time.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/timekeeper_internal.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include <generated/timeconst.h>
  42. #include "timekeeping.h"
  43. /*
  44. * The timezone where the local system is located. Used as a default by some
  45. * programs who obtain this value by using gettimeofday.
  46. */
  47. struct timezone sys_tz;
  48. EXPORT_SYMBOL(sys_tz);
  49. #ifdef __ARCH_WANT_SYS_TIME
  50. /*
  51. * sys_time() can be implemented in user-level using
  52. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  53. * why not move it into the appropriate arch directory (for those
  54. * architectures that need it).
  55. */
  56. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  57. {
  58. time_t i = get_seconds();
  59. if (tloc) {
  60. if (put_user(i,tloc))
  61. return -EFAULT;
  62. }
  63. force_successful_syscall_return();
  64. return i;
  65. }
  66. /*
  67. * sys_stime() can be implemented in user-level using
  68. * sys_settimeofday(). Is this for backwards compatibility? If so,
  69. * why not move it into the appropriate arch directory (for those
  70. * architectures that need it).
  71. */
  72. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  73. {
  74. struct timespec tv;
  75. int err;
  76. if (get_user(tv.tv_sec, tptr))
  77. return -EFAULT;
  78. tv.tv_nsec = 0;
  79. err = security_settime(&tv, NULL);
  80. if (err)
  81. return err;
  82. do_settimeofday(&tv);
  83. return 0;
  84. }
  85. #endif /* __ARCH_WANT_SYS_TIME */
  86. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  87. struct timezone __user *, tz)
  88. {
  89. if (likely(tv != NULL)) {
  90. struct timeval ktv;
  91. do_gettimeofday(&ktv);
  92. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  93. return -EFAULT;
  94. }
  95. if (unlikely(tz != NULL)) {
  96. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  97. return -EFAULT;
  98. }
  99. return 0;
  100. }
  101. /*
  102. * Indicates if there is an offset between the system clock and the hardware
  103. * clock/persistent clock/rtc.
  104. */
  105. int persistent_clock_is_local;
  106. /*
  107. * Adjust the time obtained from the CMOS to be UTC time instead of
  108. * local time.
  109. *
  110. * This is ugly, but preferable to the alternatives. Otherwise we
  111. * would either need to write a program to do it in /etc/rc (and risk
  112. * confusion if the program gets run more than once; it would also be
  113. * hard to make the program warp the clock precisely n hours) or
  114. * compile in the timezone information into the kernel. Bad, bad....
  115. *
  116. * - TYT, 1992-01-01
  117. *
  118. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  119. * as real UNIX machines always do it. This avoids all headaches about
  120. * daylight saving times and warping kernel clocks.
  121. */
  122. static inline void warp_clock(void)
  123. {
  124. if (sys_tz.tz_minuteswest != 0) {
  125. struct timespec adjust;
  126. persistent_clock_is_local = 1;
  127. adjust.tv_sec = sys_tz.tz_minuteswest * 60;
  128. adjust.tv_nsec = 0;
  129. timekeeping_inject_offset(&adjust);
  130. }
  131. }
  132. /*
  133. * In case for some reason the CMOS clock has not already been running
  134. * in UTC, but in some local time: The first time we set the timezone,
  135. * we will warp the clock so that it is ticking UTC time instead of
  136. * local time. Presumably, if someone is setting the timezone then we
  137. * are running in an environment where the programs understand about
  138. * timezones. This should be done at boot time in the /etc/rc script,
  139. * as soon as possible, so that the clock can be set right. Otherwise,
  140. * various programs will get confused when the clock gets warped.
  141. */
  142. int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
  143. {
  144. static int firsttime = 1;
  145. int error = 0;
  146. if (tv && !timespec_valid(tv))
  147. return -EINVAL;
  148. error = security_settime(tv, tz);
  149. if (error)
  150. return error;
  151. if (tz) {
  152. /* Verify we're witin the +-15 hrs range */
  153. if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
  154. return -EINVAL;
  155. sys_tz = *tz;
  156. update_vsyscall_tz();
  157. if (firsttime) {
  158. firsttime = 0;
  159. if (!tv)
  160. warp_clock();
  161. }
  162. }
  163. if (tv)
  164. return do_settimeofday(tv);
  165. return 0;
  166. }
  167. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  168. struct timezone __user *, tz)
  169. {
  170. struct timeval user_tv;
  171. struct timespec new_ts;
  172. struct timezone new_tz;
  173. if (tv) {
  174. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  175. return -EFAULT;
  176. if (!timeval_valid(&user_tv))
  177. return -EINVAL;
  178. new_ts.tv_sec = user_tv.tv_sec;
  179. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  180. }
  181. if (tz) {
  182. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  183. return -EFAULT;
  184. }
  185. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  186. }
  187. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  188. {
  189. struct timex txc; /* Local copy of parameter */
  190. int ret;
  191. /* Copy the user data space into the kernel copy
  192. * structure. But bear in mind that the structures
  193. * may change
  194. */
  195. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  196. return -EFAULT;
  197. ret = do_adjtimex(&txc);
  198. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  199. }
  200. /**
  201. * current_fs_time - Return FS time
  202. * @sb: Superblock.
  203. *
  204. * Return the current time truncated to the time granularity supported by
  205. * the fs.
  206. */
  207. struct timespec current_fs_time(struct super_block *sb)
  208. {
  209. struct timespec now = current_kernel_time();
  210. return timespec_trunc(now, sb->s_time_gran);
  211. }
  212. EXPORT_SYMBOL(current_fs_time);
  213. /*
  214. * Convert jiffies to milliseconds and back.
  215. *
  216. * Avoid unnecessary multiplications/divisions in the
  217. * two most common HZ cases:
  218. */
  219. unsigned int jiffies_to_msecs(const unsigned long j)
  220. {
  221. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  222. return (MSEC_PER_SEC / HZ) * j;
  223. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  224. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  225. #else
  226. # if BITS_PER_LONG == 32
  227. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  228. # else
  229. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  230. # endif
  231. #endif
  232. }
  233. EXPORT_SYMBOL(jiffies_to_msecs);
  234. unsigned int jiffies_to_usecs(const unsigned long j)
  235. {
  236. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  237. return (USEC_PER_SEC / HZ) * j;
  238. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  239. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  240. #else
  241. # if BITS_PER_LONG == 32
  242. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  243. # else
  244. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  245. # endif
  246. #endif
  247. }
  248. EXPORT_SYMBOL(jiffies_to_usecs);
  249. /**
  250. * timespec_trunc - Truncate timespec to a granularity
  251. * @t: Timespec
  252. * @gran: Granularity in ns.
  253. *
  254. * Truncate a timespec to a granularity. gran must be smaller than a second.
  255. * Always rounds down.
  256. *
  257. * This function should be only used for timestamps returned by
  258. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  259. * it doesn't handle the better resolution of the latter.
  260. */
  261. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  262. {
  263. /*
  264. * Division is pretty slow so avoid it for common cases.
  265. * Currently current_kernel_time() never returns better than
  266. * jiffies resolution. Exploit that.
  267. */
  268. if (gran <= jiffies_to_usecs(1) * 1000) {
  269. /* nothing */
  270. } else if (gran == 1000000000) {
  271. t.tv_nsec = 0;
  272. } else {
  273. t.tv_nsec -= t.tv_nsec % gran;
  274. }
  275. return t;
  276. }
  277. EXPORT_SYMBOL(timespec_trunc);
  278. /*
  279. * mktime64 - Converts date to seconds.
  280. * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  281. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  282. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  283. *
  284. * [For the Julian calendar (which was used in Russia before 1917,
  285. * Britain & colonies before 1752, anywhere else before 1582,
  286. * and is still in use by some communities) leave out the
  287. * -year/100+year/400 terms, and add 10.]
  288. *
  289. * This algorithm was first published by Gauss (I think).
  290. */
  291. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  292. const unsigned int day, const unsigned int hour,
  293. const unsigned int min, const unsigned int sec)
  294. {
  295. unsigned int mon = mon0, year = year0;
  296. /* 1..12 -> 11,12,1..10 */
  297. if (0 >= (int) (mon -= 2)) {
  298. mon += 12; /* Puts Feb last since it has leap day */
  299. year -= 1;
  300. }
  301. return ((((time64_t)
  302. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  303. year*365 - 719499
  304. )*24 + hour /* now have hours */
  305. )*60 + min /* now have minutes */
  306. )*60 + sec; /* finally seconds */
  307. }
  308. EXPORT_SYMBOL(mktime64);
  309. /**
  310. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  311. *
  312. * @ts: pointer to timespec variable to be set
  313. * @sec: seconds to set
  314. * @nsec: nanoseconds to set
  315. *
  316. * Set seconds and nanoseconds field of a timespec variable and
  317. * normalize to the timespec storage format
  318. *
  319. * Note: The tv_nsec part is always in the range of
  320. * 0 <= tv_nsec < NSEC_PER_SEC
  321. * For negative values only the tv_sec field is negative !
  322. */
  323. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  324. {
  325. while (nsec >= NSEC_PER_SEC) {
  326. /*
  327. * The following asm() prevents the compiler from
  328. * optimising this loop into a modulo operation. See
  329. * also __iter_div_u64_rem() in include/linux/time.h
  330. */
  331. asm("" : "+rm"(nsec));
  332. nsec -= NSEC_PER_SEC;
  333. ++sec;
  334. }
  335. while (nsec < 0) {
  336. asm("" : "+rm"(nsec));
  337. nsec += NSEC_PER_SEC;
  338. --sec;
  339. }
  340. ts->tv_sec = sec;
  341. ts->tv_nsec = nsec;
  342. }
  343. EXPORT_SYMBOL(set_normalized_timespec);
  344. /**
  345. * ns_to_timespec - Convert nanoseconds to timespec
  346. * @nsec: the nanoseconds value to be converted
  347. *
  348. * Returns the timespec representation of the nsec parameter.
  349. */
  350. struct timespec ns_to_timespec(const s64 nsec)
  351. {
  352. struct timespec ts;
  353. s32 rem;
  354. if (!nsec)
  355. return (struct timespec) {0, 0};
  356. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  357. if (unlikely(rem < 0)) {
  358. ts.tv_sec--;
  359. rem += NSEC_PER_SEC;
  360. }
  361. ts.tv_nsec = rem;
  362. return ts;
  363. }
  364. EXPORT_SYMBOL(ns_to_timespec);
  365. /**
  366. * ns_to_timeval - Convert nanoseconds to timeval
  367. * @nsec: the nanoseconds value to be converted
  368. *
  369. * Returns the timeval representation of the nsec parameter.
  370. */
  371. struct timeval ns_to_timeval(const s64 nsec)
  372. {
  373. struct timespec ts = ns_to_timespec(nsec);
  374. struct timeval tv;
  375. tv.tv_sec = ts.tv_sec;
  376. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  377. return tv;
  378. }
  379. EXPORT_SYMBOL(ns_to_timeval);
  380. #if BITS_PER_LONG == 32
  381. /**
  382. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  383. *
  384. * @ts: pointer to timespec variable to be set
  385. * @sec: seconds to set
  386. * @nsec: nanoseconds to set
  387. *
  388. * Set seconds and nanoseconds field of a timespec variable and
  389. * normalize to the timespec storage format
  390. *
  391. * Note: The tv_nsec part is always in the range of
  392. * 0 <= tv_nsec < NSEC_PER_SEC
  393. * For negative values only the tv_sec field is negative !
  394. */
  395. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  396. {
  397. while (nsec >= NSEC_PER_SEC) {
  398. /*
  399. * The following asm() prevents the compiler from
  400. * optimising this loop into a modulo operation. See
  401. * also __iter_div_u64_rem() in include/linux/time.h
  402. */
  403. asm("" : "+rm"(nsec));
  404. nsec -= NSEC_PER_SEC;
  405. ++sec;
  406. }
  407. while (nsec < 0) {
  408. asm("" : "+rm"(nsec));
  409. nsec += NSEC_PER_SEC;
  410. --sec;
  411. }
  412. ts->tv_sec = sec;
  413. ts->tv_nsec = nsec;
  414. }
  415. EXPORT_SYMBOL(set_normalized_timespec64);
  416. /**
  417. * ns_to_timespec64 - Convert nanoseconds to timespec64
  418. * @nsec: the nanoseconds value to be converted
  419. *
  420. * Returns the timespec64 representation of the nsec parameter.
  421. */
  422. struct timespec64 ns_to_timespec64(const s64 nsec)
  423. {
  424. struct timespec64 ts;
  425. s32 rem;
  426. if (!nsec)
  427. return (struct timespec64) {0, 0};
  428. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  429. if (unlikely(rem < 0)) {
  430. ts.tv_sec--;
  431. rem += NSEC_PER_SEC;
  432. }
  433. ts.tv_nsec = rem;
  434. return ts;
  435. }
  436. EXPORT_SYMBOL(ns_to_timespec64);
  437. #endif
  438. /**
  439. * msecs_to_jiffies: - convert milliseconds to jiffies
  440. * @m: time in milliseconds
  441. *
  442. * conversion is done as follows:
  443. *
  444. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  445. *
  446. * - 'too large' values [that would result in larger than
  447. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  448. *
  449. * - all other values are converted to jiffies by either multiplying
  450. * the input value by a factor or dividing it with a factor and
  451. * handling any 32-bit overflows.
  452. * for the details see __msecs_to_jiffies()
  453. *
  454. * msecs_to_jiffies() checks for the passed in value being a constant
  455. * via __builtin_constant_p() allowing gcc to eliminate most of the
  456. * code, __msecs_to_jiffies() is called if the value passed does not
  457. * allow constant folding and the actual conversion must be done at
  458. * runtime.
  459. * the _msecs_to_jiffies helpers are the HZ dependent conversion
  460. * routines found in include/linux/jiffies.h
  461. */
  462. unsigned long __msecs_to_jiffies(const unsigned int m)
  463. {
  464. /*
  465. * Negative value, means infinite timeout:
  466. */
  467. if ((int)m < 0)
  468. return MAX_JIFFY_OFFSET;
  469. return _msecs_to_jiffies(m);
  470. }
  471. EXPORT_SYMBOL(__msecs_to_jiffies);
  472. unsigned long __usecs_to_jiffies(const unsigned int u)
  473. {
  474. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  475. return MAX_JIFFY_OFFSET;
  476. return _usecs_to_jiffies(u);
  477. }
  478. EXPORT_SYMBOL(__usecs_to_jiffies);
  479. /*
  480. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  481. * that a remainder subtract here would not do the right thing as the
  482. * resolution values don't fall on second boundries. I.e. the line:
  483. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  484. * Note that due to the small error in the multiplier here, this
  485. * rounding is incorrect for sufficiently large values of tv_nsec, but
  486. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  487. * OK.
  488. *
  489. * Rather, we just shift the bits off the right.
  490. *
  491. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  492. * value to a scaled second value.
  493. */
  494. static unsigned long
  495. __timespec_to_jiffies(unsigned long sec, long nsec)
  496. {
  497. nsec = nsec + TICK_NSEC - 1;
  498. if (sec >= MAX_SEC_IN_JIFFIES){
  499. sec = MAX_SEC_IN_JIFFIES;
  500. nsec = 0;
  501. }
  502. return (((u64)sec * SEC_CONVERSION) +
  503. (((u64)nsec * NSEC_CONVERSION) >>
  504. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  505. }
  506. unsigned long
  507. timespec_to_jiffies(const struct timespec *value)
  508. {
  509. return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
  510. }
  511. EXPORT_SYMBOL(timespec_to_jiffies);
  512. void
  513. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  514. {
  515. /*
  516. * Convert jiffies to nanoseconds and separate with
  517. * one divide.
  518. */
  519. u32 rem;
  520. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  521. NSEC_PER_SEC, &rem);
  522. value->tv_nsec = rem;
  523. }
  524. EXPORT_SYMBOL(jiffies_to_timespec);
  525. /*
  526. * We could use a similar algorithm to timespec_to_jiffies (with a
  527. * different multiplier for usec instead of nsec). But this has a
  528. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  529. * usec value, since it's not necessarily integral.
  530. *
  531. * We could instead round in the intermediate scaled representation
  532. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  533. * perilous: the scaling introduces a small positive error, which
  534. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  535. * units to the intermediate before shifting) leads to accidental
  536. * overflow and overestimates.
  537. *
  538. * At the cost of one additional multiplication by a constant, just
  539. * use the timespec implementation.
  540. */
  541. unsigned long
  542. timeval_to_jiffies(const struct timeval *value)
  543. {
  544. return __timespec_to_jiffies(value->tv_sec,
  545. value->tv_usec * NSEC_PER_USEC);
  546. }
  547. EXPORT_SYMBOL(timeval_to_jiffies);
  548. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  549. {
  550. /*
  551. * Convert jiffies to nanoseconds and separate with
  552. * one divide.
  553. */
  554. u32 rem;
  555. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  556. NSEC_PER_SEC, &rem);
  557. value->tv_usec = rem / NSEC_PER_USEC;
  558. }
  559. EXPORT_SYMBOL(jiffies_to_timeval);
  560. /*
  561. * Convert jiffies/jiffies_64 to clock_t and back.
  562. */
  563. clock_t jiffies_to_clock_t(unsigned long x)
  564. {
  565. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  566. # if HZ < USER_HZ
  567. return x * (USER_HZ / HZ);
  568. # else
  569. return x / (HZ / USER_HZ);
  570. # endif
  571. #else
  572. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  573. #endif
  574. }
  575. EXPORT_SYMBOL(jiffies_to_clock_t);
  576. unsigned long clock_t_to_jiffies(unsigned long x)
  577. {
  578. #if (HZ % USER_HZ)==0
  579. if (x >= ~0UL / (HZ / USER_HZ))
  580. return ~0UL;
  581. return x * (HZ / USER_HZ);
  582. #else
  583. /* Don't worry about loss of precision here .. */
  584. if (x >= ~0UL / HZ * USER_HZ)
  585. return ~0UL;
  586. /* .. but do try to contain it here */
  587. return div_u64((u64)x * HZ, USER_HZ);
  588. #endif
  589. }
  590. EXPORT_SYMBOL(clock_t_to_jiffies);
  591. u64 jiffies_64_to_clock_t(u64 x)
  592. {
  593. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  594. # if HZ < USER_HZ
  595. x = div_u64(x * USER_HZ, HZ);
  596. # elif HZ > USER_HZ
  597. x = div_u64(x, HZ / USER_HZ);
  598. # else
  599. /* Nothing to do */
  600. # endif
  601. #else
  602. /*
  603. * There are better ways that don't overflow early,
  604. * but even this doesn't overflow in hundreds of years
  605. * in 64 bits, so..
  606. */
  607. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  608. #endif
  609. return x;
  610. }
  611. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  612. u64 nsec_to_clock_t(u64 x)
  613. {
  614. #if (NSEC_PER_SEC % USER_HZ) == 0
  615. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  616. #elif (USER_HZ % 512) == 0
  617. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  618. #else
  619. /*
  620. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  621. * overflow after 64.99 years.
  622. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  623. */
  624. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  625. #endif
  626. }
  627. /**
  628. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  629. *
  630. * @n: nsecs in u64
  631. *
  632. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  633. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  634. * for scheduler, not for use in device drivers to calculate timeout value.
  635. *
  636. * note:
  637. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  638. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  639. */
  640. u64 nsecs_to_jiffies64(u64 n)
  641. {
  642. #if (NSEC_PER_SEC % HZ) == 0
  643. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  644. return div_u64(n, NSEC_PER_SEC / HZ);
  645. #elif (HZ % 512) == 0
  646. /* overflow after 292 years if HZ = 1024 */
  647. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  648. #else
  649. /*
  650. * Generic case - optimized for cases where HZ is a multiple of 3.
  651. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  652. */
  653. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  654. #endif
  655. }
  656. EXPORT_SYMBOL(nsecs_to_jiffies64);
  657. /**
  658. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  659. *
  660. * @n: nsecs in u64
  661. *
  662. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  663. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  664. * for scheduler, not for use in device drivers to calculate timeout value.
  665. *
  666. * note:
  667. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  668. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  669. */
  670. unsigned long nsecs_to_jiffies(u64 n)
  671. {
  672. return (unsigned long)nsecs_to_jiffies64(n);
  673. }
  674. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  675. /*
  676. * Add two timespec values and do a safety check for overflow.
  677. * It's assumed that both values are valid (>= 0)
  678. */
  679. struct timespec timespec_add_safe(const struct timespec lhs,
  680. const struct timespec rhs)
  681. {
  682. struct timespec res;
  683. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  684. lhs.tv_nsec + rhs.tv_nsec);
  685. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  686. res.tv_sec = TIME_T_MAX;
  687. return res;
  688. }