa->fa_type].error;
  1186. if (unlikely(err < 0)) {
  1187. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1188. this_cpu_inc(stats->semantic_match_passed);
  1189. #endif
  1190. return err;
  1191. }
  1192. if (fi->fib_flags & RTNH_F_DEAD)
  1193. continue;
  1194. for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
  1195. const struct fib_nh *nh = &fi->fib_nh[nhsel];
  1196. struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
  1197. if (nh->nh_flags & RTNH_F_DEAD)
  1198. continue;
  1199. if (in_dev &&
  1200. IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
  1201. nh->nh_flags & RTNH_F_LINKDOWN &&
  1202. !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
  1203. continue;
  1204. if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
  1205. continue;
  1206. if (!(fib_flags & FIB_LOOKUP_NOREF))
  1207. atomic_inc(&fi->fib_clntref);
  1208. res->prefixlen = KEYLENGTH - fa->fa_slen;
  1209. res->nh_sel = nhsel;
  1210. res->type = fa->fa_type;
  1211. res->scope = fi->fib_scope;
  1212. res->fi = fi;
  1213. res->table = tb;
  1214. res->fa_head = &n->leaf;
  1215. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1216. this_cpu_inc(stats->semantic_match_passed);
  1217. #endif
  1218. return err;
  1219. }
  1220. }
  1221. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1222. this_cpu_inc(stats->semantic_match_miss);
  1223. #endif
  1224. goto backtrace;
  1225. }
  1226. EXPORT_SYMBOL_GPL(fib_table_lookup);
  1227. static void fib_remove_alias(struct trie *t, struct key_vector *tp,
  1228. struct key_vector *l, struct fib_alias *old)
  1229. {
  1230. /* record the location of the previous list_info entry */
  1231. struct hlist_node **pprev = old->fa_list.pprev;
  1232. struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
  1233. /* remove the fib_alias from the list */
  1234. hlist_del_rcu(&old->fa_list);
  1235. /* if we emptied the list this leaf will be freed and we can sort
  1236. * out parent suffix lengths as a part of trie_rebalance
  1237. */
  1238. if (hlist_empty(&l->leaf)) {
  1239. put_child_root(tp, l->key, NULL);
  1240. node_free(l);
  1241. trie_rebalance(t, tp);
  1242. return;
  1243. }
  1244. /* only access fa if it is pointing at the last valid hlist_node */
  1245. if (*pprev)
  1246. return;
  1247. /* update the trie with the latest suffix length */
  1248. l->slen = fa->fa_slen;
  1249. leaf_pull_suffix(tp, l);
  1250. }
  1251. /* Caller must hold RTNL. */
  1252. int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
  1253. {
  1254. struct trie *t = (struct trie *) tb->tb_data;
  1255. struct fib_alias *fa, *fa_to_delete;
  1256. struct key_vector *l, *tp;
  1257. u8 plen = cfg->fc_dst_len;
  1258. u8 slen = KEYLENGTH - plen;
  1259. u8 tos = cfg->fc_tos;
  1260. u32 key;
  1261. if (plen > KEYLENGTH)
  1262. return -EINVAL;
  1263. key = ntohl(cfg->fc_dst);
  1264. if ((plen < KEYLENGTH) && (key << plen))
  1265. return -EINVAL;
  1266. l = fib_find_node(t, &tp, key);
  1267. if (!l)
  1268. return -ESRCH;
  1269. fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
  1270. if (!fa)
  1271. return -ESRCH;
  1272. pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
  1273. fa_to_delete = NULL;
  1274. hlist_for_each_entry_from(fa, fa_list) {
  1275. struct fib_info *fi = fa->fa_info;
  1276. if ((fa->fa_slen != slen) ||
  1277. (fa->tb_id != tb->tb_id) ||
  1278. (fa->fa_tos != tos))
  1279. break;
  1280. if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
  1281. (cfg->fc_scope == RT_SCOPE_NOWHERE ||
  1282. fa->fa_info->fib_scope == cfg->fc_scope) &&
  1283. (!cfg->fc_prefsrc ||
  1284. fi->fib_prefsrc == cfg->fc_prefsrc) &&
  1285. (!cfg->fc_protocol ||
  1286. fi->fib_protocol == cfg->fc_protocol) &&
  1287. fib_nh_match(cfg, fi) == 0) {
  1288. fa_to_delete = fa;
  1289. break;
  1290. }
  1291. }
  1292. if (!fa_to_delete)
  1293. return -ESRCH;
  1294. switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
  1295. cfg->fc_type, tb->tb_id);
  1296. rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
  1297. &cfg->fc_nlinfo, 0);
  1298. if (!plen)
  1299. tb->tb_num_default--;
  1300. fib_remove_alias(t, tp, l, fa_to_delete);
  1301. if (fa_to_delete->fa_state & FA_S_ACCESSED)
  1302. rt_cache_flush(cfg->fc_nlinfo.nl_net);
  1303. fib_release_info(fa_to_delete->fa_info);
  1304. alias_free_mem_rcu(fa_to_delete);
  1305. return 0;
  1306. }
  1307. /* Scan for the next leaf starting at the provided key value */
  1308. static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
  1309. {
  1310. struct key_vector *pn, *n = *tn;
  1311. unsigned long cindex;
  1312. /* this loop is meant to try and find the key in the trie */
  1313. do {
  1314. /* record parent and next child index */
  1315. pn = n;
  1316. cindex = key ? get_index(key, pn) : 0;
  1317. if (cindex >> pn->bits)
  1318. break;
  1319. /* descend into the next child */
  1320. n = get_child_rcu(pn, cindex++);
  1321. if (!n)
  1322. break;
  1323. /* guarantee forward progress on the keys */
  1324. if (IS_LEAF(n) && (n->key >= key))
  1325. goto found;
  1326. } while (IS_TNODE(n));
  1327. /* this loop will search for the next leaf with a greater key */
  1328. while (!IS_TRIE(pn)) {
  1329. /* if we exhausted the parent node we will need to climb */
  1330. if (cindex >= (1ul << pn->bits)) {
  1331. t_key pkey = pn->key;
  1332. pn = node_parent_rcu(pn);
  1333. cindex = get_index(pkey, pn) + 1;
  1334. continue;
  1335. }
  1336. /* grab the next available node */
  1337. n = get_child_rcu(pn, cindex++);
  1338. if (!n)
  1339. continue;
  1340. /* no need to compare keys since we bumped the index */
  1341. if (IS_LEAF(n))
  1342. goto found;
  1343. /* Rescan start scanning in new node */
  1344. pn = n;
  1345. cindex = 0;
  1346. }
  1347. *tn = pn;
  1348. return NULL; /* Root of trie */
  1349. found:
  1350. /* if we are at the limit for keys just return NULL for the tnode */
  1351. *tn = pn;
  1352. return n;
  1353. }
  1354. static void fib_trie_free(struct fib_table *tb)
  1355. {
  1356. struct trie *t = (struct trie *)tb->tb_data;
  1357. struct key_vector *pn = t->kv;
  1358. unsigned long cindex = 1;
  1359. struct hlist_node *tmp;
  1360. struct fib_alias *fa;
  1361. /* walk trie in reverse order and free everything */
  1362. for (;;) {
  1363. struct key_vector *n;
  1364. if (!(cindex--)) {
  1365. t_key pkey = pn->key;
  1366. if (IS_TRIE(pn))
  1367. break;
  1368. n = pn;
  1369. pn = node_parent(pn);
  1370. /* drop emptied tnode */
  1371. put_child_root(pn, n->key, NULL);
  1372. node_free(n);
  1373. cindex = get_index(pkey, pn);
  1374. continue;
  1375. }
  1376. /* grab the next available node */
  1377. n = get_child(pn, cindex);
  1378. if (!n)
  1379. continue;
  1380. if (IS_TNODE(n)) {
  1381. /* record pn and cindex for leaf walking */
  1382. pn = n;
  1383. cindex = 1ul << n->bits;
  1384. continue;
  1385. }
  1386. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1387. hlist_del_rcu(&fa->fa_list);
  1388. alias_free_mem_rcu(fa);
  1389. }
  1390. put_child_root(pn, n->key, NULL);
  1391. node_free(n);
  1392. }
  1393. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1394. free_percpu(t->stats);
  1395. #endif
  1396. kfree(tb);
  1397. }
  1398. struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
  1399. {
  1400. struct trie *ot = (struct trie *)oldtb->tb_data;
  1401. struct key_vector *l, *tp = ot->kv;
  1402. struct fib_table *local_tb;
  1403. struct fib_alias *fa;
  1404. struct trie *lt;
  1405. t_key key = 0;
  1406. if (oldtb->tb_data == oldtb->__data)
  1407. return oldtb;
  1408. local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
  1409. if (!local_tb)
  1410. return NULL;
  1411. lt = (struct trie *)local_tb->tb_data;
  1412. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1413. struct key_vector *local_l = NULL, *local_tp;
  1414. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1415. struct fib_alias *new_fa;
  1416. if (local_tb->tb_id != fa->tb_id)
  1417. continue;
  1418. /* clone fa for new local table */
  1419. new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
  1420. if (!new_fa)
  1421. goto out;
  1422. memcpy(new_fa, fa, sizeof(*fa));
  1423. /* insert clone into table */
  1424. if (!local_l)
  1425. local_l = fib_find_node(lt, &local_tp, l->key);
  1426. if (fib_insert_alias(lt, local_tp, local_l, new_fa,
  1427. NULL, l->key))
  1428. goto out;
  1429. }
  1430. /* stop loop if key wrapped back to 0 */
  1431. key = l->key + 1;
  1432. if (key < l->key)
  1433. break;
  1434. }
  1435. return local_tb;
  1436. out:
  1437. fib_trie_free(local_tb);
  1438. return NULL;
  1439. }
  1440. /* Caller must hold RTNL */
  1441. void fib_table_flush_external(struct fib_table *tb)
  1442. {
  1443. struct trie *t = (struct trie *)tb->tb_data;
  1444. struct key_vector *pn = t->kv;
  1445. unsigned long cindex = 1;
  1446. struct hlist_node *tmp;
  1447. struct fib_alias *fa;
  1448. /* walk trie in reverse order */
  1449. for (;;) {
  1450. unsigned char slen = 0;
  1451. struct key_vector *n;
  1452. if (!(cindex--)) {
  1453. t_key pkey = pn->key;
  1454. /* cannot resize the trie vector */
  1455. if (IS_TRIE(pn))
  1456. break;
  1457. /* resize completed node */
  1458. pn = resize(t, pn);
  1459. cindex = get_index(pkey, pn);
  1460. continue;
  1461. }
  1462. /* grab the next available node */
  1463. n = get_child(pn, cindex);
  1464. if (!n)
  1465. continue;
  1466. if (IS_TNODE(n)) {
  1467. /* record pn and cindex for leaf walking */
  1468. pn = n;
  1469. cindex = 1ul << n->bits;
  1470. continue;
  1471. }
  1472. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1473. struct fib_info *fi = fa->fa_info;
  1474. /* if alias was cloned to local then we just
  1475. * need to remove the local copy from main
  1476. */
  1477. if (tb->tb_id != fa->tb_id) {
  1478. hlist_del_rcu(&fa->fa_list);
  1479. alias_free_mem_rcu(fa);
  1480. continue;
  1481. }
  1482. /* record local slen */
  1483. slen = fa->fa_slen;
  1484. if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
  1485. continue;
  1486. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1487. fi, fa->fa_tos, fa->fa_type,
  1488. tb->tb_id);
  1489. }
  1490. /* update leaf slen */
  1491. n->slen = slen;
  1492. if (hlist_empty(&n->leaf)) {
  1493. put_child_root(pn, n->key, NULL);
  1494. node_free(n);
  1495. }
  1496. }
  1497. }
  1498. /* Caller must hold RTNL. */
  1499. int fib_table_flush(struct fib_table *tb)
  1500. {
  1501. struct trie *t = (struct trie *)tb->tb_data;
  1502. struct key_vector *pn = t->kv;
  1503. unsigned long cindex = 1;
  1504. struct hlist_node *tmp;
  1505. struct fib_alias *fa;
  1506. int found = 0;
  1507. /* walk trie in reverse order */
  1508. for (;;) {
  1509. unsigned char slen = 0;
  1510. struct key_vector *n;
  1511. if (!(cindex--)) {
  1512. t_key pkey = pn->key;
  1513. /* cannot resize the trie vector */
  1514. if (IS_TRIE(pn))
  1515. break;
  1516. /* resize completed node */
  1517. pn = resize(t, pn);
  1518. cindex = get_index(pkey, pn);
  1519. continue;
  1520. }
  1521. /* grab the next available node */
  1522. n = get_child(pn, cindex);
  1523. if (!n)
  1524. continue;
  1525. if (IS_TNODE(n)) {
  1526. /* record pn and cindex for leaf walking */
  1527. pn = n;
  1528. cindex = 1ul << n->bits;
  1529. continue;
  1530. }
  1531. hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
  1532. struct fib_info *fi = fa->fa_info;
  1533. if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
  1534. slen = fa->fa_slen;
  1535. continue;
  1536. }
  1537. switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
  1538. fi, fa->fa_tos, fa->fa_type,
  1539. tb->tb_id);
  1540. hlist_del_rcu(&fa->fa_list);
  1541. fib_release_info(fa->fa_info);
  1542. alias_free_mem_rcu(fa);
  1543. found++;
  1544. }
  1545. /* update leaf slen */
  1546. n->slen = slen;
  1547. if (hlist_empty(&n->leaf)) {
  1548. put_child_root(pn, n->key, NULL);
  1549. node_free(n);
  1550. }
  1551. }
  1552. pr_debug("trie_flush found=%d\n", found);
  1553. return found;
  1554. }
  1555. static void __trie_free_rcu(struct rcu_head *head)
  1556. {
  1557. struct fib_table *tb = container_of(head, struct fib_table, rcu);
  1558. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1559. struct trie *t = (struct trie *)tb->tb_data;
  1560. if (tb->tb_data == tb->__data)
  1561. free_percpu(t->stats);
  1562. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1563. kfree(tb);
  1564. }
  1565. void fib_free_table(struct fib_table *tb)
  1566. {
  1567. call_rcu(&tb->rcu, __trie_free_rcu);
  1568. }
  1569. static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
  1570. struct sk_buff *skb, struct netlink_callback *cb)
  1571. {
  1572. __be32 xkey = htonl(l->key);
  1573. struct fib_alias *fa;
  1574. int i, s_i;
  1575. s_i = cb->args[4];
  1576. i = 0;
  1577. /* rcu_read_lock is hold by caller */
  1578. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  1579. if (i < s_i) {
  1580. i++;
  1581. continue;
  1582. }
  1583. if (tb->tb_id != fa->tb_id) {
  1584. i++;
  1585. continue;
  1586. }
  1587. if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
  1588. cb->nlh->nlmsg_seq,
  1589. RTM_NEWROUTE,
  1590. tb->tb_id,
  1591. fa->fa_type,
  1592. xkey,
  1593. KEYLENGTH - fa->fa_slen,
  1594. fa->fa_tos,
  1595. fa->fa_info, NLM_F_MULTI) < 0) {
  1596. cb->args[4] = i;
  1597. return -1;
  1598. }
  1599. i++;
  1600. }
  1601. cb->args[4] = i;
  1602. return skb->len;
  1603. }
  1604. /* rcu_read_lock needs to be hold by caller from readside */
  1605. int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
  1606. struct netlink_callback *cb)
  1607. {
  1608. struct trie *t = (struct trie *)tb->tb_data;
  1609. struct key_vector *l, *tp = t->kv;
  1610. /* Dump starting at last key.
  1611. * Note: 0.0.0.0/0 (ie default) is first key.
  1612. */
  1613. int count = cb->args[2];
  1614. t_key key = cb->args[3];
  1615. while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
  1616. if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
  1617. cb->args[3] = key;
  1618. cb->args[2] = count;
  1619. return -1;
  1620. }
  1621. ++count;
  1622. key = l->key + 1;
  1623. memset(&cb->args[4], 0,
  1624. sizeof(cb->args) - 4*sizeof(cb->args[0]));
  1625. /* stop loop if key wrapped back to 0 */
  1626. if (key < l->key)
  1627. break;
  1628. }
  1629. cb->args[3] = key;
  1630. cb->args[2] = count;
  1631. return skb->len;
  1632. }
  1633. void __init fib_trie_init(void)
  1634. {
  1635. fn_alias_kmem = kmem_cache_create("ip_fib_alias",
  1636. sizeof(struct fib_alias),
  1637. 0, SLAB_PANIC, NULL);
  1638. trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
  1639. LEAF_SIZE,
  1640. 0, SLAB_PANIC, NULL);
  1641. }
  1642. struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
  1643. {
  1644. struct fib_table *tb;
  1645. struct trie *t;
  1646. size_t sz = sizeof(*tb);
  1647. if (!alias)
  1648. sz += sizeof(struct trie);
  1649. tb = kzalloc(sz, GFP_KERNEL);
  1650. if (!tb)
  1651. return NULL;
  1652. tb->tb_id = id;
  1653. tb->tb_num_default = 0;
  1654. tb->tb_data = (alias ? alias->__data : tb->__data);
  1655. if (alias)
  1656. return tb;
  1657. t = (struct trie *) tb->tb_data;
  1658. t->kv[0].pos = KEYLENGTH;
  1659. t->kv[0].slen = KEYLENGTH;
  1660. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1661. t->stats = alloc_percpu(struct trie_use_stats);
  1662. if (!t->stats) {
  1663. kfree(tb);
  1664. tb = NULL;
  1665. }
  1666. #endif
  1667. return tb;
  1668. }
  1669. #ifdef CONFIG_PROC_FS
  1670. /* Depth first Trie walk iterator */
  1671. struct fib_trie_iter {
  1672. struct seq_net_private p;
  1673. struct fib_table *tb;
  1674. struct key_vector *tnode;
  1675. unsigned int index;
  1676. unsigned int depth;
  1677. };
  1678. static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
  1679. {
  1680. unsigned long cindex = iter->index;
  1681. struct key_vector *pn = iter->tnode;
  1682. t_key pkey;
  1683. pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
  1684. iter->tnode, iter->index, iter->depth);
  1685. while (!IS_TRIE(pn)) {
  1686. while (cindex < child_length(pn)) {
  1687. struct key_vector *n = get_child_rcu(pn, cindex++);
  1688. if (!n)
  1689. continue;
  1690. if (IS_LEAF(n)) {
  1691. iter->tnode = pn;
  1692. iter->index = cindex;
  1693. } else {
  1694. /* push down one level */
  1695. iter->tnode = n;
  1696. iter->index = 0;
  1697. ++iter->depth;
  1698. }
  1699. return n;
  1700. }
  1701. /* Current node exhausted, pop back up */
  1702. pkey = pn->key;
  1703. pn = node_parent_rcu(pn);
  1704. cindex = get_index(pkey, pn) + 1;
  1705. --iter->depth;
  1706. }
  1707. /* record root node so further searches know we are done */
  1708. iter->tnode = pn;
  1709. iter->index = 0;
  1710. return NULL;
  1711. }
  1712. static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
  1713. struct trie *t)
  1714. {
  1715. struct key_vector *n, *pn;
  1716. if (!t)
  1717. return NULL;
  1718. pn = t->kv;
  1719. n = rcu_dereference(pn->tnode[0]);
  1720. if (!n)
  1721. return NULL;
  1722. if (IS_TNODE(n)) {
  1723. iter->tnode = n;
  1724. iter->index = 0;
  1725. iter->depth = 1;
  1726. } else {
  1727. iter->tnode = pn;
  1728. iter->index = 0;
  1729. iter->depth = 0;
  1730. }
  1731. return n;
  1732. }
  1733. static void trie_collect_stats(struct trie *t, struct trie_stat *s)
  1734. {
  1735. struct key_vector *n;
  1736. struct fib_trie_iter iter;
  1737. memset(s, 0, sizeof(*s));
  1738. rcu_read_lock();
  1739. for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
  1740. if (IS_LEAF(n)) {
  1741. struct fib_alias *fa;
  1742. s->leaves++;
  1743. s->totdepth += iter.depth;
  1744. if (iter.depth > s->maxdepth)
  1745. s->maxdepth = iter.depth;
  1746. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
  1747. ++s->prefixes;
  1748. } else {
  1749. s->tnodes++;
  1750. if (n->bits < MAX_STAT_DEPTH)
  1751. s->nodesizes[n->bits]++;
  1752. s->nullpointers += tn_info(n)->empty_children;
  1753. }
  1754. }
  1755. rcu_read_unlock();
  1756. }
  1757. /*
  1758. * This outputs /proc/net/fib_triestats
  1759. */
  1760. static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
  1761. {
  1762. unsigned int i, max, pointers, bytes, avdepth;
  1763. if (stat->leaves)
  1764. avdepth = stat->totdepth*100 / stat->leaves;
  1765. else
  1766. avdepth = 0;
  1767. seq_printf(seq, "\tAver depth: %u.%02d\n",
  1768. avdepth / 100, avdepth % 100);
  1769. seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
  1770. seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
  1771. bytes = LEAF_SIZE * stat->leaves;
  1772. seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
  1773. bytes += sizeof(struct fib_alias) * stat->prefixes;
  1774. seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
  1775. bytes += TNODE_SIZE(0) * stat->tnodes;
  1776. max = MAX_STAT_DEPTH;
  1777. while (max > 0 && stat->nodesizes[max-1] == 0)
  1778. max--;
  1779. pointers = 0;
  1780. for (i = 1; i < max; i++)
  1781. if (stat->nodesizes[i] != 0) {
  1782. seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
  1783. pointers += (1<<i) * stat->nodesizes[i];
  1784. }
  1785. seq_putc(seq, '\n');
  1786. seq_printf(seq, "\tPointers: %u\n", pointers);
  1787. bytes += sizeof(struct key_vector *) * pointers;
  1788. seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
  1789. seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
  1790. }
  1791. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1792. static void trie_show_usage(struct seq_file *seq,
  1793. const struct trie_use_stats __percpu *stats)
  1794. {
  1795. struct trie_use_stats s = { 0 };
  1796. int cpu;
  1797. /* loop through all of the CPUs and gather up the stats */
  1798. for_each_possible_cpu(cpu) {
  1799. const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
  1800. s.gets += pcpu->gets;
  1801. s.backtrack += pcpu->backtrack;
  1802. s.semantic_match_passed += pcpu->semantic_match_passed;
  1803. s.semantic_match_miss += pcpu->semantic_match_miss;
  1804. s.null_node_hit += pcpu->null_node_hit;
  1805. s.resize_node_skipped += pcpu->resize_node_skipped;
  1806. }
  1807. seq_printf(seq, "\nCounters:\n---------\n");
  1808. seq_printf(seq, "gets = %u\n", s.gets);
  1809. seq_printf(seq, "backtracks = %u\n", s.backtrack);
  1810. seq_printf(seq, "semantic match passed = %u\n",
  1811. s.semantic_match_passed);
  1812. seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
  1813. seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
  1814. seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
  1815. }
  1816. #endif /* CONFIG_IP_FIB_TRIE_STATS */
  1817. static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
  1818. {
  1819. if (tb->tb_id == RT_TABLE_LOCAL)
  1820. seq_puts(seq, "Local:\n");
  1821. else if (tb->tb_id == RT_TABLE_MAIN)
  1822. seq_puts(seq, "Main:\n");
  1823. else
  1824. seq_printf(seq, "Id %d:\n", tb->tb_id);
  1825. }
  1826. static int fib_triestat_seq_show(struct seq_file *seq, void *v)
  1827. {
  1828. struct net *net = (struct net *)seq->private;
  1829. unsigned int h;
  1830. seq_printf(seq,
  1831. "Basic info: size of leaf:"
  1832. " %Zd bytes, size of tnode: %Zd bytes.\n",
  1833. LEAF_SIZE, TNODE_SIZE(0));
  1834. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1835. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1836. struct fib_table *tb;
  1837. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1838. struct trie *t = (struct trie *) tb->tb_data;
  1839. struct trie_stat stat;
  1840. if (!t)
  1841. continue;
  1842. fib_table_print(seq, tb);
  1843. trie_collect_stats(t, &stat);
  1844. trie_show_stats(seq, &stat);
  1845. #ifdef CONFIG_IP_FIB_TRIE_STATS
  1846. trie_show_usage(seq, t->stats);
  1847. #endif
  1848. }
  1849. }
  1850. return 0;
  1851. }
  1852. static int fib_triestat_seq_open(struct inode *inode, struct file *file)
  1853. {
  1854. return single_open_net(inode, file, fib_triestat_seq_show);
  1855. }
  1856. static const struct file_operations fib_triestat_fops = {
  1857. .owner = THIS_MODULE,
  1858. .open = fib_triestat_seq_open,
  1859. .read = seq_read,
  1860. .llseek = seq_lseek,
  1861. .release = single_release_net,
  1862. };
  1863. static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
  1864. {
  1865. struct fib_trie_iter *iter = seq->private;
  1866. struct net *net = seq_file_net(seq);
  1867. loff_t idx = 0;
  1868. unsigned int h;
  1869. for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
  1870. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1871. struct fib_table *tb;
  1872. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1873. struct key_vector *n;
  1874. for (n = fib_trie_get_first(iter,
  1875. (struct trie *) tb->tb_data);
  1876. n; n = fib_trie_get_next(iter))
  1877. if (pos == idx++) {
  1878. iter->tb = tb;
  1879. return n;
  1880. }
  1881. }
  1882. }
  1883. return NULL;
  1884. }
  1885. static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
  1886. __acquires(RCU)
  1887. {
  1888. rcu_read_lock();
  1889. return fib_trie_get_idx(seq, *pos);
  1890. }
  1891. static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1892. {
  1893. struct fib_trie_iter *iter = seq->private;
  1894. struct net *net = seq_file_net(seq);
  1895. struct fib_table *tb = iter->tb;
  1896. struct hlist_node *tb_node;
  1897. unsigned int h;
  1898. struct key_vector *n;
  1899. ++*pos;
  1900. /* next node in same table */
  1901. n = fib_trie_get_next(iter);
  1902. if (n)
  1903. return n;
  1904. /* walk rest of this hash chain */
  1905. h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
  1906. while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
  1907. tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
  1908. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1909. if (n)
  1910. goto found;
  1911. }
  1912. /* new hash chain */
  1913. while (++h < FIB_TABLE_HASHSZ) {
  1914. struct hlist_head *head = &net->ipv4.fib_table_hash[h];
  1915. hlist_for_each_entry_rcu(tb, head, tb_hlist) {
  1916. n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
  1917. if (n)
  1918. goto found;
  1919. }
  1920. }
  1921. return NULL;
  1922. found:
  1923. iter->tb = tb;
  1924. return n;
  1925. }
  1926. static void fib_trie_seq_stop(struct seq_file *seq, void *v)
  1927. __releases(RCU)
  1928. {
  1929. rcu_read_unlock();
  1930. }
  1931. static void seq_indent(struct seq_file *seq, int n)
  1932. {
  1933. while (n-- > 0)
  1934. seq_puts(seq, " ");
  1935. }
  1936. static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
  1937. {
  1938. switch (s) {
  1939. case RT_SCOPE_UNIVERSE: return "universe";
  1940. case RT_SCOPE_SITE: return "site";
  1941. case RT_SCOPE_LINK: return "link";
  1942. case RT_SCOPE_HOST: return "host";
  1943. case RT_SCOPE_NOWHERE: return "nowhere";
  1944. default:
  1945. snprintf(buf, len, "scope=%d", s);
  1946. return buf;
  1947. }
  1948. }
  1949. static const char *const rtn_type_names[__RTN_MAX] = {
  1950. [RTN_UNSPEC] = "UNSPEC",
  1951. [RTN_UNICAST] = "UNICAST",
  1952. [RTN_LOCAL] = "LOCAL",
  1953. [RTN_BROADCAST] = "BROADCAST",
  1954. [RTN_ANYCAST] = "ANYCAST",
  1955. [RTN_MULTICAST] = "MULTICAST",
  1956. [RTN_BLACKHOLE] = "BLACKHOLE",
  1957. [RTN_UNREACHABLE] = "UNREACHABLE",
  1958. [RTN_PROHIBIT] = "PROHIBIT",
  1959. [RTN_THROW] = "THROW",
  1960. [RTN_NAT] = "NAT",
  1961. [RTN_XRESOLVE] = "XRESOLVE",
  1962. };
  1963. static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
  1964. {
  1965. if (t < __RTN_MAX && rtn_type_names[t])
  1966. return rtn_type_names[t];
  1967. snprintf(buf, len, "type %u", t);
  1968. return buf;
  1969. }
  1970. /* Pretty print the trie */
  1971. static int fib_trie_seq_show(struct seq_file *seq, void *v)
  1972. {
  1973. const struct fib_trie_iter *iter = seq->private;
  1974. struct key_vector *n = v;
  1975. if (IS_TRIE(node_parent_rcu(n)))
  1976. fib_table_print(seq, iter->tb);
  1977. if (IS_TNODE(n)) {
  1978. __be32 prf = htonl(n->key);
  1979. seq_indent(seq, iter->depth-1);
  1980. seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
  1981. &prf, KEYLENGTH - n->pos - n->bits, n->bits,
  1982. tn_info(n)->full_children,
  1983. tn_info(n)->empty_children);
  1984. } else {
  1985. __be32 val = htonl(n->key);
  1986. struct fib_alias *fa;
  1987. seq_indent(seq, iter->depth);
  1988. seq_printf(seq, " |-- %pI4\n", &val);
  1989. hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
  1990. char buf1[32], buf2[32];
  1991. seq_indent(seq, iter->depth + 1);
  1992. seq_printf(seq, " /%zu %s %s",
  1993. KEYLENGTH - fa->fa_slen,
  1994. rtn_scope(buf1, sizeof(buf1),
  1995. fa->fa_info->fib_scope),
  1996. rtn_type(buf2, sizeof(buf2),
  1997. fa->fa_type));
  1998. if (fa->fa_tos)
  1999. seq_printf(seq, " tos=%d", fa->fa_tos);
  2000. seq_putc(seq, '\n');
  2001. }
  2002. }
  2003. return 0;
  2004. }
  2005. static const struct seq_operations fib_trie_seq_ops = {
  2006. .start = fib_trie_seq_start,
  2007. .next = fib_trie_seq_next,
  2008. .stop = fib_trie_seq_stop,
  2009. .show = fib_trie_seq_show,
  2010. };
  2011. static int fib_trie_seq_open(struct inode *inode, struct file *file)
  2012. {
  2013. return seq_open_net(inode, file, &fib_trie_seq_ops,
  2014. sizeof(struct fib_trie_iter));
  2015. }
  2016. static const struct file_operations fib_trie_fops = {
  2017. .owner = THIS_MODULE,
  2018. .open = fib_trie_seq_open,
  2019. .read = seq_read,
  2020. .llseek = seq_lseek,
  2021. .release = seq_release_net,
  2022. };
  2023. struct fib_route_iter {
  2024. struct seq_net_private p;
  2025. struct fib_table *main_tb;
  2026. struct key_vector *tnode;
  2027. loff_t pos;
  2028. t_key key;
  2029. };
  2030. static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
  2031. loff_t pos)
  2032. {
  2033. struct fib_table *tb = iter->main_tb;
  2034. struct key_vector *l, **tp = &iter->tnode;
  2035. struct trie *t;
  2036. t_key key;
  2037. /* use cache location of next-to-find key */
  2038. if (iter->pos > 0 && pos >= iter->pos) {
  2039. pos -= iter->pos;
  2040. key = iter->key;
  2041. } else {
  2042. t = (struct trie *)tb->tb_data;
  2043. iter->tnode = t->kv;
  2044. iter->pos = 0;
  2045. key = 0;
  2046. }
  2047. while ((l = leaf_walk_rcu(tp, key)) != NULL) {
  2048. key = l->key + 1;
  2049. iter->pos++;
  2050. if (pos-- <= 0)
  2051. break;
  2052. l = NULL;
  2053. /* handle unlikely case of a key wrap */
  2054. if (!key)
  2055. break;
  2056. }
  2057. if (l)
  2058. iter->key = key; /* remember it */
  2059. else
  2060. iter->pos = 0; /* forget it */
  2061. return l;
  2062. }
  2063. static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
  2064. __acquires(RCU)
  2065. {
  2066. struct fib_route_iter *iter = seq->private;
  2067. struct fib_table *tb;
  2068. struct trie *t;
  2069. rcu_read_lock();
  2070. tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
  2071. if (!tb)
  2072. return NULL;
  2073. iter->main_tb = tb;
  2074. if (*pos != 0)
  2075. return fib_route_get_idx(iter, *pos);
  2076. t = (struct trie *)tb->tb_data;
  2077. iter->tnode = t->kv;
  2078. iter->pos = 0;
  2079. iter->key = 0;
  2080. return SEQ_START_TOKEN;
  2081. }
  2082. static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2083. {
  2084. struct fib_route_iter *iter = seq->private;
  2085. struct key_vector *l = NULL;
  2086. t_key key = iter->key;
  2087. ++*pos;
  2088. /* only allow key of 0 for start of sequence */
  2089. if ((v == SEQ_START_TOKEN) || key)
  2090. l = leaf_walk_rcu(&iter->tnode, key);
  2091. if (l) {
  2092. iter->key = l->key + 1;
  2093. iter->pos++;
  2094. } else {
  2095. iter->pos = 0;
  2096. }
  2097. return l;
  2098. }
  2099. static void fib_route_seq_stop(struct seq_file *seq, void *v)
  2100. __releases(RCU)
  2101. {
  2102. rcu_read_unlock();
  2103. }
  2104. static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
  2105. {
  2106. unsigned int flags = 0;
  2107. if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
  2108. flags = RTF_REJECT;
  2109. if (fi && fi->fib_nh->nh_gw)
  2110. flags |= RTF_GATEWAY;
  2111. if (mask == htonl(0xFFFFFFFF))
  2112. flags |= RTF_HOST;
  2113. flags |= RTF_UP;
  2114. return flags;
  2115. }
  2116. /*
  2117. * This outputs /proc/net/route.
  2118. * The format of the file is not supposed to be changed
  2119. * and needs to be same as fib_hash output to avoid breaking
  2120. * legacy utilities
  2121. */
  2122. static int fib_route_seq_show(struct seq_file *seq, void *v)
  2123. {
  2124. struct fib_route_iter *iter = seq->private;
  2125. struct fib_table *tb = iter->main_tb;
  2126. struct fib_alias *fa;
  2127. struct key_vector *l = v;
  2128. __be32 prefix;
  2129. if (v == SEQ_START_TOKEN) {
  2130. seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
  2131. "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
  2132. "\tWindow\tIRTT");
  2133. return 0;
  2134. }
  2135. prefix = htonl(l->key);
  2136. hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
  2137. const struct fib_info *fi = fa->fa_info;
  2138. __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
  2139. unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
  2140. if ((fa->fa_type == RTN_BROADCAST) ||
  2141. (fa->fa_type == RTN_MULTICAST))
  2142. continue;
  2143. if (fa->tb_id != tb->tb_id)
  2144. continue;
  2145. seq_setwidth(seq, 127);
  2146. if (fi)
  2147. seq_printf(seq,
  2148. "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
  2149. "%d\t%08X\t%d\t%u\t%u",
  2150. fi->fib_dev ? fi->fib_dev->name : "*",
  2151. prefix,
  2152. fi->fib_nh->nh_gw, flags, 0, 0,
  2153. fi->fib_priority,
  2154. mask,
  2155. (fi->fib_advmss ?
  2156. fi->fib_advmss + 40 : 0),
  2157. fi->fib_window,
  2158. fi->fib_rtt >> 3);
  2159. else
  2160. seq_printf(seq,
  2161. "*\t%08X\t%08X\t%04X\t%d\t%u\t"
  2162. "%d\t%08X\t%d\t%u\t%u",
  2163. prefix, 0, flags, 0, 0, 0,
  2164. mask, 0, 0, 0);
  2165. seq_pad(seq, '\n');
  2166. }
  2167. return 0;
  2168. }
  2169. static const struct seq_operations fib_route_seq_ops = {
  2170. .start = fib_route_seq_start,
  2171. .next = fib_route_seq_next,
  2172. .stop = fib_route_seq_stop,
  2173. .show = fib_route_seq_show,
  2174. };
  2175. static int fib_route_seq_open(struct inode *inode, struct file *file)
  2176. {
  2177. return seq_open_net(inode, file, &fib_route_seq_ops,
  2178. sizeof(struct fib_route_iter));
  2179. }
  2180. static const struct file_operations fib_route_fops = {
  2181. .owner = THIS_MODULE,
  2182. .open = fib_route_seq_open,
  2183. .read = seq_read,
  2184. .llseek = seq_lseek,
  2185. .release = seq_release_net,
  2186. };
  2187. int __net_init fib_proc_init(struct net *net)
  2188. {
  2189. if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
  2190. goto out1;
  2191. if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
  2192. &fib_triestat_fops))
  2193. goto out2;
  2194. if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
  2195. goto out3;
  2196. return 0;
  2197. out3:
  2198. remove_proc_entry("fib_triestat", net->proc_net);
  2199. out2:
  2200. remove_proc_entry("fib_trie", net->proc_net);
  2201. out1:
  2202. return -ENOMEM;
  2203. }
  2204. void __net_exit fib_proc_exit(struct net *net)
  2205. {
  2206. remove_proc_entry("fib_trie", net->proc_net);
  2207. remove_proc_entry("fib_triestat", net->proc_net);
  2208. remove_proc_entry("route", net->proc_net);
  2209. }
  2210. #endif /* CONFIG_PROC_FS */