huge_memory.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/kthread.h>
  18. #include <linux/khugepaged.h>
  19. #include <linux/freezer.h>
  20. #include <linux/mman.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/migrate.h>
  23. #include <linux/hashtable.h>
  24. #include <asm/tlb.h>
  25. #include <asm/pgalloc.h>
  26. #include "internal.h"
  27. /*
  28. * By default transparent hugepage support is disabled in order that avoid
  29. * to risk increase the memory footprint of applications without a guaranteed
  30. * benefit. When transparent hugepage support is enabled, is for all mappings,
  31. * and khugepaged scans all mappings.
  32. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  33. * for all hugepage allocations.
  34. */
  35. unsigned long transparent_hugepage_flags __read_mostly =
  36. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  37. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  38. #endif
  39. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  40. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  41. #endif
  42. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  43. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  44. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  45. /* default scan 8*512 pte (or vmas) every 30 second */
  46. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  47. static unsigned int khugepaged_pages_collapsed;
  48. static unsigned int khugepaged_full_scans;
  49. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  50. /* during fragmentation poll the hugepage allocator once every minute */
  51. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  52. static struct task_struct *khugepaged_thread __read_mostly;
  53. static DEFINE_MUTEX(khugepaged_mutex);
  54. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  55. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  56. /*
  57. * default collapse hugepages if there is at least one pte mapped like
  58. * it would have happened if the vma was large enough during page
  59. * fault.
  60. */
  61. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  62. static int khugepaged(void *none);
  63. static int khugepaged_slab_init(void);
  64. static void khugepaged_slab_exit(void);
  65. #define MM_SLOTS_HASH_BITS 10
  66. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  67. static struct kmem_cache *mm_slot_cache __read_mostly;
  68. /**
  69. * struct mm_slot - hash lookup from mm to mm_slot
  70. * @hash: hash collision list
  71. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  72. * @mm: the mm that this information is valid for
  73. */
  74. struct mm_slot {
  75. struct hlist_node hash;
  76. struct list_head mm_node;
  77. struct mm_struct *mm;
  78. };
  79. /**
  80. * struct khugepaged_scan - cursor for scanning
  81. * @mm_head: the head of the mm list to scan
  82. * @mm_slot: the current mm_slot we are scanning
  83. * @address: the next address inside that to be scanned
  84. *
  85. * There is only the one khugepaged_scan instance of this cursor structure.
  86. */
  87. struct khugepaged_scan {
  88. struct list_head mm_head;
  89. struct mm_slot *mm_slot;
  90. unsigned long address;
  91. };
  92. static struct khugepaged_scan khugepaged_scan = {
  93. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  94. };
  95. static int set_recommended_min_free_kbytes(void)
  96. {
  97. struct zone *zone;
  98. int nr_zones = 0;
  99. unsigned long recommended_min;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes) {
  117. if (user_min_free_kbytes >= 0)
  118. pr_info("raising min_free_kbytes from %d to %lu "
  119. "to help transparent hugepage allocations\n",
  120. min_free_kbytes, recommended_min);
  121. min_free_kbytes = recommended_min;
  122. }
  123. setup_per_zone_wmarks();
  124. return 0;
  125. }
  126. static int start_stop_khugepaged(void)
  127. {
  128. int err = 0;
  129. if (khugepaged_enabled()) {
  130. if (!khugepaged_thread)
  131. khugepaged_thread = kthread_run(khugepaged, NULL,
  132. "khugepaged");
  133. if (unlikely(IS_ERR(khugepaged_thread))) {
  134. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  135. err = PTR_ERR(khugepaged_thread);
  136. khugepaged_thread = NULL;
  137. goto fail;
  138. }
  139. if (!list_empty(&khugepaged_scan.mm_head))
  140. wake_up_interruptible(&khugepaged_wait);
  141. set_recommended_min_free_kbytes();
  142. } else if (khugepaged_thread) {
  143. kthread_stop(khugepaged_thread);
  144. khugepaged_thread = NULL;
  145. }
  146. fail:
  147. return err;
  148. }
  149. static atomic_t huge_zero_refcount;
  150. struct page *huge_zero_page __read_mostly;
  151. static inline bool is_huge_zero_pmd(pmd_t pmd)
  152. {
  153. return is_huge_zero_page(pmd_page(pmd));
  154. }
  155. static struct page *get_huge_zero_page(void)
  156. {
  157. struct page *zero_page;
  158. retry:
  159. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  160. return READ_ONCE(huge_zero_page);
  161. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  162. HPAGE_PMD_ORDER);
  163. if (!zero_page) {
  164. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  165. return NULL;
  166. }
  167. count_vm_event(THP_ZERO_PAGE_ALLOC);
  168. preempt_disable();
  169. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  170. preempt_enable();
  171. __free_pages(zero_page, compound_order(zero_page));
  172. goto retry;
  173. }
  174. /* We take additional reference here. It will be put back by shrinker */
  175. atomic_set(&huge_zero_refcount, 2);
  176. preempt_enable();
  177. return READ_ONCE(huge_zero_page);
  178. }
  179. static void put_huge_zero_page(void)
  180. {
  181. /*
  182. * Counter should never go to zero here. Only shrinker can put
  183. * last reference.
  184. */
  185. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  186. }
  187. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  188. struct shrink_control *sc)
  189. {
  190. /* we can free zero page only if last reference remains */
  191. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  192. }
  193. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  194. struct shrink_control *sc)
  195. {
  196. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  197. struct page *zero_page = xchg(&huge_zero_page, NULL);
  198. BUG_ON(zero_page == NULL);
  199. __free_pages(zero_page, compound_order(zero_page));
  200. return HPAGE_PMD_NR;
  201. }
  202. return 0;
  203. }
  204. static struct shrinker huge_zero_page_shrinker = {
  205. .count_objects = shrink_huge_zero_page_count,
  206. .scan_objects = shrink_huge_zero_page_scan,
  207. .seeks = DEFAULT_SEEKS,
  208. };
  209. #ifdef CONFIG_SYSFS
  210. static ssize_t double_flag_show(struct kobject *kobj,
  211. struct kobj_attribute *attr, char *buf,
  212. enum transparent_hugepage_flag enabled,
  213. enum transparent_hugepage_flag req_madv)
  214. {
  215. if (test_bit(enabled, &transparent_hugepage_flags)) {
  216. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  217. return sprintf(buf, "[always] madvise never\n");
  218. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  219. return sprintf(buf, "always [madvise] never\n");
  220. else
  221. return sprintf(buf, "always madvise [never]\n");
  222. }
  223. static ssize_t double_flag_store(struct kobject *kobj,
  224. struct kobj_attribute *attr,
  225. const char *buf, size_t count,
  226. enum transparent_hugepage_flag enabled,
  227. enum transparent_hugepage_flag req_madv)
  228. {
  229. if (!memcmp("always", buf,
  230. min(sizeof("always")-1, count))) {
  231. set_bit(enabled, &transparent_hugepage_flags);
  232. clear_bit(req_madv, &transparent_hugepage_flags);
  233. } else if (!memcmp("madvise", buf,
  234. min(sizeof("madvise")-1, count))) {
  235. clear_bit(enabled, &transparent_hugepage_flags);
  236. set_bit(req_madv, &transparent_hugepage_flags);
  237. } else if (!memcmp("never", buf,
  238. min(sizeof("never")-1, count))) {
  239. clear_bit(enabled, &transparent_hugepage_flags);
  240. clear_bit(req_madv, &transparent_hugepage_flags);
  241. } else
  242. return -EINVAL;
  243. return count;
  244. }
  245. static ssize_t enabled_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return double_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_FLAG,
  250. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  251. }
  252. static ssize_t enabled_store(struct kobject *kobj,
  253. struct kobj_attribute *attr,
  254. const char *buf, size_t count)
  255. {
  256. ssize_t ret;
  257. ret = double_flag_store(kobj, attr, buf, count,
  258. TRANSPARENT_HUGEPAGE_FLAG,
  259. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  260. if (ret > 0) {
  261. int err;
  262. mutex_lock(&khugepaged_mutex);
  263. err = start_stop_khugepaged();
  264. mutex_unlock(&khugepaged_mutex);
  265. if (err)
  266. ret = err;
  267. }
  268. return ret;
  269. }
  270. static struct kobj_attribute enabled_attr =
  271. __ATTR(enabled, 0644, enabled_show, enabled_store);
  272. static ssize_t single_flag_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf,
  274. enum transparent_hugepage_flag flag)
  275. {
  276. return sprintf(buf, "%d\n",
  277. !!test_bit(flag, &transparent_hugepage_flags));
  278. }
  279. static ssize_t single_flag_store(struct kobject *kobj,
  280. struct kobj_attribute *attr,
  281. const char *buf, size_t count,
  282. enum transparent_hugepage_flag flag)
  283. {
  284. unsigned long value;
  285. int ret;
  286. ret = kstrtoul(buf, 10, &value);
  287. if (ret < 0)
  288. return ret;
  289. if (value > 1)
  290. return -EINVAL;
  291. if (value)
  292. set_bit(flag, &transparent_hugepage_flags);
  293. else
  294. clear_bit(flag, &transparent_hugepage_flags);
  295. return count;
  296. }
  297. /*
  298. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  299. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  300. * memory just to allocate one more hugepage.
  301. */
  302. static ssize_t defrag_show(struct kobject *kobj,
  303. struct kobj_attribute *attr, char *buf)
  304. {
  305. return double_flag_show(kobj, attr, buf,
  306. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  307. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  308. }
  309. static ssize_t defrag_store(struct kobject *kobj,
  310. struct kobj_attribute *attr,
  311. const char *buf, size_t count)
  312. {
  313. return double_flag_store(kobj, attr, buf, count,
  314. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  315. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  316. }
  317. static struct kobj_attribute defrag_attr =
  318. __ATTR(defrag, 0644, defrag_show, defrag_store);
  319. static ssize_t use_zero_page_show(struct kobject *kobj,
  320. struct kobj_attribute *attr, char *buf)
  321. {
  322. return single_flag_show(kobj, attr, buf,
  323. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  324. }
  325. static ssize_t use_zero_page_store(struct kobject *kobj,
  326. struct kobj_attribute *attr, const char *buf, size_t count)
  327. {
  328. return single_flag_store(kobj, attr, buf, count,
  329. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  330. }
  331. static struct kobj_attribute use_zero_page_attr =
  332. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  333. #ifdef CONFIG_DEBUG_VM
  334. static ssize_t debug_cow_show(struct kobject *kobj,
  335. struct kobj_attribute *attr, char *buf)
  336. {
  337. return single_flag_show(kobj, attr, buf,
  338. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  339. }
  340. static ssize_t debug_cow_store(struct kobject *kobj,
  341. struct kobj_attribute *attr,
  342. const char *buf, size_t count)
  343. {
  344. return single_flag_store(kobj, attr, buf, count,
  345. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  346. }
  347. static struct kobj_attribute debug_cow_attr =
  348. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  349. #endif /* CONFIG_DEBUG_VM */
  350. static struct attribute *hugepage_attr[] = {
  351. &enabled_attr.attr,
  352. &defrag_attr.attr,
  353. &use_zero_page_attr.attr,
  354. #ifdef CONFIG_DEBUG_VM
  355. &debug_cow_attr.attr,
  356. #endif
  357. NULL,
  358. };
  359. static struct attribute_group hugepage_attr_group = {
  360. .attrs = hugepage_attr,
  361. };
  362. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  363. struct kobj_attribute *attr,
  364. char *buf)
  365. {
  366. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  367. }
  368. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  369. struct kobj_attribute *attr,
  370. const char *buf, size_t count)
  371. {
  372. unsigned long msecs;
  373. int err;
  374. err = kstrtoul(buf, 10, &msecs);
  375. if (err || msecs > UINT_MAX)
  376. return -EINVAL;
  377. khugepaged_scan_sleep_millisecs = msecs;
  378. wake_up_interruptible(&khugepaged_wait);
  379. return count;
  380. }
  381. static struct kobj_attribute scan_sleep_millisecs_attr =
  382. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  383. scan_sleep_millisecs_store);
  384. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. char *buf)
  387. {
  388. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  389. }
  390. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  391. struct kobj_attribute *attr,
  392. const char *buf, size_t count)
  393. {
  394. unsigned long msecs;
  395. int err;
  396. err = kstrtoul(buf, 10, &msecs);
  397. if (err || msecs > UINT_MAX)
  398. return -EINVAL;
  399. khugepaged_alloc_sleep_millisecs = msecs;
  400. wake_up_interruptible(&khugepaged_wait);
  401. return count;
  402. }
  403. static struct kobj_attribute alloc_sleep_millisecs_attr =
  404. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  405. alloc_sleep_millisecs_store);
  406. static ssize_t pages_to_scan_show(struct kobject *kobj,
  407. struct kobj_attribute *attr,
  408. char *buf)
  409. {
  410. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  411. }
  412. static ssize_t pages_to_scan_store(struct kobject *kobj,
  413. struct kobj_attribute *attr,
  414. const char *buf, size_t count)
  415. {
  416. int err;
  417. unsigned long pages;
  418. err = kstrtoul(buf, 10, &pages);
  419. if (err || !pages || pages > UINT_MAX)
  420. return -EINVAL;
  421. khugepaged_pages_to_scan = pages;
  422. return count;
  423. }
  424. static struct kobj_attribute pages_to_scan_attr =
  425. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  426. pages_to_scan_store);
  427. static ssize_t pages_collapsed_show(struct kobject *kobj,
  428. struct kobj_attribute *attr,
  429. char *buf)
  430. {
  431. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  432. }
  433. static struct kobj_attribute pages_collapsed_attr =
  434. __ATTR_RO(pages_collapsed);
  435. static ssize_t full_scans_show(struct kobject *kobj,
  436. struct kobj_attribute *attr,
  437. char *buf)
  438. {
  439. return sprintf(buf, "%u\n", khugepaged_full_scans);
  440. }
  441. static struct kobj_attribute full_scans_attr =
  442. __ATTR_RO(full_scans);
  443. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  444. struct kobj_attribute *attr, char *buf)
  445. {
  446. return single_flag_show(kobj, attr, buf,
  447. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  448. }
  449. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  450. struct kobj_attribute *attr,
  451. const char *buf, size_t count)
  452. {
  453. return single_flag_store(kobj, attr, buf, count,
  454. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  455. }
  456. static struct kobj_attribute khugepaged_defrag_attr =
  457. __ATTR(defrag, 0644, khugepaged_defrag_show,
  458. khugepaged_defrag_store);
  459. /*
  460. * max_ptes_none controls if khugepaged should collapse hugepages over
  461. * any unmapped ptes in turn potentially increasing the memory
  462. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  463. * reduce the available free memory in the system as it
  464. * runs. Increasing max_ptes_none will instead potentially reduce the
  465. * free memory in the system during the khugepaged scan.
  466. */
  467. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  468. struct kobj_attribute *attr,
  469. char *buf)
  470. {
  471. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  472. }
  473. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  474. struct kobj_attribute *attr,
  475. const char *buf, size_t count)
  476. {
  477. int err;
  478. unsigned long max_ptes_none;
  479. err = kstrtoul(buf, 10, &max_ptes_none);
  480. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  481. return -EINVAL;
  482. khugepaged_max_ptes_none = max_ptes_none;
  483. return count;
  484. }
  485. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  486. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  487. khugepaged_max_ptes_none_store);
  488. static struct attribute *khugepaged_attr[] = {
  489. &khugepaged_defrag_attr.attr,
  490. &khugepaged_max_ptes_none_attr.attr,
  491. &pages_to_scan_attr.attr,
  492. &pages_collapsed_attr.attr,
  493. &full_scans_attr.attr,
  494. &scan_sleep_millisecs_attr.attr,
  495. &alloc_sleep_millisecs_attr.attr,
  496. NULL,
  497. };
  498. static struct attribute_group khugepaged_attr_group = {
  499. .attrs = khugepaged_attr,
  500. .name = "khugepaged",
  501. };
  502. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  503. {
  504. int err;
  505. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  506. if (unlikely(!*hugepage_kobj)) {
  507. pr_err("failed to create transparent hugepage kobject\n");
  508. return -ENOMEM;
  509. }
  510. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  511. if (err) {
  512. pr_err("failed to register transparent hugepage group\n");
  513. goto delete_obj;
  514. }
  515. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  516. if (err) {
  517. pr_err("failed to register transparent hugepage group\n");
  518. goto remove_hp_group;
  519. }
  520. return 0;
  521. remove_hp_group:
  522. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  523. delete_obj:
  524. kobject_put(*hugepage_kobj);
  525. return err;
  526. }
  527. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  528. {
  529. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  530. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  531. kobject_put(hugepage_kobj);
  532. }
  533. #else
  534. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  535. {
  536. return 0;
  537. }
  538. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  539. {
  540. }
  541. #endif /* CONFIG_SYSFS */
  542. static int __init hugepage_init(void)
  543. {
  544. int err;
  545. struct kobject *hugepage_kobj;
  546. if (!has_transparent_hugepage()) {
  547. transparent_hugepage_flags = 0;
  548. return -EINVAL;
  549. }
  550. err = hugepage_init_sysfs(&hugepage_kobj);
  551. if (err)
  552. goto err_sysfs;
  553. err = khugepaged_slab_init();
  554. if (err)
  555. goto err_slab;
  556. err = register_shrinker(&huge_zero_page_shrinker);
  557. if (err)
  558. goto err_hzp_shrinker;
  559. /*
  560. * By default disable transparent hugepages on smaller systems,
  561. * where the extra memory used could hurt more than TLB overhead
  562. * is likely to save. The admin can still enable it through /sys.
  563. */
  564. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  565. transparent_hugepage_flags = 0;
  566. return 0;
  567. }
  568. err = start_stop_khugepaged();
  569. if (err)
  570. goto err_khugepaged;
  571. return 0;
  572. err_khugepaged:
  573. unregister_shrinker(&huge_zero_page_shrinker);
  574. err_hzp_shrinker:
  575. khugepaged_slab_exit();
  576. err_slab:
  577. hugepage_exit_sysfs(hugepage_kobj);
  578. err_sysfs:
  579. return err;
  580. }
  581. subsys_initcall(hugepage_init);
  582. static int __init setup_transparent_hugepage(char *str)
  583. {
  584. int ret = 0;
  585. if (!str)
  586. goto out;
  587. if (!strcmp(str, "always")) {
  588. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  589. &transparent_hugepage_flags);
  590. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  591. &transparent_hugepage_flags);
  592. ret = 1;
  593. } else if (!strcmp(str, "madvise")) {
  594. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  595. &transparent_hugepage_flags);
  596. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  597. &transparent_hugepage_flags);
  598. ret = 1;
  599. } else if (!strcmp(str, "never")) {
  600. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  601. &transparent_hugepage_flags);
  602. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  603. &transparent_hugepage_flags);
  604. ret = 1;
  605. }
  606. out:
  607. if (!ret)
  608. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  609. return ret;
  610. }
  611. __setup("transparent_hugepage=", setup_transparent_hugepage);
  612. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  613. {
  614. if (likely(vma->vm_flags & VM_WRITE))
  615. pmd = pmd_mkwrite(pmd);
  616. return pmd;
  617. }
  618. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  619. {
  620. pmd_t entry;
  621. entry = mk_pmd(page, prot);
  622. entry = pmd_mkhuge(entry);
  623. return entry;
  624. }
  625. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  626. struct vm_area_struct *vma,
  627. unsigned long haddr, pmd_t *pmd,
  628. struct page *page, gfp_t gfp)
  629. {
  630. struct mem_cgroup *memcg;
  631. pgtable_t pgtable;
  632. spinlock_t *ptl;
  633. VM_BUG_ON_PAGE(!PageCompound(page), page);
  634. if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
  635. return VM_FAULT_OOM;
  636. pgtable = pte_alloc_one(mm, haddr);
  637. if (unlikely(!pgtable)) {
  638. mem_cgroup_cancel_charge(page, memcg);
  639. return VM_FAULT_OOM;
  640. }
  641. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  642. /*
  643. * The memory barrier inside __SetPageUptodate makes sure that
  644. * clear_huge_page writes become visible before the set_pmd_at()
  645. * write.
  646. */
  647. __SetPageUptodate(page);
  648. ptl = pmd_lock(mm, pmd);
  649. if (unlikely(!pmd_none(*pmd))) {
  650. spin_unlock(ptl);
  651. mem_cgroup_cancel_charge(page, memcg);
  652. put_page(page);
  653. pte_free(mm, pgtable);
  654. } else {
  655. pmd_t entry;
  656. entry = mk_huge_pmd(page, vma->vm_page_prot);
  657. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  658. page_add_new_anon_rmap(page, vma, haddr);
  659. mem_cgroup_commit_charge(page, memcg, false);
  660. lru_cache_add_active_or_unevictable(page, vma);
  661. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  662. set_pmd_at(mm, haddr, pmd, entry);
  663. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  664. atomic_long_inc(&mm->nr_ptes);
  665. spin_unlock(ptl);
  666. }
  667. return 0;
  668. }
  669. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  670. {
  671. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  672. }
  673. /* Caller must hold page table lock. */
  674. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  675. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  676. struct page *zero_page)
  677. {
  678. pmd_t entry;
  679. if (!pmd_none(*pmd))
  680. return false;
  681. entry = mk_pmd(zero_page, vma->vm_page_prot);
  682. entry = pmd_mkhuge(entry);
  683. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  684. set_pmd_at(mm, haddr, pmd, entry);
  685. atomic_long_inc(&mm->nr_ptes);
  686. return true;
  687. }
  688. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  689. unsigned long address, pmd_t *pmd,
  690. unsigned int flags)
  691. {
  692. gfp_t gfp;
  693. struct page *page;
  694. unsigned long haddr = address & HPAGE_PMD_MASK;
  695. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  696. return VM_FAULT_FALLBACK;
  697. if (unlikely(anon_vma_prepare(vma)))
  698. return VM_FAULT_OOM;
  699. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  700. return VM_FAULT_OOM;
  701. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  702. transparent_hugepage_use_zero_page()) {
  703. spinlock_t *ptl;
  704. pgtable_t pgtable;
  705. struct page *zero_page;
  706. bool set;
  707. pgtable = pte_alloc_one(mm, haddr);
  708. if (unlikely(!pgtable))
  709. return VM_FAULT_OOM;
  710. zero_page = get_huge_zero_page();
  711. if (unlikely(!zero_page)) {
  712. pte_free(mm, pgtable);
  713. count_vm_event(THP_FAULT_FALLBACK);
  714. return VM_FAULT_FALLBACK;
  715. }
  716. ptl = pmd_lock(mm, pmd);
  717. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  718. zero_page);
  719. spin_unlock(ptl);
  720. if (!set) {
  721. pte_free(mm, pgtable);
  722. put_huge_zero_page();
  723. }
  724. return 0;
  725. }
  726. gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  727. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  728. if (unlikely(!page)) {
  729. count_vm_event(THP_FAULT_FALLBACK);
  730. return VM_FAULT_FALLBACK;
  731. }
  732. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
  733. put_page(page);
  734. count_vm_event(THP_FAULT_FALLBACK);
  735. return VM_FAULT_FALLBACK;
  736. }
  737. count_vm_event(THP_FAULT_ALLOC);
  738. return 0;
  739. }
  740. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  741. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  742. struct vm_area_struct *vma)
  743. {
  744. spinlock_t *dst_ptl, *src_ptl;
  745. struct page *src_page;
  746. pmd_t pmd;
  747. pgtable_t pgtable;
  748. int ret;
  749. ret = -ENOMEM;
  750. pgtable = pte_alloc_one(dst_mm, addr);
  751. if (unlikely(!pgtable))
  752. goto out;
  753. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  754. src_ptl = pmd_lockptr(src_mm, src_pmd);
  755. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  756. ret = -EAGAIN;
  757. pmd = *src_pmd;
  758. if (unlikely(!pmd_trans_huge(pmd))) {
  759. pte_free(dst_mm, pgtable);
  760. goto out_unlock;
  761. }
  762. /*
  763. * When page table lock is held, the huge zero pmd should not be
  764. * under splitting since we don't split the page itself, only pmd to
  765. * a page table.
  766. */
  767. if (is_huge_zero_pmd(pmd)) {
  768. struct page *zero_page;
  769. bool set;
  770. /*
  771. * get_huge_zero_page() will never allocate a new page here,
  772. * since we already have a zero page to copy. It just takes a
  773. * reference.
  774. */
  775. zero_page = get_huge_zero_page();
  776. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  777. zero_page);
  778. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  779. ret = 0;
  780. goto out_unlock;
  781. }
  782. if (unlikely(pmd_trans_splitting(pmd))) {
  783. /* split huge page running from under us */
  784. spin_unlock(src_ptl);
  785. spin_unlock(dst_ptl);
  786. pte_free(dst_mm, pgtable);
  787. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  788. goto out;
  789. }
  790. src_page = pmd_page(pmd);
  791. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  792. get_page(src_page);
  793. page_dup_rmap(src_page);
  794. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  795. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  796. pmd = pmd_mkold(pmd_wrprotect(pmd));
  797. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  798. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  799. atomic_long_inc(&dst_mm->nr_ptes);
  800. ret = 0;
  801. out_unlock:
  802. spin_unlock(src_ptl);
  803. spin_unlock(dst_ptl);
  804. out:
  805. return ret;
  806. }
  807. void huge_pmd_set_accessed(struct mm_struct *mm,
  808. struct vm_area_struct *vma,
  809. unsigned long address,
  810. pmd_t *pmd, pmd_t orig_pmd,
  811. int dirty)
  812. {
  813. spinlock_t *ptl;
  814. pmd_t entry;
  815. unsigned long haddr;
  816. ptl = pmd_lock(mm, pmd);
  817. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  818. goto unlock;
  819. entry = pmd_mkyoung(orig_pmd);
  820. haddr = address & HPAGE_PMD_MASK;
  821. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  822. update_mmu_cache_pmd(vma, address, pmd);
  823. unlock:
  824. spin_unlock(ptl);
  825. }
  826. /*
  827. * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
  828. * during copy_user_huge_page()'s copy_page_rep(): in the case when
  829. * the source page gets split and a tail freed before copy completes.
  830. * Called under pmd_lock of checked pmd, so safe from splitting itself.
  831. */
  832. static void get_user_huge_page(struct page *page)
  833. {
  834. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  835. struct page *endpage = page + HPAGE_PMD_NR;
  836. atomic_add(HPAGE_PMD_NR, &page->_count);
  837. while (++page < endpage)
  838. get_huge_page_tail(page);
  839. } else {
  840. get_page(page);
  841. }
  842. }
  843. static void put_user_huge_page(struct page *page)
  844. {
  845. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  846. struct page *endpage = page + HPAGE_PMD_NR;
  847. while (page < endpage)
  848. put_page(page++);
  849. } else {
  850. put_page(page);
  851. }
  852. }
  853. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  854. struct vm_area_struct *vma,
  855. unsigned long address,
  856. pmd_t *pmd, pmd_t orig_pmd,
  857. struct page *page,
  858. unsigned long haddr)
  859. {
  860. struct mem_cgroup *memcg;
  861. spinlock_t *ptl;
  862. pgtable_t pgtable;
  863. pmd_t _pmd;
  864. int ret = 0, i;
  865. struct page **pages;
  866. unsigned long mmun_start; /* For mmu_notifiers */
  867. unsigned long mmun_end; /* For mmu_notifiers */
  868. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  869. GFP_KERNEL);
  870. if (unlikely(!pages)) {
  871. ret |= VM_FAULT_OOM;
  872. goto out;
  873. }
  874. for (i = 0; i < HPAGE_PMD_NR; i++) {
  875. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  876. __GFP_OTHER_NODE,
  877. vma, address, page_to_nid(page));
  878. if (unlikely(!pages[i] ||
  879. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  880. &memcg))) {
  881. if (pages[i])
  882. put_page(pages[i]);
  883. while (--i >= 0) {
  884. memcg = (void *)page_private(pages[i]);
  885. set_page_private(pages[i], 0);
  886. mem_cgroup_cancel_charge(pages[i], memcg);
  887. put_page(pages[i]);
  888. }
  889. kfree(pages);
  890. ret |= VM_FAULT_OOM;
  891. goto out;
  892. }
  893. set_page_private(pages[i], (unsigned long)memcg);
  894. }
  895. for (i = 0; i < HPAGE_PMD_NR; i++) {
  896. copy_user_highpage(pages[i], page + i,
  897. haddr + PAGE_SIZE * i, vma);
  898. __SetPageUptodate(pages[i]);
  899. cond_resched();
  900. }
  901. mmun_start = haddr;
  902. mmun_end = haddr + HPAGE_PMD_SIZE;
  903. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  904. ptl = pmd_lock(mm, pmd);
  905. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  906. goto out_free_pages;
  907. VM_BUG_ON_PAGE(!PageHead(page), page);
  908. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  909. /* leave pmd empty until pte is filled */
  910. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  911. pmd_populate(mm, &_pmd, pgtable);
  912. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  913. pte_t *pte, entry;
  914. entry = mk_pte(pages[i], vma->vm_page_prot);
  915. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  916. memcg = (void *)page_private(pages[i]);
  917. set_page_private(pages[i], 0);
  918. page_add_new_anon_rmap(pages[i], vma, haddr);
  919. mem_cgroup_commit_charge(pages[i], memcg, false);
  920. lru_cache_add_active_or_unevictable(pages[i], vma);
  921. pte = pte_offset_map(&_pmd, haddr);
  922. VM_BUG_ON(!pte_none(*pte));
  923. set_pte_at(mm, haddr, pte, entry);
  924. pte_unmap(pte);
  925. }
  926. kfree(pages);
  927. smp_wmb(); /* make pte visible before pmd */
  928. pmd_populate(mm, pmd, pgtable);
  929. page_remove_rmap(page);
  930. spin_unlock(ptl);
  931. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  932. ret |= VM_FAULT_WRITE;
  933. put_page(page);
  934. out:
  935. return ret;
  936. out_free_pages:
  937. spin_unlock(ptl);
  938. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  939. for (i = 0; i < HPAGE_PMD_NR; i++) {
  940. memcg = (void *)page_private(pages[i]);
  941. set_page_private(pages[i], 0);
  942. mem_cgroup_cancel_charge(pages[i], memcg);
  943. put_page(pages[i]);
  944. }
  945. kfree(pages);
  946. goto out;
  947. }
  948. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  949. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  950. {
  951. spinlock_t *ptl;
  952. int ret = 0;
  953. struct page *page = NULL, *new_page;
  954. struct mem_cgroup *memcg;
  955. unsigned long haddr;
  956. unsigned long mmun_start; /* For mmu_notifiers */
  957. unsigned long mmun_end; /* For mmu_notifiers */
  958. gfp_t huge_gfp; /* for allocation and charge */
  959. ptl = pmd_lockptr(mm, pmd);
  960. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  961. haddr = address & HPAGE_PMD_MASK;
  962. if (is_huge_zero_pmd(orig_pmd))
  963. goto alloc;
  964. spin_lock(ptl);
  965. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  966. goto out_unlock;
  967. page = pmd_page(orig_pmd);
  968. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  969. if (page_mapcount(page) == 1) {
  970. pmd_t entry;
  971. entry = pmd_mkyoung(orig_pmd);
  972. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  973. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  974. update_mmu_cache_pmd(vma, address, pmd);
  975. ret |= VM_FAULT_WRITE;
  976. goto out_unlock;
  977. }
  978. get_user_huge_page(page);
  979. spin_unlock(ptl);
  980. alloc:
  981. if (transparent_hugepage_enabled(vma) &&
  982. !transparent_hugepage_debug_cow()) {
  983. huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  984. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  985. } else
  986. new_page = NULL;
  987. if (unlikely(!new_page)) {
  988. if (!page) {
  989. split_huge_page_pmd(vma, address, pmd);
  990. ret |= VM_FAULT_FALLBACK;
  991. } else {
  992. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  993. pmd, orig_pmd, page, haddr);
  994. if (ret & VM_FAULT_OOM) {
  995. split_huge_page(page);
  996. ret |= VM_FAULT_FALLBACK;
  997. }
  998. put_user_huge_page(page);
  999. }
  1000. count_vm_event(THP_FAULT_FALLBACK);
  1001. goto out;
  1002. }
  1003. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
  1004. put_page(new_page);
  1005. if (page) {
  1006. split_huge_page(page);
  1007. put_user_huge_page(page);
  1008. } else
  1009. split_huge_page_pmd(vma, address, pmd);
  1010. ret |= VM_FAULT_FALLBACK;
  1011. count_vm_event(THP_FAULT_FALLBACK);
  1012. goto out;
  1013. }
  1014. count_vm_event(THP_FAULT_ALLOC);
  1015. if (!page)
  1016. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1017. else
  1018. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1019. __SetPageUptodate(new_page);
  1020. mmun_start = haddr;
  1021. mmun_end = haddr + HPAGE_PMD_SIZE;
  1022. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1023. spin_lock(ptl);
  1024. if (page)
  1025. put_user_huge_page(page);
  1026. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1027. spin_unlock(ptl);
  1028. mem_cgroup_cancel_charge(new_page, memcg);
  1029. put_page(new_page);
  1030. goto out_mn;
  1031. } else {
  1032. pmd_t entry;
  1033. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1034. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1035. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1036. page_add_new_anon_rmap(new_page, vma, haddr);
  1037. mem_cgroup_commit_charge(new_page, memcg, false);
  1038. lru_cache_add_active_or_unevictable(new_page, vma);
  1039. set_pmd_at(mm, haddr, pmd, entry);
  1040. update_mmu_cache_pmd(vma, address, pmd);
  1041. if (!page) {
  1042. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1043. put_huge_zero_page();
  1044. } else {
  1045. VM_BUG_ON_PAGE(!PageHead(page), page);
  1046. page_remove_rmap(page);
  1047. put_page(page);
  1048. }
  1049. ret |= VM_FAULT_WRITE;
  1050. }
  1051. spin_unlock(ptl);
  1052. out_mn:
  1053. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1054. out:
  1055. return ret;
  1056. out_unlock:
  1057. spin_unlock(ptl);
  1058. return ret;
  1059. }
  1060. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1061. unsigned long addr,
  1062. pmd_t *pmd,
  1063. unsigned int flags)
  1064. {
  1065. struct mm_struct *mm = vma->vm_mm;
  1066. struct page *page = NULL;
  1067. assert_spin_locked(pmd_lockptr(mm, pmd));
  1068. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1069. goto out;
  1070. /* Avoid dumping huge zero page */
  1071. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1072. return ERR_PTR(-EFAULT);
  1073. /* Full NUMA hinting faults to serialise migration in fault paths */
  1074. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1075. goto out;
  1076. page = pmd_page(*pmd);
  1077. VM_BUG_ON_PAGE(!PageHead(page), page);
  1078. if (flags & FOLL_TOUCH) {
  1079. pmd_t _pmd;
  1080. /*
  1081. * We should set the dirty bit only for FOLL_WRITE but
  1082. * for now the dirty bit in the pmd is meaningless.
  1083. * And if the dirty bit will become meaningful and
  1084. * we'll only set it with FOLL_WRITE, an atomic
  1085. * set_bit will be required on the pmd to set the
  1086. * young bit, instead of the current set_pmd_at.
  1087. */
  1088. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1089. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1090. pmd, _pmd, 1))
  1091. update_mmu_cache_pmd(vma, addr, pmd);
  1092. }
  1093. if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
  1094. if (page->mapping && trylock_page(page)) {
  1095. lru_add_drain();
  1096. if (page->mapping)
  1097. mlock_vma_page(page);
  1098. unlock_page(page);
  1099. }
  1100. }
  1101. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1102. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1103. if (flags & FOLL_GET)
  1104. get_page_foll(page);
  1105. out:
  1106. return page;
  1107. }
  1108. /* NUMA hinting page fault entry point for trans huge pmds */
  1109. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1110. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1111. {
  1112. spinlock_t *ptl;
  1113. struct anon_vma *anon_vma = NULL;
  1114. struct page *page;
  1115. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1116. int page_nid = -1, this_nid = numa_node_id();
  1117. int target_nid, last_cpupid = -1;
  1118. bool page_locked;
  1119. bool migrated = false;
  1120. bool was_writable;
  1121. int flags = 0;
  1122. /* A PROT_NONE fault should not end up here */
  1123. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1124. ptl = pmd_lock(mm, pmdp);
  1125. if (unlikely(!pmd_same(pmd, *pmdp)))
  1126. goto out_unlock;
  1127. /*
  1128. * If there are potential migrations, wait for completion and retry
  1129. * without disrupting NUMA hinting information. Do not relock and
  1130. * check_same as the page may no longer be mapped.
  1131. */
  1132. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1133. page = pmd_page(*pmdp);
  1134. spin_unlock(ptl);
  1135. wait_on_page_locked(page);
  1136. goto out;
  1137. }
  1138. page = pmd_page(pmd);
  1139. BUG_ON(is_huge_zero_page(page));
  1140. page_nid = page_to_nid(page);
  1141. last_cpupid = page_cpupid_last(page);
  1142. count_vm_numa_event(NUMA_HINT_FAULTS);
  1143. if (page_nid == this_nid) {
  1144. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1145. flags |= TNF_FAULT_LOCAL;
  1146. }
  1147. /* See similar comment in do_numa_page for explanation */
  1148. if (!(vma->vm_flags & VM_WRITE))
  1149. flags |= TNF_NO_GROUP;
  1150. /*
  1151. * Acquire the page lock to serialise THP migrations but avoid dropping
  1152. * page_table_lock if at all possible
  1153. */
  1154. page_locked = trylock_page(page);
  1155. target_nid = mpol_misplaced(page, vma, haddr);
  1156. if (target_nid == -1) {
  1157. /* If the page was locked, there are no parallel migrations */
  1158. if (page_locked)
  1159. goto clear_pmdnuma;
  1160. }
  1161. /* Migration could have started since the pmd_trans_migrating check */
  1162. if (!page_locked) {
  1163. spin_unlock(ptl);
  1164. wait_on_page_locked(page);
  1165. page_nid = -1;
  1166. goto out;
  1167. }
  1168. /*
  1169. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1170. * to serialises splits
  1171. */
  1172. get_page(page);
  1173. spin_unlock(ptl);
  1174. anon_vma = page_lock_anon_vma_read(page);
  1175. /* Confirm the PMD did not change while page_table_lock was released */
  1176. spin_lock(ptl);
  1177. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1178. unlock_page(page);
  1179. put_page(page);
  1180. page_nid = -1;
  1181. goto out_unlock;
  1182. }
  1183. /* Bail if we fail to protect against THP splits for any reason */
  1184. if (unlikely(!anon_vma)) {
  1185. put_page(page);
  1186. page_nid = -1;
  1187. goto clear_pmdnuma;
  1188. }
  1189. /*
  1190. * Migrate the THP to the requested node, returns with page unlocked
  1191. * and access rights restored.
  1192. */
  1193. spin_unlock(ptl);
  1194. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1195. pmdp, pmd, addr, page, target_nid);
  1196. if (migrated) {
  1197. flags |= TNF_MIGRATED;
  1198. page_nid = target_nid;
  1199. } else
  1200. flags |= TNF_MIGRATE_FAIL;
  1201. goto out;
  1202. clear_pmdnuma:
  1203. BUG_ON(!PageLocked(page));
  1204. was_writable = pmd_write(pmd);
  1205. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1206. pmd = pmd_mkyoung(pmd);
  1207. if (was_writable)
  1208. pmd = pmd_mkwrite(pmd);
  1209. set_pmd_at(mm, haddr, pmdp, pmd);
  1210. update_mmu_cache_pmd(vma, addr, pmdp);
  1211. unlock_page(page);
  1212. out_unlock:
  1213. spin_unlock(ptl);
  1214. out:
  1215. if (anon_vma)
  1216. page_unlock_anon_vma_read(anon_vma);
  1217. if (page_nid != -1)
  1218. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1219. return 0;
  1220. }
  1221. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1222. pmd_t *pmd, unsigned long addr)
  1223. {
  1224. spinlock_t *ptl;
  1225. int ret = 0;
  1226. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1227. struct page *page;
  1228. pgtable_t pgtable;
  1229. pmd_t orig_pmd;
  1230. /*
  1231. * For architectures like ppc64 we look at deposited pgtable
  1232. * when calling pmdp_huge_get_and_clear. So do the
  1233. * pgtable_trans_huge_withdraw after finishing pmdp related
  1234. * operations.
  1235. */
  1236. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1237. tlb->fullmm);
  1238. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1239. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1240. if (is_huge_zero_pmd(orig_pmd)) {
  1241. atomic_long_dec(&tlb->mm->nr_ptes);
  1242. spin_unlock(ptl);
  1243. put_huge_zero_page();
  1244. } else {
  1245. page = pmd_page(orig_pmd);
  1246. page_remove_rmap(page);
  1247. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1248. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1249. VM_BUG_ON_PAGE(!PageHead(page), page);
  1250. atomic_long_dec(&tlb->mm->nr_ptes);
  1251. spin_unlock(ptl);
  1252. tlb_remove_page(tlb, page);
  1253. }
  1254. pte_free(tlb->mm, pgtable);
  1255. ret = 1;
  1256. }
  1257. return ret;
  1258. }
  1259. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1260. unsigned long old_addr,
  1261. unsigned long new_addr, unsigned long old_end,
  1262. pmd_t *old_pmd, pmd_t *new_pmd)
  1263. {
  1264. spinlock_t *old_ptl, *new_ptl;
  1265. int ret = 0;
  1266. pmd_t pmd;
  1267. struct mm_struct *mm = vma->vm_mm;
  1268. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1269. (new_addr & ~HPAGE_PMD_MASK) ||
  1270. old_end - old_addr < HPAGE_PMD_SIZE ||
  1271. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1272. goto out;
  1273. /*
  1274. * The destination pmd shouldn't be established, free_pgtables()
  1275. * should have release it.
  1276. */
  1277. if (WARN_ON(!pmd_none(*new_pmd))) {
  1278. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1279. goto out;
  1280. }
  1281. /*
  1282. * We don't have to worry about the ordering of src and dst
  1283. * ptlocks because exclusive mmap_sem prevents deadlock.
  1284. */
  1285. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1286. if (ret == 1) {
  1287. new_ptl = pmd_lockptr(mm, new_pmd);
  1288. if (new_ptl != old_ptl)
  1289. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1290. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1291. VM_BUG_ON(!pmd_none(*new_pmd));
  1292. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1293. pgtable_t pgtable;
  1294. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1295. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1296. }
  1297. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1298. if (new_ptl != old_ptl)
  1299. spin_unlock(new_ptl);
  1300. spin_unlock(old_ptl);
  1301. }
  1302. out:
  1303. return ret;
  1304. }
  1305. /*
  1306. * Returns
  1307. * - 0 if PMD could not be locked
  1308. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1309. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1310. */
  1311. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1312. unsigned long addr, pgprot_t newprot, int prot_numa)
  1313. {
  1314. struct mm_struct *mm = vma->vm_mm;
  1315. spinlock_t *ptl;
  1316. int ret = 0;
  1317. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1318. pmd_t entry;
  1319. bool preserve_write = prot_numa && pmd_write(*pmd);
  1320. ret = 1;
  1321. /*
  1322. * Avoid trapping faults against the zero page. The read-only
  1323. * data is likely to be read-cached on the local CPU and
  1324. * local/remote hits to the zero page are not interesting.
  1325. */
  1326. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1327. spin_unlock(ptl);
  1328. return ret;
  1329. }
  1330. if (!prot_numa || !pmd_protnone(*pmd)) {
  1331. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1332. entry = pmd_modify(entry, newprot);
  1333. if (preserve_write)
  1334. entry = pmd_mkwrite(entry);
  1335. ret = HPAGE_PMD_NR;
  1336. set_pmd_at(mm, addr, pmd, entry);
  1337. BUG_ON(!preserve_write && pmd_write(entry));
  1338. }
  1339. spin_unlock(ptl);
  1340. }
  1341. return ret;
  1342. }
  1343. /*
  1344. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1345. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1346. *
  1347. * Note that if it returns 1, this routine returns without unlocking page
  1348. * table locks. So callers must unlock them.
  1349. */
  1350. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1351. spinlock_t **ptl)
  1352. {
  1353. *ptl = pmd_lock(vma->vm_mm, pmd);
  1354. if (likely(pmd_trans_huge(*pmd))) {
  1355. if (unlikely(pmd_trans_splitting(*pmd))) {
  1356. spin_unlock(*ptl);
  1357. wait_split_huge_page(vma->anon_vma, pmd);
  1358. return -1;
  1359. } else {
  1360. /* Thp mapped by 'pmd' is stable, so we can
  1361. * handle it as it is. */
  1362. return 1;
  1363. }
  1364. }
  1365. spin_unlock(*ptl);
  1366. return 0;
  1367. }
  1368. /*
  1369. * This function returns whether a given @page is mapped onto the @address
  1370. * in the virtual space of @mm.
  1371. *
  1372. * When it's true, this function returns *pmd with holding the page table lock
  1373. * and passing it back to the caller via @ptl.
  1374. * If it's false, returns NULL without holding the page table lock.
  1375. */
  1376. pmd_t *page_check_address_pmd(struct page *page,
  1377. struct mm_struct *mm,
  1378. unsigned long address,
  1379. enum page_check_address_pmd_flag flag,
  1380. spinlock_t **ptl)
  1381. {
  1382. pgd_t *pgd;
  1383. pud_t *pud;
  1384. pmd_t *pmd;
  1385. if (address & ~HPAGE_PMD_MASK)
  1386. return NULL;
  1387. pgd = pgd_offset(mm, address);
  1388. if (!pgd_present(*pgd))
  1389. return NULL;
  1390. pud = pud_offset(pgd, address);
  1391. if (!pud_present(*pud))
  1392. return NULL;
  1393. pmd = pmd_offset(pud, address);
  1394. *ptl = pmd_lock(mm, pmd);
  1395. if (!pmd_present(*pmd))
  1396. goto unlock;
  1397. if (pmd_page(*pmd) != page)
  1398. goto unlock;
  1399. /*
  1400. * split_vma() may create temporary aliased mappings. There is
  1401. * no risk as long as all huge pmd are found and have their
  1402. * splitting bit set before __split_huge_page_refcount
  1403. * runs. Finding the same huge pmd more than once during the
  1404. * same rmap walk is not a problem.
  1405. */
  1406. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1407. pmd_trans_splitting(*pmd))
  1408. goto unlock;
  1409. if (pmd_trans_huge(*pmd)) {
  1410. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1411. !pmd_trans_splitting(*pmd));
  1412. return pmd;
  1413. }
  1414. unlock:
  1415. spin_unlock(*ptl);
  1416. return NULL;
  1417. }
  1418. static int __split_huge_page_splitting(struct page *page,
  1419. struct vm_area_struct *vma,
  1420. unsigned long address)
  1421. {
  1422. struct mm_struct *mm = vma->vm_mm;
  1423. spinlock_t *ptl;
  1424. pmd_t *pmd;
  1425. int ret = 0;
  1426. /* For mmu_notifiers */
  1427. const unsigned long mmun_start = address;
  1428. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1429. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1430. pmd = page_check_address_pmd(page, mm, address,
  1431. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1432. if (pmd) {
  1433. /*
  1434. * We can't temporarily set the pmd to null in order
  1435. * to split it, the pmd must remain marked huge at all
  1436. * times or the VM won't take the pmd_trans_huge paths
  1437. * and it won't wait on the anon_vma->root->rwsem to
  1438. * serialize against split_huge_page*.
  1439. */
  1440. pmdp_splitting_flush(vma, address, pmd);
  1441. ret = 1;
  1442. spin_unlock(ptl);
  1443. }
  1444. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1445. return ret;
  1446. }
  1447. static void __split_huge_page_refcount(struct page *page,
  1448. struct list_head *list)
  1449. {
  1450. int i;
  1451. struct zone *zone = page_zone(page);
  1452. struct lruvec *lruvec;
  1453. int tail_count = 0;
  1454. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1455. spin_lock_irq(&zone->lru_lock);
  1456. lruvec = mem_cgroup_page_lruvec(page, zone);
  1457. compound_lock(page);
  1458. /* complete memcg works before add pages to LRU */
  1459. mem_cgroup_split_huge_fixup(page);
  1460. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1461. struct page *page_tail = page + i;
  1462. /* tail_page->_mapcount cannot change */
  1463. BUG_ON(page_mapcount(page_tail) < 0);
  1464. tail_count += page_mapcount(page_tail);
  1465. /* check for overflow */
  1466. BUG_ON(tail_count < 0);
  1467. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1468. /*
  1469. * tail_page->_count is zero and not changing from
  1470. * under us. But get_page_unless_zero() may be running
  1471. * from under us on the tail_page. If we used
  1472. * atomic_set() below instead of atomic_add(), we
  1473. * would then run atomic_set() concurrently with
  1474. * get_page_unless_zero(), and atomic_set() is
  1475. * implemented in C not using locked ops. spin_unlock
  1476. * on x86 sometime uses locked ops because of PPro
  1477. * errata 66, 92, so unless somebody can guarantee
  1478. * atomic_set() here would be safe on all archs (and
  1479. * not only on x86), it's safer to use atomic_add().
  1480. */
  1481. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1482. &page_tail->_count);
  1483. /* after clearing PageTail the gup refcount can be released */
  1484. smp_mb__after_atomic();
  1485. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1486. page_tail->flags |= (page->flags &
  1487. ((1L << PG_referenced) |
  1488. (1L << PG_swapbacked) |
  1489. (1L << PG_mlocked) |
  1490. (1L << PG_uptodate) |
  1491. (1L << PG_active) |
  1492. (1L << PG_unevictable)));
  1493. page_tail->flags |= (1L << PG_dirty);
  1494. /* clear PageTail before overwriting first_page */
  1495. smp_wmb();
  1496. /*
  1497. * __split_huge_page_splitting() already set the
  1498. * splitting bit in all pmd that could map this
  1499. * hugepage, that will ensure no CPU can alter the
  1500. * mapcount on the head page. The mapcount is only
  1501. * accounted in the head page and it has to be
  1502. * transferred to all tail pages in the below code. So
  1503. * for this code to be safe, the split the mapcount
  1504. * can't change. But that doesn't mean userland can't
  1505. * keep changing and reading the page contents while
  1506. * we transfer the mapcount, so the pmd splitting
  1507. * status is achieved setting a reserved bit in the
  1508. * pmd, not by clearing the present bit.
  1509. */
  1510. page_tail->_mapcount = page->_mapcount;
  1511. BUG_ON(page_tail->mapping);
  1512. page_tail->mapping = page->mapping;
  1513. page_tail->index = page->index + i;
  1514. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1515. BUG_ON(!PageAnon(page_tail));
  1516. BUG_ON(!PageUptodate(page_tail));
  1517. BUG_ON(!PageDirty(page_tail));
  1518. BUG_ON(!PageSwapBacked(page_tail));
  1519. lru_add_page_tail(page, page_tail, lruvec, list);
  1520. }
  1521. atomic_sub(tail_count, &page->_count);
  1522. BUG_ON(atomic_read(&page->_count) <= 0);
  1523. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1524. ClearPageCompound(page);
  1525. compound_unlock(page);
  1526. spin_unlock_irq(&zone->lru_lock);
  1527. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1528. struct page *page_tail = page + i;
  1529. BUG_ON(page_count(page_tail) <= 0);
  1530. /*
  1531. * Tail pages may be freed if there wasn't any mapping
  1532. * like if add_to_swap() is running on a lru page that
  1533. * had its mapping zapped. And freeing these pages
  1534. * requires taking the lru_lock so we do the put_page
  1535. * of the tail pages after the split is complete.
  1536. */
  1537. put_page(page_tail);
  1538. }
  1539. /*
  1540. * Only the head page (now become a regular page) is required
  1541. * to be pinned by the caller.
  1542. */
  1543. BUG_ON(page_count(page) <= 0);
  1544. }
  1545. static int __split_huge_page_map(struct page *page,
  1546. struct vm_area_struct *vma,
  1547. unsigned long address)
  1548. {
  1549. struct mm_struct *mm = vma->vm_mm;
  1550. spinlock_t *ptl;
  1551. pmd_t *pmd, _pmd;
  1552. int ret = 0, i;
  1553. pgtable_t pgtable;
  1554. unsigned long haddr;
  1555. pmd = page_check_address_pmd(page, mm, address,
  1556. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1557. if (pmd) {
  1558. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1559. pmd_populate(mm, &_pmd, pgtable);
  1560. if (pmd_write(*pmd))
  1561. BUG_ON(page_mapcount(page) != 1);
  1562. haddr = address;
  1563. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1564. pte_t *pte, entry;
  1565. BUG_ON(PageCompound(page+i));
  1566. /*
  1567. * Note that NUMA hinting access restrictions are not
  1568. * transferred to avoid any possibility of altering
  1569. * permissions across VMAs.
  1570. */
  1571. entry = mk_pte(page + i, vma->vm_page_prot);
  1572. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1573. if (!pmd_write(*pmd))
  1574. entry = pte_wrprotect(entry);
  1575. if (!pmd_young(*pmd))
  1576. entry = pte_mkold(entry);
  1577. pte = pte_offset_map(&_pmd, haddr);
  1578. BUG_ON(!pte_none(*pte));
  1579. set_pte_at(mm, haddr, pte, entry);
  1580. pte_unmap(pte);
  1581. }
  1582. smp_wmb(); /* make pte visible before pmd */
  1583. /*
  1584. * Up to this point the pmd is present and huge and
  1585. * userland has the whole access to the hugepage
  1586. * during the split (which happens in place). If we
  1587. * overwrite the pmd with the not-huge version
  1588. * pointing to the pte here (which of course we could
  1589. * if all CPUs were bug free), userland could trigger
  1590. * a small page size TLB miss on the small sized TLB
  1591. * while the hugepage TLB entry is still established
  1592. * in the huge TLB. Some CPU doesn't like that. See
  1593. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1594. * Erratum 383 on page 93. Intel should be safe but is
  1595. * also warns that it's only safe if the permission
  1596. * and cache attributes of the two entries loaded in
  1597. * the two TLB is identical (which should be the case
  1598. * here). But it is generally safer to never allow
  1599. * small and huge TLB entries for the same virtual
  1600. * address to be loaded simultaneously. So instead of
  1601. * doing "pmd_populate(); flush_tlb_range();" we first
  1602. * mark the current pmd notpresent (atomically because
  1603. * here the pmd_trans_huge and pmd_trans_splitting
  1604. * must remain set at all times on the pmd until the
  1605. * split is complete for this pmd), then we flush the
  1606. * SMP TLB and finally we write the non-huge version
  1607. * of the pmd entry with pmd_populate.
  1608. */
  1609. pmdp_invalidate(vma, address, pmd);
  1610. pmd_populate(mm, pmd, pgtable);
  1611. ret = 1;
  1612. spin_unlock(ptl);
  1613. }
  1614. return ret;
  1615. }
  1616. /* must be called with anon_vma->root->rwsem held */
  1617. static void __split_huge_page(struct page *page,
  1618. struct anon_vma *anon_vma,
  1619. struct list_head *list)
  1620. {
  1621. int mapcount, mapcount2;
  1622. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1623. struct anon_vma_chain *avc;
  1624. BUG_ON(!PageHead(page));
  1625. BUG_ON(PageTail(page));
  1626. mapcount = 0;
  1627. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1628. struct vm_area_struct *vma = avc->vma;
  1629. unsigned long addr = vma_address(page, vma);
  1630. BUG_ON(is_vma_temporary_stack(vma));
  1631. mapcount += __split_huge_page_splitting(page, vma, addr);
  1632. }
  1633. /*
  1634. * It is critical that new vmas are added to the tail of the
  1635. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1636. * and establishes a child pmd before
  1637. * __split_huge_page_splitting() freezes the parent pmd (so if
  1638. * we fail to prevent copy_huge_pmd() from running until the
  1639. * whole __split_huge_page() is complete), we will still see
  1640. * the newly established pmd of the child later during the
  1641. * walk, to be able to set it as pmd_trans_splitting too.
  1642. */
  1643. if (mapcount != page_mapcount(page)) {
  1644. pr_err("mapcount %d page_mapcount %d\n",
  1645. mapcount, page_mapcount(page));
  1646. BUG();
  1647. }
  1648. __split_huge_page_refcount(page, list);
  1649. mapcount2 = 0;
  1650. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1651. struct vm_area_struct *vma = avc->vma;
  1652. unsigned long addr = vma_address(page, vma);
  1653. BUG_ON(is_vma_temporary_stack(vma));
  1654. mapcount2 += __split_huge_page_map(page, vma, addr);
  1655. }
  1656. if (mapcount != mapcount2) {
  1657. pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
  1658. mapcount, mapcount2, page_mapcount(page));
  1659. BUG();
  1660. }
  1661. }
  1662. /*
  1663. * Split a hugepage into normal pages. This doesn't change the position of head
  1664. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1665. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1666. * from the hugepage.
  1667. * Return 0 if the hugepage is split successfully otherwise return 1.
  1668. */
  1669. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1670. {
  1671. struct anon_vma *anon_vma;
  1672. int ret = 1;
  1673. BUG_ON(is_huge_zero_page(page));
  1674. BUG_ON(!PageAnon(page));
  1675. /*
  1676. * The caller does not necessarily hold an mmap_sem that would prevent
  1677. * the anon_vma disappearing so we first we take a reference to it
  1678. * and then lock the anon_vma for write. This is similar to
  1679. * page_lock_anon_vma_read except the write lock is taken to serialise
  1680. * against parallel split or collapse operations.
  1681. */
  1682. anon_vma = page_get_anon_vma(page);
  1683. if (!anon_vma)
  1684. goto out;
  1685. anon_vma_lock_write(anon_vma);
  1686. ret = 0;
  1687. if (!PageCompound(page))
  1688. goto out_unlock;
  1689. BUG_ON(!PageSwapBacked(page));
  1690. __split_huge_page(page, anon_vma, list);
  1691. count_vm_event(THP_SPLIT);
  1692. BUG_ON(PageCompound(page));
  1693. out_unlock:
  1694. anon_vma_unlock_write(anon_vma);
  1695. put_anon_vma(anon_vma);
  1696. out:
  1697. return ret;
  1698. }
  1699. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1700. int hugepage_madvise(struct vm_area_struct *vma,
  1701. unsigned long *vm_flags, int advice)
  1702. {
  1703. switch (advice) {
  1704. case MADV_HUGEPAGE:
  1705. #ifdef CONFIG_S390
  1706. /*
  1707. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1708. * can't handle this properly after s390_enable_sie, so we simply
  1709. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1710. */
  1711. if (mm_has_pgste(vma->vm_mm))
  1712. return 0;
  1713. #endif
  1714. /*
  1715. * Be somewhat over-protective like KSM for now!
  1716. */
  1717. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1718. return -EINVAL;
  1719. *vm_flags &= ~VM_NOHUGEPAGE;
  1720. *vm_flags |= VM_HUGEPAGE;
  1721. /*
  1722. * If the vma become good for khugepaged to scan,
  1723. * register it here without waiting a page fault that
  1724. * may not happen any time soon.
  1725. */
  1726. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1727. return -ENOMEM;
  1728. break;
  1729. case MADV_NOHUGEPAGE:
  1730. /*
  1731. * Be somewhat over-protective like KSM for now!
  1732. */
  1733. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1734. return -EINVAL;
  1735. *vm_flags &= ~VM_HUGEPAGE;
  1736. *vm_flags |= VM_NOHUGEPAGE;
  1737. /*
  1738. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1739. * this vma even if we leave the mm registered in khugepaged if
  1740. * it got registered before VM_NOHUGEPAGE was set.
  1741. */
  1742. break;
  1743. }
  1744. return 0;
  1745. }
  1746. static int __init khugepaged_slab_init(void)
  1747. {
  1748. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1749. sizeof(struct mm_slot),
  1750. __alignof__(struct mm_slot), 0, NULL);
  1751. if (!mm_slot_cache)
  1752. return -ENOMEM;
  1753. return 0;
  1754. }
  1755. static void __init khugepaged_slab_exit(void)
  1756. {
  1757. kmem_cache_destroy(mm_slot_cache);
  1758. }
  1759. static inline struct mm_slot *alloc_mm_slot(void)
  1760. {
  1761. if (!mm_slot_cache) /* initialization failed */
  1762. return NULL;
  1763. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1764. }
  1765. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1766. {
  1767. kmem_cache_free(mm_slot_cache, mm_slot);
  1768. }
  1769. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1770. {
  1771. struct mm_slot *mm_slot;
  1772. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1773. if (mm == mm_slot->mm)
  1774. return mm_slot;
  1775. return NULL;
  1776. }
  1777. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1778. struct mm_slot *mm_slot)
  1779. {
  1780. mm_slot->mm = mm;
  1781. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1782. }
  1783. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1784. {
  1785. return atomic_read(&mm->mm_users) == 0;
  1786. }
  1787. int __khugepaged_enter(struct mm_struct *mm)
  1788. {
  1789. struct mm_slot *mm_slot;
  1790. int wakeup;
  1791. mm_slot = alloc_mm_slot();
  1792. if (!mm_slot)
  1793. return -ENOMEM;
  1794. /* __khugepaged_exit() must not run from under us */
  1795. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1796. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1797. free_mm_slot(mm_slot);
  1798. return 0;
  1799. }
  1800. spin_lock(&khugepaged_mm_lock);
  1801. insert_to_mm_slots_hash(mm, mm_slot);
  1802. /*
  1803. * Insert just behind the scanning cursor, to let the area settle
  1804. * down a little.
  1805. */
  1806. wakeup = list_empty(&khugepaged_scan.mm_head);
  1807. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1808. spin_unlock(&khugepaged_mm_lock);
  1809. atomic_inc(&mm->mm_count);
  1810. if (wakeup)
  1811. wake_up_interruptible(&khugepaged_wait);
  1812. return 0;
  1813. }
  1814. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1815. unsigned long vm_flags)
  1816. {
  1817. unsigned long hstart, hend;
  1818. if (!vma->anon_vma)
  1819. /*
  1820. * Not yet faulted in so we will register later in the
  1821. * page fault if needed.
  1822. */
  1823. return 0;
  1824. if (vma->vm_ops)
  1825. /* khugepaged not yet working on file or special mappings */
  1826. return 0;
  1827. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1828. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1829. hend = vma->vm_end & HPAGE_PMD_MASK;
  1830. if (hstart < hend)
  1831. return khugepaged_enter(vma, vm_flags);
  1832. return 0;
  1833. }
  1834. void __khugepaged_exit(struct mm_struct *mm)
  1835. {
  1836. struct mm_slot *mm_slot;
  1837. int free = 0;
  1838. spin_lock(&khugepaged_mm_lock);
  1839. mm_slot = get_mm_slot(mm);
  1840. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1841. hash_del(&mm_slot->hash);
  1842. list_del(&mm_slot->mm_node);
  1843. free = 1;
  1844. }
  1845. spin_unlock(&khugepaged_mm_lock);
  1846. if (free) {
  1847. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1848. free_mm_slot(mm_slot);
  1849. mmdrop(mm);
  1850. } else if (mm_slot) {
  1851. /*
  1852. * This is required to serialize against
  1853. * khugepaged_test_exit() (which is guaranteed to run
  1854. * under mmap sem read mode). Stop here (after we
  1855. * return all pagetables will be destroyed) until
  1856. * khugepaged has finished working on the pagetables
  1857. * under the mmap_sem.
  1858. */
  1859. down_write(&mm->mmap_sem);
  1860. up_write(&mm->mmap_sem);
  1861. }
  1862. }
  1863. static void release_pte_page(struct page *page)
  1864. {
  1865. /* 0 stands for page_is_file_cache(page) == false */
  1866. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1867. unlock_page(page);
  1868. putback_lru_page(page);
  1869. }
  1870. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1871. {
  1872. while (--_pte >= pte) {
  1873. pte_t pteval = *_pte;
  1874. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1875. release_pte_page(pte_page(pteval));
  1876. }
  1877. }
  1878. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1879. unsigned long address,
  1880. pte_t *pte)
  1881. {
  1882. struct page *page;
  1883. pte_t *_pte;
  1884. int none_or_zero = 0;
  1885. bool referenced = false, writable = false;
  1886. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1887. _pte++, address += PAGE_SIZE) {
  1888. pte_t pteval = *_pte;
  1889. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1890. if (++none_or_zero <= khugepaged_max_ptes_none)
  1891. continue;
  1892. else
  1893. goto out;
  1894. }
  1895. if (!pte_present(pteval))
  1896. goto out;
  1897. page = vm_normal_page(vma, address, pteval);
  1898. if (unlikely(!page))
  1899. goto out;
  1900. VM_BUG_ON_PAGE(PageCompound(page), page);
  1901. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1902. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1903. /*
  1904. * We can do it before isolate_lru_page because the
  1905. * page can't be freed from under us. NOTE: PG_lock
  1906. * is needed to serialize against split_huge_page
  1907. * when invoked from the VM.
  1908. */
  1909. if (!trylock_page(page))
  1910. goto out;
  1911. /*
  1912. * cannot use mapcount: can't collapse if there's a gup pin.
  1913. * The page must only be referenced by the scanned process
  1914. * and page swap cache.
  1915. */
  1916. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1917. unlock_page(page);
  1918. goto out;
  1919. }
  1920. if (pte_write(pteval)) {
  1921. writable = true;
  1922. } else {
  1923. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1924. unlock_page(page);
  1925. goto out;
  1926. }
  1927. /*
  1928. * Page is not in the swap cache. It can be collapsed
  1929. * into a THP.
  1930. */
  1931. }
  1932. /*
  1933. * Isolate the page to avoid collapsing an hugepage
  1934. * currently in use by the VM.
  1935. */
  1936. if (isolate_lru_page(page)) {
  1937. unlock_page(page);
  1938. goto out;
  1939. }
  1940. /* 0 stands for page_is_file_cache(page) == false */
  1941. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1942. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1943. VM_BUG_ON_PAGE(PageLRU(page), page);
  1944. /* If there is no mapped pte young don't collapse the page */
  1945. if (pte_young(pteval) || PageReferenced(page) ||
  1946. mmu_notifier_test_young(vma->vm_mm, address))
  1947. referenced = true;
  1948. }
  1949. if (likely(referenced && writable))
  1950. return 1;
  1951. out:
  1952. release_pte_pages(pte, _pte);
  1953. return 0;
  1954. }
  1955. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1956. struct vm_area_struct *vma,
  1957. unsigned long address,
  1958. spinlock_t *ptl)
  1959. {
  1960. pte_t *_pte;
  1961. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1962. pte_t pteval = *_pte;
  1963. struct page *src_page;
  1964. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1965. clear_user_highpage(page, address);
  1966. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1967. if (is_zero_pfn(pte_pfn(pteval))) {
  1968. /*
  1969. * ptl mostly unnecessary.
  1970. */
  1971. spin_lock(ptl);
  1972. /*
  1973. * paravirt calls inside pte_clear here are
  1974. * superfluous.
  1975. */
  1976. pte_clear(vma->vm_mm, address, _pte);
  1977. spin_unlock(ptl);
  1978. }
  1979. } else {
  1980. src_page = pte_page(pteval);
  1981. copy_user_highpage(page, src_page, address, vma);
  1982. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  1983. release_pte_page(src_page);
  1984. /*
  1985. * ptl mostly unnecessary, but preempt has to
  1986. * be disabled to update the per-cpu stats
  1987. * inside page_remove_rmap().
  1988. */
  1989. spin_lock(ptl);
  1990. /*
  1991. * paravirt calls inside pte_clear here are
  1992. * superfluous.
  1993. */
  1994. pte_clear(vma->vm_mm, address, _pte);
  1995. page_remove_rmap(src_page);
  1996. spin_unlock(ptl);
  1997. free_page_and_swap_cache(src_page);
  1998. }
  1999. address += PAGE_SIZE;
  2000. page++;
  2001. }
  2002. }
  2003. static void khugepaged_alloc_sleep(void)
  2004. {
  2005. wait_event_freezable_timeout(khugepaged_wait, false,
  2006. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2007. }
  2008. static int khugepaged_node_load[MAX_NUMNODES];
  2009. static bool khugepaged_scan_abort(int nid)
  2010. {
  2011. int i;
  2012. /*
  2013. * If zone_reclaim_mode is disabled, then no extra effort is made to
  2014. * allocate memory locally.
  2015. */
  2016. if (!zone_reclaim_mode)
  2017. return false;
  2018. /* If there is a count for this node already, it must be acceptable */
  2019. if (khugepaged_node_load[nid])
  2020. return false;
  2021. for (i = 0; i < MAX_NUMNODES; i++) {
  2022. if (!khugepaged_node_load[i])
  2023. continue;
  2024. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  2025. return true;
  2026. }
  2027. return false;
  2028. }
  2029. #ifdef CONFIG_NUMA
  2030. static int khugepaged_find_target_node(void)
  2031. {
  2032. static int last_khugepaged_target_node = NUMA_NO_NODE;
  2033. int nid, target_node = 0, max_value = 0;
  2034. /* find first node with max normal pages hit */
  2035. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2036. if (khugepaged_node_load[nid] > max_value) {
  2037. max_value = khugepaged_node_load[nid];
  2038. target_node = nid;
  2039. }
  2040. /* do some balance if several nodes have the same hit record */
  2041. if (target_node <= last_khugepaged_target_node)
  2042. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  2043. nid++)
  2044. if (max_value == khugepaged_node_load[nid]) {
  2045. target_node = nid;
  2046. break;
  2047. }
  2048. last_khugepaged_target_node = target_node;
  2049. return target_node;
  2050. }
  2051. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2052. {
  2053. if (IS_ERR(*hpage)) {
  2054. if (!*wait)
  2055. return false;
  2056. *wait = false;
  2057. *hpage = NULL;
  2058. khugepaged_alloc_sleep();
  2059. } else if (*hpage) {
  2060. put_page(*hpage);
  2061. *hpage = NULL;
  2062. }
  2063. return true;
  2064. }
  2065. static struct page *
  2066. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2067. struct vm_area_struct *vma, unsigned long address,
  2068. int node)
  2069. {
  2070. VM_BUG_ON_PAGE(*hpage, *hpage);
  2071. /*
  2072. * Before allocating the hugepage, release the mmap_sem read lock.
  2073. * The allocation can take potentially a long time if it involves
  2074. * sync compaction, and we do not need to hold the mmap_sem during
  2075. * that. We will recheck the vma after taking it again in write mode.
  2076. */
  2077. up_read(&mm->mmap_sem);
  2078. *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
  2079. if (unlikely(!*hpage)) {
  2080. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2081. *hpage = ERR_PTR(-ENOMEM);
  2082. return NULL;
  2083. }
  2084. count_vm_event(THP_COLLAPSE_ALLOC);
  2085. return *hpage;
  2086. }
  2087. #else
  2088. static int khugepaged_find_target_node(void)
  2089. {
  2090. return 0;
  2091. }
  2092. static inline struct page *alloc_hugepage(int defrag)
  2093. {
  2094. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2095. HPAGE_PMD_ORDER);
  2096. }
  2097. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2098. {
  2099. struct page *hpage;
  2100. do {
  2101. hpage = alloc_hugepage(khugepaged_defrag());
  2102. if (!hpage) {
  2103. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2104. if (!*wait)
  2105. return NULL;
  2106. *wait = false;
  2107. khugepaged_alloc_sleep();
  2108. } else
  2109. count_vm_event(THP_COLLAPSE_ALLOC);
  2110. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2111. return hpage;
  2112. }
  2113. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2114. {
  2115. if (!*hpage)
  2116. *hpage = khugepaged_alloc_hugepage(wait);
  2117. if (unlikely(!*hpage))
  2118. return false;
  2119. return true;
  2120. }
  2121. static struct page *
  2122. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2123. struct vm_area_struct *vma, unsigned long address,
  2124. int node)
  2125. {
  2126. up_read(&mm->mmap_sem);
  2127. VM_BUG_ON(!*hpage);
  2128. return *hpage;
  2129. }
  2130. #endif
  2131. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2132. {
  2133. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2134. (vma->vm_flags & VM_NOHUGEPAGE))
  2135. return false;
  2136. if (!vma->anon_vma || vma->vm_ops)
  2137. return false;
  2138. if (is_vma_temporary_stack(vma))
  2139. return false;
  2140. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2141. return true;
  2142. }
  2143. static void collapse_huge_page(struct mm_struct *mm,
  2144. unsigned long address,
  2145. struct page **hpage,
  2146. struct vm_area_struct *vma,
  2147. int node)
  2148. {
  2149. pmd_t *pmd, _pmd;
  2150. pte_t *pte;
  2151. pgtable_t pgtable;
  2152. struct page *new_page;
  2153. spinlock_t *pmd_ptl, *pte_ptl;
  2154. int isolated;
  2155. unsigned long hstart, hend;
  2156. struct mem_cgroup *memcg;
  2157. unsigned long mmun_start; /* For mmu_notifiers */
  2158. unsigned long mmun_end; /* For mmu_notifiers */
  2159. gfp_t gfp;
  2160. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2161. /* Only allocate from the target node */
  2162. gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
  2163. __GFP_THISNODE;
  2164. /* release the mmap_sem read lock. */
  2165. new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
  2166. if (!new_page)
  2167. return;
  2168. if (unlikely(mem_cgroup_try_charge(new_page, mm,
  2169. gfp, &memcg)))
  2170. return;
  2171. /*
  2172. * Prevent all access to pagetables with the exception of
  2173. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2174. * handled by the anon_vma lock + PG_lock.
  2175. */
  2176. down_write(&mm->mmap_sem);
  2177. if (unlikely(khugepaged_test_exit(mm)))
  2178. goto out;
  2179. vma = find_vma(mm, address);
  2180. if (!vma)
  2181. goto out;
  2182. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2183. hend = vma->vm_end & HPAGE_PMD_MASK;
  2184. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2185. goto out;
  2186. if (!hugepage_vma_check(vma))
  2187. goto out;
  2188. pmd = mm_find_pmd(mm, address);
  2189. if (!pmd)
  2190. goto out;
  2191. anon_vma_lock_write(vma->anon_vma);
  2192. pte = pte_offset_map(pmd, address);
  2193. pte_ptl = pte_lockptr(mm, pmd);
  2194. mmun_start = address;
  2195. mmun_end = address + HPAGE_PMD_SIZE;
  2196. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2197. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2198. /*
  2199. * After this gup_fast can't run anymore. This also removes
  2200. * any huge TLB entry from the CPU so we won't allow
  2201. * huge and small TLB entries for the same virtual address
  2202. * to avoid the risk of CPU bugs in that area.
  2203. */
  2204. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2205. spin_unlock(pmd_ptl);
  2206. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2207. spin_lock(pte_ptl);
  2208. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2209. spin_unlock(pte_ptl);
  2210. if (unlikely(!isolated)) {
  2211. pte_unmap(pte);
  2212. spin_lock(pmd_ptl);
  2213. BUG_ON(!pmd_none(*pmd));
  2214. /*
  2215. * We can only use set_pmd_at when establishing
  2216. * hugepmds and never for establishing regular pmds that
  2217. * points to regular pagetables. Use pmd_populate for that
  2218. */
  2219. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2220. spin_unlock(pmd_ptl);
  2221. anon_vma_unlock_write(vma->anon_vma);
  2222. goto out;
  2223. }
  2224. /*
  2225. * All pages are isolated and locked so anon_vma rmap
  2226. * can't run anymore.
  2227. */
  2228. anon_vma_unlock_write(vma->anon_vma);
  2229. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2230. pte_unmap(pte);
  2231. __SetPageUptodate(new_page);
  2232. pgtable = pmd_pgtable(_pmd);
  2233. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2234. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2235. /*
  2236. * spin_lock() below is not the equivalent of smp_wmb(), so
  2237. * this is needed to avoid the copy_huge_page writes to become
  2238. * visible after the set_pmd_at() write.
  2239. */
  2240. smp_wmb();
  2241. spin_lock(pmd_ptl);
  2242. BUG_ON(!pmd_none(*pmd));
  2243. page_add_new_anon_rmap(new_page, vma, address);
  2244. mem_cgroup_commit_charge(new_page, memcg, false);
  2245. lru_cache_add_active_or_unevictable(new_page, vma);
  2246. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2247. set_pmd_at(mm, address, pmd, _pmd);
  2248. update_mmu_cache_pmd(vma, address, pmd);
  2249. spin_unlock(pmd_ptl);
  2250. *hpage = NULL;
  2251. khugepaged_pages_collapsed++;
  2252. out_up_write:
  2253. up_write(&mm->mmap_sem);
  2254. return;
  2255. out:
  2256. mem_cgroup_cancel_charge(new_page, memcg);
  2257. goto out_up_write;
  2258. }
  2259. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2260. struct vm_area_struct *vma,
  2261. unsigned long address,
  2262. struct page **hpage)
  2263. {
  2264. pmd_t *pmd;
  2265. pte_t *pte, *_pte;
  2266. int ret = 0, none_or_zero = 0;
  2267. struct page *page;
  2268. unsigned long _address;
  2269. spinlock_t *ptl;
  2270. int node = NUMA_NO_NODE;
  2271. bool writable = false, referenced = false;
  2272. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2273. pmd = mm_find_pmd(mm, address);
  2274. if (!pmd)
  2275. goto out;
  2276. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2277. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2278. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2279. _pte++, _address += PAGE_SIZE) {
  2280. pte_t pteval = *_pte;
  2281. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2282. if (++none_or_zero <= khugepaged_max_ptes_none)
  2283. continue;
  2284. else
  2285. goto out_unmap;
  2286. }
  2287. if (!pte_present(pteval))
  2288. goto out_unmap;
  2289. if (pte_write(pteval))
  2290. writable = true;
  2291. page = vm_normal_page(vma, _address, pteval);
  2292. if (unlikely(!page))
  2293. goto out_unmap;
  2294. /*
  2295. * Record which node the original page is from and save this
  2296. * information to khugepaged_node_load[].
  2297. * Khupaged will allocate hugepage from the node has the max
  2298. * hit record.
  2299. */
  2300. node = page_to_nid(page);
  2301. if (khugepaged_scan_abort(node))
  2302. goto out_unmap;
  2303. khugepaged_node_load[node]++;
  2304. VM_BUG_ON_PAGE(PageCompound(page), page);
  2305. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2306. goto out_unmap;
  2307. /*
  2308. * cannot use mapcount: can't collapse if there's a gup pin.
  2309. * The page must only be referenced by the scanned process
  2310. * and page swap cache.
  2311. */
  2312. if (page_count(page) != 1 + !!PageSwapCache(page))
  2313. goto out_unmap;
  2314. if (pte_young(pteval) || PageReferenced(page) ||
  2315. mmu_notifier_test_young(vma->vm_mm, address))
  2316. referenced = true;
  2317. }
  2318. if (referenced && writable)
  2319. ret = 1;
  2320. out_unmap:
  2321. pte_unmap_unlock(pte, ptl);
  2322. if (ret) {
  2323. node = khugepaged_find_target_node();
  2324. /* collapse_huge_page will return with the mmap_sem released */
  2325. collapse_huge_page(mm, address, hpage, vma, node);
  2326. }
  2327. out:
  2328. return ret;
  2329. }
  2330. static void collect_mm_slot(struct mm_slot *mm_slot)
  2331. {
  2332. struct mm_struct *mm = mm_slot->mm;
  2333. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2334. if (khugepaged_test_exit(mm)) {
  2335. /* free mm_slot */
  2336. hash_del(&mm_slot->hash);
  2337. list_del(&mm_slot->mm_node);
  2338. /*
  2339. * Not strictly needed because the mm exited already.
  2340. *
  2341. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2342. */
  2343. /* khugepaged_mm_lock actually not necessary for the below */
  2344. free_mm_slot(mm_slot);
  2345. mmdrop(mm);
  2346. }
  2347. }
  2348. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2349. struct page **hpage)
  2350. __releases(&khugepaged_mm_lock)
  2351. __acquires(&khugepaged_mm_lock)
  2352. {
  2353. struct mm_slot *mm_slot;
  2354. struct mm_struct *mm;
  2355. struct vm_area_struct *vma;
  2356. int progress = 0;
  2357. VM_BUG_ON(!pages);
  2358. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2359. if (khugepaged_scan.mm_slot)
  2360. mm_slot = khugepaged_scan.mm_slot;
  2361. else {
  2362. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2363. struct mm_slot, mm_node);
  2364. khugepaged_scan.address = 0;
  2365. khugepaged_scan.mm_slot = mm_slot;
  2366. }
  2367. spin_unlock(&khugepaged_mm_lock);
  2368. mm = mm_slot->mm;
  2369. down_read(&mm->mmap_sem);
  2370. if (unlikely(khugepaged_test_exit(mm)))
  2371. vma = NULL;
  2372. else
  2373. vma = find_vma(mm, khugepaged_scan.address);
  2374. progress++;
  2375. for (; vma; vma = vma->vm_next) {
  2376. unsigned long hstart, hend;
  2377. cond_resched();
  2378. if (unlikely(khugepaged_test_exit(mm))) {
  2379. progress++;
  2380. break;
  2381. }
  2382. if (!hugepage_vma_check(vma)) {
  2383. skip:
  2384. progress++;
  2385. continue;
  2386. }
  2387. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2388. hend = vma->vm_end & HPAGE_PMD_MASK;
  2389. if (hstart >= hend)
  2390. goto skip;
  2391. if (khugepaged_scan.address > hend)
  2392. goto skip;
  2393. if (khugepaged_scan.address < hstart)
  2394. khugepaged_scan.address = hstart;
  2395. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2396. while (khugepaged_scan.address < hend) {
  2397. int ret;
  2398. cond_resched();
  2399. if (unlikely(khugepaged_test_exit(mm)))
  2400. goto breakouterloop;
  2401. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2402. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2403. hend);
  2404. ret = khugepaged_scan_pmd(mm, vma,
  2405. khugepaged_scan.address,
  2406. hpage);
  2407. /* move to next address */
  2408. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2409. progress += HPAGE_PMD_NR;
  2410. if (ret)
  2411. /* we released mmap_sem so break loop */
  2412. goto breakouterloop_mmap_sem;
  2413. if (progress >= pages)
  2414. goto breakouterloop;
  2415. }
  2416. }
  2417. breakouterloop:
  2418. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2419. breakouterloop_mmap_sem:
  2420. spin_lock(&khugepaged_mm_lock);
  2421. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2422. /*
  2423. * Release the current mm_slot if this mm is about to die, or
  2424. * if we scanned all vmas of this mm.
  2425. */
  2426. if (khugepaged_test_exit(mm) || !vma) {
  2427. /*
  2428. * Make sure that if mm_users is reaching zero while
  2429. * khugepaged runs here, khugepaged_exit will find
  2430. * mm_slot not pointing to the exiting mm.
  2431. */
  2432. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2433. khugepaged_scan.mm_slot = list_entry(
  2434. mm_slot->mm_node.next,
  2435. struct mm_slot, mm_node);
  2436. khugepaged_scan.address = 0;
  2437. } else {
  2438. khugepaged_scan.mm_slot = NULL;
  2439. khugepaged_full_scans++;
  2440. }
  2441. collect_mm_slot(mm_slot);
  2442. }
  2443. return progress;
  2444. }
  2445. static int khugepaged_has_work(void)
  2446. {
  2447. return !list_empty(&khugepaged_scan.mm_head) &&
  2448. khugepaged_enabled();
  2449. }
  2450. static int khugepaged_wait_event(void)
  2451. {
  2452. return !list_empty(&khugepaged_scan.mm_head) ||
  2453. kthread_should_stop();
  2454. }
  2455. static void khugepaged_do_scan(void)
  2456. {
  2457. struct page *hpage = NULL;
  2458. unsigned int progress = 0, pass_through_head = 0;
  2459. unsigned int pages = khugepaged_pages_to_scan;
  2460. bool wait = true;
  2461. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2462. while (progress < pages) {
  2463. if (!khugepaged_prealloc_page(&hpage, &wait))
  2464. break;
  2465. cond_resched();
  2466. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2467. break;
  2468. spin_lock(&khugepaged_mm_lock);
  2469. if (!khugepaged_scan.mm_slot)
  2470. pass_through_head++;
  2471. if (khugepaged_has_work() &&
  2472. pass_through_head < 2)
  2473. progress += khugepaged_scan_mm_slot(pages - progress,
  2474. &hpage);
  2475. else
  2476. progress = pages;
  2477. spin_unlock(&khugepaged_mm_lock);
  2478. }
  2479. if (!IS_ERR_OR_NULL(hpage))
  2480. put_page(hpage);
  2481. }
  2482. static void khugepaged_wait_work(void)
  2483. {
  2484. if (khugepaged_has_work()) {
  2485. if (!khugepaged_scan_sleep_millisecs)
  2486. return;
  2487. wait_event_freezable_timeout(khugepaged_wait,
  2488. kthread_should_stop(),
  2489. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2490. return;
  2491. }
  2492. if (khugepaged_enabled())
  2493. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2494. }
  2495. static int khugepaged(void *none)
  2496. {
  2497. struct mm_slot *mm_slot;
  2498. set_freezable();
  2499. set_user_nice(current, MAX_NICE);
  2500. while (!kthread_should_stop()) {
  2501. khugepaged_do_scan();
  2502. khugepaged_wait_work();
  2503. }
  2504. spin_lock(&khugepaged_mm_lock);
  2505. mm_slot = khugepaged_scan.mm_slot;
  2506. khugepaged_scan.mm_slot = NULL;
  2507. if (mm_slot)
  2508. collect_mm_slot(mm_slot);
  2509. spin_unlock(&khugepaged_mm_lock);
  2510. return 0;
  2511. }
  2512. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2513. unsigned long haddr, pmd_t *pmd)
  2514. {
  2515. struct mm_struct *mm = vma->vm_mm;
  2516. pgtable_t pgtable;
  2517. pmd_t _pmd;
  2518. int i;
  2519. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2520. /* leave pmd empty until pte is filled */
  2521. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2522. pmd_populate(mm, &_pmd, pgtable);
  2523. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2524. pte_t *pte, entry;
  2525. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2526. entry = pte_mkspecial(entry);
  2527. pte = pte_offset_map(&_pmd, haddr);
  2528. VM_BUG_ON(!pte_none(*pte));
  2529. set_pte_at(mm, haddr, pte, entry);
  2530. pte_unmap(pte);
  2531. }
  2532. smp_wmb(); /* make pte visible before pmd */
  2533. pmd_populate(mm, pmd, pgtable);
  2534. put_huge_zero_page();
  2535. }
  2536. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2537. pmd_t *pmd)
  2538. {
  2539. spinlock_t *ptl;
  2540. struct page *page;
  2541. struct mm_struct *mm = vma->vm_mm;
  2542. unsigned long haddr = address & HPAGE_PMD_MASK;
  2543. unsigned long mmun_start; /* For mmu_notifiers */
  2544. unsigned long mmun_end; /* For mmu_notifiers */
  2545. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2546. mmun_start = haddr;
  2547. mmun_end = haddr + HPAGE_PMD_SIZE;
  2548. again:
  2549. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2550. ptl = pmd_lock(mm, pmd);
  2551. if (unlikely(!pmd_trans_huge(*pmd))) {
  2552. spin_unlock(ptl);
  2553. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2554. return;
  2555. }
  2556. if (is_huge_zero_pmd(*pmd)) {
  2557. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2558. spin_unlock(ptl);
  2559. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2560. return;
  2561. }
  2562. page = pmd_page(*pmd);
  2563. VM_BUG_ON_PAGE(!page_count(page), page);
  2564. get_page(page);
  2565. spin_unlock(ptl);
  2566. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2567. split_huge_page(page);
  2568. put_page(page);
  2569. /*
  2570. * We don't always have down_write of mmap_sem here: a racing
  2571. * do_huge_pmd_wp_page() might have copied-on-write to another
  2572. * huge page before our split_huge_page() got the anon_vma lock.
  2573. */
  2574. if (unlikely(pmd_trans_huge(*pmd)))
  2575. goto again;
  2576. }
  2577. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2578. pmd_t *pmd)
  2579. {
  2580. struct vm_area_struct *vma;
  2581. vma = find_vma(mm, address);
  2582. BUG_ON(vma == NULL);
  2583. split_huge_page_pmd(vma, address, pmd);
  2584. }
  2585. static void split_huge_page_address(struct mm_struct *mm,
  2586. unsigned long address)
  2587. {
  2588. pgd_t *pgd;
  2589. pud_t *pud;
  2590. pmd_t *pmd;
  2591. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2592. pgd = pgd_offset(mm, address);
  2593. if (!pgd_present(*pgd))
  2594. return;
  2595. pud = pud_offset(pgd, address);
  2596. if (!pud_present(*pud))
  2597. return;
  2598. pmd = pmd_offset(pud, address);
  2599. if (!pmd_present(*pmd))
  2600. return;
  2601. /*
  2602. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2603. * materialize from under us.
  2604. */
  2605. split_huge_page_pmd_mm(mm, address, pmd);
  2606. }
  2607. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2608. unsigned long start,
  2609. unsigned long end,
  2610. long adjust_next)
  2611. {
  2612. /*
  2613. * If the new start address isn't hpage aligned and it could
  2614. * previously contain an hugepage: check if we need to split
  2615. * an huge pmd.
  2616. */
  2617. if (start & ~HPAGE_PMD_MASK &&
  2618. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2619. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2620. split_huge_page_address(vma->vm_mm, start);
  2621. /*
  2622. * If the new end address isn't hpage aligned and it could
  2623. * previously contain an hugepage: check if we need to split
  2624. * an huge pmd.
  2625. */
  2626. if (end & ~HPAGE_PMD_MASK &&
  2627. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2628. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2629. split_huge_page_address(vma->vm_mm, end);
  2630. /*
  2631. * If we're also updating the vma->vm_next->vm_start, if the new
  2632. * vm_next->vm_start isn't page aligned and it could previously
  2633. * contain an hugepage: check if we need to split an huge pmd.
  2634. */
  2635. if (adjust_next > 0) {
  2636. struct vm_area_struct *next = vma->vm_next;
  2637. unsigned long nstart = next->vm_start;
  2638. nstart += adjust_next << PAGE_SHIFT;
  2639. if (nstart & ~HPAGE_PMD_MASK &&
  2640. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2641. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2642. split_huge_page_address(next->vm_mm, nstart);
  2643. }
  2644. }