algif_aead.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615
  1. /*
  2. * algif_aead: User-space interface for AEAD algorithms
  3. *
  4. * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
  5. *
  6. * This file provides the user-space API for AEAD ciphers.
  7. *
  8. * This file is derived from algif_skcipher.c.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published by the Free
  12. * Software Foundation; either version 2 of the License, or (at your option)
  13. * any later version.
  14. */
  15. #include <crypto/aead.h>
  16. #include <crypto/scatterwalk.h>
  17. #include <crypto/if_alg.h>
  18. #include <linux/init.h>
  19. #include <linux/list.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/net.h>
  24. #include <net/sock.h>
  25. struct aead_sg_list {
  26. unsigned int cur;
  27. struct scatterlist sg[ALG_MAX_PAGES];
  28. };
  29. struct aead_ctx {
  30. struct aead_sg_list tsgl;
  31. /*
  32. * RSGL_MAX_ENTRIES is an artificial limit where user space at maximum
  33. * can cause the kernel to allocate RSGL_MAX_ENTRIES * ALG_MAX_PAGES
  34. * pages
  35. */
  36. #define RSGL_MAX_ENTRIES ALG_MAX_PAGES
  37. struct af_alg_sgl rsgl[RSGL_MAX_ENTRIES];
  38. void *iv;
  39. struct af_alg_completion completion;
  40. unsigned long used;
  41. unsigned int len;
  42. bool more;
  43. bool merge;
  44. bool enc;
  45. size_t aead_assoclen;
  46. struct aead_request aead_req;
  47. };
  48. static inline int aead_sndbuf(struct sock *sk)
  49. {
  50. struct alg_sock *ask = alg_sk(sk);
  51. struct aead_ctx *ctx = ask->private;
  52. return max_t(int, max_t(int, sk->sk_sndbuf & PAGE_MASK, PAGE_SIZE) -
  53. ctx->used, 0);
  54. }
  55. static inline bool aead_writable(struct sock *sk)
  56. {
  57. return PAGE_SIZE <= aead_sndbuf(sk);
  58. }
  59. static inline bool aead_sufficient_data(struct aead_ctx *ctx)
  60. {
  61. unsigned as = crypto_aead_authsize(crypto_aead_reqtfm(&ctx->aead_req));
  62. return ctx->used >= ctx->aead_assoclen + as;
  63. }
  64. static void aead_put_sgl(struct sock *sk)
  65. {
  66. struct alg_sock *ask = alg_sk(sk);
  67. struct aead_ctx *ctx = ask->private;
  68. struct aead_sg_list *sgl = &ctx->tsgl;
  69. struct scatterlist *sg = sgl->sg;
  70. unsigned int i;
  71. for (i = 0; i < sgl->cur; i++) {
  72. if (!sg_page(sg + i))
  73. continue;
  74. put_page(sg_page(sg + i));
  75. sg_assign_page(sg + i, NULL);
  76. }
  77. sgl->cur = 0;
  78. ctx->used = 0;
  79. ctx->more = 0;
  80. ctx->merge = 0;
  81. }
  82. static void aead_wmem_wakeup(struct sock *sk)
  83. {
  84. struct socket_wq *wq;
  85. if (!aead_writable(sk))
  86. return;
  87. rcu_read_lock();
  88. wq = rcu_dereference(sk->sk_wq);
  89. if (wq_has_sleeper(wq))
  90. wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
  91. POLLRDNORM |
  92. POLLRDBAND);
  93. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  94. rcu_read_unlock();
  95. }
  96. static int aead_wait_for_data(struct sock *sk, unsigned flags)
  97. {
  98. struct alg_sock *ask = alg_sk(sk);
  99. struct aead_ctx *ctx = ask->private;
  100. long timeout;
  101. DEFINE_WAIT(wait);
  102. int err = -ERESTARTSYS;
  103. if (flags & MSG_DONTWAIT)
  104. return -EAGAIN;
  105. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  106. for (;;) {
  107. if (signal_pending(current))
  108. break;
  109. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  110. timeout = MAX_SCHEDULE_TIMEOUT;
  111. if (sk_wait_event(sk, &timeout, !ctx->more)) {
  112. err = 0;
  113. break;
  114. }
  115. }
  116. finish_wait(sk_sleep(sk), &wait);
  117. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  118. return err;
  119. }
  120. static void aead_data_wakeup(struct sock *sk)
  121. {
  122. struct alg_sock *ask = alg_sk(sk);
  123. struct aead_ctx *ctx = ask->private;
  124. struct socket_wq *wq;
  125. if (ctx->more)
  126. return;
  127. if (!ctx->used)
  128. return;
  129. rcu_read_lock();
  130. wq = rcu_dereference(sk->sk_wq);
  131. if (wq_has_sleeper(wq))
  132. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  133. POLLRDNORM |
  134. POLLRDBAND);
  135. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  136. rcu_read_unlock();
  137. }
  138. static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
  139. {
  140. struct sock *sk = sock->sk;
  141. struct alg_sock *ask = alg_sk(sk);
  142. struct aead_ctx *ctx = ask->private;
  143. unsigned ivsize =
  144. crypto_aead_ivsize(crypto_aead_reqtfm(&ctx->aead_req));
  145. struct aead_sg_list *sgl = &ctx->tsgl;
  146. struct af_alg_control con = {};
  147. long copied = 0;
  148. bool enc = 0;
  149. bool init = 0;
  150. int err = -EINVAL;
  151. if (msg->msg_controllen) {
  152. err = af_alg_cmsg_send(msg, &con);
  153. if (err)
  154. return err;
  155. init = 1;
  156. switch (con.op) {
  157. case ALG_OP_ENCRYPT:
  158. enc = 1;
  159. break;
  160. case ALG_OP_DECRYPT:
  161. enc = 0;
  162. break;
  163. default:
  164. return -EINVAL;
  165. }
  166. if (con.iv && con.iv->ivlen != ivsize)
  167. return -EINVAL;
  168. }
  169. lock_sock(sk);
  170. if (!ctx->more && ctx->used)
  171. goto unlock;
  172. if (init) {
  173. ctx->enc = enc;
  174. if (con.iv)
  175. memcpy(ctx->iv, con.iv->iv, ivsize);
  176. ctx->aead_assoclen = con.aead_assoclen;
  177. }
  178. while (size) {
  179. unsigned long len = size;
  180. struct scatterlist *sg = NULL;
  181. /* use the existing memory in an allocated page */
  182. if (ctx->merge) {
  183. sg = sgl->sg + sgl->cur - 1;
  184. len = min_t(unsigned long, len,
  185. PAGE_SIZE - sg->offset - sg->length);
  186. err = memcpy_from_msg(page_address(sg_page(sg)) +
  187. sg->offset + sg->length,
  188. msg, len);
  189. if (err)
  190. goto unlock;
  191. sg->length += len;
  192. ctx->merge = (sg->offset + sg->length) &
  193. (PAGE_SIZE - 1);
  194. ctx->used += len;
  195. copied += len;
  196. size -= len;
  197. continue;
  198. }
  199. if (!aead_writable(sk)) {
  200. /* user space sent too much data */
  201. aead_put_sgl(sk);
  202. err = -EMSGSIZE;
  203. goto unlock;
  204. }
  205. /* allocate a new page */
  206. len = min_t(unsigned long, size, aead_sndbuf(sk));
  207. while (len) {
  208. int plen = 0;
  209. if (sgl->cur >= ALG_MAX_PAGES) {
  210. aead_put_sgl(sk);
  211. err = -E2BIG;
  212. goto unlock;
  213. }
  214. sg = sgl->sg + sgl->cur;
  215. plen = min_t(int, len, PAGE_SIZE);
  216. sg_assign_page(sg, alloc_page(GFP_KERNEL));
  217. err = -ENOMEM;
  218. if (!sg_page(sg))
  219. goto unlock;
  220. err = memcpy_from_msg(page_address(sg_page(sg)),
  221. msg, plen);
  222. if (err) {
  223. __free_page(sg_page(sg));
  224. sg_assign_page(sg, NULL);
  225. goto unlock;
  226. }
  227. sg->offset = 0;
  228. sg->length = plen;
  229. len -= plen;
  230. ctx->used += plen;
  231. copied += plen;
  232. sgl->cur++;
  233. size -= plen;
  234. ctx->merge = plen & (PAGE_SIZE - 1);
  235. }
  236. }
  237. err = 0;
  238. ctx->more = msg->msg_flags & MSG_MORE;
  239. if (!ctx->more && !aead_sufficient_data(ctx)) {
  240. aead_put_sgl(sk);
  241. err = -EMSGSIZE;
  242. }
  243. unlock:
  244. aead_data_wakeup(sk);
  245. release_sock(sk);
  246. return err ?: copied;
  247. }
  248. static ssize_t aead_sendpage(struct socket *sock, struct page *page,
  249. int offset, size_t size, int flags)
  250. {
  251. struct sock *sk = sock->sk;
  252. struct alg_sock *ask = alg_sk(sk);
  253. struct aead_ctx *ctx = ask->private;
  254. struct aead_sg_list *sgl = &ctx->tsgl;
  255. int err = -EINVAL;
  256. if (flags & MSG_SENDPAGE_NOTLAST)
  257. flags |= MSG_MORE;
  258. if (sgl->cur >= ALG_MAX_PAGES)
  259. return -E2BIG;
  260. lock_sock(sk);
  261. if (!ctx->more && ctx->used)
  262. goto unlock;
  263. if (!size)
  264. goto done;
  265. if (!aead_writable(sk)) {
  266. /* user space sent too much data */
  267. aead_put_sgl(sk);
  268. err = -EMSGSIZE;
  269. goto unlock;
  270. }
  271. ctx->merge = 0;
  272. get_page(page);
  273. sg_set_page(sgl->sg + sgl->cur, page, size, offset);
  274. sgl->cur++;
  275. ctx->used += size;
  276. err = 0;
  277. done:
  278. ctx->more = flags & MSG_MORE;
  279. if (!ctx->more && !aead_sufficient_data(ctx)) {
  280. aead_put_sgl(sk);
  281. err = -EMSGSIZE;
  282. }
  283. unlock:
  284. aead_data_wakeup(sk);
  285. release_sock(sk);
  286. return err ?: size;
  287. }
  288. static int aead_recvmsg(struct socket *sock, struct msghdr *msg, size_t ignored, int flags)
  289. {
  290. struct sock *sk = sock->sk;
  291. struct alg_sock *ask = alg_sk(sk);
  292. struct aead_ctx *ctx = ask->private;
  293. unsigned as = crypto_aead_authsize(crypto_aead_reqtfm(&ctx->aead_req));
  294. struct aead_sg_list *sgl = &ctx->tsgl;
  295. unsigned int i = 0;
  296. int err = -EINVAL;
  297. unsigned long used = 0;
  298. size_t outlen = 0;
  299. size_t usedpages = 0;
  300. unsigned int cnt = 0;
  301. /* Limit number of IOV blocks to be accessed below */
  302. if (msg->msg_iter.nr_segs > RSGL_MAX_ENTRIES)
  303. return -ENOMSG;
  304. lock_sock(sk);
  305. /*
  306. * AEAD memory structure: For encryption, the tag is appended to the
  307. * ciphertext which implies that the memory allocated for the ciphertext
  308. * must be increased by the tag length. For decryption, the tag
  309. * is expected to be concatenated to the ciphertext. The plaintext
  310. * therefore has a memory size of the ciphertext minus the tag length.
  311. *
  312. * The memory structure for cipher operation has the following
  313. * structure:
  314. * AEAD encryption input: assoc data || plaintext
  315. * AEAD encryption output: cipherntext || auth tag
  316. * AEAD decryption input: assoc data || ciphertext || auth tag
  317. * AEAD decryption output: plaintext
  318. */
  319. if (ctx->more) {
  320. err = aead_wait_for_data(sk, flags);
  321. if (err)
  322. goto unlock;
  323. }
  324. used = ctx->used;
  325. /*
  326. * Make sure sufficient data is present -- note, the same check is
  327. * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
  328. * shall provide an information to the data sender that something is
  329. * wrong, but they are irrelevant to maintain the kernel integrity.
  330. * We need this check here too in case user space decides to not honor
  331. * the error message in sendmsg/sendpage and still call recvmsg. This
  332. * check here protects the kernel integrity.
  333. */
  334. if (!aead_sufficient_data(ctx))
  335. goto unlock;
  336. outlen = used;
  337. /*
  338. * The cipher operation input data is reduced by the associated data
  339. * length as this data is processed separately later on.
  340. */
  341. used -= ctx->aead_assoclen + (ctx->enc ? as : 0);
  342. /* convert iovecs of output buffers into scatterlists */
  343. while (iov_iter_count(&msg->msg_iter)) {
  344. size_t seglen = min_t(size_t, iov_iter_count(&msg->msg_iter),
  345. (outlen - usedpages));
  346. /* make one iovec available as scatterlist */
  347. err = af_alg_make_sg(&ctx->rsgl[cnt], &msg->msg_iter,
  348. seglen);
  349. if (err < 0)
  350. goto unlock;
  351. usedpages += err;
  352. /* chain the new scatterlist with previous one */
  353. if (cnt)
  354. af_alg_link_sg(&ctx->rsgl[cnt-1], &ctx->rsgl[cnt]);
  355. /* we do not need more iovecs as we have sufficient memory */
  356. if (outlen <= usedpages)
  357. break;
  358. iov_iter_advance(&msg->msg_iter, err);
  359. cnt++;
  360. }
  361. err = -EINVAL;
  362. /* ensure output buffer is sufficiently large */
  363. if (usedpages < outlen)
  364. goto unlock;
  365. sg_mark_end(sgl->sg + sgl->cur - 1);
  366. aead_request_set_crypt(&ctx->aead_req, sgl->sg, ctx->rsgl[0].sg,
  367. used, ctx->iv);
  368. aead_request_set_ad(&ctx->aead_req, ctx->aead_assoclen);
  369. err = af_alg_wait_for_completion(ctx->enc ?
  370. crypto_aead_encrypt(&ctx->aead_req) :
  371. crypto_aead_decrypt(&ctx->aead_req),
  372. &ctx->completion);
  373. if (err) {
  374. /* EBADMSG implies a valid cipher operation took place */
  375. if (err == -EBADMSG)
  376. aead_put_sgl(sk);
  377. goto unlock;
  378. }
  379. aead_put_sgl(sk);
  380. err = 0;
  381. unlock:
  382. for (i = 0; i < cnt; i++)
  383. af_alg_free_sg(&ctx->rsgl[i]);
  384. aead_wmem_wakeup(sk);
  385. release_sock(sk);
  386. return err ? err : outlen;
  387. }
  388. static unsigned int aead_poll(struct file *file, struct socket *sock,
  389. poll_table *wait)
  390. {
  391. struct sock *sk = sock->sk;
  392. struct alg_sock *ask = alg_sk(sk);
  393. struct aead_ctx *ctx = ask->private;
  394. unsigned int mask;
  395. sock_poll_wait(file, sk_sleep(sk), wait);
  396. mask = 0;
  397. if (!ctx->more)
  398. mask |= POLLIN | POLLRDNORM;
  399. if (aead_writable(sk))
  400. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  401. return mask;
  402. }
  403. static struct proto_ops algif_aead_ops = {
  404. .family = PF_ALG,
  405. .connect = sock_no_connect,
  406. .socketpair = sock_no_socketpair,
  407. .getname = sock_no_getname,
  408. .ioctl = sock_no_ioctl,
  409. .listen = sock_no_listen,
  410. .shutdown = sock_no_shutdown,
  411. .getsockopt = sock_no_getsockopt,
  412. .mmap = sock_no_mmap,
  413. .bind = sock_no_bind,
  414. .accept = sock_no_accept,
  415. .setsockopt = sock_no_setsockopt,
  416. .release = af_alg_release,
  417. .sendmsg = aead_sendmsg,
  418. .sendpage = aead_sendpage,
  419. .recvmsg = aead_recvmsg,
  420. .poll = aead_poll,
  421. };
  422. static void *aead_bind(const char *name, u32 type, u32 mask)
  423. {
  424. return crypto_alloc_aead(name, type | CRYPTO_ALG_AEAD_NEW,
  425. mask | CRYPTO_ALG_AEAD_NEW);
  426. }
  427. static void aead_release(void *private)
  428. {
  429. crypto_free_aead(private);
  430. }
  431. static int aead_setauthsize(void *private, unsigned int authsize)
  432. {
  433. return crypto_aead_setauthsize(private, authsize);
  434. }
  435. static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
  436. {
  437. return crypto_aead_setkey(private, key, keylen);
  438. }
  439. static void aead_sock_destruct(struct sock *sk)
  440. {
  441. struct alg_sock *ask = alg_sk(sk);
  442. struct aead_ctx *ctx = ask->private;
  443. unsigned int ivlen = crypto_aead_ivsize(
  444. crypto_aead_reqtfm(&ctx->aead_req));
  445. aead_put_sgl(sk);
  446. sock_kzfree_s(sk, ctx->iv, ivlen);
  447. sock_kfree_s(sk, ctx, ctx->len);
  448. af_alg_release_parent(sk);
  449. }
  450. static int aead_accept_parent(void *private, struct sock *sk)
  451. {
  452. struct aead_ctx *ctx;
  453. struct alg_sock *ask = alg_sk(sk);
  454. unsigned int len = sizeof(*ctx) + crypto_aead_reqsize(private);
  455. unsigned int ivlen = crypto_aead_ivsize(private);
  456. ctx = sock_kmalloc(sk, len, GFP_KERNEL);
  457. if (!ctx)
  458. return -ENOMEM;
  459. memset(ctx, 0, len);
  460. ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
  461. if (!ctx->iv) {
  462. sock_kfree_s(sk, ctx, len);
  463. return -ENOMEM;
  464. }
  465. memset(ctx->iv, 0, ivlen);
  466. ctx->len = len;
  467. ctx->used = 0;
  468. ctx->more = 0;
  469. ctx->merge = 0;
  470. ctx->enc = 0;
  471. ctx->tsgl.cur = 0;
  472. ctx->aead_assoclen = 0;
  473. af_alg_init_completion(&ctx->completion);
  474. sg_init_table(ctx->tsgl.sg, ALG_MAX_PAGES);
  475. ask->private = ctx;
  476. aead_request_set_tfm(&ctx->aead_req, private);
  477. aead_request_set_callback(&ctx->aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  478. af_alg_complete, &ctx->completion);
  479. sk->sk_destruct = aead_sock_destruct;
  480. return 0;
  481. }
  482. static const struct af_alg_type algif_type_aead = {
  483. .bind = aead_bind,
  484. .release = aead_release,
  485. .setkey = aead_setkey,
  486. .setauthsize = aead_setauthsize,
  487. .accept = aead_accept_parent,
  488. .ops = &algif_aead_ops,
  489. .name = "aead",
  490. .owner = THIS_MODULE
  491. };
  492. static int __init algif_aead_init(void)
  493. {
  494. return af_alg_register_type(&algif_type_aead);
  495. }
  496. static void __exit algif_aead_exit(void)
  497. {
  498. int err = af_alg_unregister_type(&algif_type_aead);
  499. BUG_ON(err);
  500. }
  501. module_init(algif_aead_init);
  502. module_exit(algif_aead_exit);
  503. MODULE_LICENSE("GPL");
  504. MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
  505. MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");