memory-failure.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749
  1. /*
  2. * Copyright (C) 2008, 2009 Intel Corporation
  3. * Authors: Andi Kleen, Fengguang Wu
  4. *
  5. * This software may be redistributed and/or modified under the terms of
  6. * the GNU General Public License ("GPL") version 2 only as published by the
  7. * Free Software Foundation.
  8. *
  9. * High level machine check handler. Handles pages reported by the
  10. * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11. * failure.
  12. *
  13. * In addition there is a "soft offline" entry point that allows stop using
  14. * not-yet-corrupted-by-suspicious pages without killing anything.
  15. *
  16. * Handles page cache pages in various states. The tricky part
  17. * here is that we can access any page asynchronously in respect to
  18. * other VM users, because memory failures could happen anytime and
  19. * anywhere. This could violate some of their assumptions. This is why
  20. * this code has to be extremely careful. Generally it tries to use
  21. * normal locking rules, as in get the standard locks, even if that means
  22. * the error handling takes potentially a long time.
  23. *
  24. * It can be very tempting to add handling for obscure cases here.
  25. * In general any code for handling new cases should only be added iff:
  26. * - You know how to test it.
  27. * - You have a test that can be added to mce-test
  28. * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29. * - The case actually shows up as a frequent (top 10) page state in
  30. * tools/vm/page-types when running a real workload.
  31. *
  32. * There are several operations here with exponential complexity because
  33. * of unsuitable VM data structures. For example the operation to map back
  34. * from RMAP chains to processes has to walk the complete process list and
  35. * has non linear complexity with the number. But since memory corruptions
  36. * are rare we hope to get away with this. This avoids impacting the core
  37. * VM.
  38. */
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/page-flags.h>
  42. #include <linux/kernel-page-flags.h>
  43. #include <linux/sched.h>
  44. #include <linux/ksm.h>
  45. #include <linux/rmap.h>
  46. #include <linux/export.h>
  47. #include <linux/pagemap.h>
  48. #include <linux/swap.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/migrate.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/suspend.h>
  53. #include <linux/slab.h>
  54. #include <linux/swapops.h>
  55. #include <linux/hugetlb.h>
  56. #include <linux/memory_hotplug.h>
  57. #include <linux/mm_inline.h>
  58. #include <linux/kfifo.h>
  59. #include "internal.h"
  60. #include "ras/ras_event.h"
  61. int sysctl_memory_failure_early_kill __read_mostly = 0;
  62. int sysctl_memory_failure_recovery __read_mostly = 1;
  63. atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  64. #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  65. u32 hwpoison_filter_enable = 0;
  66. u32 hwpoison_filter_dev_major = ~0U;
  67. u32 hwpoison_filter_dev_minor = ~0U;
  68. u64 hwpoison_filter_flags_mask;
  69. u64 hwpoison_filter_flags_value;
  70. EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  71. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  72. EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  73. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  74. EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  75. static int hwpoison_filter_dev(struct page *p)
  76. {
  77. struct address_space *mapping;
  78. dev_t dev;
  79. if (hwpoison_filter_dev_major == ~0U &&
  80. hwpoison_filter_dev_minor == ~0U)
  81. return 0;
  82. /*
  83. * page_mapping() does not accept slab pages.
  84. */
  85. if (PageSlab(p))
  86. return -EINVAL;
  87. mapping = page_mapping(p);
  88. if (mapping == NULL || mapping->host == NULL)
  89. return -EINVAL;
  90. dev = mapping->host->i_sb->s_dev;
  91. if (hwpoison_filter_dev_major != ~0U &&
  92. hwpoison_filter_dev_major != MAJOR(dev))
  93. return -EINVAL;
  94. if (hwpoison_filter_dev_minor != ~0U &&
  95. hwpoison_filter_dev_minor != MINOR(dev))
  96. return -EINVAL;
  97. return 0;
  98. }
  99. static int hwpoison_filter_flags(struct page *p)
  100. {
  101. if (!hwpoison_filter_flags_mask)
  102. return 0;
  103. if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
  104. hwpoison_filter_flags_value)
  105. return 0;
  106. else
  107. return -EINVAL;
  108. }
  109. /*
  110. * This allows stress tests to limit test scope to a collection of tasks
  111. * by putting them under some memcg. This prevents killing unrelated/important
  112. * processes such as /sbin/init. Note that the target task may share clean
  113. * pages with init (eg. libc text), which is harmless. If the target task
  114. * share _dirty_ pages with another task B, the test scheme must make sure B
  115. * is also included in the memcg. At last, due to race conditions this filter
  116. * can only guarantee that the page either belongs to the memcg tasks, or is
  117. * a freed page.
  118. */
  119. #ifdef CONFIG_MEMCG_SWAP
  120. u64 hwpoison_filter_memcg;
  121. EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
  122. static int hwpoison_filter_task(struct page *p)
  123. {
  124. struct mem_cgroup *mem;
  125. struct cgroup_subsys_state *css;
  126. unsigned long ino;
  127. if (!hwpoison_filter_memcg)
  128. return 0;
  129. mem = try_get_mem_cgroup_from_page(p);
  130. if (!mem)
  131. return -EINVAL;
  132. css = mem_cgroup_css(mem);
  133. ino = cgroup_ino(css->cgroup);
  134. css_put(css);
  135. if (ino != hwpoison_filter_memcg)
  136. return -EINVAL;
  137. return 0;
  138. }
  139. #else
  140. static int hwpoison_filter_task(struct page *p) { return 0; }
  141. #endif
  142. int hwpoison_filter(struct page *p)
  143. {
  144. if (!hwpoison_filter_enable)
  145. return 0;
  146. if (hwpoison_filter_dev(p))
  147. return -EINVAL;
  148. if (hwpoison_filter_flags(p))
  149. return -EINVAL;
  150. if (hwpoison_filter_task(p))
  151. return -EINVAL;
  152. return 0;
  153. }
  154. #else
  155. int hwpoison_filter(struct page *p)
  156. {
  157. return 0;
  158. }
  159. #endif
  160. EXPORT_SYMBOL_GPL(hwpoison_filter);
  161. /*
  162. * Send all the processes who have the page mapped a signal.
  163. * ``action optional'' if they are not immediately affected by the error
  164. * ``action required'' if error happened in current execution context
  165. */
  166. static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
  167. unsigned long pfn, struct page *page, int flags)
  168. {
  169. struct siginfo si;
  170. int ret;
  171. printk(KERN_ERR
  172. "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
  173. pfn, t->comm, t->pid);
  174. si.si_signo = SIGBUS;
  175. si.si_errno = 0;
  176. si.si_addr = (void *)addr;
  177. #ifdef __ARCH_SI_TRAPNO
  178. si.si_trapno = trapno;
  179. #endif
  180. si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
  181. if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
  182. si.si_code = BUS_MCEERR_AR;
  183. ret = force_sig_info(SIGBUS, &si, current);
  184. } else {
  185. /*
  186. * Don't use force here, it's convenient if the signal
  187. * can be temporarily blocked.
  188. * This could cause a loop when the user sets SIGBUS
  189. * to SIG_IGN, but hopefully no one will do that?
  190. */
  191. si.si_code = BUS_MCEERR_AO;
  192. ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
  193. }
  194. if (ret < 0)
  195. printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
  196. t->comm, t->pid, ret);
  197. return ret;
  198. }
  199. /*
  200. * When a unknown page type is encountered drain as many buffers as possible
  201. * in the hope to turn the page into a LRU or free page, which we can handle.
  202. */
  203. void shake_page(struct page *p, int access)
  204. {
  205. if (!PageSlab(p)) {
  206. lru_add_drain_all();
  207. if (PageLRU(p))
  208. return;
  209. drain_all_pages(page_zone(p));
  210. if (PageLRU(p) || is_free_buddy_page(p))
  211. return;
  212. }
  213. /*
  214. * Only call shrink_node_slabs here (which would also shrink
  215. * other caches) if access is not potentially fatal.
  216. */
  217. if (access)
  218. drop_slab_node(page_to_nid(p));
  219. }
  220. EXPORT_SYMBOL_GPL(shake_page);
  221. /*
  222. * Kill all processes that have a poisoned page mapped and then isolate
  223. * the page.
  224. *
  225. * General strategy:
  226. * Find all processes having the page mapped and kill them.
  227. * But we keep a page reference around so that the page is not
  228. * actually freed yet.
  229. * Then stash the page away
  230. *
  231. * There's no convenient way to get back to mapped processes
  232. * from the VMAs. So do a brute-force search over all
  233. * running processes.
  234. *
  235. * Remember that machine checks are not common (or rather
  236. * if they are common you have other problems), so this shouldn't
  237. * be a performance issue.
  238. *
  239. * Also there are some races possible while we get from the
  240. * error detection to actually handle it.
  241. */
  242. struct to_kill {
  243. struct list_head nd;
  244. struct task_struct *tsk;
  245. unsigned long addr;
  246. char addr_valid;
  247. };
  248. /*
  249. * Failure handling: if we can't find or can't kill a process there's
  250. * not much we can do. We just print a message and ignore otherwise.
  251. */
  252. /*
  253. * Schedule a process for later kill.
  254. * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
  255. * TBD would GFP_NOIO be enough?
  256. */
  257. static void add_to_kill(struct task_struct *tsk, struct page *p,
  258. struct vm_area_struct *vma,
  259. struct list_head *to_kill,
  260. struct to_kill **tkc)
  261. {
  262. struct to_kill *tk;
  263. if (*tkc) {
  264. tk = *tkc;
  265. *tkc = NULL;
  266. } else {
  267. tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
  268. if (!tk) {
  269. printk(KERN_ERR
  270. "MCE: Out of memory while machine check handling\n");
  271. return;
  272. }
  273. }
  274. tk->addr = page_address_in_vma(p, vma);
  275. tk->addr_valid = 1;
  276. /*
  277. * In theory we don't have to kill when the page was
  278. * munmaped. But it could be also a mremap. Since that's
  279. * likely very rare kill anyways just out of paranoia, but use
  280. * a SIGKILL because the error is not contained anymore.
  281. */
  282. if (tk->addr == -EFAULT) {
  283. pr_info("MCE: Unable to find user space address %lx in %s\n",
  284. page_to_pfn(p), tsk->comm);
  285. tk->addr_valid = 0;
  286. }
  287. get_task_struct(tsk);
  288. tk->tsk = tsk;
  289. list_add_tail(&tk->nd, to_kill);
  290. }
  291. /*
  292. * Kill the processes that have been collected earlier.
  293. *
  294. * Only do anything when DOIT is set, otherwise just free the list
  295. * (this is used for clean pages which do not need killing)
  296. * Also when FAIL is set do a force kill because something went
  297. * wrong earlier.
  298. */
  299. static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
  300. int fail, struct page *page, unsigned long pfn,
  301. int flags)
  302. {
  303. struct to_kill *tk, *next;
  304. list_for_each_entry_safe (tk, next, to_kill, nd) {
  305. if (forcekill) {
  306. /*
  307. * In case something went wrong with munmapping
  308. * make sure the process doesn't catch the
  309. * signal and then access the memory. Just kill it.
  310. */
  311. if (fail || tk->addr_valid == 0) {
  312. printk(KERN_ERR
  313. "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
  314. pfn, tk->tsk->comm, tk->tsk->pid);
  315. force_sig(SIGKILL, tk->tsk);
  316. }
  317. /*
  318. * In theory the process could have mapped
  319. * something else on the address in-between. We could
  320. * check for that, but we need to tell the
  321. * process anyways.
  322. */
  323. else if (kill_proc(tk->tsk, tk->addr, trapno,
  324. pfn, page, flags) < 0)
  325. printk(KERN_ERR
  326. "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
  327. pfn, tk->tsk->comm, tk->tsk->pid);
  328. }
  329. put_task_struct(tk->tsk);
  330. kfree(tk);
  331. }
  332. }
  333. /*
  334. * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
  335. * on behalf of the thread group. Return task_struct of the (first found)
  336. * dedicated thread if found, and return NULL otherwise.
  337. *
  338. * We already hold read_lock(&tasklist_lock) in the caller, so we don't
  339. * have to call rcu_read_lock/unlock() in this function.
  340. */
  341. static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
  342. {
  343. struct task_struct *t;
  344. for_each_thread(tsk, t)
  345. if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
  346. return t;
  347. return NULL;
  348. }
  349. /*
  350. * Determine whether a given process is "early kill" process which expects
  351. * to be signaled when some page under the process is hwpoisoned.
  352. * Return task_struct of the dedicated thread (main thread unless explicitly
  353. * specified) if the process is "early kill," and otherwise returns NULL.
  354. */
  355. static struct task_struct *task_early_kill(struct task_struct *tsk,
  356. int force_early)
  357. {
  358. struct task_struct *t;
  359. if (!tsk->mm)
  360. return NULL;
  361. if (force_early)
  362. return tsk;
  363. t = find_early_kill_thread(tsk);
  364. if (t)
  365. return t;
  366. if (sysctl_memory_failure_early_kill)
  367. return tsk;
  368. return NULL;
  369. }
  370. /*
  371. * Collect processes when the error hit an anonymous page.
  372. */
  373. static void collect_procs_anon(struct page *page, struct list_head *to_kill,
  374. struct to_kill **tkc, int force_early)
  375. {
  376. struct vm_area_struct *vma;
  377. struct task_struct *tsk;
  378. struct anon_vma *av;
  379. pgoff_t pgoff;
  380. av = page_lock_anon_vma_read(page);
  381. if (av == NULL) /* Not actually mapped anymore */
  382. return;
  383. pgoff = page_to_pgoff(page);
  384. read_lock(&tasklist_lock);
  385. for_each_process (tsk) {
  386. struct anon_vma_chain *vmac;
  387. struct task_struct *t = task_early_kill(tsk, force_early);
  388. if (!t)
  389. continue;
  390. anon_vma_interval_tree_foreach(vmac, &av->rb_root,
  391. pgoff, pgoff) {
  392. vma = vmac->vma;
  393. if (!page_mapped_in_vma(page, vma))
  394. continue;
  395. if (vma->vm_mm == t->mm)
  396. add_to_kill(t, page, vma, to_kill, tkc);
  397. }
  398. }
  399. read_unlock(&tasklist_lock);
  400. page_unlock_anon_vma_read(av);
  401. }
  402. /*
  403. * Collect processes when the error hit a file mapped page.
  404. */
  405. static void collect_procs_file(struct page *page, struct list_head *to_kill,
  406. struct to_kill **tkc, int force_early)
  407. {
  408. struct vm_area_struct *vma;
  409. struct task_struct *tsk;
  410. struct address_space *mapping = page->mapping;
  411. i_mmap_lock_read(mapping);
  412. read_lock(&tasklist_lock);
  413. for_each_process(tsk) {
  414. pgoff_t pgoff = page_to_pgoff(page);
  415. struct task_struct *t = task_early_kill(tsk, force_early);
  416. if (!t)
  417. continue;
  418. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
  419. pgoff) {
  420. /*
  421. * Send early kill signal to tasks where a vma covers
  422. * the page but the corrupted page is not necessarily
  423. * mapped it in its pte.
  424. * Assume applications who requested early kill want
  425. * to be informed of all such data corruptions.
  426. */
  427. if (vma->vm_mm == t->mm)
  428. add_to_kill(t, page, vma, to_kill, tkc);
  429. }
  430. }
  431. read_unlock(&tasklist_lock);
  432. i_mmap_unlock_read(mapping);
  433. }
  434. /*
  435. * Collect the processes who have the corrupted page mapped to kill.
  436. * This is done in two steps for locking reasons.
  437. * First preallocate one tokill structure outside the spin locks,
  438. * so that we can kill at least one process reasonably reliable.
  439. */
  440. static void collect_procs(struct page *page, struct list_head *tokill,
  441. int force_early)
  442. {
  443. struct to_kill *tk;
  444. if (!page->mapping)
  445. return;
  446. tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
  447. if (!tk)
  448. return;
  449. if (PageAnon(page))
  450. collect_procs_anon(page, tokill, &tk, force_early);
  451. else
  452. collect_procs_file(page, tokill, &tk, force_early);
  453. kfree(tk);
  454. }
  455. static const char *action_name[] = {
  456. [MF_IGNORED] = "Ignored",
  457. [MF_FAILED] = "Failed",
  458. [MF_DELAYED] = "Delayed",
  459. [MF_RECOVERED] = "Recovered",
  460. };
  461. static const char * const action_page_types[] = {
  462. [MF_MSG_KERNEL] = "reserved kernel page",
  463. [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
  464. [MF_MSG_SLAB] = "kernel slab page",
  465. [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
  466. [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
  467. [MF_MSG_HUGE] = "huge page",
  468. [MF_MSG_FREE_HUGE] = "free huge page",
  469. [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
  470. [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
  471. [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
  472. [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
  473. [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
  474. [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
  475. [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
  476. [MF_MSG_DIRTY_LRU] = "dirty LRU page",
  477. [MF_MSG_CLEAN_LRU] = "clean LRU page",
  478. [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
  479. [MF_MSG_BUDDY] = "free buddy page",
  480. [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
  481. [MF_MSG_UNKNOWN] = "unknown page",
  482. };
  483. /*
  484. * XXX: It is possible that a page is isolated from LRU cache,
  485. * and then kept in swap cache or failed to remove from page cache.
  486. * The page count will stop it from being freed by unpoison.
  487. * Stress tests should be aware of this memory leak problem.
  488. */
  489. static int delete_from_lru_cache(struct page *p)
  490. {
  491. if (!isolate_lru_page(p)) {
  492. /*
  493. * Clear sensible page flags, so that the buddy system won't
  494. * complain when the page is unpoison-and-freed.
  495. */
  496. ClearPageActive(p);
  497. ClearPageUnevictable(p);
  498. /*
  499. * drop the page count elevated by isolate_lru_page()
  500. */
  501. page_cache_release(p);
  502. return 0;
  503. }
  504. return -EIO;
  505. }
  506. /*
  507. * Error hit kernel page.
  508. * Do nothing, try to be lucky and not touch this instead. For a few cases we
  509. * could be more sophisticated.
  510. */
  511. static int me_kernel(struct page *p, unsigned long pfn)
  512. {
  513. return MF_IGNORED;
  514. }
  515. /*
  516. * Page in unknown state. Do nothing.
  517. */
  518. static int me_unknown(struct page *p, unsigned long pfn)
  519. {
  520. printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
  521. return MF_FAILED;
  522. }
  523. /*
  524. * Clean (or cleaned) page cache page.
  525. */
  526. static int me_pagecache_clean(struct page *p, unsigned long pfn)
  527. {
  528. int err;
  529. int ret = MF_FAILED;
  530. struct address_space *mapping;
  531. delete_from_lru_cache(p);
  532. /*
  533. * For anonymous pages we're done the only reference left
  534. * should be the one m_f() holds.
  535. */
  536. if (PageAnon(p))
  537. return MF_RECOVERED;
  538. /*
  539. * Now truncate the page in the page cache. This is really
  540. * more like a "temporary hole punch"
  541. * Don't do this for block devices when someone else
  542. * has a reference, because it could be file system metadata
  543. * and that's not safe to truncate.
  544. */
  545. mapping = page_mapping(p);
  546. if (!mapping) {
  547. /*
  548. * Page has been teared down in the meanwhile
  549. */
  550. return MF_FAILED;
  551. }
  552. /*
  553. * Truncation is a bit tricky. Enable it per file system for now.
  554. *
  555. * Open: to take i_mutex or not for this? Right now we don't.
  556. */
  557. if (mapping->a_ops->error_remove_page) {
  558. err = mapping->a_ops->error_remove_page(mapping, p);
  559. if (err != 0) {
  560. printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
  561. pfn, err);
  562. } else if (page_has_private(p) &&
  563. !try_to_release_page(p, GFP_NOIO)) {
  564. pr_info("MCE %#lx: failed to release buffers\n", pfn);
  565. } else {
  566. ret = MF_RECOVERED;
  567. }
  568. } else {
  569. /*
  570. * If the file system doesn't support it just invalidate
  571. * This fails on dirty or anything with private pages
  572. */
  573. if (invalidate_inode_page(p))
  574. ret = MF_RECOVERED;
  575. else
  576. printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
  577. pfn);
  578. }
  579. return ret;
  580. }
  581. /*
  582. * Dirty pagecache page
  583. * Issues: when the error hit a hole page the error is not properly
  584. * propagated.
  585. */
  586. static int me_pagecache_dirty(struct page *p, unsigned long pfn)
  587. {
  588. struct address_space *mapping = page_mapping(p);
  589. SetPageError(p);
  590. /* TBD: print more information about the file. */
  591. if (mapping) {
  592. /*
  593. * IO error will be reported by write(), fsync(), etc.
  594. * who check the mapping.
  595. * This way the application knows that something went
  596. * wrong with its dirty file data.
  597. *
  598. * There's one open issue:
  599. *
  600. * The EIO will be only reported on the next IO
  601. * operation and then cleared through the IO map.
  602. * Normally Linux has two mechanisms to pass IO error
  603. * first through the AS_EIO flag in the address space
  604. * and then through the PageError flag in the page.
  605. * Since we drop pages on memory failure handling the
  606. * only mechanism open to use is through AS_AIO.
  607. *
  608. * This has the disadvantage that it gets cleared on
  609. * the first operation that returns an error, while
  610. * the PageError bit is more sticky and only cleared
  611. * when the page is reread or dropped. If an
  612. * application assumes it will always get error on
  613. * fsync, but does other operations on the fd before
  614. * and the page is dropped between then the error
  615. * will not be properly reported.
  616. *
  617. * This can already happen even without hwpoisoned
  618. * pages: first on metadata IO errors (which only
  619. * report through AS_EIO) or when the page is dropped
  620. * at the wrong time.
  621. *
  622. * So right now we assume that the application DTRT on
  623. * the first EIO, but we're not worse than other parts
  624. * of the kernel.
  625. */
  626. mapping_set_error(mapping, EIO);
  627. }
  628. return me_pagecache_clean(p, pfn);
  629. }
  630. /*
  631. * Clean and dirty swap cache.
  632. *
  633. * Dirty swap cache page is tricky to handle. The page could live both in page
  634. * cache and swap cache(ie. page is freshly swapped in). So it could be
  635. * referenced concurrently by 2 types of PTEs:
  636. * normal PTEs and swap PTEs. We try to handle them consistently by calling
  637. * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
  638. * and then
  639. * - clear dirty bit to prevent IO
  640. * - remove from LRU
  641. * - but keep in the swap cache, so that when we return to it on
  642. * a later page fault, we know the application is accessing
  643. * corrupted data and shall be killed (we installed simple
  644. * interception code in do_swap_page to catch it).
  645. *
  646. * Clean swap cache pages can be directly isolated. A later page fault will
  647. * bring in the known good data from disk.
  648. */
  649. static int me_swapcache_dirty(struct page *p, unsigned long pfn)
  650. {
  651. ClearPageDirty(p);
  652. /* Trigger EIO in shmem: */
  653. ClearPageUptodate(p);
  654. if (!delete_from_lru_cache(p))
  655. return MF_DELAYED;
  656. else
  657. return MF_FAILED;
  658. }
  659. static int me_swapcache_clean(struct page *p, unsigned long pfn)
  660. {
  661. delete_from_swap_cache(p);
  662. if (!delete_from_lru_cache(p))
  663. return MF_RECOVERED;
  664. else
  665. return MF_FAILED;
  666. }
  667. /*
  668. * Huge pages. Needs work.
  669. * Issues:
  670. * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
  671. * To narrow down kill region to one page, we need to break up pmd.
  672. */
  673. static int me_huge_page(struct page *p, unsigned long pfn)
  674. {
  675. int res = 0;
  676. struct page *hpage = compound_head(p);
  677. if (!PageHuge(hpage))
  678. return MF_DELAYED;
  679. /*
  680. * We can safely recover from error on free or reserved (i.e.
  681. * not in-use) hugepage by dequeuing it from freelist.
  682. * To check whether a hugepage is in-use or not, we can't use
  683. * page->lru because it can be used in other hugepage operations,
  684. * such as __unmap_hugepage_range() and gather_surplus_pages().
  685. * So instead we use page_mapping() and PageAnon().
  686. * We assume that this function is called with page lock held,
  687. * so there is no race between isolation and mapping/unmapping.
  688. */
  689. if (!(page_mapping(hpage) || PageAnon(hpage))) {
  690. res = dequeue_hwpoisoned_huge_page(hpage);
  691. if (!res)
  692. return MF_RECOVERED;
  693. }
  694. return MF_DELAYED;
  695. }
  696. /*
  697. * Various page states we can handle.
  698. *
  699. * A page state is defined by its current page->flags bits.
  700. * The table matches them in order and calls the right handler.
  701. *
  702. * This is quite tricky because we can access page at any time
  703. * in its live cycle, so all accesses have to be extremely careful.
  704. *
  705. * This is not complete. More states could be added.
  706. * For any missing state don't attempt recovery.
  707. */
  708. #define dirty (1UL << PG_dirty)
  709. #define sc (1UL << PG_swapcache)
  710. #define unevict (1UL << PG_unevictable)
  711. #define mlock (1UL << PG_mlocked)
  712. #define writeback (1UL << PG_writeback)
  713. #define lru (1UL << PG_lru)
  714. #define swapbacked (1UL << PG_swapbacked)
  715. #define head (1UL << PG_head)
  716. #define tail (1UL << PG_tail)
  717. #define compound (1UL << PG_compound)
  718. #define slab (1UL << PG_slab)
  719. #define reserved (1UL << PG_reserved)
  720. static struct page_state {
  721. unsigned long mask;
  722. unsigned long res;
  723. enum mf_action_page_type type;
  724. int (*action)(struct page *p, unsigned long pfn);
  725. } error_states[] = {
  726. { reserved, reserved, MF_MSG_KERNEL, me_kernel },
  727. /*
  728. * free pages are specially detected outside this table:
  729. * PG_buddy pages only make a small fraction of all free pages.
  730. */
  731. /*
  732. * Could in theory check if slab page is free or if we can drop
  733. * currently unused objects without touching them. But just
  734. * treat it as standard kernel for now.
  735. */
  736. { slab, slab, MF_MSG_SLAB, me_kernel },
  737. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  738. { head, head, MF_MSG_HUGE, me_huge_page },
  739. { tail, tail, MF_MSG_HUGE, me_huge_page },
  740. #else
  741. { compound, compound, MF_MSG_HUGE, me_huge_page },
  742. #endif
  743. { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
  744. { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
  745. { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
  746. { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
  747. { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
  748. { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
  749. { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
  750. { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
  751. /*
  752. * Catchall entry: must be at end.
  753. */
  754. { 0, 0, MF_MSG_UNKNOWN, me_unknown },
  755. };
  756. #undef dirty
  757. #undef sc
  758. #undef unevict
  759. #undef mlock
  760. #undef writeback
  761. #undef lru
  762. #undef swapbacked
  763. #undef head
  764. #undef tail
  765. #undef compound
  766. #undef slab
  767. #undef reserved
  768. /*
  769. * "Dirty/Clean" indication is not 100% accurate due to the possibility of
  770. * setting PG_dirty outside page lock. See also comment above set_page_dirty().
  771. */
  772. static void action_result(unsigned long pfn, enum mf_action_page_type type,
  773. enum mf_result result)
  774. {
  775. trace_memory_failure_event(pfn, type, result);
  776. pr_err("MCE %#lx: recovery action for %s: %s\n",
  777. pfn, action_page_types[type], action_name[result]);
  778. }
  779. static int page_action(struct page_state *ps, struct page *p,
  780. unsigned long pfn)
  781. {
  782. int result;
  783. int count;
  784. result = ps->action(p, pfn);
  785. count = page_count(p) - 1;
  786. if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
  787. count--;
  788. if (count != 0) {
  789. printk(KERN_ERR
  790. "MCE %#lx: %s still referenced by %d users\n",
  791. pfn, action_page_types[ps->type], count);
  792. result = MF_FAILED;
  793. }
  794. action_result(pfn, ps->type, result);
  795. /* Could do more checks here if page looks ok */
  796. /*
  797. * Could adjust zone counters here to correct for the missing page.
  798. */
  799. return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
  800. }
  801. /**
  802. * get_hwpoison_page() - Get refcount for memory error handling:
  803. * @page: raw error page (hit by memory error)
  804. *
  805. * Return: return 0 if failed to grab the refcount, otherwise true (some
  806. * non-zero value.)
  807. */
  808. int get_hwpoison_page(struct page *page)
  809. {
  810. struct page *head = compound_head(page);
  811. if (PageHuge(head))
  812. return get_page_unless_zero(head);
  813. /*
  814. * Thp tail page has special refcounting rule (refcount of tail pages
  815. * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
  816. * directly for tail pages.
  817. */
  818. if (PageTransHuge(head)) {
  819. /*
  820. * Non anonymous thp exists only in allocation/free time. We
  821. * can't handle such a case correctly, so let's give it up.
  822. * This should be better than triggering BUG_ON when kernel
  823. * tries to touch the "partially handled" page.
  824. */
  825. if (!PageAnon(head)) {
  826. pr_err("MCE: %#lx: non anonymous thp\n",
  827. page_to_pfn(page));
  828. return 0;
  829. }
  830. if (get_page_unless_zero(head)) {
  831. if (PageTail(page))
  832. get_page(page);
  833. return 1;
  834. } else {
  835. return 0;
  836. }
  837. }
  838. return get_page_unless_zero(page);
  839. }
  840. EXPORT_SYMBOL_GPL(get_hwpoison_page);
  841. /*
  842. * Do all that is necessary to remove user space mappings. Unmap
  843. * the pages and send SIGBUS to the processes if the data was dirty.
  844. */
  845. static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
  846. int trapno, int flags, struct page **hpagep)
  847. {
  848. enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
  849. struct address_space *mapping;
  850. LIST_HEAD(tokill);
  851. int ret;
  852. int kill = 1, forcekill;
  853. struct page *hpage = *hpagep;
  854. /*
  855. * Here we are interested only in user-mapped pages, so skip any
  856. * other types of pages.
  857. */
  858. if (PageReserved(p) || PageSlab(p))
  859. return SWAP_SUCCESS;
  860. if (!(PageLRU(hpage) || PageHuge(p)))
  861. return SWAP_SUCCESS;
  862. /*
  863. * This check implies we don't kill processes if their pages
  864. * are in the swap cache early. Those are always late kills.
  865. */
  866. if (!page_mapped(hpage))
  867. return SWAP_SUCCESS;
  868. if (PageKsm(p)) {
  869. pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
  870. return SWAP_FAIL;
  871. }
  872. if (PageSwapCache(p)) {
  873. printk(KERN_ERR
  874. "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
  875. ttu |= TTU_IGNORE_HWPOISON;
  876. }
  877. /*
  878. * Propagate the dirty bit from PTEs to struct page first, because we
  879. * need this to decide if we should kill or just drop the page.
  880. * XXX: the dirty test could be racy: set_page_dirty() may not always
  881. * be called inside page lock (it's recommended but not enforced).
  882. */
  883. mapping = page_mapping(hpage);
  884. if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
  885. mapping_cap_writeback_dirty(mapping)) {
  886. if (page_mkclean(hpage)) {
  887. SetPageDirty(hpage);
  888. } else {
  889. kill = 0;
  890. ttu |= TTU_IGNORE_HWPOISON;
  891. printk(KERN_INFO
  892. "MCE %#lx: corrupted page was clean: dropped without side effects\n",
  893. pfn);
  894. }
  895. }
  896. /*
  897. * First collect all the processes that have the page
  898. * mapped in dirty form. This has to be done before try_to_unmap,
  899. * because ttu takes the rmap data structures down.
  900. *
  901. * Error handling: We ignore errors here because
  902. * there's nothing that can be done.
  903. */
  904. if (kill)
  905. collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
  906. ret = try_to_unmap(hpage, ttu);
  907. if (ret != SWAP_SUCCESS)
  908. printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
  909. pfn, page_mapcount(hpage));
  910. /*
  911. * Now that the dirty bit has been propagated to the
  912. * struct page and all unmaps done we can decide if
  913. * killing is needed or not. Only kill when the page
  914. * was dirty or the process is not restartable,
  915. * otherwise the tokill list is merely
  916. * freed. When there was a problem unmapping earlier
  917. * use a more force-full uncatchable kill to prevent
  918. * any accesses to the poisoned memory.
  919. */
  920. forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
  921. kill_procs(&tokill, forcekill, trapno,
  922. ret != SWAP_SUCCESS, p, pfn, flags);
  923. return ret;
  924. }
  925. static void set_page_hwpoison_huge_page(struct page *hpage)
  926. {
  927. int i;
  928. int nr_pages = 1 << compound_order(hpage);
  929. for (i = 0; i < nr_pages; i++)
  930. SetPageHWPoison(hpage + i);
  931. }
  932. static void clear_page_hwpoison_huge_page(struct page *hpage)
  933. {
  934. int i;
  935. int nr_pages = 1 << compound_order(hpage);
  936. for (i = 0; i < nr_pages; i++)
  937. ClearPageHWPoison(hpage + i);
  938. }
  939. /**
  940. * memory_failure - Handle memory failure of a page.
  941. * @pfn: Page Number of the corrupted page
  942. * @trapno: Trap number reported in the signal to user space.
  943. * @flags: fine tune action taken
  944. *
  945. * This function is called by the low level machine check code
  946. * of an architecture when it detects hardware memory corruption
  947. * of a page. It tries its best to recover, which includes
  948. * dropping pages, killing processes etc.
  949. *
  950. * The function is primarily of use for corruptions that
  951. * happen outside the current execution context (e.g. when
  952. * detected by a background scrubber)
  953. *
  954. * Must run in process context (e.g. a work queue) with interrupts
  955. * enabled and no spinlocks hold.
  956. */
  957. int memory_failure(unsigned long pfn, int trapno, int flags)
  958. {
  959. struct page_state *ps;
  960. struct page *p;
  961. struct page *hpage;
  962. struct page *orig_head;
  963. int res;
  964. unsigned int nr_pages;
  965. unsigned long page_flags;
  966. if (!sysctl_memory_failure_recovery)
  967. panic("Memory failure from trap %d on page %lx", trapno, pfn);
  968. if (!pfn_valid(pfn)) {
  969. printk(KERN_ERR
  970. "MCE %#lx: memory outside kernel control\n",
  971. pfn);
  972. return -ENXIO;
  973. }
  974. p = pfn_to_page(pfn);
  975. orig_head = hpage = compound_head(p);
  976. if (TestSetPageHWPoison(p)) {
  977. printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
  978. return 0;
  979. }
  980. /*
  981. * Currently errors on hugetlbfs pages are measured in hugepage units,
  982. * so nr_pages should be 1 << compound_order. OTOH when errors are on
  983. * transparent hugepages, they are supposed to be split and error
  984. * measurement is done in normal page units. So nr_pages should be one
  985. * in this case.
  986. */
  987. if (PageHuge(p))
  988. nr_pages = 1 << compound_order(hpage);
  989. else /* normal page or thp */
  990. nr_pages = 1;
  991. atomic_long_add(nr_pages, &num_poisoned_pages);
  992. /*
  993. * We need/can do nothing about count=0 pages.
  994. * 1) it's a free page, and therefore in safe hand:
  995. * prep_new_page() will be the gate keeper.
  996. * 2) it's a free hugepage, which is also safe:
  997. * an affected hugepage will be dequeued from hugepage freelist,
  998. * so there's no concern about reusing it ever after.
  999. * 3) it's part of a non-compound high order page.
  1000. * Implies some kernel user: cannot stop them from
  1001. * R/W the page; let's pray that the page has been
  1002. * used and will be freed some time later.
  1003. * In fact it's dangerous to directly bump up page count from 0,
  1004. * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
  1005. */
  1006. if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
  1007. if (is_free_buddy_page(p)) {
  1008. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1009. return 0;
  1010. } else if (PageHuge(hpage)) {
  1011. /*
  1012. * Check "filter hit" and "race with other subpage."
  1013. */
  1014. lock_page(hpage);
  1015. if (PageHWPoison(hpage)) {
  1016. if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
  1017. || (p != hpage && TestSetPageHWPoison(hpage))) {
  1018. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1019. unlock_page(hpage);
  1020. return 0;
  1021. }
  1022. }
  1023. set_page_hwpoison_huge_page(hpage);
  1024. res = dequeue_hwpoisoned_huge_page(hpage);
  1025. action_result(pfn, MF_MSG_FREE_HUGE,
  1026. res ? MF_IGNORED : MF_DELAYED);
  1027. unlock_page(hpage);
  1028. return res;
  1029. } else {
  1030. action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
  1031. return -EBUSY;
  1032. }
  1033. }
  1034. if (!PageHuge(p) && PageTransHuge(hpage)) {
  1035. if (unlikely(split_huge_page(hpage))) {
  1036. pr_err("MCE: %#lx: thp split failed\n", pfn);
  1037. if (TestClearPageHWPoison(p))
  1038. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1039. put_page(p);
  1040. if (p != hpage)
  1041. put_page(hpage);
  1042. return -EBUSY;
  1043. }
  1044. VM_BUG_ON_PAGE(!page_count(p), p);
  1045. hpage = compound_head(p);
  1046. }
  1047. /*
  1048. * We ignore non-LRU pages for good reasons.
  1049. * - PG_locked is only well defined for LRU pages and a few others
  1050. * - to avoid races with __set_page_locked()
  1051. * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
  1052. * The check (unnecessarily) ignores LRU pages being isolated and
  1053. * walked by the page reclaim code, however that's not a big loss.
  1054. */
  1055. if (!PageHuge(p)) {
  1056. if (!PageLRU(p))
  1057. shake_page(p, 0);
  1058. if (!PageLRU(p)) {
  1059. /*
  1060. * shake_page could have turned it free.
  1061. */
  1062. if (is_free_buddy_page(p)) {
  1063. if (flags & MF_COUNT_INCREASED)
  1064. action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
  1065. else
  1066. action_result(pfn, MF_MSG_BUDDY_2ND,
  1067. MF_DELAYED);
  1068. return 0;
  1069. }
  1070. }
  1071. }
  1072. lock_page(hpage);
  1073. /*
  1074. * The page could have changed compound pages during the locking.
  1075. * If this happens just bail out.
  1076. */
  1077. if (PageCompound(p) && compound_head(p) != orig_head) {
  1078. action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
  1079. res = -EBUSY;
  1080. goto out;
  1081. }
  1082. /*
  1083. * We use page flags to determine what action should be taken, but
  1084. * the flags can be modified by the error containment action. One
  1085. * example is an mlocked page, where PG_mlocked is cleared by
  1086. * page_remove_rmap() in try_to_unmap_one(). So to determine page status
  1087. * correctly, we save a copy of the page flags at this time.
  1088. */
  1089. page_flags = p->flags;
  1090. /*
  1091. * unpoison always clear PG_hwpoison inside page lock
  1092. */
  1093. if (!PageHWPoison(p)) {
  1094. printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
  1095. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1096. unlock_page(hpage);
  1097. put_page(hpage);
  1098. return 0;
  1099. }
  1100. if (hwpoison_filter(p)) {
  1101. if (TestClearPageHWPoison(p))
  1102. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1103. unlock_page(hpage);
  1104. put_page(hpage);
  1105. return 0;
  1106. }
  1107. if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
  1108. goto identify_page_state;
  1109. /*
  1110. * For error on the tail page, we should set PG_hwpoison
  1111. * on the head page to show that the hugepage is hwpoisoned
  1112. */
  1113. if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
  1114. action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
  1115. unlock_page(hpage);
  1116. put_page(hpage);
  1117. return 0;
  1118. }
  1119. /*
  1120. * Set PG_hwpoison on all pages in an error hugepage,
  1121. * because containment is done in hugepage unit for now.
  1122. * Since we have done TestSetPageHWPoison() for the head page with
  1123. * page lock held, we can safely set PG_hwpoison bits on tail pages.
  1124. */
  1125. if (PageHuge(p))
  1126. set_page_hwpoison_huge_page(hpage);
  1127. /*
  1128. * It's very difficult to mess with pages currently under IO
  1129. * and in many cases impossible, so we just avoid it here.
  1130. */
  1131. wait_on_page_writeback(p);
  1132. /*
  1133. * Now take care of user space mappings.
  1134. * Abort on fail: __delete_from_page_cache() assumes unmapped page.
  1135. *
  1136. * When the raw error page is thp tail page, hpage points to the raw
  1137. * page after thp split.
  1138. */
  1139. if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
  1140. != SWAP_SUCCESS) {
  1141. action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
  1142. res = -EBUSY;
  1143. goto out;
  1144. }
  1145. /*
  1146. * Torn down by someone else?
  1147. */
  1148. if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
  1149. action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
  1150. res = -EBUSY;
  1151. goto out;
  1152. }
  1153. identify_page_state:
  1154. res = -EBUSY;
  1155. /*
  1156. * The first check uses the current page flags which may not have any
  1157. * relevant information. The second check with the saved page flagss is
  1158. * carried out only if the first check can't determine the page status.
  1159. */
  1160. for (ps = error_states;; ps++)
  1161. if ((p->flags & ps->mask) == ps->res)
  1162. break;
  1163. page_flags |= (p->flags & (1UL << PG_dirty));
  1164. if (!ps->mask)
  1165. for (ps = error_states;; ps++)
  1166. if ((page_flags & ps->mask) == ps->res)
  1167. break;
  1168. res = page_action(ps, p, pfn);
  1169. out:
  1170. unlock_page(hpage);
  1171. return res;
  1172. }
  1173. EXPORT_SYMBOL_GPL(memory_failure);
  1174. #define MEMORY_FAILURE_FIFO_ORDER 4
  1175. #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
  1176. struct memory_failure_entry {
  1177. unsigned long pfn;
  1178. int trapno;
  1179. int flags;
  1180. };
  1181. struct memory_failure_cpu {
  1182. DECLARE_KFIFO(fifo, struct memory_failure_entry,
  1183. MEMORY_FAILURE_FIFO_SIZE);
  1184. spinlock_t lock;
  1185. struct work_struct work;
  1186. };
  1187. static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
  1188. /**
  1189. * memory_failure_queue - Schedule handling memory failure of a page.
  1190. * @pfn: Page Number of the corrupted page
  1191. * @trapno: Trap number reported in the signal to user space.
  1192. * @flags: Flags for memory failure handling
  1193. *
  1194. * This function is called by the low level hardware error handler
  1195. * when it detects hardware memory corruption of a page. It schedules
  1196. * the recovering of error page, including dropping pages, killing
  1197. * processes etc.
  1198. *
  1199. * The function is primarily of use for corruptions that
  1200. * happen outside the current execution context (e.g. when
  1201. * detected by a background scrubber)
  1202. *
  1203. * Can run in IRQ context.
  1204. */
  1205. void memory_failure_queue(unsigned long pfn, int trapno, int flags)
  1206. {
  1207. struct memory_failure_cpu *mf_cpu;
  1208. unsigned long proc_flags;
  1209. struct memory_failure_entry entry = {
  1210. .pfn = pfn,
  1211. .trapno = trapno,
  1212. .flags = flags,
  1213. };
  1214. mf_cpu = &get_cpu_var(memory_failure_cpu);
  1215. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1216. if (kfifo_put(&mf_cpu->fifo, entry))
  1217. schedule_work_on(smp_processor_id(), &mf_cpu->work);
  1218. else
  1219. pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
  1220. pfn);
  1221. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1222. put_cpu_var(memory_failure_cpu);
  1223. }
  1224. EXPORT_SYMBOL_GPL(memory_failure_queue);
  1225. static void memory_failure_work_func(struct work_struct *work)
  1226. {
  1227. struct memory_failure_cpu *mf_cpu;
  1228. struct memory_failure_entry entry = { 0, };
  1229. unsigned long proc_flags;
  1230. int gotten;
  1231. mf_cpu = this_cpu_ptr(&memory_failure_cpu);
  1232. for (;;) {
  1233. spin_lock_irqsave(&mf_cpu->lock, proc_flags);
  1234. gotten = kfifo_get(&mf_cpu->fifo, &entry);
  1235. spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
  1236. if (!gotten)
  1237. break;
  1238. if (entry.flags & MF_SOFT_OFFLINE)
  1239. soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
  1240. else
  1241. memory_failure(entry.pfn, entry.trapno, entry.flags);
  1242. }
  1243. }
  1244. static int __init memory_failure_init(void)
  1245. {
  1246. struct memory_failure_cpu *mf_cpu;
  1247. int cpu;
  1248. for_each_possible_cpu(cpu) {
  1249. mf_cpu = &per_cpu(memory_failure_cpu, cpu);
  1250. spin_lock_init(&mf_cpu->lock);
  1251. INIT_KFIFO(mf_cpu->fifo);
  1252. INIT_WORK(&mf_cpu->work, memory_failure_work_func);
  1253. }
  1254. return 0;
  1255. }
  1256. core_initcall(memory_failure_init);
  1257. /**
  1258. * unpoison_memory - Unpoison a previously poisoned page
  1259. * @pfn: Page number of the to be unpoisoned page
  1260. *
  1261. * Software-unpoison a page that has been poisoned by
  1262. * memory_failure() earlier.
  1263. *
  1264. * This is only done on the software-level, so it only works
  1265. * for linux injected failures, not real hardware failures
  1266. *
  1267. * Returns 0 for success, otherwise -errno.
  1268. */
  1269. int unpoison_memory(unsigned long pfn)
  1270. {
  1271. struct page *page;
  1272. struct page *p;
  1273. int freeit = 0;
  1274. unsigned int nr_pages;
  1275. if (!pfn_valid(pfn))
  1276. return -ENXIO;
  1277. p = pfn_to_page(pfn);
  1278. page = compound_head(p);
  1279. if (!PageHWPoison(p)) {
  1280. pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
  1281. return 0;
  1282. }
  1283. /*
  1284. * unpoison_memory() can encounter thp only when the thp is being
  1285. * worked by memory_failure() and the page lock is not held yet.
  1286. * In such case, we yield to memory_failure() and make unpoison fail.
  1287. */
  1288. if (!PageHuge(page) && PageTransHuge(page)) {
  1289. pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
  1290. return 0;
  1291. }
  1292. nr_pages = 1 << compound_order(page);
  1293. if (!get_hwpoison_page(p)) {
  1294. /*
  1295. * Since HWPoisoned hugepage should have non-zero refcount,
  1296. * race between memory failure and unpoison seems to happen.
  1297. * In such case unpoison fails and memory failure runs
  1298. * to the end.
  1299. */
  1300. if (PageHuge(page)) {
  1301. pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
  1302. return 0;
  1303. }
  1304. if (TestClearPageHWPoison(p))
  1305. atomic_long_dec(&num_poisoned_pages);
  1306. pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
  1307. return 0;
  1308. }
  1309. lock_page(page);
  1310. /*
  1311. * This test is racy because PG_hwpoison is set outside of page lock.
  1312. * That's acceptable because that won't trigger kernel panic. Instead,
  1313. * the PG_hwpoison page will be caught and isolated on the entrance to
  1314. * the free buddy page pool.
  1315. */
  1316. if (TestClearPageHWPoison(page)) {
  1317. pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
  1318. atomic_long_sub(nr_pages, &num_poisoned_pages);
  1319. freeit = 1;
  1320. if (PageHuge(page))
  1321. clear_page_hwpoison_huge_page(page);
  1322. }
  1323. unlock_page(page);
  1324. put_page(page);
  1325. if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
  1326. put_page(page);
  1327. return 0;
  1328. }
  1329. EXPORT_SYMBOL(unpoison_memory);
  1330. static struct page *new_page(struct page *p, unsigned long private, int **x)
  1331. {
  1332. int nid = page_to_nid(p);
  1333. if (PageHuge(p))
  1334. return alloc_huge_page_node(page_hstate(compound_head(p)),
  1335. nid);
  1336. else
  1337. return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
  1338. }
  1339. /*
  1340. * Safely get reference count of an arbitrary page.
  1341. * Returns 0 for a free page, -EIO for a zero refcount page
  1342. * that is not free, and 1 for any other page type.
  1343. * For 1 the page is returned with increased page count, otherwise not.
  1344. */
  1345. static int __get_any_page(struct page *p, unsigned long pfn, int flags)
  1346. {
  1347. int ret;
  1348. if (flags & MF_COUNT_INCREASED)
  1349. return 1;
  1350. /*
  1351. * When the target page is a free hugepage, just remove it
  1352. * from free hugepage list.
  1353. */
  1354. if (!get_hwpoison_page(p)) {
  1355. if (PageHuge(p)) {
  1356. pr_info("%s: %#lx free huge page\n", __func__, pfn);
  1357. ret = 0;
  1358. } else if (is_free_buddy_page(p)) {
  1359. pr_info("%s: %#lx free buddy page\n", __func__, pfn);
  1360. ret = 0;
  1361. } else {
  1362. pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
  1363. __func__, pfn, p->flags);
  1364. ret = -EIO;
  1365. }
  1366. } else {
  1367. /* Not a free page */
  1368. ret = 1;
  1369. }
  1370. return ret;
  1371. }
  1372. static int get_any_page(struct page *page, unsigned long pfn, int flags)
  1373. {
  1374. int ret = __get_any_page(page, pfn, flags);
  1375. if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
  1376. /*
  1377. * Try to free it.
  1378. */
  1379. put_page(page);
  1380. shake_page(page, 1);
  1381. /*
  1382. * Did it turn free?
  1383. */
  1384. ret = __get_any_page(page, pfn, 0);
  1385. if (!PageLRU(page)) {
  1386. pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
  1387. pfn, page->flags);
  1388. return -EIO;
  1389. }
  1390. }
  1391. return ret;
  1392. }
  1393. static int soft_offline_huge_page(struct page *page, int flags)
  1394. {
  1395. int ret;
  1396. unsigned long pfn = page_to_pfn(page);
  1397. struct page *hpage = compound_head(page);
  1398. LIST_HEAD(pagelist);
  1399. /*
  1400. * This double-check of PageHWPoison is to avoid the race with
  1401. * memory_failure(). See also comment in __soft_offline_page().
  1402. */
  1403. lock_page(hpage);
  1404. if (PageHWPoison(hpage)) {
  1405. unlock_page(hpage);
  1406. put_page(hpage);
  1407. pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
  1408. return -EBUSY;
  1409. }
  1410. unlock_page(hpage);
  1411. ret = isolate_huge_page(hpage, &pagelist);
  1412. if (ret) {
  1413. /*
  1414. * get_any_page() and isolate_huge_page() takes a refcount each,
  1415. * so need to drop one here.
  1416. */
  1417. put_page(hpage);
  1418. } else {
  1419. pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
  1420. return -EBUSY;
  1421. }
  1422. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1423. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1424. if (ret) {
  1425. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1426. pfn, ret, page->flags);
  1427. /*
  1428. * We know that soft_offline_huge_page() tries to migrate
  1429. * only one hugepage pointed to by hpage, so we need not
  1430. * run through the pagelist here.
  1431. */
  1432. putback_active_hugepage(hpage);
  1433. if (ret > 0)
  1434. ret = -EIO;
  1435. } else {
  1436. /* overcommit hugetlb page will be freed to buddy */
  1437. if (PageHuge(page)) {
  1438. set_page_hwpoison_huge_page(hpage);
  1439. dequeue_hwpoisoned_huge_page(hpage);
  1440. atomic_long_add(1 << compound_order(hpage),
  1441. &num_poisoned_pages);
  1442. } else {
  1443. SetPageHWPoison(page);
  1444. atomic_long_inc(&num_poisoned_pages);
  1445. }
  1446. }
  1447. return ret;
  1448. }
  1449. static int __soft_offline_page(struct page *page, int flags)
  1450. {
  1451. int ret;
  1452. unsigned long pfn = page_to_pfn(page);
  1453. /*
  1454. * Check PageHWPoison again inside page lock because PageHWPoison
  1455. * is set by memory_failure() outside page lock. Note that
  1456. * memory_failure() also double-checks PageHWPoison inside page lock,
  1457. * so there's no race between soft_offline_page() and memory_failure().
  1458. */
  1459. lock_page(page);
  1460. wait_on_page_writeback(page);
  1461. if (PageHWPoison(page)) {
  1462. unlock_page(page);
  1463. put_page(page);
  1464. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1465. return -EBUSY;
  1466. }
  1467. /*
  1468. * Try to invalidate first. This should work for
  1469. * non dirty unmapped page cache pages.
  1470. */
  1471. ret = invalidate_inode_page(page);
  1472. unlock_page(page);
  1473. /*
  1474. * RED-PEN would be better to keep it isolated here, but we
  1475. * would need to fix isolation locking first.
  1476. */
  1477. if (ret == 1) {
  1478. put_page(page);
  1479. pr_info("soft_offline: %#lx: invalidated\n", pfn);
  1480. SetPageHWPoison(page);
  1481. atomic_long_inc(&num_poisoned_pages);
  1482. return 0;
  1483. }
  1484. /*
  1485. * Simple invalidation didn't work.
  1486. * Try to migrate to a new page instead. migrate.c
  1487. * handles a large number of cases for us.
  1488. */
  1489. ret = isolate_lru_page(page);
  1490. /*
  1491. * Drop page reference which is came from get_any_page()
  1492. * successful isolate_lru_page() already took another one.
  1493. */
  1494. put_page(page);
  1495. if (!ret) {
  1496. LIST_HEAD(pagelist);
  1497. inc_zone_page_state(page, NR_ISOLATED_ANON +
  1498. page_is_file_cache(page));
  1499. list_add(&page->lru, &pagelist);
  1500. if (!TestSetPageHWPoison(page))
  1501. atomic_long_inc(&num_poisoned_pages);
  1502. ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
  1503. MIGRATE_SYNC, MR_MEMORY_FAILURE);
  1504. if (ret) {
  1505. if (!list_empty(&pagelist)) {
  1506. list_del(&page->lru);
  1507. dec_zone_page_state(page, NR_ISOLATED_ANON +
  1508. page_is_file_cache(page));
  1509. putback_lru_page(page);
  1510. }
  1511. pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
  1512. pfn, ret, page->flags);
  1513. if (ret > 0)
  1514. ret = -EIO;
  1515. if (TestClearPageHWPoison(page))
  1516. atomic_long_dec(&num_poisoned_pages);
  1517. }
  1518. } else {
  1519. pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
  1520. pfn, ret, page_count(page), page->flags);
  1521. }
  1522. return ret;
  1523. }
  1524. /**
  1525. * soft_offline_page - Soft offline a page.
  1526. * @page: page to offline
  1527. * @flags: flags. Same as memory_failure().
  1528. *
  1529. * Returns 0 on success, otherwise negated errno.
  1530. *
  1531. * Soft offline a page, by migration or invalidation,
  1532. * without killing anything. This is for the case when
  1533. * a page is not corrupted yet (so it's still valid to access),
  1534. * but has had a number of corrected errors and is better taken
  1535. * out.
  1536. *
  1537. * The actual policy on when to do that is maintained by
  1538. * user space.
  1539. *
  1540. * This should never impact any application or cause data loss,
  1541. * however it might take some time.
  1542. *
  1543. * This is not a 100% solution for all memory, but tries to be
  1544. * ``good enough'' for the majority of memory.
  1545. */
  1546. int soft_offline_page(struct page *page, int flags)
  1547. {
  1548. int ret;
  1549. unsigned long pfn = page_to_pfn(page);
  1550. struct page *hpage = compound_head(page);
  1551. if (PageHWPoison(page)) {
  1552. pr_info("soft offline: %#lx page already poisoned\n", pfn);
  1553. return -EBUSY;
  1554. }
  1555. if (!PageHuge(page) && PageTransHuge(hpage)) {
  1556. if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
  1557. pr_info("soft offline: %#lx: failed to split THP\n",
  1558. pfn);
  1559. return -EBUSY;
  1560. }
  1561. }
  1562. get_online_mems();
  1563. ret = get_any_page(page, pfn, flags);
  1564. put_online_mems();
  1565. if (ret > 0) { /* for in-use pages */
  1566. if (PageHuge(page))
  1567. ret = soft_offline_huge_page(page, flags);
  1568. else
  1569. ret = __soft_offline_page(page, flags);
  1570. } else if (ret == 0) { /* for free pages */
  1571. if (PageHuge(page)) {
  1572. set_page_hwpoison_huge_page(hpage);
  1573. if (!dequeue_hwpoisoned_huge_page(hpage))
  1574. atomic_long_add(1 << compound_order(hpage),
  1575. &num_poisoned_pages);
  1576. } else {
  1577. if (!TestSetPageHWPoison(page))
  1578. atomic_long_inc(&num_poisoned_pages);
  1579. }
  1580. }
  1581. return ret;
  1582. }