node.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "trace.h"
  22. #include <trace/events/f2fs.h>
  23. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  24. static struct kmem_cache *nat_entry_slab;
  25. static struct kmem_cache *free_nid_slab;
  26. static struct kmem_cache *nat_entry_set_slab;
  27. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  28. {
  29. struct f2fs_nm_info *nm_i = NM_I(sbi);
  30. struct sysinfo val;
  31. unsigned long avail_ram;
  32. unsigned long mem_size = 0;
  33. bool res = false;
  34. si_meminfo(&val);
  35. /* only uses low memory */
  36. avail_ram = val.totalram - val.totalhigh;
  37. /*
  38. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  39. */
  40. if (type == FREE_NIDS) {
  41. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  42. PAGE_CACHE_SHIFT;
  43. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  44. } else if (type == NAT_ENTRIES) {
  45. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  46. PAGE_CACHE_SHIFT;
  47. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  48. } else if (type == DIRTY_DENTS) {
  49. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  50. return false;
  51. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  52. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  53. } else if (type == INO_ENTRIES) {
  54. int i;
  55. for (i = 0; i <= UPDATE_INO; i++)
  56. mem_size += (sbi->im[i].ino_num *
  57. sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
  58. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  59. } else if (type == EXTENT_CACHE) {
  60. mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
  61. atomic_read(&sbi->total_ext_node) *
  62. sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
  63. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  64. } else {
  65. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  66. return false;
  67. }
  68. return res;
  69. }
  70. static void clear_node_page_dirty(struct page *page)
  71. {
  72. struct address_space *mapping = page->mapping;
  73. unsigned int long flags;
  74. if (PageDirty(page)) {
  75. spin_lock_irqsave(&mapping->tree_lock, flags);
  76. radix_tree_tag_clear(&mapping->page_tree,
  77. page_index(page),
  78. PAGECACHE_TAG_DIRTY);
  79. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  80. clear_page_dirty_for_io(page);
  81. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  82. }
  83. ClearPageUptodate(page);
  84. }
  85. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  86. {
  87. pgoff_t index = current_nat_addr(sbi, nid);
  88. return get_meta_page(sbi, index);
  89. }
  90. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  91. {
  92. struct page *src_page;
  93. struct page *dst_page;
  94. pgoff_t src_off;
  95. pgoff_t dst_off;
  96. void *src_addr;
  97. void *dst_addr;
  98. struct f2fs_nm_info *nm_i = NM_I(sbi);
  99. src_off = current_nat_addr(sbi, nid);
  100. dst_off = next_nat_addr(sbi, src_off);
  101. /* get current nat block page with lock */
  102. src_page = get_meta_page(sbi, src_off);
  103. dst_page = grab_meta_page(sbi, dst_off);
  104. f2fs_bug_on(sbi, PageDirty(src_page));
  105. src_addr = page_address(src_page);
  106. dst_addr = page_address(dst_page);
  107. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  108. set_page_dirty(dst_page);
  109. f2fs_put_page(src_page, 1);
  110. set_to_next_nat(nm_i, nid);
  111. return dst_page;
  112. }
  113. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  114. {
  115. return radix_tree_lookup(&nm_i->nat_root, n);
  116. }
  117. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  118. nid_t start, unsigned int nr, struct nat_entry **ep)
  119. {
  120. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  121. }
  122. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  123. {
  124. list_del(&e->list);
  125. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  126. nm_i->nat_cnt--;
  127. kmem_cache_free(nat_entry_slab, e);
  128. }
  129. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  130. struct nat_entry *ne)
  131. {
  132. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  133. struct nat_entry_set *head;
  134. if (get_nat_flag(ne, IS_DIRTY))
  135. return;
  136. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  137. if (!head) {
  138. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
  139. INIT_LIST_HEAD(&head->entry_list);
  140. INIT_LIST_HEAD(&head->set_list);
  141. head->set = set;
  142. head->entry_cnt = 0;
  143. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  144. }
  145. list_move_tail(&ne->list, &head->entry_list);
  146. nm_i->dirty_nat_cnt++;
  147. head->entry_cnt++;
  148. set_nat_flag(ne, IS_DIRTY, true);
  149. }
  150. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  151. struct nat_entry *ne)
  152. {
  153. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  154. struct nat_entry_set *head;
  155. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  156. if (head) {
  157. list_move_tail(&ne->list, &nm_i->nat_entries);
  158. set_nat_flag(ne, IS_DIRTY, false);
  159. head->entry_cnt--;
  160. nm_i->dirty_nat_cnt--;
  161. }
  162. }
  163. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  164. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  165. {
  166. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  167. start, nr);
  168. }
  169. int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  170. {
  171. struct f2fs_nm_info *nm_i = NM_I(sbi);
  172. struct nat_entry *e;
  173. bool need = false;
  174. down_read(&nm_i->nat_tree_lock);
  175. e = __lookup_nat_cache(nm_i, nid);
  176. if (e) {
  177. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  178. !get_nat_flag(e, HAS_FSYNCED_INODE))
  179. need = true;
  180. }
  181. up_read(&nm_i->nat_tree_lock);
  182. return need;
  183. }
  184. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  185. {
  186. struct f2fs_nm_info *nm_i = NM_I(sbi);
  187. struct nat_entry *e;
  188. bool is_cp = true;
  189. down_read(&nm_i->nat_tree_lock);
  190. e = __lookup_nat_cache(nm_i, nid);
  191. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  192. is_cp = false;
  193. up_read(&nm_i->nat_tree_lock);
  194. return is_cp;
  195. }
  196. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  197. {
  198. struct f2fs_nm_info *nm_i = NM_I(sbi);
  199. struct nat_entry *e;
  200. bool need_update = true;
  201. down_read(&nm_i->nat_tree_lock);
  202. e = __lookup_nat_cache(nm_i, ino);
  203. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  204. (get_nat_flag(e, IS_CHECKPOINTED) ||
  205. get_nat_flag(e, HAS_FSYNCED_INODE)))
  206. need_update = false;
  207. up_read(&nm_i->nat_tree_lock);
  208. return need_update;
  209. }
  210. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  211. {
  212. struct nat_entry *new;
  213. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  214. f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
  215. memset(new, 0, sizeof(struct nat_entry));
  216. nat_set_nid(new, nid);
  217. nat_reset_flag(new);
  218. list_add_tail(&new->list, &nm_i->nat_entries);
  219. nm_i->nat_cnt++;
  220. return new;
  221. }
  222. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  223. struct f2fs_nat_entry *ne)
  224. {
  225. struct nat_entry *e;
  226. down_write(&nm_i->nat_tree_lock);
  227. e = __lookup_nat_cache(nm_i, nid);
  228. if (!e) {
  229. e = grab_nat_entry(nm_i, nid);
  230. node_info_from_raw_nat(&e->ni, ne);
  231. }
  232. up_write(&nm_i->nat_tree_lock);
  233. }
  234. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  235. block_t new_blkaddr, bool fsync_done)
  236. {
  237. struct f2fs_nm_info *nm_i = NM_I(sbi);
  238. struct nat_entry *e;
  239. down_write(&nm_i->nat_tree_lock);
  240. e = __lookup_nat_cache(nm_i, ni->nid);
  241. if (!e) {
  242. e = grab_nat_entry(nm_i, ni->nid);
  243. copy_node_info(&e->ni, ni);
  244. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  245. } else if (new_blkaddr == NEW_ADDR) {
  246. /*
  247. * when nid is reallocated,
  248. * previous nat entry can be remained in nat cache.
  249. * So, reinitialize it with new information.
  250. */
  251. copy_node_info(&e->ni, ni);
  252. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  253. }
  254. /* sanity check */
  255. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  256. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  257. new_blkaddr == NULL_ADDR);
  258. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  259. new_blkaddr == NEW_ADDR);
  260. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  261. nat_get_blkaddr(e) != NULL_ADDR &&
  262. new_blkaddr == NEW_ADDR);
  263. /* increment version no as node is removed */
  264. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  265. unsigned char version = nat_get_version(e);
  266. nat_set_version(e, inc_node_version(version));
  267. }
  268. /* change address */
  269. nat_set_blkaddr(e, new_blkaddr);
  270. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  271. set_nat_flag(e, IS_CHECKPOINTED, false);
  272. __set_nat_cache_dirty(nm_i, e);
  273. /* update fsync_mark if its inode nat entry is still alive */
  274. if (ni->nid != ni->ino)
  275. e = __lookup_nat_cache(nm_i, ni->ino);
  276. if (e) {
  277. if (fsync_done && ni->nid == ni->ino)
  278. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  279. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  280. }
  281. up_write(&nm_i->nat_tree_lock);
  282. }
  283. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  284. {
  285. struct f2fs_nm_info *nm_i = NM_I(sbi);
  286. if (available_free_memory(sbi, NAT_ENTRIES))
  287. return 0;
  288. down_write(&nm_i->nat_tree_lock);
  289. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  290. struct nat_entry *ne;
  291. ne = list_first_entry(&nm_i->nat_entries,
  292. struct nat_entry, list);
  293. __del_from_nat_cache(nm_i, ne);
  294. nr_shrink--;
  295. }
  296. up_write(&nm_i->nat_tree_lock);
  297. return nr_shrink;
  298. }
  299. /*
  300. * This function always returns success
  301. */
  302. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  303. {
  304. struct f2fs_nm_info *nm_i = NM_I(sbi);
  305. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  306. struct f2fs_summary_block *sum = curseg->sum_blk;
  307. nid_t start_nid = START_NID(nid);
  308. struct f2fs_nat_block *nat_blk;
  309. struct page *page = NULL;
  310. struct f2fs_nat_entry ne;
  311. struct nat_entry *e;
  312. int i;
  313. ni->nid = nid;
  314. /* Check nat cache */
  315. down_read(&nm_i->nat_tree_lock);
  316. e = __lookup_nat_cache(nm_i, nid);
  317. if (e) {
  318. ni->ino = nat_get_ino(e);
  319. ni->blk_addr = nat_get_blkaddr(e);
  320. ni->version = nat_get_version(e);
  321. }
  322. up_read(&nm_i->nat_tree_lock);
  323. if (e)
  324. return;
  325. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  326. /* Check current segment summary */
  327. mutex_lock(&curseg->curseg_mutex);
  328. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  329. if (i >= 0) {
  330. ne = nat_in_journal(sum, i);
  331. node_info_from_raw_nat(ni, &ne);
  332. }
  333. mutex_unlock(&curseg->curseg_mutex);
  334. if (i >= 0)
  335. goto cache;
  336. /* Fill node_info from nat page */
  337. page = get_current_nat_page(sbi, start_nid);
  338. nat_blk = (struct f2fs_nat_block *)page_address(page);
  339. ne = nat_blk->entries[nid - start_nid];
  340. node_info_from_raw_nat(ni, &ne);
  341. f2fs_put_page(page, 1);
  342. cache:
  343. /* cache nat entry */
  344. cache_nat_entry(NM_I(sbi), nid, &ne);
  345. }
  346. /*
  347. * The maximum depth is four.
  348. * Offset[0] will have raw inode offset.
  349. */
  350. static int get_node_path(struct f2fs_inode_info *fi, long block,
  351. int offset[4], unsigned int noffset[4])
  352. {
  353. const long direct_index = ADDRS_PER_INODE(fi);
  354. const long direct_blks = ADDRS_PER_BLOCK;
  355. const long dptrs_per_blk = NIDS_PER_BLOCK;
  356. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  357. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  358. int n = 0;
  359. int level = 0;
  360. noffset[0] = 0;
  361. if (block < direct_index) {
  362. offset[n] = block;
  363. goto got;
  364. }
  365. block -= direct_index;
  366. if (block < direct_blks) {
  367. offset[n++] = NODE_DIR1_BLOCK;
  368. noffset[n] = 1;
  369. offset[n] = block;
  370. level = 1;
  371. goto got;
  372. }
  373. block -= direct_blks;
  374. if (block < direct_blks) {
  375. offset[n++] = NODE_DIR2_BLOCK;
  376. noffset[n] = 2;
  377. offset[n] = block;
  378. level = 1;
  379. goto got;
  380. }
  381. block -= direct_blks;
  382. if (block < indirect_blks) {
  383. offset[n++] = NODE_IND1_BLOCK;
  384. noffset[n] = 3;
  385. offset[n++] = block / direct_blks;
  386. noffset[n] = 4 + offset[n - 1];
  387. offset[n] = block % direct_blks;
  388. level = 2;
  389. goto got;
  390. }
  391. block -= indirect_blks;
  392. if (block < indirect_blks) {
  393. offset[n++] = NODE_IND2_BLOCK;
  394. noffset[n] = 4 + dptrs_per_blk;
  395. offset[n++] = block / direct_blks;
  396. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  397. offset[n] = block % direct_blks;
  398. level = 2;
  399. goto got;
  400. }
  401. block -= indirect_blks;
  402. if (block < dindirect_blks) {
  403. offset[n++] = NODE_DIND_BLOCK;
  404. noffset[n] = 5 + (dptrs_per_blk * 2);
  405. offset[n++] = block / indirect_blks;
  406. noffset[n] = 6 + (dptrs_per_blk * 2) +
  407. offset[n - 1] * (dptrs_per_blk + 1);
  408. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  409. noffset[n] = 7 + (dptrs_per_blk * 2) +
  410. offset[n - 2] * (dptrs_per_blk + 1) +
  411. offset[n - 1];
  412. offset[n] = block % direct_blks;
  413. level = 3;
  414. goto got;
  415. } else {
  416. BUG();
  417. }
  418. got:
  419. return level;
  420. }
  421. /*
  422. * Caller should call f2fs_put_dnode(dn).
  423. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  424. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  425. * In the case of RDONLY_NODE, we don't need to care about mutex.
  426. */
  427. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  428. {
  429. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  430. struct page *npage[4];
  431. struct page *parent = NULL;
  432. int offset[4];
  433. unsigned int noffset[4];
  434. nid_t nids[4];
  435. int level, i;
  436. int err = 0;
  437. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  438. nids[0] = dn->inode->i_ino;
  439. npage[0] = dn->inode_page;
  440. if (!npage[0]) {
  441. npage[0] = get_node_page(sbi, nids[0]);
  442. if (IS_ERR(npage[0]))
  443. return PTR_ERR(npage[0]);
  444. }
  445. /* if inline_data is set, should not report any block indices */
  446. if (f2fs_has_inline_data(dn->inode) && index) {
  447. err = -ENOENT;
  448. f2fs_put_page(npage[0], 1);
  449. goto release_out;
  450. }
  451. parent = npage[0];
  452. if (level != 0)
  453. nids[1] = get_nid(parent, offset[0], true);
  454. dn->inode_page = npage[0];
  455. dn->inode_page_locked = true;
  456. /* get indirect or direct nodes */
  457. for (i = 1; i <= level; i++) {
  458. bool done = false;
  459. if (!nids[i] && mode == ALLOC_NODE) {
  460. /* alloc new node */
  461. if (!alloc_nid(sbi, &(nids[i]))) {
  462. err = -ENOSPC;
  463. goto release_pages;
  464. }
  465. dn->nid = nids[i];
  466. npage[i] = new_node_page(dn, noffset[i], NULL);
  467. if (IS_ERR(npage[i])) {
  468. alloc_nid_failed(sbi, nids[i]);
  469. err = PTR_ERR(npage[i]);
  470. goto release_pages;
  471. }
  472. set_nid(parent, offset[i - 1], nids[i], i == 1);
  473. alloc_nid_done(sbi, nids[i]);
  474. done = true;
  475. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  476. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  477. if (IS_ERR(npage[i])) {
  478. err = PTR_ERR(npage[i]);
  479. goto release_pages;
  480. }
  481. done = true;
  482. }
  483. if (i == 1) {
  484. dn->inode_page_locked = false;
  485. unlock_page(parent);
  486. } else {
  487. f2fs_put_page(parent, 1);
  488. }
  489. if (!done) {
  490. npage[i] = get_node_page(sbi, nids[i]);
  491. if (IS_ERR(npage[i])) {
  492. err = PTR_ERR(npage[i]);
  493. f2fs_put_page(npage[0], 0);
  494. goto release_out;
  495. }
  496. }
  497. if (i < level) {
  498. parent = npage[i];
  499. nids[i + 1] = get_nid(parent, offset[i], false);
  500. }
  501. }
  502. dn->nid = nids[level];
  503. dn->ofs_in_node = offset[level];
  504. dn->node_page = npage[level];
  505. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  506. return 0;
  507. release_pages:
  508. f2fs_put_page(parent, 1);
  509. if (i > 1)
  510. f2fs_put_page(npage[0], 0);
  511. release_out:
  512. dn->inode_page = NULL;
  513. dn->node_page = NULL;
  514. return err;
  515. }
  516. static void truncate_node(struct dnode_of_data *dn)
  517. {
  518. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  519. struct node_info ni;
  520. get_node_info(sbi, dn->nid, &ni);
  521. if (dn->inode->i_blocks == 0) {
  522. f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
  523. goto invalidate;
  524. }
  525. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  526. /* Deallocate node address */
  527. invalidate_blocks(sbi, ni.blk_addr);
  528. dec_valid_node_count(sbi, dn->inode);
  529. set_node_addr(sbi, &ni, NULL_ADDR, false);
  530. if (dn->nid == dn->inode->i_ino) {
  531. remove_orphan_inode(sbi, dn->nid);
  532. dec_valid_inode_count(sbi);
  533. } else {
  534. sync_inode_page(dn);
  535. }
  536. invalidate:
  537. clear_node_page_dirty(dn->node_page);
  538. set_sbi_flag(sbi, SBI_IS_DIRTY);
  539. f2fs_put_page(dn->node_page, 1);
  540. invalidate_mapping_pages(NODE_MAPPING(sbi),
  541. dn->node_page->index, dn->node_page->index);
  542. dn->node_page = NULL;
  543. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  544. }
  545. static int truncate_dnode(struct dnode_of_data *dn)
  546. {
  547. struct page *page;
  548. if (dn->nid == 0)
  549. return 1;
  550. /* get direct node */
  551. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  552. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  553. return 1;
  554. else if (IS_ERR(page))
  555. return PTR_ERR(page);
  556. /* Make dnode_of_data for parameter */
  557. dn->node_page = page;
  558. dn->ofs_in_node = 0;
  559. truncate_data_blocks(dn);
  560. truncate_node(dn);
  561. return 1;
  562. }
  563. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  564. int ofs, int depth)
  565. {
  566. struct dnode_of_data rdn = *dn;
  567. struct page *page;
  568. struct f2fs_node *rn;
  569. nid_t child_nid;
  570. unsigned int child_nofs;
  571. int freed = 0;
  572. int i, ret;
  573. if (dn->nid == 0)
  574. return NIDS_PER_BLOCK + 1;
  575. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  576. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  577. if (IS_ERR(page)) {
  578. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  579. return PTR_ERR(page);
  580. }
  581. rn = F2FS_NODE(page);
  582. if (depth < 3) {
  583. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  584. child_nid = le32_to_cpu(rn->in.nid[i]);
  585. if (child_nid == 0)
  586. continue;
  587. rdn.nid = child_nid;
  588. ret = truncate_dnode(&rdn);
  589. if (ret < 0)
  590. goto out_err;
  591. set_nid(page, i, 0, false);
  592. }
  593. } else {
  594. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  595. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  596. child_nid = le32_to_cpu(rn->in.nid[i]);
  597. if (child_nid == 0) {
  598. child_nofs += NIDS_PER_BLOCK + 1;
  599. continue;
  600. }
  601. rdn.nid = child_nid;
  602. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  603. if (ret == (NIDS_PER_BLOCK + 1)) {
  604. set_nid(page, i, 0, false);
  605. child_nofs += ret;
  606. } else if (ret < 0 && ret != -ENOENT) {
  607. goto out_err;
  608. }
  609. }
  610. freed = child_nofs;
  611. }
  612. if (!ofs) {
  613. /* remove current indirect node */
  614. dn->node_page = page;
  615. truncate_node(dn);
  616. freed++;
  617. } else {
  618. f2fs_put_page(page, 1);
  619. }
  620. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  621. return freed;
  622. out_err:
  623. f2fs_put_page(page, 1);
  624. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  625. return ret;
  626. }
  627. static int truncate_partial_nodes(struct dnode_of_data *dn,
  628. struct f2fs_inode *ri, int *offset, int depth)
  629. {
  630. struct page *pages[2];
  631. nid_t nid[3];
  632. nid_t child_nid;
  633. int err = 0;
  634. int i;
  635. int idx = depth - 2;
  636. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  637. if (!nid[0])
  638. return 0;
  639. /* get indirect nodes in the path */
  640. for (i = 0; i < idx + 1; i++) {
  641. /* reference count'll be increased */
  642. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  643. if (IS_ERR(pages[i])) {
  644. err = PTR_ERR(pages[i]);
  645. idx = i - 1;
  646. goto fail;
  647. }
  648. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  649. }
  650. /* free direct nodes linked to a partial indirect node */
  651. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  652. child_nid = get_nid(pages[idx], i, false);
  653. if (!child_nid)
  654. continue;
  655. dn->nid = child_nid;
  656. err = truncate_dnode(dn);
  657. if (err < 0)
  658. goto fail;
  659. set_nid(pages[idx], i, 0, false);
  660. }
  661. if (offset[idx + 1] == 0) {
  662. dn->node_page = pages[idx];
  663. dn->nid = nid[idx];
  664. truncate_node(dn);
  665. } else {
  666. f2fs_put_page(pages[idx], 1);
  667. }
  668. offset[idx]++;
  669. offset[idx + 1] = 0;
  670. idx--;
  671. fail:
  672. for (i = idx; i >= 0; i--)
  673. f2fs_put_page(pages[i], 1);
  674. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  675. return err;
  676. }
  677. /*
  678. * All the block addresses of data and nodes should be nullified.
  679. */
  680. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  681. {
  682. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  683. int err = 0, cont = 1;
  684. int level, offset[4], noffset[4];
  685. unsigned int nofs = 0;
  686. struct f2fs_inode *ri;
  687. struct dnode_of_data dn;
  688. struct page *page;
  689. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  690. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  691. restart:
  692. page = get_node_page(sbi, inode->i_ino);
  693. if (IS_ERR(page)) {
  694. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  695. return PTR_ERR(page);
  696. }
  697. set_new_dnode(&dn, inode, page, NULL, 0);
  698. unlock_page(page);
  699. ri = F2FS_INODE(page);
  700. switch (level) {
  701. case 0:
  702. case 1:
  703. nofs = noffset[1];
  704. break;
  705. case 2:
  706. nofs = noffset[1];
  707. if (!offset[level - 1])
  708. goto skip_partial;
  709. err = truncate_partial_nodes(&dn, ri, offset, level);
  710. if (err < 0 && err != -ENOENT)
  711. goto fail;
  712. nofs += 1 + NIDS_PER_BLOCK;
  713. break;
  714. case 3:
  715. nofs = 5 + 2 * NIDS_PER_BLOCK;
  716. if (!offset[level - 1])
  717. goto skip_partial;
  718. err = truncate_partial_nodes(&dn, ri, offset, level);
  719. if (err < 0 && err != -ENOENT)
  720. goto fail;
  721. break;
  722. default:
  723. BUG();
  724. }
  725. skip_partial:
  726. while (cont) {
  727. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  728. switch (offset[0]) {
  729. case NODE_DIR1_BLOCK:
  730. case NODE_DIR2_BLOCK:
  731. err = truncate_dnode(&dn);
  732. break;
  733. case NODE_IND1_BLOCK:
  734. case NODE_IND2_BLOCK:
  735. err = truncate_nodes(&dn, nofs, offset[1], 2);
  736. break;
  737. case NODE_DIND_BLOCK:
  738. err = truncate_nodes(&dn, nofs, offset[1], 3);
  739. cont = 0;
  740. break;
  741. default:
  742. BUG();
  743. }
  744. if (err < 0 && err != -ENOENT)
  745. goto fail;
  746. if (offset[1] == 0 &&
  747. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  748. lock_page(page);
  749. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  750. f2fs_put_page(page, 1);
  751. goto restart;
  752. }
  753. f2fs_wait_on_page_writeback(page, NODE);
  754. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  755. set_page_dirty(page);
  756. unlock_page(page);
  757. }
  758. offset[1] = 0;
  759. offset[0]++;
  760. nofs += err;
  761. }
  762. fail:
  763. f2fs_put_page(page, 0);
  764. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  765. return err > 0 ? 0 : err;
  766. }
  767. int truncate_xattr_node(struct inode *inode, struct page *page)
  768. {
  769. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  770. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  771. struct dnode_of_data dn;
  772. struct page *npage;
  773. if (!nid)
  774. return 0;
  775. npage = get_node_page(sbi, nid);
  776. if (IS_ERR(npage))
  777. return PTR_ERR(npage);
  778. F2FS_I(inode)->i_xattr_nid = 0;
  779. /* need to do checkpoint during fsync */
  780. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  781. set_new_dnode(&dn, inode, page, npage, nid);
  782. if (page)
  783. dn.inode_page_locked = true;
  784. truncate_node(&dn);
  785. return 0;
  786. }
  787. /*
  788. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  789. * f2fs_unlock_op().
  790. */
  791. void remove_inode_page(struct inode *inode)
  792. {
  793. struct dnode_of_data dn;
  794. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  795. if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
  796. return;
  797. if (truncate_xattr_node(inode, dn.inode_page)) {
  798. f2fs_put_dnode(&dn);
  799. return;
  800. }
  801. /* remove potential inline_data blocks */
  802. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  803. S_ISLNK(inode->i_mode))
  804. truncate_data_blocks_range(&dn, 1);
  805. /* 0 is possible, after f2fs_new_inode() has failed */
  806. f2fs_bug_on(F2FS_I_SB(inode),
  807. inode->i_blocks != 0 && inode->i_blocks != 1);
  808. /* will put inode & node pages */
  809. truncate_node(&dn);
  810. }
  811. struct page *new_inode_page(struct inode *inode)
  812. {
  813. struct dnode_of_data dn;
  814. /* allocate inode page for new inode */
  815. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  816. /* caller should f2fs_put_page(page, 1); */
  817. return new_node_page(&dn, 0, NULL);
  818. }
  819. struct page *new_node_page(struct dnode_of_data *dn,
  820. unsigned int ofs, struct page *ipage)
  821. {
  822. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  823. struct node_info old_ni, new_ni;
  824. struct page *page;
  825. int err;
  826. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  827. return ERR_PTR(-EPERM);
  828. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  829. if (!page)
  830. return ERR_PTR(-ENOMEM);
  831. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  832. err = -ENOSPC;
  833. goto fail;
  834. }
  835. get_node_info(sbi, dn->nid, &old_ni);
  836. /* Reinitialize old_ni with new node page */
  837. f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
  838. new_ni = old_ni;
  839. new_ni.ino = dn->inode->i_ino;
  840. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  841. f2fs_wait_on_page_writeback(page, NODE);
  842. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  843. set_cold_node(dn->inode, page);
  844. SetPageUptodate(page);
  845. set_page_dirty(page);
  846. if (f2fs_has_xattr_block(ofs))
  847. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  848. dn->node_page = page;
  849. if (ipage)
  850. update_inode(dn->inode, ipage);
  851. else
  852. sync_inode_page(dn);
  853. if (ofs == 0)
  854. inc_valid_inode_count(sbi);
  855. return page;
  856. fail:
  857. clear_node_page_dirty(page);
  858. f2fs_put_page(page, 1);
  859. return ERR_PTR(err);
  860. }
  861. /*
  862. * Caller should do after getting the following values.
  863. * 0: f2fs_put_page(page, 0)
  864. * LOCKED_PAGE: f2fs_put_page(page, 1)
  865. * error: nothing
  866. */
  867. static int read_node_page(struct page *page, int rw)
  868. {
  869. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  870. struct node_info ni;
  871. struct f2fs_io_info fio = {
  872. .sbi = sbi,
  873. .type = NODE,
  874. .rw = rw,
  875. .page = page,
  876. .encrypted_page = NULL,
  877. };
  878. get_node_info(sbi, page->index, &ni);
  879. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  880. ClearPageUptodate(page);
  881. f2fs_put_page(page, 1);
  882. return -ENOENT;
  883. }
  884. if (PageUptodate(page))
  885. return LOCKED_PAGE;
  886. fio.blk_addr = ni.blk_addr;
  887. return f2fs_submit_page_bio(&fio);
  888. }
  889. /*
  890. * Readahead a node page
  891. */
  892. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  893. {
  894. struct page *apage;
  895. int err;
  896. apage = find_get_page(NODE_MAPPING(sbi), nid);
  897. if (apage && PageUptodate(apage)) {
  898. f2fs_put_page(apage, 0);
  899. return;
  900. }
  901. f2fs_put_page(apage, 0);
  902. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  903. if (!apage)
  904. return;
  905. err = read_node_page(apage, READA);
  906. if (err == 0)
  907. f2fs_put_page(apage, 0);
  908. else if (err == LOCKED_PAGE)
  909. f2fs_put_page(apage, 1);
  910. }
  911. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  912. {
  913. struct page *page;
  914. int err;
  915. repeat:
  916. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  917. if (!page)
  918. return ERR_PTR(-ENOMEM);
  919. err = read_node_page(page, READ_SYNC);
  920. if (err < 0)
  921. return ERR_PTR(err);
  922. else if (err != LOCKED_PAGE)
  923. lock_page(page);
  924. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  925. ClearPageUptodate(page);
  926. f2fs_put_page(page, 1);
  927. return ERR_PTR(-EIO);
  928. }
  929. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  930. f2fs_put_page(page, 1);
  931. goto repeat;
  932. }
  933. return page;
  934. }
  935. /*
  936. * Return a locked page for the desired node page.
  937. * And, readahead MAX_RA_NODE number of node pages.
  938. */
  939. struct page *get_node_page_ra(struct page *parent, int start)
  940. {
  941. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  942. struct blk_plug plug;
  943. struct page *page;
  944. int err, i, end;
  945. nid_t nid;
  946. /* First, try getting the desired direct node. */
  947. nid = get_nid(parent, start, false);
  948. if (!nid)
  949. return ERR_PTR(-ENOENT);
  950. repeat:
  951. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  952. if (!page)
  953. return ERR_PTR(-ENOMEM);
  954. err = read_node_page(page, READ_SYNC);
  955. if (err < 0)
  956. return ERR_PTR(err);
  957. else if (err == LOCKED_PAGE)
  958. goto page_hit;
  959. blk_start_plug(&plug);
  960. /* Then, try readahead for siblings of the desired node */
  961. end = start + MAX_RA_NODE;
  962. end = min(end, NIDS_PER_BLOCK);
  963. for (i = start + 1; i < end; i++) {
  964. nid = get_nid(parent, i, false);
  965. if (!nid)
  966. continue;
  967. ra_node_page(sbi, nid);
  968. }
  969. blk_finish_plug(&plug);
  970. lock_page(page);
  971. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  972. f2fs_put_page(page, 1);
  973. goto repeat;
  974. }
  975. page_hit:
  976. if (unlikely(!PageUptodate(page))) {
  977. f2fs_put_page(page, 1);
  978. return ERR_PTR(-EIO);
  979. }
  980. return page;
  981. }
  982. void sync_inode_page(struct dnode_of_data *dn)
  983. {
  984. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  985. update_inode(dn->inode, dn->node_page);
  986. } else if (dn->inode_page) {
  987. if (!dn->inode_page_locked)
  988. lock_page(dn->inode_page);
  989. update_inode(dn->inode, dn->inode_page);
  990. if (!dn->inode_page_locked)
  991. unlock_page(dn->inode_page);
  992. } else {
  993. update_inode_page(dn->inode);
  994. }
  995. }
  996. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  997. struct writeback_control *wbc)
  998. {
  999. pgoff_t index, end;
  1000. struct pagevec pvec;
  1001. int step = ino ? 2 : 0;
  1002. int nwritten = 0, wrote = 0;
  1003. pagevec_init(&pvec, 0);
  1004. next_step:
  1005. index = 0;
  1006. end = LONG_MAX;
  1007. while (index <= end) {
  1008. int i, nr_pages;
  1009. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1010. PAGECACHE_TAG_DIRTY,
  1011. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1012. if (nr_pages == 0)
  1013. break;
  1014. for (i = 0; i < nr_pages; i++) {
  1015. struct page *page = pvec.pages[i];
  1016. /*
  1017. * flushing sequence with step:
  1018. * 0. indirect nodes
  1019. * 1. dentry dnodes
  1020. * 2. file dnodes
  1021. */
  1022. if (step == 0 && IS_DNODE(page))
  1023. continue;
  1024. if (step == 1 && (!IS_DNODE(page) ||
  1025. is_cold_node(page)))
  1026. continue;
  1027. if (step == 2 && (!IS_DNODE(page) ||
  1028. !is_cold_node(page)))
  1029. continue;
  1030. /*
  1031. * If an fsync mode,
  1032. * we should not skip writing node pages.
  1033. */
  1034. if (ino && ino_of_node(page) == ino)
  1035. lock_page(page);
  1036. else if (!trylock_page(page))
  1037. continue;
  1038. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1039. continue_unlock:
  1040. unlock_page(page);
  1041. continue;
  1042. }
  1043. if (ino && ino_of_node(page) != ino)
  1044. goto continue_unlock;
  1045. if (!PageDirty(page)) {
  1046. /* someone wrote it for us */
  1047. goto continue_unlock;
  1048. }
  1049. if (!clear_page_dirty_for_io(page))
  1050. goto continue_unlock;
  1051. /* called by fsync() */
  1052. if (ino && IS_DNODE(page)) {
  1053. set_fsync_mark(page, 1);
  1054. if (IS_INODE(page))
  1055. set_dentry_mark(page,
  1056. need_dentry_mark(sbi, ino));
  1057. nwritten++;
  1058. } else {
  1059. set_fsync_mark(page, 0);
  1060. set_dentry_mark(page, 0);
  1061. }
  1062. if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
  1063. unlock_page(page);
  1064. else
  1065. wrote++;
  1066. if (--wbc->nr_to_write == 0)
  1067. break;
  1068. }
  1069. pagevec_release(&pvec);
  1070. cond_resched();
  1071. if (wbc->nr_to_write == 0) {
  1072. step = 2;
  1073. break;
  1074. }
  1075. }
  1076. if (step < 2) {
  1077. step++;
  1078. goto next_step;
  1079. }
  1080. if (wrote)
  1081. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1082. return nwritten;
  1083. }
  1084. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1085. {
  1086. pgoff_t index = 0, end = LONG_MAX;
  1087. struct pagevec pvec;
  1088. int ret2 = 0, ret = 0;
  1089. pagevec_init(&pvec, 0);
  1090. while (index <= end) {
  1091. int i, nr_pages;
  1092. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1093. PAGECACHE_TAG_WRITEBACK,
  1094. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1095. if (nr_pages == 0)
  1096. break;
  1097. for (i = 0; i < nr_pages; i++) {
  1098. struct page *page = pvec.pages[i];
  1099. /* until radix tree lookup accepts end_index */
  1100. if (unlikely(page->index > end))
  1101. continue;
  1102. if (ino && ino_of_node(page) == ino) {
  1103. f2fs_wait_on_page_writeback(page, NODE);
  1104. if (TestClearPageError(page))
  1105. ret = -EIO;
  1106. }
  1107. }
  1108. pagevec_release(&pvec);
  1109. cond_resched();
  1110. }
  1111. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1112. ret2 = -ENOSPC;
  1113. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1114. ret2 = -EIO;
  1115. if (!ret)
  1116. ret = ret2;
  1117. return ret;
  1118. }
  1119. static int f2fs_write_node_page(struct page *page,
  1120. struct writeback_control *wbc)
  1121. {
  1122. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1123. nid_t nid;
  1124. struct node_info ni;
  1125. struct f2fs_io_info fio = {
  1126. .sbi = sbi,
  1127. .type = NODE,
  1128. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1129. .page = page,
  1130. .encrypted_page = NULL,
  1131. };
  1132. trace_f2fs_writepage(page, NODE);
  1133. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1134. goto redirty_out;
  1135. if (unlikely(f2fs_cp_error(sbi)))
  1136. goto redirty_out;
  1137. f2fs_wait_on_page_writeback(page, NODE);
  1138. /* get old block addr of this node page */
  1139. nid = nid_of_node(page);
  1140. f2fs_bug_on(sbi, page->index != nid);
  1141. get_node_info(sbi, nid, &ni);
  1142. /* This page is already truncated */
  1143. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1144. ClearPageUptodate(page);
  1145. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1146. unlock_page(page);
  1147. return 0;
  1148. }
  1149. if (wbc->for_reclaim) {
  1150. if (!down_read_trylock(&sbi->node_write))
  1151. goto redirty_out;
  1152. } else {
  1153. down_read(&sbi->node_write);
  1154. }
  1155. set_page_writeback(page);
  1156. fio.blk_addr = ni.blk_addr;
  1157. write_node_page(nid, &fio);
  1158. set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
  1159. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1160. up_read(&sbi->node_write);
  1161. unlock_page(page);
  1162. if (wbc->for_reclaim)
  1163. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1164. return 0;
  1165. redirty_out:
  1166. redirty_page_for_writepage(wbc, page);
  1167. return AOP_WRITEPAGE_ACTIVATE;
  1168. }
  1169. static int f2fs_write_node_pages(struct address_space *mapping,
  1170. struct writeback_control *wbc)
  1171. {
  1172. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1173. long diff;
  1174. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1175. /* balancing f2fs's metadata in background */
  1176. f2fs_balance_fs_bg(sbi);
  1177. /* collect a number of dirty node pages and write together */
  1178. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1179. goto skip_write;
  1180. diff = nr_pages_to_write(sbi, NODE, wbc);
  1181. wbc->sync_mode = WB_SYNC_NONE;
  1182. sync_node_pages(sbi, 0, wbc);
  1183. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1184. return 0;
  1185. skip_write:
  1186. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1187. return 0;
  1188. }
  1189. static int f2fs_set_node_page_dirty(struct page *page)
  1190. {
  1191. trace_f2fs_set_page_dirty(page, NODE);
  1192. SetPageUptodate(page);
  1193. if (!PageDirty(page)) {
  1194. __set_page_dirty_nobuffers(page);
  1195. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1196. SetPagePrivate(page);
  1197. f2fs_trace_pid(page);
  1198. return 1;
  1199. }
  1200. return 0;
  1201. }
  1202. /*
  1203. * Structure of the f2fs node operations
  1204. */
  1205. const struct address_space_operations f2fs_node_aops = {
  1206. .writepage = f2fs_write_node_page,
  1207. .writepages = f2fs_write_node_pages,
  1208. .set_page_dirty = f2fs_set_node_page_dirty,
  1209. .invalidatepage = f2fs_invalidate_page,
  1210. .releasepage = f2fs_release_page,
  1211. };
  1212. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1213. nid_t n)
  1214. {
  1215. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1216. }
  1217. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1218. struct free_nid *i)
  1219. {
  1220. list_del(&i->list);
  1221. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1222. }
  1223. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1224. {
  1225. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1226. struct free_nid *i;
  1227. struct nat_entry *ne;
  1228. bool allocated = false;
  1229. if (!available_free_memory(sbi, FREE_NIDS))
  1230. return -1;
  1231. /* 0 nid should not be used */
  1232. if (unlikely(nid == 0))
  1233. return 0;
  1234. if (build) {
  1235. /* do not add allocated nids */
  1236. down_read(&nm_i->nat_tree_lock);
  1237. ne = __lookup_nat_cache(nm_i, nid);
  1238. if (ne &&
  1239. (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1240. nat_get_blkaddr(ne) != NULL_ADDR))
  1241. allocated = true;
  1242. up_read(&nm_i->nat_tree_lock);
  1243. if (allocated)
  1244. return 0;
  1245. }
  1246. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1247. i->nid = nid;
  1248. i->state = NID_NEW;
  1249. if (radix_tree_preload(GFP_NOFS)) {
  1250. kmem_cache_free(free_nid_slab, i);
  1251. return 0;
  1252. }
  1253. spin_lock(&nm_i->free_nid_list_lock);
  1254. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1255. spin_unlock(&nm_i->free_nid_list_lock);
  1256. radix_tree_preload_end();
  1257. kmem_cache_free(free_nid_slab, i);
  1258. return 0;
  1259. }
  1260. list_add_tail(&i->list, &nm_i->free_nid_list);
  1261. nm_i->fcnt++;
  1262. spin_unlock(&nm_i->free_nid_list_lock);
  1263. radix_tree_preload_end();
  1264. return 1;
  1265. }
  1266. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1267. {
  1268. struct free_nid *i;
  1269. bool need_free = false;
  1270. spin_lock(&nm_i->free_nid_list_lock);
  1271. i = __lookup_free_nid_list(nm_i, nid);
  1272. if (i && i->state == NID_NEW) {
  1273. __del_from_free_nid_list(nm_i, i);
  1274. nm_i->fcnt--;
  1275. need_free = true;
  1276. }
  1277. spin_unlock(&nm_i->free_nid_list_lock);
  1278. if (need_free)
  1279. kmem_cache_free(free_nid_slab, i);
  1280. }
  1281. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1282. struct page *nat_page, nid_t start_nid)
  1283. {
  1284. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1285. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1286. block_t blk_addr;
  1287. int i;
  1288. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1289. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1290. if (unlikely(start_nid >= nm_i->max_nid))
  1291. break;
  1292. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1293. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1294. if (blk_addr == NULL_ADDR) {
  1295. if (add_free_nid(sbi, start_nid, true) < 0)
  1296. break;
  1297. }
  1298. }
  1299. }
  1300. static void build_free_nids(struct f2fs_sb_info *sbi)
  1301. {
  1302. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1303. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1304. struct f2fs_summary_block *sum = curseg->sum_blk;
  1305. int i = 0;
  1306. nid_t nid = nm_i->next_scan_nid;
  1307. /* Enough entries */
  1308. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1309. return;
  1310. /* readahead nat pages to be scanned */
  1311. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1312. while (1) {
  1313. struct page *page = get_current_nat_page(sbi, nid);
  1314. scan_nat_page(sbi, page, nid);
  1315. f2fs_put_page(page, 1);
  1316. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1317. if (unlikely(nid >= nm_i->max_nid))
  1318. nid = 0;
  1319. if (i++ == FREE_NID_PAGES)
  1320. break;
  1321. }
  1322. /* go to the next free nat pages to find free nids abundantly */
  1323. nm_i->next_scan_nid = nid;
  1324. /* find free nids from current sum_pages */
  1325. mutex_lock(&curseg->curseg_mutex);
  1326. for (i = 0; i < nats_in_cursum(sum); i++) {
  1327. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1328. nid = le32_to_cpu(nid_in_journal(sum, i));
  1329. if (addr == NULL_ADDR)
  1330. add_free_nid(sbi, nid, true);
  1331. else
  1332. remove_free_nid(nm_i, nid);
  1333. }
  1334. mutex_unlock(&curseg->curseg_mutex);
  1335. }
  1336. /*
  1337. * If this function returns success, caller can obtain a new nid
  1338. * from second parameter of this function.
  1339. * The returned nid could be used ino as well as nid when inode is created.
  1340. */
  1341. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1342. {
  1343. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1344. struct free_nid *i = NULL;
  1345. retry:
  1346. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1347. return false;
  1348. spin_lock(&nm_i->free_nid_list_lock);
  1349. /* We should not use stale free nids created by build_free_nids */
  1350. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1351. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1352. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1353. if (i->state == NID_NEW)
  1354. break;
  1355. f2fs_bug_on(sbi, i->state != NID_NEW);
  1356. *nid = i->nid;
  1357. i->state = NID_ALLOC;
  1358. nm_i->fcnt--;
  1359. spin_unlock(&nm_i->free_nid_list_lock);
  1360. return true;
  1361. }
  1362. spin_unlock(&nm_i->free_nid_list_lock);
  1363. /* Let's scan nat pages and its caches to get free nids */
  1364. mutex_lock(&nm_i->build_lock);
  1365. build_free_nids(sbi);
  1366. mutex_unlock(&nm_i->build_lock);
  1367. goto retry;
  1368. }
  1369. /*
  1370. * alloc_nid() should be called prior to this function.
  1371. */
  1372. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1373. {
  1374. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1375. struct free_nid *i;
  1376. spin_lock(&nm_i->free_nid_list_lock);
  1377. i = __lookup_free_nid_list(nm_i, nid);
  1378. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1379. __del_from_free_nid_list(nm_i, i);
  1380. spin_unlock(&nm_i->free_nid_list_lock);
  1381. kmem_cache_free(free_nid_slab, i);
  1382. }
  1383. /*
  1384. * alloc_nid() should be called prior to this function.
  1385. */
  1386. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1387. {
  1388. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1389. struct free_nid *i;
  1390. bool need_free = false;
  1391. if (!nid)
  1392. return;
  1393. spin_lock(&nm_i->free_nid_list_lock);
  1394. i = __lookup_free_nid_list(nm_i, nid);
  1395. f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
  1396. if (!available_free_memory(sbi, FREE_NIDS)) {
  1397. __del_from_free_nid_list(nm_i, i);
  1398. need_free = true;
  1399. } else {
  1400. i->state = NID_NEW;
  1401. nm_i->fcnt++;
  1402. }
  1403. spin_unlock(&nm_i->free_nid_list_lock);
  1404. if (need_free)
  1405. kmem_cache_free(free_nid_slab, i);
  1406. }
  1407. void recover_inline_xattr(struct inode *inode, struct page *page)
  1408. {
  1409. void *src_addr, *dst_addr;
  1410. size_t inline_size;
  1411. struct page *ipage;
  1412. struct f2fs_inode *ri;
  1413. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1414. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1415. ri = F2FS_INODE(page);
  1416. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1417. clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
  1418. goto update_inode;
  1419. }
  1420. dst_addr = inline_xattr_addr(ipage);
  1421. src_addr = inline_xattr_addr(page);
  1422. inline_size = inline_xattr_size(inode);
  1423. f2fs_wait_on_page_writeback(ipage, NODE);
  1424. memcpy(dst_addr, src_addr, inline_size);
  1425. update_inode:
  1426. update_inode(inode, ipage);
  1427. f2fs_put_page(ipage, 1);
  1428. }
  1429. void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1430. {
  1431. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1432. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1433. nid_t new_xnid = nid_of_node(page);
  1434. struct node_info ni;
  1435. /* 1: invalidate the previous xattr nid */
  1436. if (!prev_xnid)
  1437. goto recover_xnid;
  1438. /* Deallocate node address */
  1439. get_node_info(sbi, prev_xnid, &ni);
  1440. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1441. invalidate_blocks(sbi, ni.blk_addr);
  1442. dec_valid_node_count(sbi, inode);
  1443. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1444. recover_xnid:
  1445. /* 2: allocate new xattr nid */
  1446. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1447. f2fs_bug_on(sbi, 1);
  1448. remove_free_nid(NM_I(sbi), new_xnid);
  1449. get_node_info(sbi, new_xnid, &ni);
  1450. ni.ino = inode->i_ino;
  1451. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1452. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1453. /* 3: update xattr blkaddr */
  1454. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1455. set_node_addr(sbi, &ni, blkaddr, false);
  1456. update_inode_page(inode);
  1457. }
  1458. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1459. {
  1460. struct f2fs_inode *src, *dst;
  1461. nid_t ino = ino_of_node(page);
  1462. struct node_info old_ni, new_ni;
  1463. struct page *ipage;
  1464. get_node_info(sbi, ino, &old_ni);
  1465. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1466. return -EINVAL;
  1467. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1468. if (!ipage)
  1469. return -ENOMEM;
  1470. /* Should not use this inode from free nid list */
  1471. remove_free_nid(NM_I(sbi), ino);
  1472. SetPageUptodate(ipage);
  1473. fill_node_footer(ipage, ino, ino, 0, true);
  1474. src = F2FS_INODE(page);
  1475. dst = F2FS_INODE(ipage);
  1476. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1477. dst->i_size = 0;
  1478. dst->i_blocks = cpu_to_le64(1);
  1479. dst->i_links = cpu_to_le32(1);
  1480. dst->i_xattr_nid = 0;
  1481. dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
  1482. new_ni = old_ni;
  1483. new_ni.ino = ino;
  1484. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1485. WARN_ON(1);
  1486. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1487. inc_valid_inode_count(sbi);
  1488. set_page_dirty(ipage);
  1489. f2fs_put_page(ipage, 1);
  1490. return 0;
  1491. }
  1492. int restore_node_summary(struct f2fs_sb_info *sbi,
  1493. unsigned int segno, struct f2fs_summary_block *sum)
  1494. {
  1495. struct f2fs_node *rn;
  1496. struct f2fs_summary *sum_entry;
  1497. block_t addr;
  1498. int bio_blocks = MAX_BIO_BLOCKS(sbi);
  1499. int i, idx, last_offset, nrpages;
  1500. /* scan the node segment */
  1501. last_offset = sbi->blocks_per_seg;
  1502. addr = START_BLOCK(sbi, segno);
  1503. sum_entry = &sum->entries[0];
  1504. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  1505. nrpages = min(last_offset - i, bio_blocks);
  1506. /* readahead node pages */
  1507. ra_meta_pages(sbi, addr, nrpages, META_POR);
  1508. for (idx = addr; idx < addr + nrpages; idx++) {
  1509. struct page *page = get_meta_page(sbi, idx);
  1510. rn = F2FS_NODE(page);
  1511. sum_entry->nid = rn->footer.nid;
  1512. sum_entry->version = 0;
  1513. sum_entry->ofs_in_node = 0;
  1514. sum_entry++;
  1515. f2fs_put_page(page, 1);
  1516. }
  1517. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  1518. addr + nrpages);
  1519. }
  1520. return 0;
  1521. }
  1522. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  1523. {
  1524. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1525. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1526. struct f2fs_summary_block *sum = curseg->sum_blk;
  1527. int i;
  1528. mutex_lock(&curseg->curseg_mutex);
  1529. for (i = 0; i < nats_in_cursum(sum); i++) {
  1530. struct nat_entry *ne;
  1531. struct f2fs_nat_entry raw_ne;
  1532. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1533. raw_ne = nat_in_journal(sum, i);
  1534. down_write(&nm_i->nat_tree_lock);
  1535. ne = __lookup_nat_cache(nm_i, nid);
  1536. if (!ne) {
  1537. ne = grab_nat_entry(nm_i, nid);
  1538. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1539. }
  1540. __set_nat_cache_dirty(nm_i, ne);
  1541. up_write(&nm_i->nat_tree_lock);
  1542. }
  1543. update_nats_in_cursum(sum, -i);
  1544. mutex_unlock(&curseg->curseg_mutex);
  1545. }
  1546. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  1547. struct list_head *head, int max)
  1548. {
  1549. struct nat_entry_set *cur;
  1550. if (nes->entry_cnt >= max)
  1551. goto add_out;
  1552. list_for_each_entry(cur, head, set_list) {
  1553. if (cur->entry_cnt >= nes->entry_cnt) {
  1554. list_add(&nes->set_list, cur->set_list.prev);
  1555. return;
  1556. }
  1557. }
  1558. add_out:
  1559. list_add_tail(&nes->set_list, head);
  1560. }
  1561. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  1562. struct nat_entry_set *set)
  1563. {
  1564. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1565. struct f2fs_summary_block *sum = curseg->sum_blk;
  1566. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  1567. bool to_journal = true;
  1568. struct f2fs_nat_block *nat_blk;
  1569. struct nat_entry *ne, *cur;
  1570. struct page *page = NULL;
  1571. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1572. /*
  1573. * there are two steps to flush nat entries:
  1574. * #1, flush nat entries to journal in current hot data summary block.
  1575. * #2, flush nat entries to nat page.
  1576. */
  1577. if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
  1578. to_journal = false;
  1579. if (to_journal) {
  1580. mutex_lock(&curseg->curseg_mutex);
  1581. } else {
  1582. page = get_next_nat_page(sbi, start_nid);
  1583. nat_blk = page_address(page);
  1584. f2fs_bug_on(sbi, !nat_blk);
  1585. }
  1586. /* flush dirty nats in nat entry set */
  1587. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  1588. struct f2fs_nat_entry *raw_ne;
  1589. nid_t nid = nat_get_nid(ne);
  1590. int offset;
  1591. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1592. continue;
  1593. if (to_journal) {
  1594. offset = lookup_journal_in_cursum(sum,
  1595. NAT_JOURNAL, nid, 1);
  1596. f2fs_bug_on(sbi, offset < 0);
  1597. raw_ne = &nat_in_journal(sum, offset);
  1598. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1599. } else {
  1600. raw_ne = &nat_blk->entries[nid - start_nid];
  1601. }
  1602. raw_nat_from_node_info(raw_ne, &ne->ni);
  1603. down_write(&NM_I(sbi)->nat_tree_lock);
  1604. nat_reset_flag(ne);
  1605. __clear_nat_cache_dirty(NM_I(sbi), ne);
  1606. up_write(&NM_I(sbi)->nat_tree_lock);
  1607. if (nat_get_blkaddr(ne) == NULL_ADDR)
  1608. add_free_nid(sbi, nid, false);
  1609. }
  1610. if (to_journal)
  1611. mutex_unlock(&curseg->curseg_mutex);
  1612. else
  1613. f2fs_put_page(page, 1);
  1614. f2fs_bug_on(sbi, set->entry_cnt);
  1615. down_write(&nm_i->nat_tree_lock);
  1616. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  1617. up_write(&nm_i->nat_tree_lock);
  1618. kmem_cache_free(nat_entry_set_slab, set);
  1619. }
  1620. /*
  1621. * This function is called during the checkpointing process.
  1622. */
  1623. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1624. {
  1625. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1626. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1627. struct f2fs_summary_block *sum = curseg->sum_blk;
  1628. struct nat_entry_set *setvec[SETVEC_SIZE];
  1629. struct nat_entry_set *set, *tmp;
  1630. unsigned int found;
  1631. nid_t set_idx = 0;
  1632. LIST_HEAD(sets);
  1633. if (!nm_i->dirty_nat_cnt)
  1634. return;
  1635. /*
  1636. * if there are no enough space in journal to store dirty nat
  1637. * entries, remove all entries from journal and merge them
  1638. * into nat entry set.
  1639. */
  1640. if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  1641. remove_nats_in_journal(sbi);
  1642. down_write(&nm_i->nat_tree_lock);
  1643. while ((found = __gang_lookup_nat_set(nm_i,
  1644. set_idx, SETVEC_SIZE, setvec))) {
  1645. unsigned idx;
  1646. set_idx = setvec[found - 1]->set + 1;
  1647. for (idx = 0; idx < found; idx++)
  1648. __adjust_nat_entry_set(setvec[idx], &sets,
  1649. MAX_NAT_JENTRIES(sum));
  1650. }
  1651. up_write(&nm_i->nat_tree_lock);
  1652. /* flush dirty nats in nat entry set */
  1653. list_for_each_entry_safe(set, tmp, &sets, set_list)
  1654. __flush_nat_entry_set(sbi, set);
  1655. f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
  1656. }
  1657. static int init_node_manager(struct f2fs_sb_info *sbi)
  1658. {
  1659. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1660. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1661. unsigned char *version_bitmap;
  1662. unsigned int nat_segs, nat_blocks;
  1663. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1664. /* segment_count_nat includes pair segment so divide to 2. */
  1665. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1666. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1667. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1668. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1669. nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
  1670. nm_i->fcnt = 0;
  1671. nm_i->nat_cnt = 0;
  1672. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1673. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1674. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1675. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  1676. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  1677. INIT_LIST_HEAD(&nm_i->nat_entries);
  1678. mutex_init(&nm_i->build_lock);
  1679. spin_lock_init(&nm_i->free_nid_list_lock);
  1680. init_rwsem(&nm_i->nat_tree_lock);
  1681. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1682. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1683. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1684. if (!version_bitmap)
  1685. return -EFAULT;
  1686. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1687. GFP_KERNEL);
  1688. if (!nm_i->nat_bitmap)
  1689. return -ENOMEM;
  1690. return 0;
  1691. }
  1692. int build_node_manager(struct f2fs_sb_info *sbi)
  1693. {
  1694. int err;
  1695. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1696. if (!sbi->nm_info)
  1697. return -ENOMEM;
  1698. err = init_node_manager(sbi);
  1699. if (err)
  1700. return err;
  1701. build_free_nids(sbi);
  1702. return 0;
  1703. }
  1704. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1705. {
  1706. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1707. struct free_nid *i, *next_i;
  1708. struct nat_entry *natvec[NATVEC_SIZE];
  1709. struct nat_entry_set *setvec[SETVEC_SIZE];
  1710. nid_t nid = 0;
  1711. unsigned int found;
  1712. if (!nm_i)
  1713. return;
  1714. /* destroy free nid list */
  1715. spin_lock(&nm_i->free_nid_list_lock);
  1716. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1717. f2fs_bug_on(sbi, i->state == NID_ALLOC);
  1718. __del_from_free_nid_list(nm_i, i);
  1719. nm_i->fcnt--;
  1720. spin_unlock(&nm_i->free_nid_list_lock);
  1721. kmem_cache_free(free_nid_slab, i);
  1722. spin_lock(&nm_i->free_nid_list_lock);
  1723. }
  1724. f2fs_bug_on(sbi, nm_i->fcnt);
  1725. spin_unlock(&nm_i->free_nid_list_lock);
  1726. /* destroy nat cache */
  1727. down_write(&nm_i->nat_tree_lock);
  1728. while ((found = __gang_lookup_nat_cache(nm_i,
  1729. nid, NATVEC_SIZE, natvec))) {
  1730. unsigned idx;
  1731. nid = nat_get_nid(natvec[found - 1]) + 1;
  1732. for (idx = 0; idx < found; idx++)
  1733. __del_from_nat_cache(nm_i, natvec[idx]);
  1734. }
  1735. f2fs_bug_on(sbi, nm_i->nat_cnt);
  1736. /* destroy nat set cache */
  1737. nid = 0;
  1738. while ((found = __gang_lookup_nat_set(nm_i,
  1739. nid, SETVEC_SIZE, setvec))) {
  1740. unsigned idx;
  1741. nid = setvec[found - 1]->set + 1;
  1742. for (idx = 0; idx < found; idx++) {
  1743. /* entry_cnt is not zero, when cp_error was occurred */
  1744. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  1745. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  1746. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  1747. }
  1748. }
  1749. up_write(&nm_i->nat_tree_lock);
  1750. kfree(nm_i->nat_bitmap);
  1751. sbi->nm_info = NULL;
  1752. kfree(nm_i);
  1753. }
  1754. int __init create_node_manager_caches(void)
  1755. {
  1756. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1757. sizeof(struct nat_entry));
  1758. if (!nat_entry_slab)
  1759. goto fail;
  1760. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1761. sizeof(struct free_nid));
  1762. if (!free_nid_slab)
  1763. goto destroy_nat_entry;
  1764. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  1765. sizeof(struct nat_entry_set));
  1766. if (!nat_entry_set_slab)
  1767. goto destroy_free_nid;
  1768. return 0;
  1769. destroy_free_nid:
  1770. kmem_cache_destroy(free_nid_slab);
  1771. destroy_nat_entry:
  1772. kmem_cache_destroy(nat_entry_slab);
  1773. fail:
  1774. return -ENOMEM;
  1775. }
  1776. void destroy_node_manager_caches(void)
  1777. {
  1778. kmem_cache_destroy(nat_entry_set_slab);
  1779. kmem_cache_destroy(free_nid_slab);
  1780. kmem_cache_destroy(nat_entry_slab);
  1781. }