file.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include <linux/random.h>
  24. #include "f2fs.h"
  25. #include "node.h"
  26. #include "segment.h"
  27. #include "xattr.h"
  28. #include "acl.h"
  29. #include "trace.h"
  30. #include <trace/events/f2fs.h>
  31. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  32. struct vm_fault *vmf)
  33. {
  34. struct page *page = vmf->page;
  35. struct inode *inode = file_inode(vma->vm_file);
  36. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  37. struct dnode_of_data dn;
  38. int err;
  39. f2fs_balance_fs(sbi);
  40. sb_start_pagefault(inode->i_sb);
  41. f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  42. /* block allocation */
  43. f2fs_lock_op(sbi);
  44. set_new_dnode(&dn, inode, NULL, NULL, 0);
  45. err = f2fs_reserve_block(&dn, page->index);
  46. if (err) {
  47. f2fs_unlock_op(sbi);
  48. goto out;
  49. }
  50. f2fs_put_dnode(&dn);
  51. f2fs_unlock_op(sbi);
  52. file_update_time(vma->vm_file);
  53. lock_page(page);
  54. if (unlikely(page->mapping != inode->i_mapping ||
  55. page_offset(page) > i_size_read(inode) ||
  56. !PageUptodate(page))) {
  57. unlock_page(page);
  58. err = -EFAULT;
  59. goto out;
  60. }
  61. /*
  62. * check to see if the page is mapped already (no holes)
  63. */
  64. if (PageMappedToDisk(page))
  65. goto mapped;
  66. /* page is wholly or partially inside EOF */
  67. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  68. unsigned offset;
  69. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  70. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  71. }
  72. set_page_dirty(page);
  73. SetPageUptodate(page);
  74. trace_f2fs_vm_page_mkwrite(page, DATA);
  75. mapped:
  76. /* fill the page */
  77. f2fs_wait_on_page_writeback(page, DATA);
  78. out:
  79. sb_end_pagefault(inode->i_sb);
  80. return block_page_mkwrite_return(err);
  81. }
  82. static const struct vm_operations_struct f2fs_file_vm_ops = {
  83. .fault = filemap_fault,
  84. .map_pages = filemap_map_pages,
  85. .page_mkwrite = f2fs_vm_page_mkwrite,
  86. };
  87. static int get_parent_ino(struct inode *inode, nid_t *pino)
  88. {
  89. struct dentry *dentry;
  90. inode = igrab(inode);
  91. dentry = d_find_any_alias(inode);
  92. iput(inode);
  93. if (!dentry)
  94. return 0;
  95. if (update_dent_inode(inode, inode, &dentry->d_name)) {
  96. dput(dentry);
  97. return 0;
  98. }
  99. *pino = parent_ino(dentry);
  100. dput(dentry);
  101. return 1;
  102. }
  103. static inline bool need_do_checkpoint(struct inode *inode)
  104. {
  105. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  106. bool need_cp = false;
  107. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  108. need_cp = true;
  109. else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
  110. need_cp = true;
  111. else if (file_wrong_pino(inode))
  112. need_cp = true;
  113. else if (!space_for_roll_forward(sbi))
  114. need_cp = true;
  115. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  116. need_cp = true;
  117. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  118. need_cp = true;
  119. else if (test_opt(sbi, FASTBOOT))
  120. need_cp = true;
  121. else if (sbi->active_logs == 2)
  122. need_cp = true;
  123. return need_cp;
  124. }
  125. static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
  126. {
  127. struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
  128. bool ret = false;
  129. /* But we need to avoid that there are some inode updates */
  130. if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
  131. ret = true;
  132. f2fs_put_page(i, 0);
  133. return ret;
  134. }
  135. static void try_to_fix_pino(struct inode *inode)
  136. {
  137. struct f2fs_inode_info *fi = F2FS_I(inode);
  138. nid_t pino;
  139. down_write(&fi->i_sem);
  140. fi->xattr_ver = 0;
  141. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  142. get_parent_ino(inode, &pino)) {
  143. fi->i_pino = pino;
  144. file_got_pino(inode);
  145. up_write(&fi->i_sem);
  146. mark_inode_dirty_sync(inode);
  147. f2fs_write_inode(inode, NULL);
  148. } else {
  149. up_write(&fi->i_sem);
  150. }
  151. }
  152. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  153. {
  154. struct inode *inode = file->f_mapping->host;
  155. struct f2fs_inode_info *fi = F2FS_I(inode);
  156. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  157. nid_t ino = inode->i_ino;
  158. int ret = 0;
  159. bool need_cp = false;
  160. struct writeback_control wbc = {
  161. .sync_mode = WB_SYNC_ALL,
  162. .nr_to_write = LONG_MAX,
  163. .for_reclaim = 0,
  164. };
  165. if (unlikely(f2fs_readonly(inode->i_sb)))
  166. return 0;
  167. trace_f2fs_sync_file_enter(inode);
  168. /* if fdatasync is triggered, let's do in-place-update */
  169. if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
  170. set_inode_flag(fi, FI_NEED_IPU);
  171. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  172. clear_inode_flag(fi, FI_NEED_IPU);
  173. if (ret) {
  174. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  175. return ret;
  176. }
  177. /* if the inode is dirty, let's recover all the time */
  178. if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
  179. update_inode_page(inode);
  180. goto go_write;
  181. }
  182. /*
  183. * if there is no written data, don't waste time to write recovery info.
  184. */
  185. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  186. !exist_written_data(sbi, ino, APPEND_INO)) {
  187. /* it may call write_inode just prior to fsync */
  188. if (need_inode_page_update(sbi, ino))
  189. goto go_write;
  190. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  191. exist_written_data(sbi, ino, UPDATE_INO))
  192. goto flush_out;
  193. goto out;
  194. }
  195. go_write:
  196. /* guarantee free sections for fsync */
  197. f2fs_balance_fs(sbi);
  198. /*
  199. * Both of fdatasync() and fsync() are able to be recovered from
  200. * sudden-power-off.
  201. */
  202. down_read(&fi->i_sem);
  203. need_cp = need_do_checkpoint(inode);
  204. up_read(&fi->i_sem);
  205. if (need_cp) {
  206. /* all the dirty node pages should be flushed for POR */
  207. ret = f2fs_sync_fs(inode->i_sb, 1);
  208. /*
  209. * We've secured consistency through sync_fs. Following pino
  210. * will be used only for fsynced inodes after checkpoint.
  211. */
  212. try_to_fix_pino(inode);
  213. clear_inode_flag(fi, FI_APPEND_WRITE);
  214. clear_inode_flag(fi, FI_UPDATE_WRITE);
  215. goto out;
  216. }
  217. sync_nodes:
  218. sync_node_pages(sbi, ino, &wbc);
  219. /* if cp_error was enabled, we should avoid infinite loop */
  220. if (unlikely(f2fs_cp_error(sbi)))
  221. goto out;
  222. if (need_inode_block_update(sbi, ino)) {
  223. mark_inode_dirty_sync(inode);
  224. f2fs_write_inode(inode, NULL);
  225. goto sync_nodes;
  226. }
  227. ret = wait_on_node_pages_writeback(sbi, ino);
  228. if (ret)
  229. goto out;
  230. /* once recovery info is written, don't need to tack this */
  231. remove_dirty_inode(sbi, ino, APPEND_INO);
  232. clear_inode_flag(fi, FI_APPEND_WRITE);
  233. flush_out:
  234. remove_dirty_inode(sbi, ino, UPDATE_INO);
  235. clear_inode_flag(fi, FI_UPDATE_WRITE);
  236. ret = f2fs_issue_flush(sbi);
  237. out:
  238. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  239. f2fs_trace_ios(NULL, 1);
  240. return ret;
  241. }
  242. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  243. pgoff_t pgofs, int whence)
  244. {
  245. struct pagevec pvec;
  246. int nr_pages;
  247. if (whence != SEEK_DATA)
  248. return 0;
  249. /* find first dirty page index */
  250. pagevec_init(&pvec, 0);
  251. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  252. PAGECACHE_TAG_DIRTY, 1);
  253. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  254. pagevec_release(&pvec);
  255. return pgofs;
  256. }
  257. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  258. int whence)
  259. {
  260. switch (whence) {
  261. case SEEK_DATA:
  262. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  263. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  264. return true;
  265. break;
  266. case SEEK_HOLE:
  267. if (blkaddr == NULL_ADDR)
  268. return true;
  269. break;
  270. }
  271. return false;
  272. }
  273. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  274. {
  275. struct inode *inode = file->f_mapping->host;
  276. loff_t maxbytes = inode->i_sb->s_maxbytes;
  277. struct dnode_of_data dn;
  278. pgoff_t pgofs, end_offset, dirty;
  279. loff_t data_ofs = offset;
  280. loff_t isize;
  281. int err = 0;
  282. mutex_lock(&inode->i_mutex);
  283. isize = i_size_read(inode);
  284. if (offset >= isize)
  285. goto fail;
  286. /* handle inline data case */
  287. if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
  288. if (whence == SEEK_HOLE)
  289. data_ofs = isize;
  290. goto found;
  291. }
  292. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  293. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  294. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  295. set_new_dnode(&dn, inode, NULL, NULL, 0);
  296. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  297. if (err && err != -ENOENT) {
  298. goto fail;
  299. } else if (err == -ENOENT) {
  300. /* direct node does not exists */
  301. if (whence == SEEK_DATA) {
  302. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  303. F2FS_I(inode));
  304. continue;
  305. } else {
  306. goto found;
  307. }
  308. }
  309. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  310. /* find data/hole in dnode block */
  311. for (; dn.ofs_in_node < end_offset;
  312. dn.ofs_in_node++, pgofs++,
  313. data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
  314. block_t blkaddr;
  315. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  316. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  317. f2fs_put_dnode(&dn);
  318. goto found;
  319. }
  320. }
  321. f2fs_put_dnode(&dn);
  322. }
  323. if (whence == SEEK_DATA)
  324. goto fail;
  325. found:
  326. if (whence == SEEK_HOLE && data_ofs > isize)
  327. data_ofs = isize;
  328. mutex_unlock(&inode->i_mutex);
  329. return vfs_setpos(file, data_ofs, maxbytes);
  330. fail:
  331. mutex_unlock(&inode->i_mutex);
  332. return -ENXIO;
  333. }
  334. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  335. {
  336. struct inode *inode = file->f_mapping->host;
  337. loff_t maxbytes = inode->i_sb->s_maxbytes;
  338. switch (whence) {
  339. case SEEK_SET:
  340. case SEEK_CUR:
  341. case SEEK_END:
  342. return generic_file_llseek_size(file, offset, whence,
  343. maxbytes, i_size_read(inode));
  344. case SEEK_DATA:
  345. case SEEK_HOLE:
  346. if (offset < 0)
  347. return -ENXIO;
  348. return f2fs_seek_block(file, offset, whence);
  349. }
  350. return -EINVAL;
  351. }
  352. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  353. {
  354. struct inode *inode = file_inode(file);
  355. if (f2fs_encrypted_inode(inode)) {
  356. int err = f2fs_get_encryption_info(inode);
  357. if (err)
  358. return 0;
  359. }
  360. /* we don't need to use inline_data strictly */
  361. if (f2fs_has_inline_data(inode)) {
  362. int err = f2fs_convert_inline_inode(inode);
  363. if (err)
  364. return err;
  365. }
  366. file_accessed(file);
  367. vma->vm_ops = &f2fs_file_vm_ops;
  368. return 0;
  369. }
  370. static int f2fs_file_open(struct inode *inode, struct file *filp)
  371. {
  372. int ret = generic_file_open(inode, filp);
  373. if (!ret && f2fs_encrypted_inode(inode)) {
  374. ret = f2fs_get_encryption_info(inode);
  375. if (ret)
  376. ret = -EACCES;
  377. }
  378. return ret;
  379. }
  380. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  381. {
  382. int nr_free = 0, ofs = dn->ofs_in_node;
  383. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  384. struct f2fs_node *raw_node;
  385. __le32 *addr;
  386. raw_node = F2FS_NODE(dn->node_page);
  387. addr = blkaddr_in_node(raw_node) + ofs;
  388. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  389. block_t blkaddr = le32_to_cpu(*addr);
  390. if (blkaddr == NULL_ADDR)
  391. continue;
  392. dn->data_blkaddr = NULL_ADDR;
  393. set_data_blkaddr(dn);
  394. f2fs_update_extent_cache(dn);
  395. invalidate_blocks(sbi, blkaddr);
  396. if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
  397. clear_inode_flag(F2FS_I(dn->inode),
  398. FI_FIRST_BLOCK_WRITTEN);
  399. nr_free++;
  400. }
  401. if (nr_free) {
  402. dec_valid_block_count(sbi, dn->inode, nr_free);
  403. set_page_dirty(dn->node_page);
  404. sync_inode_page(dn);
  405. }
  406. dn->ofs_in_node = ofs;
  407. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  408. dn->ofs_in_node, nr_free);
  409. return nr_free;
  410. }
  411. void truncate_data_blocks(struct dnode_of_data *dn)
  412. {
  413. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  414. }
  415. static int truncate_partial_data_page(struct inode *inode, u64 from,
  416. bool cache_only)
  417. {
  418. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  419. pgoff_t index = from >> PAGE_CACHE_SHIFT;
  420. struct address_space *mapping = inode->i_mapping;
  421. struct page *page;
  422. if (!offset && !cache_only)
  423. return 0;
  424. if (cache_only) {
  425. page = grab_cache_page(mapping, index);
  426. if (page && PageUptodate(page))
  427. goto truncate_out;
  428. f2fs_put_page(page, 1);
  429. return 0;
  430. }
  431. page = get_lock_data_page(inode, index);
  432. if (IS_ERR(page))
  433. return 0;
  434. truncate_out:
  435. f2fs_wait_on_page_writeback(page, DATA);
  436. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  437. if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
  438. set_page_dirty(page);
  439. f2fs_put_page(page, 1);
  440. return 0;
  441. }
  442. int truncate_blocks(struct inode *inode, u64 from, bool lock)
  443. {
  444. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  445. unsigned int blocksize = inode->i_sb->s_blocksize;
  446. struct dnode_of_data dn;
  447. pgoff_t free_from;
  448. int count = 0, err = 0;
  449. struct page *ipage;
  450. bool truncate_page = false;
  451. trace_f2fs_truncate_blocks_enter(inode, from);
  452. free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
  453. if (lock)
  454. f2fs_lock_op(sbi);
  455. ipage = get_node_page(sbi, inode->i_ino);
  456. if (IS_ERR(ipage)) {
  457. err = PTR_ERR(ipage);
  458. goto out;
  459. }
  460. if (f2fs_has_inline_data(inode)) {
  461. if (truncate_inline_inode(ipage, from))
  462. set_page_dirty(ipage);
  463. f2fs_put_page(ipage, 1);
  464. truncate_page = true;
  465. goto out;
  466. }
  467. set_new_dnode(&dn, inode, ipage, NULL, 0);
  468. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  469. if (err) {
  470. if (err == -ENOENT)
  471. goto free_next;
  472. goto out;
  473. }
  474. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  475. count -= dn.ofs_in_node;
  476. f2fs_bug_on(sbi, count < 0);
  477. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  478. truncate_data_blocks_range(&dn, count);
  479. free_from += count;
  480. }
  481. f2fs_put_dnode(&dn);
  482. free_next:
  483. err = truncate_inode_blocks(inode, free_from);
  484. out:
  485. if (lock)
  486. f2fs_unlock_op(sbi);
  487. /* lastly zero out the first data page */
  488. if (!err)
  489. err = truncate_partial_data_page(inode, from, truncate_page);
  490. trace_f2fs_truncate_blocks_exit(inode, err);
  491. return err;
  492. }
  493. void f2fs_truncate(struct inode *inode)
  494. {
  495. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  496. S_ISLNK(inode->i_mode)))
  497. return;
  498. trace_f2fs_truncate(inode);
  499. /* we should check inline_data size */
  500. if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
  501. if (f2fs_convert_inline_inode(inode))
  502. return;
  503. }
  504. if (!truncate_blocks(inode, i_size_read(inode), true)) {
  505. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  506. mark_inode_dirty(inode);
  507. }
  508. }
  509. int f2fs_getattr(struct vfsmount *mnt,
  510. struct dentry *dentry, struct kstat *stat)
  511. {
  512. struct inode *inode = d_inode(dentry);
  513. generic_fillattr(inode, stat);
  514. stat->blocks <<= 3;
  515. return 0;
  516. }
  517. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  518. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  519. {
  520. struct f2fs_inode_info *fi = F2FS_I(inode);
  521. unsigned int ia_valid = attr->ia_valid;
  522. if (ia_valid & ATTR_UID)
  523. inode->i_uid = attr->ia_uid;
  524. if (ia_valid & ATTR_GID)
  525. inode->i_gid = attr->ia_gid;
  526. if (ia_valid & ATTR_ATIME)
  527. inode->i_atime = timespec_trunc(attr->ia_atime,
  528. inode->i_sb->s_time_gran);
  529. if (ia_valid & ATTR_MTIME)
  530. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  531. inode->i_sb->s_time_gran);
  532. if (ia_valid & ATTR_CTIME)
  533. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  534. inode->i_sb->s_time_gran);
  535. if (ia_valid & ATTR_MODE) {
  536. umode_t mode = attr->ia_mode;
  537. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  538. mode &= ~S_ISGID;
  539. set_acl_inode(fi, mode);
  540. }
  541. }
  542. #else
  543. #define __setattr_copy setattr_copy
  544. #endif
  545. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  546. {
  547. struct inode *inode = d_inode(dentry);
  548. struct f2fs_inode_info *fi = F2FS_I(inode);
  549. int err;
  550. err = inode_change_ok(inode, attr);
  551. if (err)
  552. return err;
  553. if (attr->ia_valid & ATTR_SIZE) {
  554. if (f2fs_encrypted_inode(inode) &&
  555. f2fs_get_encryption_info(inode))
  556. return -EACCES;
  557. if (attr->ia_size <= i_size_read(inode)) {
  558. truncate_setsize(inode, attr->ia_size);
  559. f2fs_truncate(inode);
  560. f2fs_balance_fs(F2FS_I_SB(inode));
  561. } else {
  562. /*
  563. * do not trim all blocks after i_size if target size is
  564. * larger than i_size.
  565. */
  566. truncate_setsize(inode, attr->ia_size);
  567. }
  568. }
  569. __setattr_copy(inode, attr);
  570. if (attr->ia_valid & ATTR_MODE) {
  571. err = posix_acl_chmod(inode, get_inode_mode(inode));
  572. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  573. inode->i_mode = fi->i_acl_mode;
  574. clear_inode_flag(fi, FI_ACL_MODE);
  575. }
  576. }
  577. mark_inode_dirty(inode);
  578. return err;
  579. }
  580. const struct inode_operations f2fs_file_inode_operations = {
  581. .getattr = f2fs_getattr,
  582. .setattr = f2fs_setattr,
  583. .get_acl = f2fs_get_acl,
  584. .set_acl = f2fs_set_acl,
  585. #ifdef CONFIG_F2FS_FS_XATTR
  586. .setxattr = generic_setxattr,
  587. .getxattr = generic_getxattr,
  588. .listxattr = f2fs_listxattr,
  589. .removexattr = generic_removexattr,
  590. #endif
  591. .fiemap = f2fs_fiemap,
  592. };
  593. static void fill_zero(struct inode *inode, pgoff_t index,
  594. loff_t start, loff_t len)
  595. {
  596. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  597. struct page *page;
  598. if (!len)
  599. return;
  600. f2fs_balance_fs(sbi);
  601. f2fs_lock_op(sbi);
  602. page = get_new_data_page(inode, NULL, index, false);
  603. f2fs_unlock_op(sbi);
  604. if (!IS_ERR(page)) {
  605. f2fs_wait_on_page_writeback(page, DATA);
  606. zero_user(page, start, len);
  607. set_page_dirty(page);
  608. f2fs_put_page(page, 1);
  609. }
  610. }
  611. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  612. {
  613. pgoff_t index;
  614. int err;
  615. for (index = pg_start; index < pg_end; index++) {
  616. struct dnode_of_data dn;
  617. set_new_dnode(&dn, inode, NULL, NULL, 0);
  618. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  619. if (err) {
  620. if (err == -ENOENT)
  621. continue;
  622. return err;
  623. }
  624. if (dn.data_blkaddr != NULL_ADDR)
  625. truncate_data_blocks_range(&dn, 1);
  626. f2fs_put_dnode(&dn);
  627. }
  628. return 0;
  629. }
  630. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  631. {
  632. pgoff_t pg_start, pg_end;
  633. loff_t off_start, off_end;
  634. int ret = 0;
  635. if (!S_ISREG(inode->i_mode))
  636. return -EOPNOTSUPP;
  637. if (f2fs_has_inline_data(inode)) {
  638. ret = f2fs_convert_inline_inode(inode);
  639. if (ret)
  640. return ret;
  641. }
  642. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  643. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  644. off_start = offset & (PAGE_CACHE_SIZE - 1);
  645. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  646. if (pg_start == pg_end) {
  647. fill_zero(inode, pg_start, off_start,
  648. off_end - off_start);
  649. } else {
  650. if (off_start)
  651. fill_zero(inode, pg_start++, off_start,
  652. PAGE_CACHE_SIZE - off_start);
  653. if (off_end)
  654. fill_zero(inode, pg_end, 0, off_end);
  655. if (pg_start < pg_end) {
  656. struct address_space *mapping = inode->i_mapping;
  657. loff_t blk_start, blk_end;
  658. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  659. f2fs_balance_fs(sbi);
  660. blk_start = pg_start << PAGE_CACHE_SHIFT;
  661. blk_end = pg_end << PAGE_CACHE_SHIFT;
  662. truncate_inode_pages_range(mapping, blk_start,
  663. blk_end - 1);
  664. f2fs_lock_op(sbi);
  665. ret = truncate_hole(inode, pg_start, pg_end);
  666. f2fs_unlock_op(sbi);
  667. }
  668. }
  669. return ret;
  670. }
  671. static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
  672. {
  673. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  674. struct dnode_of_data dn;
  675. pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  676. int ret = 0;
  677. f2fs_lock_op(sbi);
  678. for (; end < nrpages; start++, end++) {
  679. block_t new_addr, old_addr;
  680. set_new_dnode(&dn, inode, NULL, NULL, 0);
  681. ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
  682. if (ret && ret != -ENOENT) {
  683. goto out;
  684. } else if (ret == -ENOENT) {
  685. new_addr = NULL_ADDR;
  686. } else {
  687. new_addr = dn.data_blkaddr;
  688. truncate_data_blocks_range(&dn, 1);
  689. f2fs_put_dnode(&dn);
  690. }
  691. if (new_addr == NULL_ADDR) {
  692. set_new_dnode(&dn, inode, NULL, NULL, 0);
  693. ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
  694. if (ret && ret != -ENOENT)
  695. goto out;
  696. else if (ret == -ENOENT)
  697. continue;
  698. if (dn.data_blkaddr == NULL_ADDR) {
  699. f2fs_put_dnode(&dn);
  700. continue;
  701. } else {
  702. truncate_data_blocks_range(&dn, 1);
  703. }
  704. f2fs_put_dnode(&dn);
  705. } else {
  706. struct page *ipage;
  707. ipage = get_node_page(sbi, inode->i_ino);
  708. if (IS_ERR(ipage)) {
  709. ret = PTR_ERR(ipage);
  710. goto out;
  711. }
  712. set_new_dnode(&dn, inode, ipage, NULL, 0);
  713. ret = f2fs_reserve_block(&dn, start);
  714. if (ret)
  715. goto out;
  716. old_addr = dn.data_blkaddr;
  717. if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
  718. dn.data_blkaddr = NULL_ADDR;
  719. f2fs_update_extent_cache(&dn);
  720. invalidate_blocks(sbi, old_addr);
  721. dn.data_blkaddr = new_addr;
  722. set_data_blkaddr(&dn);
  723. } else if (new_addr != NEW_ADDR) {
  724. struct node_info ni;
  725. get_node_info(sbi, dn.nid, &ni);
  726. f2fs_replace_block(sbi, &dn, old_addr, new_addr,
  727. ni.version, true);
  728. }
  729. f2fs_put_dnode(&dn);
  730. }
  731. }
  732. ret = 0;
  733. out:
  734. f2fs_unlock_op(sbi);
  735. return ret;
  736. }
  737. static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
  738. {
  739. pgoff_t pg_start, pg_end;
  740. loff_t new_size;
  741. int ret;
  742. if (!S_ISREG(inode->i_mode))
  743. return -EINVAL;
  744. if (offset + len >= i_size_read(inode))
  745. return -EINVAL;
  746. /* collapse range should be aligned to block size of f2fs. */
  747. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  748. return -EINVAL;
  749. pg_start = offset >> PAGE_CACHE_SHIFT;
  750. pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
  751. /* write out all dirty pages from offset */
  752. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  753. if (ret)
  754. return ret;
  755. truncate_pagecache(inode, offset);
  756. ret = f2fs_do_collapse(inode, pg_start, pg_end);
  757. if (ret)
  758. return ret;
  759. new_size = i_size_read(inode) - len;
  760. ret = truncate_blocks(inode, new_size, true);
  761. if (!ret)
  762. i_size_write(inode, new_size);
  763. return ret;
  764. }
  765. static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
  766. int mode)
  767. {
  768. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  769. struct address_space *mapping = inode->i_mapping;
  770. pgoff_t index, pg_start, pg_end;
  771. loff_t new_size = i_size_read(inode);
  772. loff_t off_start, off_end;
  773. int ret = 0;
  774. if (!S_ISREG(inode->i_mode))
  775. return -EINVAL;
  776. ret = inode_newsize_ok(inode, (len + offset));
  777. if (ret)
  778. return ret;
  779. f2fs_balance_fs(sbi);
  780. if (f2fs_has_inline_data(inode)) {
  781. ret = f2fs_convert_inline_inode(inode);
  782. if (ret)
  783. return ret;
  784. }
  785. ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
  786. if (ret)
  787. return ret;
  788. truncate_pagecache_range(inode, offset, offset + len - 1);
  789. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  790. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  791. off_start = offset & (PAGE_CACHE_SIZE - 1);
  792. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  793. if (pg_start == pg_end) {
  794. fill_zero(inode, pg_start, off_start, off_end - off_start);
  795. if (offset + len > new_size)
  796. new_size = offset + len;
  797. new_size = max_t(loff_t, new_size, offset + len);
  798. } else {
  799. if (off_start) {
  800. fill_zero(inode, pg_start++, off_start,
  801. PAGE_CACHE_SIZE - off_start);
  802. new_size = max_t(loff_t, new_size,
  803. pg_start << PAGE_CACHE_SHIFT);
  804. }
  805. for (index = pg_start; index < pg_end; index++) {
  806. struct dnode_of_data dn;
  807. struct page *ipage;
  808. f2fs_lock_op(sbi);
  809. ipage = get_node_page(sbi, inode->i_ino);
  810. if (IS_ERR(ipage)) {
  811. ret = PTR_ERR(ipage);
  812. f2fs_unlock_op(sbi);
  813. goto out;
  814. }
  815. set_new_dnode(&dn, inode, ipage, NULL, 0);
  816. ret = f2fs_reserve_block(&dn, index);
  817. if (ret) {
  818. f2fs_unlock_op(sbi);
  819. goto out;
  820. }
  821. if (dn.data_blkaddr != NEW_ADDR) {
  822. invalidate_blocks(sbi, dn.data_blkaddr);
  823. dn.data_blkaddr = NEW_ADDR;
  824. set_data_blkaddr(&dn);
  825. dn.data_blkaddr = NULL_ADDR;
  826. f2fs_update_extent_cache(&dn);
  827. }
  828. f2fs_put_dnode(&dn);
  829. f2fs_unlock_op(sbi);
  830. new_size = max_t(loff_t, new_size,
  831. (index + 1) << PAGE_CACHE_SHIFT);
  832. }
  833. if (off_end) {
  834. fill_zero(inode, pg_end, 0, off_end);
  835. new_size = max_t(loff_t, new_size, offset + len);
  836. }
  837. }
  838. out:
  839. if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
  840. i_size_write(inode, new_size);
  841. mark_inode_dirty(inode);
  842. update_inode_page(inode);
  843. }
  844. return ret;
  845. }
  846. static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
  847. {
  848. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  849. pgoff_t pg_start, pg_end, delta, nrpages, idx;
  850. loff_t new_size;
  851. int ret;
  852. if (!S_ISREG(inode->i_mode))
  853. return -EINVAL;
  854. new_size = i_size_read(inode) + len;
  855. if (new_size > inode->i_sb->s_maxbytes)
  856. return -EFBIG;
  857. if (offset >= i_size_read(inode))
  858. return -EINVAL;
  859. /* insert range should be aligned to block size of f2fs. */
  860. if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
  861. return -EINVAL;
  862. f2fs_balance_fs(sbi);
  863. ret = truncate_blocks(inode, i_size_read(inode), true);
  864. if (ret)
  865. return ret;
  866. /* write out all dirty pages from offset */
  867. ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
  868. if (ret)
  869. return ret;
  870. truncate_pagecache(inode, offset);
  871. pg_start = offset >> PAGE_CACHE_SHIFT;
  872. pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
  873. delta = pg_end - pg_start;
  874. nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
  875. for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
  876. struct dnode_of_data dn;
  877. struct page *ipage;
  878. block_t new_addr, old_addr;
  879. f2fs_lock_op(sbi);
  880. set_new_dnode(&dn, inode, NULL, NULL, 0);
  881. ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
  882. if (ret && ret != -ENOENT) {
  883. goto out;
  884. } else if (ret == -ENOENT) {
  885. goto next;
  886. } else if (dn.data_blkaddr == NULL_ADDR) {
  887. f2fs_put_dnode(&dn);
  888. goto next;
  889. } else {
  890. new_addr = dn.data_blkaddr;
  891. truncate_data_blocks_range(&dn, 1);
  892. f2fs_put_dnode(&dn);
  893. }
  894. ipage = get_node_page(sbi, inode->i_ino);
  895. if (IS_ERR(ipage)) {
  896. ret = PTR_ERR(ipage);
  897. goto out;
  898. }
  899. set_new_dnode(&dn, inode, ipage, NULL, 0);
  900. ret = f2fs_reserve_block(&dn, idx + delta);
  901. if (ret)
  902. goto out;
  903. old_addr = dn.data_blkaddr;
  904. f2fs_bug_on(sbi, old_addr != NEW_ADDR);
  905. if (new_addr != NEW_ADDR) {
  906. struct node_info ni;
  907. get_node_info(sbi, dn.nid, &ni);
  908. f2fs_replace_block(sbi, &dn, old_addr, new_addr,
  909. ni.version, true);
  910. }
  911. f2fs_put_dnode(&dn);
  912. next:
  913. f2fs_unlock_op(sbi);
  914. }
  915. i_size_write(inode, new_size);
  916. return 0;
  917. out:
  918. f2fs_unlock_op(sbi);
  919. return ret;
  920. }
  921. static int expand_inode_data(struct inode *inode, loff_t offset,
  922. loff_t len, int mode)
  923. {
  924. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  925. pgoff_t index, pg_start, pg_end;
  926. loff_t new_size = i_size_read(inode);
  927. loff_t off_start, off_end;
  928. int ret = 0;
  929. f2fs_balance_fs(sbi);
  930. ret = inode_newsize_ok(inode, (len + offset));
  931. if (ret)
  932. return ret;
  933. if (f2fs_has_inline_data(inode)) {
  934. ret = f2fs_convert_inline_inode(inode);
  935. if (ret)
  936. return ret;
  937. }
  938. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  939. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  940. off_start = offset & (PAGE_CACHE_SIZE - 1);
  941. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  942. f2fs_lock_op(sbi);
  943. for (index = pg_start; index <= pg_end; index++) {
  944. struct dnode_of_data dn;
  945. if (index == pg_end && !off_end)
  946. goto noalloc;
  947. set_new_dnode(&dn, inode, NULL, NULL, 0);
  948. ret = f2fs_reserve_block(&dn, index);
  949. if (ret)
  950. break;
  951. noalloc:
  952. if (pg_start == pg_end)
  953. new_size = offset + len;
  954. else if (index == pg_start && off_start)
  955. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  956. else if (index == pg_end)
  957. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  958. else
  959. new_size += PAGE_CACHE_SIZE;
  960. }
  961. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  962. i_size_read(inode) < new_size) {
  963. i_size_write(inode, new_size);
  964. mark_inode_dirty(inode);
  965. update_inode_page(inode);
  966. }
  967. f2fs_unlock_op(sbi);
  968. return ret;
  969. }
  970. static long f2fs_fallocate(struct file *file, int mode,
  971. loff_t offset, loff_t len)
  972. {
  973. struct inode *inode = file_inode(file);
  974. long ret = 0;
  975. if (f2fs_encrypted_inode(inode) &&
  976. (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
  977. return -EOPNOTSUPP;
  978. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
  979. FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
  980. FALLOC_FL_INSERT_RANGE))
  981. return -EOPNOTSUPP;
  982. mutex_lock(&inode->i_mutex);
  983. if (mode & FALLOC_FL_PUNCH_HOLE) {
  984. if (offset >= inode->i_size)
  985. goto out;
  986. ret = punch_hole(inode, offset, len);
  987. } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
  988. ret = f2fs_collapse_range(inode, offset, len);
  989. } else if (mode & FALLOC_FL_ZERO_RANGE) {
  990. ret = f2fs_zero_range(inode, offset, len, mode);
  991. } else if (mode & FALLOC_FL_INSERT_RANGE) {
  992. ret = f2fs_insert_range(inode, offset, len);
  993. } else {
  994. ret = expand_inode_data(inode, offset, len, mode);
  995. }
  996. if (!ret) {
  997. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  998. mark_inode_dirty(inode);
  999. }
  1000. out:
  1001. mutex_unlock(&inode->i_mutex);
  1002. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  1003. return ret;
  1004. }
  1005. static int f2fs_release_file(struct inode *inode, struct file *filp)
  1006. {
  1007. /* some remained atomic pages should discarded */
  1008. if (f2fs_is_atomic_file(inode))
  1009. commit_inmem_pages(inode, true);
  1010. if (f2fs_is_volatile_file(inode)) {
  1011. set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1012. filemap_fdatawrite(inode->i_mapping);
  1013. clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
  1014. }
  1015. return 0;
  1016. }
  1017. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  1018. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  1019. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  1020. {
  1021. if (S_ISDIR(mode))
  1022. return flags;
  1023. else if (S_ISREG(mode))
  1024. return flags & F2FS_REG_FLMASK;
  1025. else
  1026. return flags & F2FS_OTHER_FLMASK;
  1027. }
  1028. static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
  1029. {
  1030. struct inode *inode = file_inode(filp);
  1031. struct f2fs_inode_info *fi = F2FS_I(inode);
  1032. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1033. return put_user(flags, (int __user *)arg);
  1034. }
  1035. static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
  1036. {
  1037. struct inode *inode = file_inode(filp);
  1038. struct f2fs_inode_info *fi = F2FS_I(inode);
  1039. unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
  1040. unsigned int oldflags;
  1041. int ret;
  1042. ret = mnt_want_write_file(filp);
  1043. if (ret)
  1044. return ret;
  1045. if (!inode_owner_or_capable(inode)) {
  1046. ret = -EACCES;
  1047. goto out;
  1048. }
  1049. if (get_user(flags, (int __user *)arg)) {
  1050. ret = -EFAULT;
  1051. goto out;
  1052. }
  1053. flags = f2fs_mask_flags(inode->i_mode, flags);
  1054. mutex_lock(&inode->i_mutex);
  1055. oldflags = fi->i_flags;
  1056. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  1057. if (!capable(CAP_LINUX_IMMUTABLE)) {
  1058. mutex_unlock(&inode->i_mutex);
  1059. ret = -EPERM;
  1060. goto out;
  1061. }
  1062. }
  1063. flags = flags & FS_FL_USER_MODIFIABLE;
  1064. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  1065. fi->i_flags = flags;
  1066. mutex_unlock(&inode->i_mutex);
  1067. f2fs_set_inode_flags(inode);
  1068. inode->i_ctime = CURRENT_TIME;
  1069. mark_inode_dirty(inode);
  1070. out:
  1071. mnt_drop_write_file(filp);
  1072. return ret;
  1073. }
  1074. static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
  1075. {
  1076. struct inode *inode = file_inode(filp);
  1077. return put_user(inode->i_generation, (int __user *)arg);
  1078. }
  1079. static int f2fs_ioc_start_atomic_write(struct file *filp)
  1080. {
  1081. struct inode *inode = file_inode(filp);
  1082. if (!inode_owner_or_capable(inode))
  1083. return -EACCES;
  1084. f2fs_balance_fs(F2FS_I_SB(inode));
  1085. if (f2fs_is_atomic_file(inode))
  1086. return 0;
  1087. set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1088. return f2fs_convert_inline_inode(inode);
  1089. }
  1090. static int f2fs_ioc_commit_atomic_write(struct file *filp)
  1091. {
  1092. struct inode *inode = file_inode(filp);
  1093. int ret;
  1094. if (!inode_owner_or_capable(inode))
  1095. return -EACCES;
  1096. if (f2fs_is_volatile_file(inode))
  1097. return 0;
  1098. ret = mnt_want_write_file(filp);
  1099. if (ret)
  1100. return ret;
  1101. if (f2fs_is_atomic_file(inode)) {
  1102. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1103. commit_inmem_pages(inode, false);
  1104. }
  1105. ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
  1106. mnt_drop_write_file(filp);
  1107. return ret;
  1108. }
  1109. static int f2fs_ioc_start_volatile_write(struct file *filp)
  1110. {
  1111. struct inode *inode = file_inode(filp);
  1112. if (!inode_owner_or_capable(inode))
  1113. return -EACCES;
  1114. if (f2fs_is_volatile_file(inode))
  1115. return 0;
  1116. set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1117. return f2fs_convert_inline_inode(inode);
  1118. }
  1119. static int f2fs_ioc_release_volatile_write(struct file *filp)
  1120. {
  1121. struct inode *inode = file_inode(filp);
  1122. if (!inode_owner_or_capable(inode))
  1123. return -EACCES;
  1124. if (!f2fs_is_volatile_file(inode))
  1125. return 0;
  1126. if (!f2fs_is_first_block_written(inode))
  1127. return truncate_partial_data_page(inode, 0, true);
  1128. punch_hole(inode, 0, F2FS_BLKSIZE);
  1129. return 0;
  1130. }
  1131. static int f2fs_ioc_abort_volatile_write(struct file *filp)
  1132. {
  1133. struct inode *inode = file_inode(filp);
  1134. int ret;
  1135. if (!inode_owner_or_capable(inode))
  1136. return -EACCES;
  1137. ret = mnt_want_write_file(filp);
  1138. if (ret)
  1139. return ret;
  1140. f2fs_balance_fs(F2FS_I_SB(inode));
  1141. if (f2fs_is_atomic_file(inode)) {
  1142. clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
  1143. commit_inmem_pages(inode, false);
  1144. }
  1145. if (f2fs_is_volatile_file(inode))
  1146. clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
  1147. mnt_drop_write_file(filp);
  1148. return ret;
  1149. }
  1150. static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
  1151. {
  1152. struct inode *inode = file_inode(filp);
  1153. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1154. struct super_block *sb = sbi->sb;
  1155. __u32 in;
  1156. if (!capable(CAP_SYS_ADMIN))
  1157. return -EPERM;
  1158. if (get_user(in, (__u32 __user *)arg))
  1159. return -EFAULT;
  1160. switch (in) {
  1161. case F2FS_GOING_DOWN_FULLSYNC:
  1162. sb = freeze_bdev(sb->s_bdev);
  1163. if (sb && !IS_ERR(sb)) {
  1164. f2fs_stop_checkpoint(sbi);
  1165. thaw_bdev(sb->s_bdev, sb);
  1166. }
  1167. break;
  1168. case F2FS_GOING_DOWN_METASYNC:
  1169. /* do checkpoint only */
  1170. f2fs_sync_fs(sb, 1);
  1171. f2fs_stop_checkpoint(sbi);
  1172. break;
  1173. case F2FS_GOING_DOWN_NOSYNC:
  1174. f2fs_stop_checkpoint(sbi);
  1175. break;
  1176. default:
  1177. return -EINVAL;
  1178. }
  1179. return 0;
  1180. }
  1181. static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
  1182. {
  1183. struct inode *inode = file_inode(filp);
  1184. struct super_block *sb = inode->i_sb;
  1185. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  1186. struct fstrim_range range;
  1187. int ret;
  1188. if (!capable(CAP_SYS_ADMIN))
  1189. return -EPERM;
  1190. if (!blk_queue_discard(q))
  1191. return -EOPNOTSUPP;
  1192. if (copy_from_user(&range, (struct fstrim_range __user *)arg,
  1193. sizeof(range)))
  1194. return -EFAULT;
  1195. range.minlen = max((unsigned int)range.minlen,
  1196. q->limits.discard_granularity);
  1197. ret = f2fs_trim_fs(F2FS_SB(sb), &range);
  1198. if (ret < 0)
  1199. return ret;
  1200. if (copy_to_user((struct fstrim_range __user *)arg, &range,
  1201. sizeof(range)))
  1202. return -EFAULT;
  1203. return 0;
  1204. }
  1205. static bool uuid_is_nonzero(__u8 u[16])
  1206. {
  1207. int i;
  1208. for (i = 0; i < 16; i++)
  1209. if (u[i])
  1210. return true;
  1211. return false;
  1212. }
  1213. static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
  1214. {
  1215. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  1216. struct f2fs_encryption_policy policy;
  1217. struct inode *inode = file_inode(filp);
  1218. if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
  1219. sizeof(policy)))
  1220. return -EFAULT;
  1221. return f2fs_process_policy(&policy, inode);
  1222. #else
  1223. return -EOPNOTSUPP;
  1224. #endif
  1225. }
  1226. static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
  1227. {
  1228. #ifdef CONFIG_F2FS_FS_ENCRYPTION
  1229. struct f2fs_encryption_policy policy;
  1230. struct inode *inode = file_inode(filp);
  1231. int err;
  1232. err = f2fs_get_policy(inode, &policy);
  1233. if (err)
  1234. return err;
  1235. if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
  1236. sizeof(policy)))
  1237. return -EFAULT;
  1238. return 0;
  1239. #else
  1240. return -EOPNOTSUPP;
  1241. #endif
  1242. }
  1243. static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
  1244. {
  1245. struct inode *inode = file_inode(filp);
  1246. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1247. int err;
  1248. if (!f2fs_sb_has_crypto(inode->i_sb))
  1249. return -EOPNOTSUPP;
  1250. if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
  1251. goto got_it;
  1252. err = mnt_want_write_file(filp);
  1253. if (err)
  1254. return err;
  1255. /* update superblock with uuid */
  1256. generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
  1257. err = f2fs_commit_super(sbi, false);
  1258. mnt_drop_write_file(filp);
  1259. if (err) {
  1260. /* undo new data */
  1261. memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
  1262. return err;
  1263. }
  1264. got_it:
  1265. if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
  1266. 16))
  1267. return -EFAULT;
  1268. return 0;
  1269. }
  1270. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  1271. {
  1272. switch (cmd) {
  1273. case F2FS_IOC_GETFLAGS:
  1274. return f2fs_ioc_getflags(filp, arg);
  1275. case F2FS_IOC_SETFLAGS:
  1276. return f2fs_ioc_setflags(filp, arg);
  1277. case F2FS_IOC_GETVERSION:
  1278. return f2fs_ioc_getversion(filp, arg);
  1279. case F2FS_IOC_START_ATOMIC_WRITE:
  1280. return f2fs_ioc_start_atomic_write(filp);
  1281. case F2FS_IOC_COMMIT_ATOMIC_WRITE:
  1282. return f2fs_ioc_commit_atomic_write(filp);
  1283. case F2FS_IOC_START_VOLATILE_WRITE:
  1284. return f2fs_ioc_start_volatile_write(filp);
  1285. case F2FS_IOC_RELEASE_VOLATILE_WRITE:
  1286. return f2fs_ioc_release_volatile_write(filp);
  1287. case F2FS_IOC_ABORT_VOLATILE_WRITE:
  1288. return f2fs_ioc_abort_volatile_write(filp);
  1289. case F2FS_IOC_SHUTDOWN:
  1290. return f2fs_ioc_shutdown(filp, arg);
  1291. case FITRIM:
  1292. return f2fs_ioc_fitrim(filp, arg);
  1293. case F2FS_IOC_SET_ENCRYPTION_POLICY:
  1294. return f2fs_ioc_set_encryption_policy(filp, arg);
  1295. case F2FS_IOC_GET_ENCRYPTION_POLICY:
  1296. return f2fs_ioc_get_encryption_policy(filp, arg);
  1297. case F2FS_IOC_GET_ENCRYPTION_PWSALT:
  1298. return f2fs_ioc_get_encryption_pwsalt(filp, arg);
  1299. default:
  1300. return -ENOTTY;
  1301. }
  1302. }
  1303. static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
  1304. {
  1305. struct inode *inode = file_inode(iocb->ki_filp);
  1306. if (f2fs_encrypted_inode(inode) &&
  1307. !f2fs_has_encryption_key(inode) &&
  1308. f2fs_get_encryption_info(inode))
  1309. return -EACCES;
  1310. return generic_file_write_iter(iocb, from);
  1311. }
  1312. #ifdef CONFIG_COMPAT
  1313. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1314. {
  1315. switch (cmd) {
  1316. case F2FS_IOC32_GETFLAGS:
  1317. cmd = F2FS_IOC_GETFLAGS;
  1318. break;
  1319. case F2FS_IOC32_SETFLAGS:
  1320. cmd = F2FS_IOC_SETFLAGS;
  1321. break;
  1322. default:
  1323. return -ENOIOCTLCMD;
  1324. }
  1325. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  1326. }
  1327. #endif
  1328. const struct file_operations f2fs_file_operations = {
  1329. .llseek = f2fs_llseek,
  1330. .read_iter = generic_file_read_iter,
  1331. .write_iter = f2fs_file_write_iter,
  1332. .open = f2fs_file_open,
  1333. .release = f2fs_release_file,
  1334. .mmap = f2fs_file_mmap,
  1335. .fsync = f2fs_sync_file,
  1336. .fallocate = f2fs_fallocate,
  1337. .unlocked_ioctl = f2fs_ioctl,
  1338. #ifdef CONFIG_COMPAT
  1339. .compat_ioctl = f2fs_compat_ioctl,
  1340. #endif
  1341. .splice_read = generic_file_splice_read,
  1342. .splice_write = iter_file_splice_write,
  1343. };