checkpoint.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. /*
  27. * We guarantee no failure on the returned page.
  28. */
  29. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  30. {
  31. struct address_space *mapping = META_MAPPING(sbi);
  32. struct page *page = NULL;
  33. repeat:
  34. page = grab_cache_page(mapping, index);
  35. if (!page) {
  36. cond_resched();
  37. goto repeat;
  38. }
  39. f2fs_wait_on_page_writeback(page, META);
  40. SetPageUptodate(page);
  41. return page;
  42. }
  43. /*
  44. * We guarantee no failure on the returned page.
  45. */
  46. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  47. {
  48. struct address_space *mapping = META_MAPPING(sbi);
  49. struct page *page;
  50. struct f2fs_io_info fio = {
  51. .sbi = sbi,
  52. .type = META,
  53. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  54. .blk_addr = index,
  55. .encrypted_page = NULL,
  56. };
  57. repeat:
  58. page = grab_cache_page(mapping, index);
  59. if (!page) {
  60. cond_resched();
  61. goto repeat;
  62. }
  63. if (PageUptodate(page))
  64. goto out;
  65. fio.page = page;
  66. if (f2fs_submit_page_bio(&fio))
  67. goto repeat;
  68. lock_page(page);
  69. if (unlikely(page->mapping != mapping)) {
  70. f2fs_put_page(page, 1);
  71. goto repeat;
  72. }
  73. out:
  74. return page;
  75. }
  76. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  77. {
  78. switch (type) {
  79. case META_NAT:
  80. break;
  81. case META_SIT:
  82. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  83. return false;
  84. break;
  85. case META_SSA:
  86. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  87. blkaddr < SM_I(sbi)->ssa_blkaddr))
  88. return false;
  89. break;
  90. case META_CP:
  91. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  92. blkaddr < __start_cp_addr(sbi)))
  93. return false;
  94. break;
  95. case META_POR:
  96. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  97. blkaddr < MAIN_BLKADDR(sbi)))
  98. return false;
  99. break;
  100. default:
  101. BUG();
  102. }
  103. return true;
  104. }
  105. /*
  106. * Readahead CP/NAT/SIT/SSA pages
  107. */
  108. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  109. {
  110. block_t prev_blk_addr = 0;
  111. struct page *page;
  112. block_t blkno = start;
  113. struct f2fs_io_info fio = {
  114. .sbi = sbi,
  115. .type = META,
  116. .rw = READ_SYNC | REQ_META | REQ_PRIO,
  117. .encrypted_page = NULL,
  118. };
  119. for (; nrpages-- > 0; blkno++) {
  120. if (!is_valid_blkaddr(sbi, blkno, type))
  121. goto out;
  122. switch (type) {
  123. case META_NAT:
  124. if (unlikely(blkno >=
  125. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  126. blkno = 0;
  127. /* get nat block addr */
  128. fio.blk_addr = current_nat_addr(sbi,
  129. blkno * NAT_ENTRY_PER_BLOCK);
  130. break;
  131. case META_SIT:
  132. /* get sit block addr */
  133. fio.blk_addr = current_sit_addr(sbi,
  134. blkno * SIT_ENTRY_PER_BLOCK);
  135. if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
  136. goto out;
  137. prev_blk_addr = fio.blk_addr;
  138. break;
  139. case META_SSA:
  140. case META_CP:
  141. case META_POR:
  142. fio.blk_addr = blkno;
  143. break;
  144. default:
  145. BUG();
  146. }
  147. page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
  148. if (!page)
  149. continue;
  150. if (PageUptodate(page)) {
  151. f2fs_put_page(page, 1);
  152. continue;
  153. }
  154. fio.page = page;
  155. f2fs_submit_page_mbio(&fio);
  156. f2fs_put_page(page, 0);
  157. }
  158. out:
  159. f2fs_submit_merged_bio(sbi, META, READ);
  160. return blkno - start;
  161. }
  162. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  163. {
  164. struct page *page;
  165. bool readahead = false;
  166. page = find_get_page(META_MAPPING(sbi), index);
  167. if (!page || (page && !PageUptodate(page)))
  168. readahead = true;
  169. f2fs_put_page(page, 0);
  170. if (readahead)
  171. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  172. }
  173. static int f2fs_write_meta_page(struct page *page,
  174. struct writeback_control *wbc)
  175. {
  176. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  177. trace_f2fs_writepage(page, META);
  178. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  179. goto redirty_out;
  180. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  181. goto redirty_out;
  182. if (unlikely(f2fs_cp_error(sbi)))
  183. goto redirty_out;
  184. f2fs_wait_on_page_writeback(page, META);
  185. write_meta_page(sbi, page);
  186. dec_page_count(sbi, F2FS_DIRTY_META);
  187. unlock_page(page);
  188. if (wbc->for_reclaim)
  189. f2fs_submit_merged_bio(sbi, META, WRITE);
  190. return 0;
  191. redirty_out:
  192. redirty_page_for_writepage(wbc, page);
  193. return AOP_WRITEPAGE_ACTIVATE;
  194. }
  195. static int f2fs_write_meta_pages(struct address_space *mapping,
  196. struct writeback_control *wbc)
  197. {
  198. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  199. long diff, written;
  200. trace_f2fs_writepages(mapping->host, wbc, META);
  201. /* collect a number of dirty meta pages and write together */
  202. if (wbc->for_kupdate ||
  203. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  204. goto skip_write;
  205. /* if mounting is failed, skip writing node pages */
  206. mutex_lock(&sbi->cp_mutex);
  207. diff = nr_pages_to_write(sbi, META, wbc);
  208. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  209. mutex_unlock(&sbi->cp_mutex);
  210. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  211. return 0;
  212. skip_write:
  213. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  214. return 0;
  215. }
  216. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  217. long nr_to_write)
  218. {
  219. struct address_space *mapping = META_MAPPING(sbi);
  220. pgoff_t index = 0, end = LONG_MAX;
  221. struct pagevec pvec;
  222. long nwritten = 0;
  223. struct writeback_control wbc = {
  224. .for_reclaim = 0,
  225. };
  226. pagevec_init(&pvec, 0);
  227. while (index <= end) {
  228. int i, nr_pages;
  229. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  230. PAGECACHE_TAG_DIRTY,
  231. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  232. if (unlikely(nr_pages == 0))
  233. break;
  234. for (i = 0; i < nr_pages; i++) {
  235. struct page *page = pvec.pages[i];
  236. lock_page(page);
  237. if (unlikely(page->mapping != mapping)) {
  238. continue_unlock:
  239. unlock_page(page);
  240. continue;
  241. }
  242. if (!PageDirty(page)) {
  243. /* someone wrote it for us */
  244. goto continue_unlock;
  245. }
  246. if (!clear_page_dirty_for_io(page))
  247. goto continue_unlock;
  248. if (mapping->a_ops->writepage(page, &wbc)) {
  249. unlock_page(page);
  250. break;
  251. }
  252. nwritten++;
  253. if (unlikely(nwritten >= nr_to_write))
  254. break;
  255. }
  256. pagevec_release(&pvec);
  257. cond_resched();
  258. }
  259. if (nwritten)
  260. f2fs_submit_merged_bio(sbi, type, WRITE);
  261. return nwritten;
  262. }
  263. static int f2fs_set_meta_page_dirty(struct page *page)
  264. {
  265. trace_f2fs_set_page_dirty(page, META);
  266. SetPageUptodate(page);
  267. if (!PageDirty(page)) {
  268. __set_page_dirty_nobuffers(page);
  269. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  270. SetPagePrivate(page);
  271. f2fs_trace_pid(page);
  272. return 1;
  273. }
  274. return 0;
  275. }
  276. const struct address_space_operations f2fs_meta_aops = {
  277. .writepage = f2fs_write_meta_page,
  278. .writepages = f2fs_write_meta_pages,
  279. .set_page_dirty = f2fs_set_meta_page_dirty,
  280. .invalidatepage = f2fs_invalidate_page,
  281. .releasepage = f2fs_release_page,
  282. };
  283. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  284. {
  285. struct inode_management *im = &sbi->im[type];
  286. struct ino_entry *e;
  287. retry:
  288. if (radix_tree_preload(GFP_NOFS)) {
  289. cond_resched();
  290. goto retry;
  291. }
  292. spin_lock(&im->ino_lock);
  293. e = radix_tree_lookup(&im->ino_root, ino);
  294. if (!e) {
  295. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  296. if (!e) {
  297. spin_unlock(&im->ino_lock);
  298. radix_tree_preload_end();
  299. goto retry;
  300. }
  301. if (radix_tree_insert(&im->ino_root, ino, e)) {
  302. spin_unlock(&im->ino_lock);
  303. kmem_cache_free(ino_entry_slab, e);
  304. radix_tree_preload_end();
  305. goto retry;
  306. }
  307. memset(e, 0, sizeof(struct ino_entry));
  308. e->ino = ino;
  309. list_add_tail(&e->list, &im->ino_list);
  310. if (type != ORPHAN_INO)
  311. im->ino_num++;
  312. }
  313. spin_unlock(&im->ino_lock);
  314. radix_tree_preload_end();
  315. }
  316. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  317. {
  318. struct inode_management *im = &sbi->im[type];
  319. struct ino_entry *e;
  320. spin_lock(&im->ino_lock);
  321. e = radix_tree_lookup(&im->ino_root, ino);
  322. if (e) {
  323. list_del(&e->list);
  324. radix_tree_delete(&im->ino_root, ino);
  325. im->ino_num--;
  326. spin_unlock(&im->ino_lock);
  327. kmem_cache_free(ino_entry_slab, e);
  328. return;
  329. }
  330. spin_unlock(&im->ino_lock);
  331. }
  332. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  333. {
  334. /* add new dirty ino entry into list */
  335. __add_ino_entry(sbi, ino, type);
  336. }
  337. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  338. {
  339. /* remove dirty ino entry from list */
  340. __remove_ino_entry(sbi, ino, type);
  341. }
  342. /* mode should be APPEND_INO or UPDATE_INO */
  343. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  344. {
  345. struct inode_management *im = &sbi->im[mode];
  346. struct ino_entry *e;
  347. spin_lock(&im->ino_lock);
  348. e = radix_tree_lookup(&im->ino_root, ino);
  349. spin_unlock(&im->ino_lock);
  350. return e ? true : false;
  351. }
  352. void release_dirty_inode(struct f2fs_sb_info *sbi)
  353. {
  354. struct ino_entry *e, *tmp;
  355. int i;
  356. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  357. struct inode_management *im = &sbi->im[i];
  358. spin_lock(&im->ino_lock);
  359. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  360. list_del(&e->list);
  361. radix_tree_delete(&im->ino_root, e->ino);
  362. kmem_cache_free(ino_entry_slab, e);
  363. im->ino_num--;
  364. }
  365. spin_unlock(&im->ino_lock);
  366. }
  367. }
  368. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  369. {
  370. struct inode_management *im = &sbi->im[ORPHAN_INO];
  371. int err = 0;
  372. spin_lock(&im->ino_lock);
  373. if (unlikely(im->ino_num >= sbi->max_orphans))
  374. err = -ENOSPC;
  375. else
  376. im->ino_num++;
  377. spin_unlock(&im->ino_lock);
  378. return err;
  379. }
  380. void release_orphan_inode(struct f2fs_sb_info *sbi)
  381. {
  382. struct inode_management *im = &sbi->im[ORPHAN_INO];
  383. spin_lock(&im->ino_lock);
  384. f2fs_bug_on(sbi, im->ino_num == 0);
  385. im->ino_num--;
  386. spin_unlock(&im->ino_lock);
  387. }
  388. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  389. {
  390. /* add new orphan ino entry into list */
  391. __add_ino_entry(sbi, ino, ORPHAN_INO);
  392. }
  393. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  394. {
  395. /* remove orphan entry from orphan list */
  396. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  397. }
  398. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  399. {
  400. struct inode *inode = f2fs_iget(sbi->sb, ino);
  401. f2fs_bug_on(sbi, IS_ERR(inode));
  402. clear_nlink(inode);
  403. /* truncate all the data during iput */
  404. iput(inode);
  405. }
  406. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  407. {
  408. block_t start_blk, orphan_blocks, i, j;
  409. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  410. return;
  411. set_sbi_flag(sbi, SBI_POR_DOING);
  412. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  413. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  414. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
  415. for (i = 0; i < orphan_blocks; i++) {
  416. struct page *page = get_meta_page(sbi, start_blk + i);
  417. struct f2fs_orphan_block *orphan_blk;
  418. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  419. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  420. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  421. recover_orphan_inode(sbi, ino);
  422. }
  423. f2fs_put_page(page, 1);
  424. }
  425. /* clear Orphan Flag */
  426. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  427. clear_sbi_flag(sbi, SBI_POR_DOING);
  428. return;
  429. }
  430. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  431. {
  432. struct list_head *head;
  433. struct f2fs_orphan_block *orphan_blk = NULL;
  434. unsigned int nentries = 0;
  435. unsigned short index;
  436. unsigned short orphan_blocks;
  437. struct page *page = NULL;
  438. struct ino_entry *orphan = NULL;
  439. struct inode_management *im = &sbi->im[ORPHAN_INO];
  440. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  441. for (index = 0; index < orphan_blocks; index++)
  442. grab_meta_page(sbi, start_blk + index);
  443. index = 1;
  444. /*
  445. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  446. * orphan inode operations are covered under f2fs_lock_op().
  447. * And, spin_lock should be avoided due to page operations below.
  448. */
  449. head = &im->ino_list;
  450. /* loop for each orphan inode entry and write them in Jornal block */
  451. list_for_each_entry(orphan, head, list) {
  452. if (!page) {
  453. page = find_get_page(META_MAPPING(sbi), start_blk++);
  454. f2fs_bug_on(sbi, !page);
  455. orphan_blk =
  456. (struct f2fs_orphan_block *)page_address(page);
  457. memset(orphan_blk, 0, sizeof(*orphan_blk));
  458. f2fs_put_page(page, 0);
  459. }
  460. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  461. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  462. /*
  463. * an orphan block is full of 1020 entries,
  464. * then we need to flush current orphan blocks
  465. * and bring another one in memory
  466. */
  467. orphan_blk->blk_addr = cpu_to_le16(index);
  468. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  469. orphan_blk->entry_count = cpu_to_le32(nentries);
  470. set_page_dirty(page);
  471. f2fs_put_page(page, 1);
  472. index++;
  473. nentries = 0;
  474. page = NULL;
  475. }
  476. }
  477. if (page) {
  478. orphan_blk->blk_addr = cpu_to_le16(index);
  479. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  480. orphan_blk->entry_count = cpu_to_le32(nentries);
  481. set_page_dirty(page);
  482. f2fs_put_page(page, 1);
  483. }
  484. }
  485. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  486. block_t cp_addr, unsigned long long *version)
  487. {
  488. struct page *cp_page_1, *cp_page_2 = NULL;
  489. unsigned long blk_size = sbi->blocksize;
  490. struct f2fs_checkpoint *cp_block;
  491. unsigned long long cur_version = 0, pre_version = 0;
  492. size_t crc_offset;
  493. __u32 crc = 0;
  494. /* Read the 1st cp block in this CP pack */
  495. cp_page_1 = get_meta_page(sbi, cp_addr);
  496. /* get the version number */
  497. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  498. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  499. if (crc_offset >= blk_size)
  500. goto invalid_cp1;
  501. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  502. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  503. goto invalid_cp1;
  504. pre_version = cur_cp_version(cp_block);
  505. /* Read the 2nd cp block in this CP pack */
  506. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  507. cp_page_2 = get_meta_page(sbi, cp_addr);
  508. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  509. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  510. if (crc_offset >= blk_size)
  511. goto invalid_cp2;
  512. crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
  513. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  514. goto invalid_cp2;
  515. cur_version = cur_cp_version(cp_block);
  516. if (cur_version == pre_version) {
  517. *version = cur_version;
  518. f2fs_put_page(cp_page_2, 1);
  519. return cp_page_1;
  520. }
  521. invalid_cp2:
  522. f2fs_put_page(cp_page_2, 1);
  523. invalid_cp1:
  524. f2fs_put_page(cp_page_1, 1);
  525. return NULL;
  526. }
  527. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  528. {
  529. struct f2fs_checkpoint *cp_block;
  530. struct f2fs_super_block *fsb = sbi->raw_super;
  531. struct page *cp1, *cp2, *cur_page;
  532. unsigned long blk_size = sbi->blocksize;
  533. unsigned long long cp1_version = 0, cp2_version = 0;
  534. unsigned long long cp_start_blk_no;
  535. unsigned int cp_blks = 1 + __cp_payload(sbi);
  536. block_t cp_blk_no;
  537. int i;
  538. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  539. if (!sbi->ckpt)
  540. return -ENOMEM;
  541. /*
  542. * Finding out valid cp block involves read both
  543. * sets( cp pack1 and cp pack 2)
  544. */
  545. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  546. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  547. /* The second checkpoint pack should start at the next segment */
  548. cp_start_blk_no += ((unsigned long long)1) <<
  549. le32_to_cpu(fsb->log_blocks_per_seg);
  550. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  551. if (cp1 && cp2) {
  552. if (ver_after(cp2_version, cp1_version))
  553. cur_page = cp2;
  554. else
  555. cur_page = cp1;
  556. } else if (cp1) {
  557. cur_page = cp1;
  558. } else if (cp2) {
  559. cur_page = cp2;
  560. } else {
  561. goto fail_no_cp;
  562. }
  563. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  564. memcpy(sbi->ckpt, cp_block, blk_size);
  565. if (cp_blks <= 1)
  566. goto done;
  567. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  568. if (cur_page == cp2)
  569. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  570. for (i = 1; i < cp_blks; i++) {
  571. void *sit_bitmap_ptr;
  572. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  573. cur_page = get_meta_page(sbi, cp_blk_no + i);
  574. sit_bitmap_ptr = page_address(cur_page);
  575. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  576. f2fs_put_page(cur_page, 1);
  577. }
  578. done:
  579. f2fs_put_page(cp1, 1);
  580. f2fs_put_page(cp2, 1);
  581. return 0;
  582. fail_no_cp:
  583. kfree(sbi->ckpt);
  584. return -EINVAL;
  585. }
  586. static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
  587. {
  588. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  589. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  590. return -EEXIST;
  591. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  592. F2FS_I(inode)->dirty_dir = new;
  593. list_add_tail(&new->list, &sbi->dir_inode_list);
  594. stat_inc_dirty_dir(sbi);
  595. return 0;
  596. }
  597. void update_dirty_page(struct inode *inode, struct page *page)
  598. {
  599. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  600. struct inode_entry *new;
  601. int ret = 0;
  602. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
  603. return;
  604. if (!S_ISDIR(inode->i_mode)) {
  605. inode_inc_dirty_pages(inode);
  606. goto out;
  607. }
  608. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  609. new->inode = inode;
  610. INIT_LIST_HEAD(&new->list);
  611. spin_lock(&sbi->dir_inode_lock);
  612. ret = __add_dirty_inode(inode, new);
  613. inode_inc_dirty_pages(inode);
  614. spin_unlock(&sbi->dir_inode_lock);
  615. if (ret)
  616. kmem_cache_free(inode_entry_slab, new);
  617. out:
  618. SetPagePrivate(page);
  619. f2fs_trace_pid(page);
  620. }
  621. void add_dirty_dir_inode(struct inode *inode)
  622. {
  623. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  624. struct inode_entry *new =
  625. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  626. int ret = 0;
  627. new->inode = inode;
  628. INIT_LIST_HEAD(&new->list);
  629. spin_lock(&sbi->dir_inode_lock);
  630. ret = __add_dirty_inode(inode, new);
  631. spin_unlock(&sbi->dir_inode_lock);
  632. if (ret)
  633. kmem_cache_free(inode_entry_slab, new);
  634. }
  635. void remove_dirty_dir_inode(struct inode *inode)
  636. {
  637. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  638. struct inode_entry *entry;
  639. if (!S_ISDIR(inode->i_mode))
  640. return;
  641. spin_lock(&sbi->dir_inode_lock);
  642. if (get_dirty_pages(inode) ||
  643. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  644. spin_unlock(&sbi->dir_inode_lock);
  645. return;
  646. }
  647. entry = F2FS_I(inode)->dirty_dir;
  648. list_del(&entry->list);
  649. F2FS_I(inode)->dirty_dir = NULL;
  650. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  651. stat_dec_dirty_dir(sbi);
  652. spin_unlock(&sbi->dir_inode_lock);
  653. kmem_cache_free(inode_entry_slab, entry);
  654. /* Only from the recovery routine */
  655. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  656. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  657. iput(inode);
  658. }
  659. }
  660. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  661. {
  662. struct list_head *head;
  663. struct inode_entry *entry;
  664. struct inode *inode;
  665. retry:
  666. if (unlikely(f2fs_cp_error(sbi)))
  667. return;
  668. spin_lock(&sbi->dir_inode_lock);
  669. head = &sbi->dir_inode_list;
  670. if (list_empty(head)) {
  671. spin_unlock(&sbi->dir_inode_lock);
  672. return;
  673. }
  674. entry = list_entry(head->next, struct inode_entry, list);
  675. inode = igrab(entry->inode);
  676. spin_unlock(&sbi->dir_inode_lock);
  677. if (inode) {
  678. filemap_fdatawrite(inode->i_mapping);
  679. iput(inode);
  680. } else {
  681. /*
  682. * We should submit bio, since it exists several
  683. * wribacking dentry pages in the freeing inode.
  684. */
  685. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  686. cond_resched();
  687. }
  688. goto retry;
  689. }
  690. /*
  691. * Freeze all the FS-operations for checkpoint.
  692. */
  693. static int block_operations(struct f2fs_sb_info *sbi)
  694. {
  695. struct writeback_control wbc = {
  696. .sync_mode = WB_SYNC_ALL,
  697. .nr_to_write = LONG_MAX,
  698. .for_reclaim = 0,
  699. };
  700. struct blk_plug plug;
  701. int err = 0;
  702. blk_start_plug(&plug);
  703. retry_flush_dents:
  704. f2fs_lock_all(sbi);
  705. /* write all the dirty dentry pages */
  706. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  707. f2fs_unlock_all(sbi);
  708. sync_dirty_dir_inodes(sbi);
  709. if (unlikely(f2fs_cp_error(sbi))) {
  710. err = -EIO;
  711. goto out;
  712. }
  713. goto retry_flush_dents;
  714. }
  715. /*
  716. * POR: we should ensure that there are no dirty node pages
  717. * until finishing nat/sit flush.
  718. */
  719. retry_flush_nodes:
  720. down_write(&sbi->node_write);
  721. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  722. up_write(&sbi->node_write);
  723. sync_node_pages(sbi, 0, &wbc);
  724. if (unlikely(f2fs_cp_error(sbi))) {
  725. f2fs_unlock_all(sbi);
  726. err = -EIO;
  727. goto out;
  728. }
  729. goto retry_flush_nodes;
  730. }
  731. out:
  732. blk_finish_plug(&plug);
  733. return err;
  734. }
  735. static void unblock_operations(struct f2fs_sb_info *sbi)
  736. {
  737. up_write(&sbi->node_write);
  738. f2fs_unlock_all(sbi);
  739. }
  740. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  741. {
  742. DEFINE_WAIT(wait);
  743. for (;;) {
  744. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  745. if (!get_pages(sbi, F2FS_WRITEBACK))
  746. break;
  747. io_schedule();
  748. }
  749. finish_wait(&sbi->cp_wait, &wait);
  750. }
  751. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  752. {
  753. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  754. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  755. struct f2fs_nm_info *nm_i = NM_I(sbi);
  756. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  757. nid_t last_nid = nm_i->next_scan_nid;
  758. block_t start_blk;
  759. unsigned int data_sum_blocks, orphan_blocks;
  760. __u32 crc32 = 0;
  761. int i;
  762. int cp_payload_blks = __cp_payload(sbi);
  763. /*
  764. * This avoids to conduct wrong roll-forward operations and uses
  765. * metapages, so should be called prior to sync_meta_pages below.
  766. */
  767. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  768. /* Flush all the NAT/SIT pages */
  769. while (get_pages(sbi, F2FS_DIRTY_META)) {
  770. sync_meta_pages(sbi, META, LONG_MAX);
  771. if (unlikely(f2fs_cp_error(sbi)))
  772. return;
  773. }
  774. next_free_nid(sbi, &last_nid);
  775. /*
  776. * modify checkpoint
  777. * version number is already updated
  778. */
  779. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  780. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  781. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  782. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  783. ckpt->cur_node_segno[i] =
  784. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  785. ckpt->cur_node_blkoff[i] =
  786. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  787. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  788. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  789. }
  790. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  791. ckpt->cur_data_segno[i] =
  792. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  793. ckpt->cur_data_blkoff[i] =
  794. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  795. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  796. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  797. }
  798. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  799. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  800. ckpt->next_free_nid = cpu_to_le32(last_nid);
  801. /* 2 cp + n data seg summary + orphan inode blocks */
  802. data_sum_blocks = npages_for_summary_flush(sbi, false);
  803. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  804. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  805. else
  806. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  807. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  808. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  809. orphan_blocks);
  810. if (__remain_node_summaries(cpc->reason))
  811. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  812. cp_payload_blks + data_sum_blocks +
  813. orphan_blocks + NR_CURSEG_NODE_TYPE);
  814. else
  815. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  816. cp_payload_blks + data_sum_blocks +
  817. orphan_blocks);
  818. if (cpc->reason == CP_UMOUNT)
  819. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  820. else
  821. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  822. if (cpc->reason == CP_FASTBOOT)
  823. set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  824. else
  825. clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  826. if (orphan_num)
  827. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  828. else
  829. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  830. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  831. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  832. /* update SIT/NAT bitmap */
  833. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  834. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  835. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  836. *((__le32 *)((unsigned char *)ckpt +
  837. le32_to_cpu(ckpt->checksum_offset)))
  838. = cpu_to_le32(crc32);
  839. start_blk = __start_cp_addr(sbi);
  840. /* write out checkpoint buffer at block 0 */
  841. update_meta_page(sbi, ckpt, start_blk++);
  842. for (i = 1; i < 1 + cp_payload_blks; i++)
  843. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  844. start_blk++);
  845. if (orphan_num) {
  846. write_orphan_inodes(sbi, start_blk);
  847. start_blk += orphan_blocks;
  848. }
  849. write_data_summaries(sbi, start_blk);
  850. start_blk += data_sum_blocks;
  851. if (__remain_node_summaries(cpc->reason)) {
  852. write_node_summaries(sbi, start_blk);
  853. start_blk += NR_CURSEG_NODE_TYPE;
  854. }
  855. /* writeout checkpoint block */
  856. update_meta_page(sbi, ckpt, start_blk);
  857. /* wait for previous submitted node/meta pages writeback */
  858. wait_on_all_pages_writeback(sbi);
  859. if (unlikely(f2fs_cp_error(sbi)))
  860. return;
  861. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  862. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  863. /* update user_block_counts */
  864. sbi->last_valid_block_count = sbi->total_valid_block_count;
  865. sbi->alloc_valid_block_count = 0;
  866. /* Here, we only have one bio having CP pack */
  867. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  868. /* wait for previous submitted meta pages writeback */
  869. wait_on_all_pages_writeback(sbi);
  870. release_dirty_inode(sbi);
  871. if (unlikely(f2fs_cp_error(sbi)))
  872. return;
  873. clear_prefree_segments(sbi, cpc);
  874. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  875. }
  876. /*
  877. * We guarantee that this checkpoint procedure will not fail.
  878. */
  879. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  880. {
  881. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  882. unsigned long long ckpt_ver;
  883. mutex_lock(&sbi->cp_mutex);
  884. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  885. (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
  886. (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
  887. goto out;
  888. if (unlikely(f2fs_cp_error(sbi)))
  889. goto out;
  890. if (f2fs_readonly(sbi->sb))
  891. goto out;
  892. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  893. if (block_operations(sbi))
  894. goto out;
  895. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  896. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  897. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  898. f2fs_submit_merged_bio(sbi, META, WRITE);
  899. /*
  900. * update checkpoint pack index
  901. * Increase the version number so that
  902. * SIT entries and seg summaries are written at correct place
  903. */
  904. ckpt_ver = cur_cp_version(ckpt);
  905. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  906. /* write cached NAT/SIT entries to NAT/SIT area */
  907. flush_nat_entries(sbi);
  908. flush_sit_entries(sbi, cpc);
  909. /* unlock all the fs_lock[] in do_checkpoint() */
  910. do_checkpoint(sbi, cpc);
  911. unblock_operations(sbi);
  912. stat_inc_cp_count(sbi->stat_info);
  913. if (cpc->reason == CP_RECOVERY)
  914. f2fs_msg(sbi->sb, KERN_NOTICE,
  915. "checkpoint: version = %llx", ckpt_ver);
  916. out:
  917. mutex_unlock(&sbi->cp_mutex);
  918. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  919. }
  920. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  921. {
  922. int i;
  923. for (i = 0; i < MAX_INO_ENTRY; i++) {
  924. struct inode_management *im = &sbi->im[i];
  925. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  926. spin_lock_init(&im->ino_lock);
  927. INIT_LIST_HEAD(&im->ino_list);
  928. im->ino_num = 0;
  929. }
  930. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  931. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  932. F2FS_ORPHANS_PER_BLOCK;
  933. }
  934. int __init create_checkpoint_caches(void)
  935. {
  936. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  937. sizeof(struct ino_entry));
  938. if (!ino_entry_slab)
  939. return -ENOMEM;
  940. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  941. sizeof(struct inode_entry));
  942. if (!inode_entry_slab) {
  943. kmem_cache_destroy(ino_entry_slab);
  944. return -ENOMEM;
  945. }
  946. return 0;
  947. }
  948. void destroy_checkpoint_caches(void)
  949. {
  950. kmem_cache_destroy(ino_entry_slab);
  951. kmem_cache_destroy(inode_entry_slab);
  952. }