mempool.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. /*
  2. * linux/mm/mempool.c
  3. *
  4. * memory buffer pool support. Such pools are mostly used
  5. * for guaranteed, deadlock-free memory allocations during
  6. * extreme VM load.
  7. *
  8. * started by Ingo Molnar, Copyright (C) 2001
  9. * debugging by David Rientjes, Copyright (C) 2015
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/slab.h>
  13. #include <linux/highmem.h>
  14. #include <linux/kasan.h>
  15. #include <linux/kmemleak.h>
  16. #include <linux/export.h>
  17. #include <linux/mempool.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/writeback.h>
  20. #include "slab.h"
  21. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
  22. static void poison_error(mempool_t *pool, void *element, size_t size,
  23. size_t byte)
  24. {
  25. const int nr = pool->curr_nr;
  26. const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
  27. const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
  28. int i;
  29. pr_err("BUG: mempool element poison mismatch\n");
  30. pr_err("Mempool %p size %zu\n", pool, size);
  31. pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
  32. for (i = start; i < end; i++)
  33. pr_cont("%x ", *(u8 *)(element + i));
  34. pr_cont("%s\n", end < size ? "..." : "");
  35. dump_stack();
  36. }
  37. static void __check_element(mempool_t *pool, void *element, size_t size)
  38. {
  39. u8 *obj = element;
  40. size_t i;
  41. for (i = 0; i < size; i++) {
  42. u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
  43. if (obj[i] != exp) {
  44. poison_error(pool, element, size, i);
  45. return;
  46. }
  47. }
  48. memset(obj, POISON_INUSE, size);
  49. }
  50. static void check_element(mempool_t *pool, void *element)
  51. {
  52. /* Mempools backed by slab allocator */
  53. if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
  54. __check_element(pool, element, ksize(element));
  55. /* Mempools backed by page allocator */
  56. if (pool->free == mempool_free_pages) {
  57. int order = (int)(long)pool->pool_data;
  58. void *addr = kmap_atomic((struct page *)element);
  59. __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
  60. kunmap_atomic(addr);
  61. }
  62. }
  63. static void __poison_element(void *element, size_t size)
  64. {
  65. u8 *obj = element;
  66. memset(obj, POISON_FREE, size - 1);
  67. obj[size - 1] = POISON_END;
  68. }
  69. static void poison_element(mempool_t *pool, void *element)
  70. {
  71. /* Mempools backed by slab allocator */
  72. if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
  73. __poison_element(element, ksize(element));
  74. /* Mempools backed by page allocator */
  75. if (pool->alloc == mempool_alloc_pages) {
  76. int order = (int)(long)pool->pool_data;
  77. void *addr = kmap_atomic((struct page *)element);
  78. __poison_element(addr, 1UL << (PAGE_SHIFT + order));
  79. kunmap_atomic(addr);
  80. }
  81. }
  82. #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
  83. static inline void check_element(mempool_t *pool, void *element)
  84. {
  85. }
  86. static inline void poison_element(mempool_t *pool, void *element)
  87. {
  88. }
  89. #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
  90. static void kasan_poison_element(mempool_t *pool, void *element)
  91. {
  92. if (pool->alloc == mempool_alloc_slab)
  93. kasan_slab_free(pool->pool_data, element);
  94. if (pool->alloc == mempool_kmalloc)
  95. kasan_kfree(element);
  96. if (pool->alloc == mempool_alloc_pages)
  97. kasan_free_pages(element, (unsigned long)pool->pool_data);
  98. }
  99. static void kasan_unpoison_element(mempool_t *pool, void *element)
  100. {
  101. if (pool->alloc == mempool_alloc_slab)
  102. kasan_slab_alloc(pool->pool_data, element);
  103. if (pool->alloc == mempool_kmalloc)
  104. kasan_krealloc(element, (size_t)pool->pool_data);
  105. if (pool->alloc == mempool_alloc_pages)
  106. kasan_alloc_pages(element, (unsigned long)pool->pool_data);
  107. }
  108. static void add_element(mempool_t *pool, void *element)
  109. {
  110. BUG_ON(pool->curr_nr >= pool->min_nr);
  111. poison_element(pool, element);
  112. kasan_poison_element(pool, element);
  113. pool->elements[pool->curr_nr++] = element;
  114. }
  115. static void *remove_element(mempool_t *pool)
  116. {
  117. void *element = pool->elements[--pool->curr_nr];
  118. BUG_ON(pool->curr_nr < 0);
  119. check_element(pool, element);
  120. kasan_unpoison_element(pool, element);
  121. return element;
  122. }
  123. /**
  124. * mempool_destroy - deallocate a memory pool
  125. * @pool: pointer to the memory pool which was allocated via
  126. * mempool_create().
  127. *
  128. * Free all reserved elements in @pool and @pool itself. This function
  129. * only sleeps if the free_fn() function sleeps.
  130. */
  131. void mempool_destroy(mempool_t *pool)
  132. {
  133. while (pool->curr_nr) {
  134. void *element = remove_element(pool);
  135. pool->free(element, pool->pool_data);
  136. }
  137. kfree(pool->elements);
  138. kfree(pool);
  139. }
  140. EXPORT_SYMBOL(mempool_destroy);
  141. /**
  142. * mempool_create - create a memory pool
  143. * @min_nr: the minimum number of elements guaranteed to be
  144. * allocated for this pool.
  145. * @alloc_fn: user-defined element-allocation function.
  146. * @free_fn: user-defined element-freeing function.
  147. * @pool_data: optional private data available to the user-defined functions.
  148. *
  149. * this function creates and allocates a guaranteed size, preallocated
  150. * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
  151. * functions. This function might sleep. Both the alloc_fn() and the free_fn()
  152. * functions might sleep - as long as the mempool_alloc() function is not called
  153. * from IRQ contexts.
  154. */
  155. mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
  156. mempool_free_t *free_fn, void *pool_data)
  157. {
  158. return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
  159. GFP_KERNEL, NUMA_NO_NODE);
  160. }
  161. EXPORT_SYMBOL(mempool_create);
  162. mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
  163. mempool_free_t *free_fn, void *pool_data,
  164. gfp_t gfp_mask, int node_id)
  165. {
  166. mempool_t *pool;
  167. pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
  168. if (!pool)
  169. return NULL;
  170. pool->elements = kmalloc_node(min_nr * sizeof(void *),
  171. gfp_mask, node_id);
  172. if (!pool->elements) {
  173. kfree(pool);
  174. return NULL;
  175. }
  176. spin_lock_init(&pool->lock);
  177. pool->min_nr = min_nr;
  178. pool->pool_data = pool_data;
  179. init_waitqueue_head(&pool->wait);
  180. pool->alloc = alloc_fn;
  181. pool->free = free_fn;
  182. /*
  183. * First pre-allocate the guaranteed number of buffers.
  184. */
  185. while (pool->curr_nr < pool->min_nr) {
  186. void *element;
  187. element = pool->alloc(gfp_mask, pool->pool_data);
  188. if (unlikely(!element)) {
  189. mempool_destroy(pool);
  190. return NULL;
  191. }
  192. add_element(pool, element);
  193. }
  194. return pool;
  195. }
  196. EXPORT_SYMBOL(mempool_create_node);
  197. /**
  198. * mempool_resize - resize an existing memory pool
  199. * @pool: pointer to the memory pool which was allocated via
  200. * mempool_create().
  201. * @new_min_nr: the new minimum number of elements guaranteed to be
  202. * allocated for this pool.
  203. *
  204. * This function shrinks/grows the pool. In the case of growing,
  205. * it cannot be guaranteed that the pool will be grown to the new
  206. * size immediately, but new mempool_free() calls will refill it.
  207. * This function may sleep.
  208. *
  209. * Note, the caller must guarantee that no mempool_destroy is called
  210. * while this function is running. mempool_alloc() & mempool_free()
  211. * might be called (eg. from IRQ contexts) while this function executes.
  212. */
  213. int mempool_resize(mempool_t *pool, int new_min_nr)
  214. {
  215. void *element;
  216. void **new_elements;
  217. unsigned long flags;
  218. BUG_ON(new_min_nr <= 0);
  219. might_sleep();
  220. spin_lock_irqsave(&pool->lock, flags);
  221. if (new_min_nr <= pool->min_nr) {
  222. while (new_min_nr < pool->curr_nr) {
  223. element = remove_element(pool);
  224. spin_unlock_irqrestore(&pool->lock, flags);
  225. pool->free(element, pool->pool_data);
  226. spin_lock_irqsave(&pool->lock, flags);
  227. }
  228. pool->min_nr = new_min_nr;
  229. goto out_unlock;
  230. }
  231. spin_unlock_irqrestore(&pool->lock, flags);
  232. /* Grow the pool */
  233. new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
  234. GFP_KERNEL);
  235. if (!new_elements)
  236. return -ENOMEM;
  237. spin_lock_irqsave(&pool->lock, flags);
  238. if (unlikely(new_min_nr <= pool->min_nr)) {
  239. /* Raced, other resize will do our work */
  240. spin_unlock_irqrestore(&pool->lock, flags);
  241. kfree(new_elements);
  242. goto out;
  243. }
  244. memcpy(new_elements, pool->elements,
  245. pool->curr_nr * sizeof(*new_elements));
  246. kfree(pool->elements);
  247. pool->elements = new_elements;
  248. pool->min_nr = new_min_nr;
  249. while (pool->curr_nr < pool->min_nr) {
  250. spin_unlock_irqrestore(&pool->lock, flags);
  251. element = pool->alloc(GFP_KERNEL, pool->pool_data);
  252. if (!element)
  253. goto out;
  254. spin_lock_irqsave(&pool->lock, flags);
  255. if (pool->curr_nr < pool->min_nr) {
  256. add_element(pool, element);
  257. } else {
  258. spin_unlock_irqrestore(&pool->lock, flags);
  259. pool->free(element, pool->pool_data); /* Raced */
  260. goto out;
  261. }
  262. }
  263. out_unlock:
  264. spin_unlock_irqrestore(&pool->lock, flags);
  265. out:
  266. return 0;
  267. }
  268. EXPORT_SYMBOL(mempool_resize);
  269. /**
  270. * mempool_alloc - allocate an element from a specific memory pool
  271. * @pool: pointer to the memory pool which was allocated via
  272. * mempool_create().
  273. * @gfp_mask: the usual allocation bitmask.
  274. *
  275. * this function only sleeps if the alloc_fn() function sleeps or
  276. * returns NULL. Note that due to preallocation, this function
  277. * *never* fails when called from process contexts. (it might
  278. * fail if called from an IRQ context.)
  279. * Note: using __GFP_ZERO is not supported.
  280. */
  281. void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
  282. {
  283. void *element;
  284. unsigned long flags;
  285. wait_queue_t wait;
  286. gfp_t gfp_temp;
  287. VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
  288. might_sleep_if(gfp_mask & __GFP_WAIT);
  289. gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
  290. gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
  291. gfp_mask |= __GFP_NOWARN; /* failures are OK */
  292. gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
  293. repeat_alloc:
  294. element = pool->alloc(gfp_temp, pool->pool_data);
  295. if (likely(element != NULL))
  296. return element;
  297. spin_lock_irqsave(&pool->lock, flags);
  298. if (likely(pool->curr_nr)) {
  299. element = remove_element(pool);
  300. spin_unlock_irqrestore(&pool->lock, flags);
  301. /* paired with rmb in mempool_free(), read comment there */
  302. smp_wmb();
  303. /*
  304. * Update the allocation stack trace as this is more useful
  305. * for debugging.
  306. */
  307. kmemleak_update_trace(element);
  308. return element;
  309. }
  310. /*
  311. * We use gfp mask w/o __GFP_WAIT or IO for the first round. If
  312. * alloc failed with that and @pool was empty, retry immediately.
  313. */
  314. if (gfp_temp != gfp_mask) {
  315. spin_unlock_irqrestore(&pool->lock, flags);
  316. gfp_temp = gfp_mask;
  317. goto repeat_alloc;
  318. }
  319. /* We must not sleep if !__GFP_WAIT */
  320. if (!(gfp_mask & __GFP_WAIT)) {
  321. spin_unlock_irqrestore(&pool->lock, flags);
  322. return NULL;
  323. }
  324. /* Let's wait for someone else to return an element to @pool */
  325. init_wait(&wait);
  326. prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
  327. spin_unlock_irqrestore(&pool->lock, flags);
  328. /*
  329. * FIXME: this should be io_schedule(). The timeout is there as a
  330. * workaround for some DM problems in 2.6.18.
  331. */
  332. io_schedule_timeout(5*HZ);
  333. finish_wait(&pool->wait, &wait);
  334. goto repeat_alloc;
  335. }
  336. EXPORT_SYMBOL(mempool_alloc);
  337. /**
  338. * mempool_free - return an element to the pool.
  339. * @element: pool element pointer.
  340. * @pool: pointer to the memory pool which was allocated via
  341. * mempool_create().
  342. *
  343. * this function only sleeps if the free_fn() function sleeps.
  344. */
  345. void mempool_free(void *element, mempool_t *pool)
  346. {
  347. unsigned long flags;
  348. if (unlikely(element == NULL))
  349. return;
  350. /*
  351. * Paired with the wmb in mempool_alloc(). The preceding read is
  352. * for @element and the following @pool->curr_nr. This ensures
  353. * that the visible value of @pool->curr_nr is from after the
  354. * allocation of @element. This is necessary for fringe cases
  355. * where @element was passed to this task without going through
  356. * barriers.
  357. *
  358. * For example, assume @p is %NULL at the beginning and one task
  359. * performs "p = mempool_alloc(...);" while another task is doing
  360. * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
  361. * may end up using curr_nr value which is from before allocation
  362. * of @p without the following rmb.
  363. */
  364. smp_rmb();
  365. /*
  366. * For correctness, we need a test which is guaranteed to trigger
  367. * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
  368. * without locking achieves that and refilling as soon as possible
  369. * is desirable.
  370. *
  371. * Because curr_nr visible here is always a value after the
  372. * allocation of @element, any task which decremented curr_nr below
  373. * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
  374. * incremented to min_nr afterwards. If curr_nr gets incremented
  375. * to min_nr after the allocation of @element, the elements
  376. * allocated after that are subject to the same guarantee.
  377. *
  378. * Waiters happen iff curr_nr is 0 and the above guarantee also
  379. * ensures that there will be frees which return elements to the
  380. * pool waking up the waiters.
  381. */
  382. if (unlikely(pool->curr_nr < pool->min_nr)) {
  383. spin_lock_irqsave(&pool->lock, flags);
  384. if (likely(pool->curr_nr < pool->min_nr)) {
  385. add_element(pool, element);
  386. spin_unlock_irqrestore(&pool->lock, flags);
  387. wake_up(&pool->wait);
  388. return;
  389. }
  390. spin_unlock_irqrestore(&pool->lock, flags);
  391. }
  392. pool->free(element, pool->pool_data);
  393. }
  394. EXPORT_SYMBOL(mempool_free);
  395. /*
  396. * A commonly used alloc and free fn.
  397. */
  398. void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
  399. {
  400. struct kmem_cache *mem = pool_data;
  401. VM_BUG_ON(mem->ctor);
  402. return kmem_cache_alloc(mem, gfp_mask);
  403. }
  404. EXPORT_SYMBOL(mempool_alloc_slab);
  405. void mempool_free_slab(void *element, void *pool_data)
  406. {
  407. struct kmem_cache *mem = pool_data;
  408. kmem_cache_free(mem, element);
  409. }
  410. EXPORT_SYMBOL(mempool_free_slab);
  411. /*
  412. * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
  413. * specified by pool_data
  414. */
  415. void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
  416. {
  417. size_t size = (size_t)pool_data;
  418. return kmalloc(size, gfp_mask);
  419. }
  420. EXPORT_SYMBOL(mempool_kmalloc);
  421. void mempool_kfree(void *element, void *pool_data)
  422. {
  423. kfree(element);
  424. }
  425. EXPORT_SYMBOL(mempool_kfree);
  426. /*
  427. * A simple mempool-backed page allocator that allocates pages
  428. * of the order specified by pool_data.
  429. */
  430. void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
  431. {
  432. int order = (int)(long)pool_data;
  433. return alloc_pages(gfp_mask, order);
  434. }
  435. EXPORT_SYMBOL(mempool_alloc_pages);
  436. void mempool_free_pages(void *element, void *pool_data)
  437. {
  438. int order = (int)(long)pool_data;
  439. __free_pages(element, order);
  440. }
  441. EXPORT_SYMBOL(mempool_free_pages);