mmu.c 122 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "cpuid.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. #undef MMU_DEBUG
  58. #ifdef MMU_DEBUG
  59. static bool dbg = 0;
  60. module_param(dbg, bool, 0644);
  61. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  62. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  63. #define MMU_WARN_ON(x) WARN_ON(x)
  64. #else
  65. #define pgprintk(x...) do { } while (0)
  66. #define rmap_printk(x...) do { } while (0)
  67. #define MMU_WARN_ON(x) do { } while (0)
  68. #endif
  69. #define PTE_PREFETCH_NUM 8
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define PT64_LEVEL_BITS 9
  73. #define PT64_LEVEL_SHIFT(level) \
  74. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LVL_OFFSET_MASK(level) \
  81. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  82. * PT32_LEVEL_BITS))) - 1))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT64_LVL_ADDR_MASK(level) \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT64_LEVEL_BITS))) - 1))
  91. #define PT64_LVL_OFFSET_MASK(level) \
  92. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT64_LEVEL_BITS))) - 1))
  94. #define PT32_BASE_ADDR_MASK PAGE_MASK
  95. #define PT32_DIR_BASE_ADDR_MASK \
  96. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  97. #define PT32_LVL_ADDR_MASK(level) \
  98. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT32_LEVEL_BITS))) - 1))
  100. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
  101. | shadow_x_mask | shadow_nx_mask)
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #include <trace/events/kvm.h>
  107. #define CREATE_TRACE_POINTS
  108. #include "mmutrace.h"
  109. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  110. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  111. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  112. /* make pte_list_desc fit well in cache line */
  113. #define PTE_LIST_EXT 3
  114. struct pte_list_desc {
  115. u64 *sptes[PTE_LIST_EXT];
  116. struct pte_list_desc *more;
  117. };
  118. struct kvm_shadow_walk_iterator {
  119. u64 addr;
  120. hpa_t shadow_addr;
  121. u64 *sptep;
  122. int level;
  123. unsigned index;
  124. };
  125. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  126. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  127. shadow_walk_okay(&(_walker)); \
  128. shadow_walk_next(&(_walker)))
  129. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  130. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  131. shadow_walk_okay(&(_walker)) && \
  132. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  133. __shadow_walk_next(&(_walker), spte))
  134. static struct kmem_cache *pte_list_desc_cache;
  135. static struct kmem_cache *mmu_page_header_cache;
  136. static struct percpu_counter kvm_total_used_mmu_pages;
  137. static u64 __read_mostly shadow_nx_mask;
  138. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  139. static u64 __read_mostly shadow_user_mask;
  140. static u64 __read_mostly shadow_accessed_mask;
  141. static u64 __read_mostly shadow_dirty_mask;
  142. static u64 __read_mostly shadow_mmio_mask;
  143. static void mmu_spte_set(u64 *sptep, u64 spte);
  144. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  145. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  146. {
  147. shadow_mmio_mask = mmio_mask;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  150. /*
  151. * the low bit of the generation number is always presumed to be zero.
  152. * This disables mmio caching during memslot updates. The concept is
  153. * similar to a seqcount but instead of retrying the access we just punt
  154. * and ignore the cache.
  155. *
  156. * spte bits 3-11 are used as bits 1-9 of the generation number,
  157. * the bits 52-61 are used as bits 10-19 of the generation number.
  158. */
  159. #define MMIO_SPTE_GEN_LOW_SHIFT 2
  160. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  161. #define MMIO_GEN_SHIFT 20
  162. #define MMIO_GEN_LOW_SHIFT 10
  163. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
  164. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  165. static u64 generation_mmio_spte_mask(unsigned int gen)
  166. {
  167. u64 mask;
  168. WARN_ON(gen & ~MMIO_GEN_MASK);
  169. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  170. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  171. return mask;
  172. }
  173. static unsigned int get_mmio_spte_generation(u64 spte)
  174. {
  175. unsigned int gen;
  176. spte &= ~shadow_mmio_mask;
  177. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  178. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  179. return gen;
  180. }
  181. static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
  182. {
  183. return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
  184. }
  185. static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
  186. unsigned access)
  187. {
  188. unsigned int gen = kvm_current_mmio_generation(vcpu);
  189. u64 mask = generation_mmio_spte_mask(gen);
  190. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  191. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  192. trace_mark_mmio_spte(sptep, gfn, access, gen);
  193. mmu_spte_set(sptep, mask);
  194. }
  195. static bool is_mmio_spte(u64 spte)
  196. {
  197. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  198. }
  199. static gfn_t get_mmio_spte_gfn(u64 spte)
  200. {
  201. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  202. return (spte & ~mask) >> PAGE_SHIFT;
  203. }
  204. static unsigned get_mmio_spte_access(u64 spte)
  205. {
  206. u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
  207. return (spte & ~mask) & ~PAGE_MASK;
  208. }
  209. static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  210. pfn_t pfn, unsigned access)
  211. {
  212. if (unlikely(is_noslot_pfn(pfn))) {
  213. mark_mmio_spte(vcpu, sptep, gfn, access);
  214. return true;
  215. }
  216. return false;
  217. }
  218. static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
  219. {
  220. unsigned int kvm_gen, spte_gen;
  221. kvm_gen = kvm_current_mmio_generation(vcpu);
  222. spte_gen = get_mmio_spte_generation(spte);
  223. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  224. return likely(kvm_gen == spte_gen);
  225. }
  226. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  227. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  228. {
  229. shadow_user_mask = user_mask;
  230. shadow_accessed_mask = accessed_mask;
  231. shadow_dirty_mask = dirty_mask;
  232. shadow_nx_mask = nx_mask;
  233. shadow_x_mask = x_mask;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  236. static int is_cpuid_PSE36(void)
  237. {
  238. return 1;
  239. }
  240. static int is_nx(struct kvm_vcpu *vcpu)
  241. {
  242. return vcpu->arch.efer & EFER_NX;
  243. }
  244. static int is_shadow_present_pte(u64 pte)
  245. {
  246. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  247. }
  248. static int is_large_pte(u64 pte)
  249. {
  250. return pte & PT_PAGE_SIZE_MASK;
  251. }
  252. static int is_rmap_spte(u64 pte)
  253. {
  254. return is_shadow_present_pte(pte);
  255. }
  256. static int is_last_spte(u64 pte, int level)
  257. {
  258. if (level == PT_PAGE_TABLE_LEVEL)
  259. return 1;
  260. if (is_large_pte(pte))
  261. return 1;
  262. return 0;
  263. }
  264. static pfn_t spte_to_pfn(u64 pte)
  265. {
  266. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  267. }
  268. static gfn_t pse36_gfn_delta(u32 gpte)
  269. {
  270. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  271. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  272. }
  273. #ifdef CONFIG_X86_64
  274. static void __set_spte(u64 *sptep, u64 spte)
  275. {
  276. *sptep = spte;
  277. }
  278. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  279. {
  280. *sptep = spte;
  281. }
  282. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  283. {
  284. return xchg(sptep, spte);
  285. }
  286. static u64 __get_spte_lockless(u64 *sptep)
  287. {
  288. return ACCESS_ONCE(*sptep);
  289. }
  290. static bool __check_direct_spte_mmio_pf(u64 spte)
  291. {
  292. /* It is valid if the spte is zapped. */
  293. return spte == 0ull;
  294. }
  295. #else
  296. union split_spte {
  297. struct {
  298. u32 spte_low;
  299. u32 spte_high;
  300. };
  301. u64 spte;
  302. };
  303. static void count_spte_clear(u64 *sptep, u64 spte)
  304. {
  305. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  306. if (is_shadow_present_pte(spte))
  307. return;
  308. /* Ensure the spte is completely set before we increase the count */
  309. smp_wmb();
  310. sp->clear_spte_count++;
  311. }
  312. static void __set_spte(u64 *sptep, u64 spte)
  313. {
  314. union split_spte *ssptep, sspte;
  315. ssptep = (union split_spte *)sptep;
  316. sspte = (union split_spte)spte;
  317. ssptep->spte_high = sspte.spte_high;
  318. /*
  319. * If we map the spte from nonpresent to present, We should store
  320. * the high bits firstly, then set present bit, so cpu can not
  321. * fetch this spte while we are setting the spte.
  322. */
  323. smp_wmb();
  324. ssptep->spte_low = sspte.spte_low;
  325. }
  326. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  327. {
  328. union split_spte *ssptep, sspte;
  329. ssptep = (union split_spte *)sptep;
  330. sspte = (union split_spte)spte;
  331. ssptep->spte_low = sspte.spte_low;
  332. /*
  333. * If we map the spte from present to nonpresent, we should clear
  334. * present bit firstly to avoid vcpu fetch the old high bits.
  335. */
  336. smp_wmb();
  337. ssptep->spte_high = sspte.spte_high;
  338. count_spte_clear(sptep, spte);
  339. }
  340. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  341. {
  342. union split_spte *ssptep, sspte, orig;
  343. ssptep = (union split_spte *)sptep;
  344. sspte = (union split_spte)spte;
  345. /* xchg acts as a barrier before the setting of the high bits */
  346. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  347. orig.spte_high = ssptep->spte_high;
  348. ssptep->spte_high = sspte.spte_high;
  349. count_spte_clear(sptep, spte);
  350. return orig.spte;
  351. }
  352. /*
  353. * The idea using the light way get the spte on x86_32 guest is from
  354. * gup_get_pte(arch/x86/mm/gup.c).
  355. *
  356. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  357. * coalesces them and we are running out of the MMU lock. Therefore
  358. * we need to protect against in-progress updates of the spte.
  359. *
  360. * Reading the spte while an update is in progress may get the old value
  361. * for the high part of the spte. The race is fine for a present->non-present
  362. * change (because the high part of the spte is ignored for non-present spte),
  363. * but for a present->present change we must reread the spte.
  364. *
  365. * All such changes are done in two steps (present->non-present and
  366. * non-present->present), hence it is enough to count the number of
  367. * present->non-present updates: if it changed while reading the spte,
  368. * we might have hit the race. This is done using clear_spte_count.
  369. */
  370. static u64 __get_spte_lockless(u64 *sptep)
  371. {
  372. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  373. union split_spte spte, *orig = (union split_spte *)sptep;
  374. int count;
  375. retry:
  376. count = sp->clear_spte_count;
  377. smp_rmb();
  378. spte.spte_low = orig->spte_low;
  379. smp_rmb();
  380. spte.spte_high = orig->spte_high;
  381. smp_rmb();
  382. if (unlikely(spte.spte_low != orig->spte_low ||
  383. count != sp->clear_spte_count))
  384. goto retry;
  385. return spte.spte;
  386. }
  387. static bool __check_direct_spte_mmio_pf(u64 spte)
  388. {
  389. union split_spte sspte = (union split_spte)spte;
  390. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  391. /* It is valid if the spte is zapped. */
  392. if (spte == 0ull)
  393. return true;
  394. /* It is valid if the spte is being zapped. */
  395. if (sspte.spte_low == 0ull &&
  396. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  397. return true;
  398. return false;
  399. }
  400. #endif
  401. static bool spte_is_locklessly_modifiable(u64 spte)
  402. {
  403. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  404. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  405. }
  406. static bool spte_has_volatile_bits(u64 spte)
  407. {
  408. /*
  409. * Always atomicly update spte if it can be updated
  410. * out of mmu-lock, it can ensure dirty bit is not lost,
  411. * also, it can help us to get a stable is_writable_pte()
  412. * to ensure tlb flush is not missed.
  413. */
  414. if (spte_is_locklessly_modifiable(spte))
  415. return true;
  416. if (!shadow_accessed_mask)
  417. return false;
  418. if (!is_shadow_present_pte(spte))
  419. return false;
  420. if ((spte & shadow_accessed_mask) &&
  421. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  422. return false;
  423. return true;
  424. }
  425. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  426. {
  427. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  428. }
  429. static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
  430. {
  431. return (old_spte & bit_mask) != (new_spte & bit_mask);
  432. }
  433. /* Rules for using mmu_spte_set:
  434. * Set the sptep from nonpresent to present.
  435. * Note: the sptep being assigned *must* be either not present
  436. * or in a state where the hardware will not attempt to update
  437. * the spte.
  438. */
  439. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  440. {
  441. WARN_ON(is_shadow_present_pte(*sptep));
  442. __set_spte(sptep, new_spte);
  443. }
  444. /* Rules for using mmu_spte_update:
  445. * Update the state bits, it means the mapped pfn is not changged.
  446. *
  447. * Whenever we overwrite a writable spte with a read-only one we
  448. * should flush remote TLBs. Otherwise rmap_write_protect
  449. * will find a read-only spte, even though the writable spte
  450. * might be cached on a CPU's TLB, the return value indicates this
  451. * case.
  452. */
  453. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  454. {
  455. u64 old_spte = *sptep;
  456. bool ret = false;
  457. WARN_ON(!is_rmap_spte(new_spte));
  458. if (!is_shadow_present_pte(old_spte)) {
  459. mmu_spte_set(sptep, new_spte);
  460. return ret;
  461. }
  462. if (!spte_has_volatile_bits(old_spte))
  463. __update_clear_spte_fast(sptep, new_spte);
  464. else
  465. old_spte = __update_clear_spte_slow(sptep, new_spte);
  466. /*
  467. * For the spte updated out of mmu-lock is safe, since
  468. * we always atomicly update it, see the comments in
  469. * spte_has_volatile_bits().
  470. */
  471. if (spte_is_locklessly_modifiable(old_spte) &&
  472. !is_writable_pte(new_spte))
  473. ret = true;
  474. if (!shadow_accessed_mask)
  475. return ret;
  476. /*
  477. * Flush TLB when accessed/dirty bits are changed in the page tables,
  478. * to guarantee consistency between TLB and page tables.
  479. */
  480. if (spte_is_bit_changed(old_spte, new_spte,
  481. shadow_accessed_mask | shadow_dirty_mask))
  482. ret = true;
  483. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  484. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  485. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  486. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  487. return ret;
  488. }
  489. /*
  490. * Rules for using mmu_spte_clear_track_bits:
  491. * It sets the sptep from present to nonpresent, and track the
  492. * state bits, it is used to clear the last level sptep.
  493. */
  494. static int mmu_spte_clear_track_bits(u64 *sptep)
  495. {
  496. pfn_t pfn;
  497. u64 old_spte = *sptep;
  498. if (!spte_has_volatile_bits(old_spte))
  499. __update_clear_spte_fast(sptep, 0ull);
  500. else
  501. old_spte = __update_clear_spte_slow(sptep, 0ull);
  502. if (!is_rmap_spte(old_spte))
  503. return 0;
  504. pfn = spte_to_pfn(old_spte);
  505. /*
  506. * KVM does not hold the refcount of the page used by
  507. * kvm mmu, before reclaiming the page, we should
  508. * unmap it from mmu first.
  509. */
  510. WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  511. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  512. kvm_set_pfn_accessed(pfn);
  513. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  514. kvm_set_pfn_dirty(pfn);
  515. return 1;
  516. }
  517. /*
  518. * Rules for using mmu_spte_clear_no_track:
  519. * Directly clear spte without caring the state bits of sptep,
  520. * it is used to set the upper level spte.
  521. */
  522. static void mmu_spte_clear_no_track(u64 *sptep)
  523. {
  524. __update_clear_spte_fast(sptep, 0ull);
  525. }
  526. static u64 mmu_spte_get_lockless(u64 *sptep)
  527. {
  528. return __get_spte_lockless(sptep);
  529. }
  530. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  531. {
  532. /*
  533. * Prevent page table teardown by making any free-er wait during
  534. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  535. */
  536. local_irq_disable();
  537. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  538. /*
  539. * Make sure a following spte read is not reordered ahead of the write
  540. * to vcpu->mode.
  541. */
  542. smp_mb();
  543. }
  544. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  545. {
  546. /*
  547. * Make sure the write to vcpu->mode is not reordered in front of
  548. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  549. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  550. */
  551. smp_mb();
  552. vcpu->mode = OUTSIDE_GUEST_MODE;
  553. local_irq_enable();
  554. }
  555. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  556. struct kmem_cache *base_cache, int min)
  557. {
  558. void *obj;
  559. if (cache->nobjs >= min)
  560. return 0;
  561. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  562. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  563. if (!obj)
  564. return -ENOMEM;
  565. cache->objects[cache->nobjs++] = obj;
  566. }
  567. return 0;
  568. }
  569. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  570. {
  571. return cache->nobjs;
  572. }
  573. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  574. struct kmem_cache *cache)
  575. {
  576. while (mc->nobjs)
  577. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  578. }
  579. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  580. int min)
  581. {
  582. void *page;
  583. if (cache->nobjs >= min)
  584. return 0;
  585. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  586. page = (void *)__get_free_page(GFP_KERNEL);
  587. if (!page)
  588. return -ENOMEM;
  589. cache->objects[cache->nobjs++] = page;
  590. }
  591. return 0;
  592. }
  593. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  594. {
  595. while (mc->nobjs)
  596. free_page((unsigned long)mc->objects[--mc->nobjs]);
  597. }
  598. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  599. {
  600. int r;
  601. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  602. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  603. if (r)
  604. goto out;
  605. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  606. if (r)
  607. goto out;
  608. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  609. mmu_page_header_cache, 4);
  610. out:
  611. return r;
  612. }
  613. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  614. {
  615. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  616. pte_list_desc_cache);
  617. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  618. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  619. mmu_page_header_cache);
  620. }
  621. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  622. {
  623. void *p;
  624. BUG_ON(!mc->nobjs);
  625. p = mc->objects[--mc->nobjs];
  626. return p;
  627. }
  628. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  629. {
  630. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  631. }
  632. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  633. {
  634. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  635. }
  636. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  637. {
  638. if (!sp->role.direct)
  639. return sp->gfns[index];
  640. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  641. }
  642. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  643. {
  644. if (sp->role.direct)
  645. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  646. else
  647. sp->gfns[index] = gfn;
  648. }
  649. /*
  650. * Return the pointer to the large page information for a given gfn,
  651. * handling slots that are not large page aligned.
  652. */
  653. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  654. struct kvm_memory_slot *slot,
  655. int level)
  656. {
  657. unsigned long idx;
  658. idx = gfn_to_index(gfn, slot->base_gfn, level);
  659. return &slot->arch.lpage_info[level - 2][idx];
  660. }
  661. static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  662. {
  663. struct kvm_memslots *slots;
  664. struct kvm_memory_slot *slot;
  665. struct kvm_lpage_info *linfo;
  666. gfn_t gfn;
  667. int i;
  668. gfn = sp->gfn;
  669. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  670. slot = __gfn_to_memslot(slots, gfn);
  671. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  672. linfo = lpage_info_slot(gfn, slot, i);
  673. linfo->write_count += 1;
  674. }
  675. kvm->arch.indirect_shadow_pages++;
  676. }
  677. static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
  678. {
  679. struct kvm_memslots *slots;
  680. struct kvm_memory_slot *slot;
  681. struct kvm_lpage_info *linfo;
  682. gfn_t gfn;
  683. int i;
  684. gfn = sp->gfn;
  685. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  686. slot = __gfn_to_memslot(slots, gfn);
  687. for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  688. linfo = lpage_info_slot(gfn, slot, i);
  689. linfo->write_count -= 1;
  690. WARN_ON(linfo->write_count < 0);
  691. }
  692. kvm->arch.indirect_shadow_pages--;
  693. }
  694. static int has_wrprotected_page(struct kvm_vcpu *vcpu,
  695. gfn_t gfn,
  696. int level)
  697. {
  698. struct kvm_memory_slot *slot;
  699. struct kvm_lpage_info *linfo;
  700. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  701. if (slot) {
  702. linfo = lpage_info_slot(gfn, slot, level);
  703. return linfo->write_count;
  704. }
  705. return 1;
  706. }
  707. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  708. {
  709. unsigned long page_size;
  710. int i, ret = 0;
  711. page_size = kvm_host_page_size(kvm, gfn);
  712. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  713. if (page_size >= KVM_HPAGE_SIZE(i))
  714. ret = i;
  715. else
  716. break;
  717. }
  718. return ret;
  719. }
  720. static struct kvm_memory_slot *
  721. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  722. bool no_dirty_log)
  723. {
  724. struct kvm_memory_slot *slot;
  725. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  726. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  727. (no_dirty_log && slot->dirty_bitmap))
  728. slot = NULL;
  729. return slot;
  730. }
  731. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  732. {
  733. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  734. }
  735. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  736. {
  737. int host_level, level, max_level;
  738. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  739. if (host_level == PT_PAGE_TABLE_LEVEL)
  740. return host_level;
  741. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  742. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  743. if (has_wrprotected_page(vcpu, large_gfn, level))
  744. break;
  745. return level - 1;
  746. }
  747. /*
  748. * Pte mapping structures:
  749. *
  750. * If pte_list bit zero is zero, then pte_list point to the spte.
  751. *
  752. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  753. * pte_list_desc containing more mappings.
  754. *
  755. * Returns the number of pte entries before the spte was added or zero if
  756. * the spte was not added.
  757. *
  758. */
  759. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  760. unsigned long *pte_list)
  761. {
  762. struct pte_list_desc *desc;
  763. int i, count = 0;
  764. if (!*pte_list) {
  765. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  766. *pte_list = (unsigned long)spte;
  767. } else if (!(*pte_list & 1)) {
  768. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  769. desc = mmu_alloc_pte_list_desc(vcpu);
  770. desc->sptes[0] = (u64 *)*pte_list;
  771. desc->sptes[1] = spte;
  772. *pte_list = (unsigned long)desc | 1;
  773. ++count;
  774. } else {
  775. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  776. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  777. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  778. desc = desc->more;
  779. count += PTE_LIST_EXT;
  780. }
  781. if (desc->sptes[PTE_LIST_EXT-1]) {
  782. desc->more = mmu_alloc_pte_list_desc(vcpu);
  783. desc = desc->more;
  784. }
  785. for (i = 0; desc->sptes[i]; ++i)
  786. ++count;
  787. desc->sptes[i] = spte;
  788. }
  789. return count;
  790. }
  791. static void
  792. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  793. int i, struct pte_list_desc *prev_desc)
  794. {
  795. int j;
  796. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  797. ;
  798. desc->sptes[i] = desc->sptes[j];
  799. desc->sptes[j] = NULL;
  800. if (j != 0)
  801. return;
  802. if (!prev_desc && !desc->more)
  803. *pte_list = (unsigned long)desc->sptes[0];
  804. else
  805. if (prev_desc)
  806. prev_desc->more = desc->more;
  807. else
  808. *pte_list = (unsigned long)desc->more | 1;
  809. mmu_free_pte_list_desc(desc);
  810. }
  811. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  812. {
  813. struct pte_list_desc *desc;
  814. struct pte_list_desc *prev_desc;
  815. int i;
  816. if (!*pte_list) {
  817. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  818. BUG();
  819. } else if (!(*pte_list & 1)) {
  820. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  821. if ((u64 *)*pte_list != spte) {
  822. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  823. BUG();
  824. }
  825. *pte_list = 0;
  826. } else {
  827. rmap_printk("pte_list_remove: %p many->many\n", spte);
  828. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  829. prev_desc = NULL;
  830. while (desc) {
  831. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  832. if (desc->sptes[i] == spte) {
  833. pte_list_desc_remove_entry(pte_list,
  834. desc, i,
  835. prev_desc);
  836. return;
  837. }
  838. prev_desc = desc;
  839. desc = desc->more;
  840. }
  841. pr_err("pte_list_remove: %p many->many\n", spte);
  842. BUG();
  843. }
  844. }
  845. typedef void (*pte_list_walk_fn) (u64 *spte);
  846. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  847. {
  848. struct pte_list_desc *desc;
  849. int i;
  850. if (!*pte_list)
  851. return;
  852. if (!(*pte_list & 1))
  853. return fn((u64 *)*pte_list);
  854. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  855. while (desc) {
  856. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  857. fn(desc->sptes[i]);
  858. desc = desc->more;
  859. }
  860. }
  861. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  862. struct kvm_memory_slot *slot)
  863. {
  864. unsigned long idx;
  865. idx = gfn_to_index(gfn, slot->base_gfn, level);
  866. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  867. }
  868. /*
  869. * Take gfn and return the reverse mapping to it.
  870. */
  871. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
  872. {
  873. struct kvm_memslots *slots;
  874. struct kvm_memory_slot *slot;
  875. slots = kvm_memslots_for_spte_role(kvm, sp->role);
  876. slot = __gfn_to_memslot(slots, gfn);
  877. return __gfn_to_rmap(gfn, sp->role.level, slot);
  878. }
  879. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  880. {
  881. struct kvm_mmu_memory_cache *cache;
  882. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  883. return mmu_memory_cache_free_objects(cache);
  884. }
  885. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  886. {
  887. struct kvm_mmu_page *sp;
  888. unsigned long *rmapp;
  889. sp = page_header(__pa(spte));
  890. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  891. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  892. return pte_list_add(vcpu, spte, rmapp);
  893. }
  894. static void rmap_remove(struct kvm *kvm, u64 *spte)
  895. {
  896. struct kvm_mmu_page *sp;
  897. gfn_t gfn;
  898. unsigned long *rmapp;
  899. sp = page_header(__pa(spte));
  900. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  901. rmapp = gfn_to_rmap(kvm, gfn, sp);
  902. pte_list_remove(spte, rmapp);
  903. }
  904. /*
  905. * Used by the following functions to iterate through the sptes linked by a
  906. * rmap. All fields are private and not assumed to be used outside.
  907. */
  908. struct rmap_iterator {
  909. /* private fields */
  910. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  911. int pos; /* index of the sptep */
  912. };
  913. /*
  914. * Iteration must be started by this function. This should also be used after
  915. * removing/dropping sptes from the rmap link because in such cases the
  916. * information in the itererator may not be valid.
  917. *
  918. * Returns sptep if found, NULL otherwise.
  919. */
  920. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  921. {
  922. if (!rmap)
  923. return NULL;
  924. if (!(rmap & 1)) {
  925. iter->desc = NULL;
  926. return (u64 *)rmap;
  927. }
  928. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  929. iter->pos = 0;
  930. return iter->desc->sptes[iter->pos];
  931. }
  932. /*
  933. * Must be used with a valid iterator: e.g. after rmap_get_first().
  934. *
  935. * Returns sptep if found, NULL otherwise.
  936. */
  937. static u64 *rmap_get_next(struct rmap_iterator *iter)
  938. {
  939. if (iter->desc) {
  940. if (iter->pos < PTE_LIST_EXT - 1) {
  941. u64 *sptep;
  942. ++iter->pos;
  943. sptep = iter->desc->sptes[iter->pos];
  944. if (sptep)
  945. return sptep;
  946. }
  947. iter->desc = iter->desc->more;
  948. if (iter->desc) {
  949. iter->pos = 0;
  950. /* desc->sptes[0] cannot be NULL */
  951. return iter->desc->sptes[iter->pos];
  952. }
  953. }
  954. return NULL;
  955. }
  956. #define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
  957. for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
  958. _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
  959. _spte_ = rmap_get_next(_iter_))
  960. static void drop_spte(struct kvm *kvm, u64 *sptep)
  961. {
  962. if (mmu_spte_clear_track_bits(sptep))
  963. rmap_remove(kvm, sptep);
  964. }
  965. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  966. {
  967. if (is_large_pte(*sptep)) {
  968. WARN_ON(page_header(__pa(sptep))->role.level ==
  969. PT_PAGE_TABLE_LEVEL);
  970. drop_spte(kvm, sptep);
  971. --kvm->stat.lpages;
  972. return true;
  973. }
  974. return false;
  975. }
  976. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  977. {
  978. if (__drop_large_spte(vcpu->kvm, sptep))
  979. kvm_flush_remote_tlbs(vcpu->kvm);
  980. }
  981. /*
  982. * Write-protect on the specified @sptep, @pt_protect indicates whether
  983. * spte write-protection is caused by protecting shadow page table.
  984. *
  985. * Note: write protection is difference between dirty logging and spte
  986. * protection:
  987. * - for dirty logging, the spte can be set to writable at anytime if
  988. * its dirty bitmap is properly set.
  989. * - for spte protection, the spte can be writable only after unsync-ing
  990. * shadow page.
  991. *
  992. * Return true if tlb need be flushed.
  993. */
  994. static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
  995. {
  996. u64 spte = *sptep;
  997. if (!is_writable_pte(spte) &&
  998. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  999. return false;
  1000. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  1001. if (pt_protect)
  1002. spte &= ~SPTE_MMU_WRITEABLE;
  1003. spte = spte & ~PT_WRITABLE_MASK;
  1004. return mmu_spte_update(sptep, spte);
  1005. }
  1006. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  1007. bool pt_protect)
  1008. {
  1009. u64 *sptep;
  1010. struct rmap_iterator iter;
  1011. bool flush = false;
  1012. for_each_rmap_spte(rmapp, &iter, sptep)
  1013. flush |= spte_write_protect(kvm, sptep, pt_protect);
  1014. return flush;
  1015. }
  1016. static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
  1017. {
  1018. u64 spte = *sptep;
  1019. rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
  1020. spte &= ~shadow_dirty_mask;
  1021. return mmu_spte_update(sptep, spte);
  1022. }
  1023. static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
  1024. {
  1025. u64 *sptep;
  1026. struct rmap_iterator iter;
  1027. bool flush = false;
  1028. for_each_rmap_spte(rmapp, &iter, sptep)
  1029. flush |= spte_clear_dirty(kvm, sptep);
  1030. return flush;
  1031. }
  1032. static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
  1033. {
  1034. u64 spte = *sptep;
  1035. rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
  1036. spte |= shadow_dirty_mask;
  1037. return mmu_spte_update(sptep, spte);
  1038. }
  1039. static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
  1040. {
  1041. u64 *sptep;
  1042. struct rmap_iterator iter;
  1043. bool flush = false;
  1044. for_each_rmap_spte(rmapp, &iter, sptep)
  1045. flush |= spte_set_dirty(kvm, sptep);
  1046. return flush;
  1047. }
  1048. /**
  1049. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1050. * @kvm: kvm instance
  1051. * @slot: slot to protect
  1052. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1053. * @mask: indicates which pages we should protect
  1054. *
  1055. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1056. * logging we do not have any such mappings.
  1057. */
  1058. static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1059. struct kvm_memory_slot *slot,
  1060. gfn_t gfn_offset, unsigned long mask)
  1061. {
  1062. unsigned long *rmapp;
  1063. while (mask) {
  1064. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1065. PT_PAGE_TABLE_LEVEL, slot);
  1066. __rmap_write_protect(kvm, rmapp, false);
  1067. /* clear the first set bit */
  1068. mask &= mask - 1;
  1069. }
  1070. }
  1071. /**
  1072. * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
  1073. * @kvm: kvm instance
  1074. * @slot: slot to clear D-bit
  1075. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1076. * @mask: indicates which pages we should clear D-bit
  1077. *
  1078. * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
  1079. */
  1080. void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
  1081. struct kvm_memory_slot *slot,
  1082. gfn_t gfn_offset, unsigned long mask)
  1083. {
  1084. unsigned long *rmapp;
  1085. while (mask) {
  1086. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1087. PT_PAGE_TABLE_LEVEL, slot);
  1088. __rmap_clear_dirty(kvm, rmapp);
  1089. /* clear the first set bit */
  1090. mask &= mask - 1;
  1091. }
  1092. }
  1093. EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
  1094. /**
  1095. * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
  1096. * PT level pages.
  1097. *
  1098. * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
  1099. * enable dirty logging for them.
  1100. *
  1101. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1102. * logging we do not have any such mappings.
  1103. */
  1104. void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
  1105. struct kvm_memory_slot *slot,
  1106. gfn_t gfn_offset, unsigned long mask)
  1107. {
  1108. if (kvm_x86_ops->enable_log_dirty_pt_masked)
  1109. kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
  1110. mask);
  1111. else
  1112. kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
  1113. }
  1114. static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  1115. {
  1116. struct kvm_memory_slot *slot;
  1117. unsigned long *rmapp;
  1118. int i;
  1119. bool write_protected = false;
  1120. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1121. for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
  1122. rmapp = __gfn_to_rmap(gfn, i, slot);
  1123. write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
  1124. }
  1125. return write_protected;
  1126. }
  1127. static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  1128. {
  1129. u64 *sptep;
  1130. struct rmap_iterator iter;
  1131. bool flush = false;
  1132. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1133. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1134. rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
  1135. drop_spte(kvm, sptep);
  1136. flush = true;
  1137. }
  1138. return flush;
  1139. }
  1140. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1141. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1142. unsigned long data)
  1143. {
  1144. return kvm_zap_rmapp(kvm, rmapp);
  1145. }
  1146. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1147. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1148. unsigned long data)
  1149. {
  1150. u64 *sptep;
  1151. struct rmap_iterator iter;
  1152. int need_flush = 0;
  1153. u64 new_spte;
  1154. pte_t *ptep = (pte_t *)data;
  1155. pfn_t new_pfn;
  1156. WARN_ON(pte_huge(*ptep));
  1157. new_pfn = pte_pfn(*ptep);
  1158. restart:
  1159. for_each_rmap_spte(rmapp, &iter, sptep) {
  1160. rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
  1161. sptep, *sptep, gfn, level);
  1162. need_flush = 1;
  1163. if (pte_write(*ptep)) {
  1164. drop_spte(kvm, sptep);
  1165. goto restart;
  1166. } else {
  1167. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1168. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1169. new_spte &= ~PT_WRITABLE_MASK;
  1170. new_spte &= ~SPTE_HOST_WRITEABLE;
  1171. new_spte &= ~shadow_accessed_mask;
  1172. mmu_spte_clear_track_bits(sptep);
  1173. mmu_spte_set(sptep, new_spte);
  1174. }
  1175. }
  1176. if (need_flush)
  1177. kvm_flush_remote_tlbs(kvm);
  1178. return 0;
  1179. }
  1180. struct slot_rmap_walk_iterator {
  1181. /* input fields. */
  1182. struct kvm_memory_slot *slot;
  1183. gfn_t start_gfn;
  1184. gfn_t end_gfn;
  1185. int start_level;
  1186. int end_level;
  1187. /* output fields. */
  1188. gfn_t gfn;
  1189. unsigned long *rmap;
  1190. int level;
  1191. /* private field. */
  1192. unsigned long *end_rmap;
  1193. };
  1194. static void
  1195. rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
  1196. {
  1197. iterator->level = level;
  1198. iterator->gfn = iterator->start_gfn;
  1199. iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
  1200. iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
  1201. iterator->slot);
  1202. }
  1203. static void
  1204. slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
  1205. struct kvm_memory_slot *slot, int start_level,
  1206. int end_level, gfn_t start_gfn, gfn_t end_gfn)
  1207. {
  1208. iterator->slot = slot;
  1209. iterator->start_level = start_level;
  1210. iterator->end_level = end_level;
  1211. iterator->start_gfn = start_gfn;
  1212. iterator->end_gfn = end_gfn;
  1213. rmap_walk_init_level(iterator, iterator->start_level);
  1214. }
  1215. static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
  1216. {
  1217. return !!iterator->rmap;
  1218. }
  1219. static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
  1220. {
  1221. if (++iterator->rmap <= iterator->end_rmap) {
  1222. iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
  1223. return;
  1224. }
  1225. if (++iterator->level > iterator->end_level) {
  1226. iterator->rmap = NULL;
  1227. return;
  1228. }
  1229. rmap_walk_init_level(iterator, iterator->level);
  1230. }
  1231. #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
  1232. _start_gfn, _end_gfn, _iter_) \
  1233. for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
  1234. _end_level_, _start_gfn, _end_gfn); \
  1235. slot_rmap_walk_okay(_iter_); \
  1236. slot_rmap_walk_next(_iter_))
  1237. static int kvm_handle_hva_range(struct kvm *kvm,
  1238. unsigned long start,
  1239. unsigned long end,
  1240. unsigned long data,
  1241. int (*handler)(struct kvm *kvm,
  1242. unsigned long *rmapp,
  1243. struct kvm_memory_slot *slot,
  1244. gfn_t gfn,
  1245. int level,
  1246. unsigned long data))
  1247. {
  1248. struct kvm_memslots *slots;
  1249. struct kvm_memory_slot *memslot;
  1250. struct slot_rmap_walk_iterator iterator;
  1251. int ret = 0;
  1252. int i;
  1253. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  1254. slots = __kvm_memslots(kvm, i);
  1255. kvm_for_each_memslot(memslot, slots) {
  1256. unsigned long hva_start, hva_end;
  1257. gfn_t gfn_start, gfn_end;
  1258. hva_start = max(start, memslot->userspace_addr);
  1259. hva_end = min(end, memslot->userspace_addr +
  1260. (memslot->npages << PAGE_SHIFT));
  1261. if (hva_start >= hva_end)
  1262. continue;
  1263. /*
  1264. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1265. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1266. */
  1267. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1268. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1269. for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
  1270. PT_MAX_HUGEPAGE_LEVEL,
  1271. gfn_start, gfn_end - 1,
  1272. &iterator)
  1273. ret |= handler(kvm, iterator.rmap, memslot,
  1274. iterator.gfn, iterator.level, data);
  1275. }
  1276. }
  1277. return ret;
  1278. }
  1279. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1280. unsigned long data,
  1281. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1282. struct kvm_memory_slot *slot,
  1283. gfn_t gfn, int level,
  1284. unsigned long data))
  1285. {
  1286. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1287. }
  1288. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1289. {
  1290. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1291. }
  1292. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1293. {
  1294. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1295. }
  1296. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1297. {
  1298. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1299. }
  1300. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1301. struct kvm_memory_slot *slot, gfn_t gfn, int level,
  1302. unsigned long data)
  1303. {
  1304. u64 *sptep;
  1305. struct rmap_iterator uninitialized_var(iter);
  1306. int young = 0;
  1307. BUG_ON(!shadow_accessed_mask);
  1308. for_each_rmap_spte(rmapp, &iter, sptep)
  1309. if (*sptep & shadow_accessed_mask) {
  1310. young = 1;
  1311. clear_bit((ffs(shadow_accessed_mask) - 1),
  1312. (unsigned long *)sptep);
  1313. }
  1314. trace_kvm_age_page(gfn, level, slot, young);
  1315. return young;
  1316. }
  1317. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1318. struct kvm_memory_slot *slot, gfn_t gfn,
  1319. int level, unsigned long data)
  1320. {
  1321. u64 *sptep;
  1322. struct rmap_iterator iter;
  1323. int young = 0;
  1324. /*
  1325. * If there's no access bit in the secondary pte set by the
  1326. * hardware it's up to gup-fast/gup to set the access bit in
  1327. * the primary pte or in the page structure.
  1328. */
  1329. if (!shadow_accessed_mask)
  1330. goto out;
  1331. for_each_rmap_spte(rmapp, &iter, sptep)
  1332. if (*sptep & shadow_accessed_mask) {
  1333. young = 1;
  1334. break;
  1335. }
  1336. out:
  1337. return young;
  1338. }
  1339. #define RMAP_RECYCLE_THRESHOLD 1000
  1340. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1341. {
  1342. unsigned long *rmapp;
  1343. struct kvm_mmu_page *sp;
  1344. sp = page_header(__pa(spte));
  1345. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
  1346. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
  1347. kvm_flush_remote_tlbs(vcpu->kvm);
  1348. }
  1349. int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
  1350. {
  1351. /*
  1352. * In case of absence of EPT Access and Dirty Bits supports,
  1353. * emulate the accessed bit for EPT, by checking if this page has
  1354. * an EPT mapping, and clearing it if it does. On the next access,
  1355. * a new EPT mapping will be established.
  1356. * This has some overhead, but not as much as the cost of swapping
  1357. * out actively used pages or breaking up actively used hugepages.
  1358. */
  1359. if (!shadow_accessed_mask) {
  1360. /*
  1361. * We are holding the kvm->mmu_lock, and we are blowing up
  1362. * shadow PTEs. MMU notifier consumers need to be kept at bay.
  1363. * This is correct as long as we don't decouple the mmu_lock
  1364. * protected regions (like invalidate_range_start|end does).
  1365. */
  1366. kvm->mmu_notifier_seq++;
  1367. return kvm_handle_hva_range(kvm, start, end, 0,
  1368. kvm_unmap_rmapp);
  1369. }
  1370. return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
  1371. }
  1372. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1373. {
  1374. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1375. }
  1376. #ifdef MMU_DEBUG
  1377. static int is_empty_shadow_page(u64 *spt)
  1378. {
  1379. u64 *pos;
  1380. u64 *end;
  1381. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1382. if (is_shadow_present_pte(*pos)) {
  1383. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1384. pos, *pos);
  1385. return 0;
  1386. }
  1387. return 1;
  1388. }
  1389. #endif
  1390. /*
  1391. * This value is the sum of all of the kvm instances's
  1392. * kvm->arch.n_used_mmu_pages values. We need a global,
  1393. * aggregate version in order to make the slab shrinker
  1394. * faster
  1395. */
  1396. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1397. {
  1398. kvm->arch.n_used_mmu_pages += nr;
  1399. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1400. }
  1401. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1402. {
  1403. MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
  1404. hlist_del(&sp->hash_link);
  1405. list_del(&sp->link);
  1406. free_page((unsigned long)sp->spt);
  1407. if (!sp->role.direct)
  1408. free_page((unsigned long)sp->gfns);
  1409. kmem_cache_free(mmu_page_header_cache, sp);
  1410. }
  1411. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1412. {
  1413. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1414. }
  1415. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1416. struct kvm_mmu_page *sp, u64 *parent_pte)
  1417. {
  1418. if (!parent_pte)
  1419. return;
  1420. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1421. }
  1422. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1423. u64 *parent_pte)
  1424. {
  1425. pte_list_remove(parent_pte, &sp->parent_ptes);
  1426. }
  1427. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1428. u64 *parent_pte)
  1429. {
  1430. mmu_page_remove_parent_pte(sp, parent_pte);
  1431. mmu_spte_clear_no_track(parent_pte);
  1432. }
  1433. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1434. u64 *parent_pte, int direct)
  1435. {
  1436. struct kvm_mmu_page *sp;
  1437. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1438. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1439. if (!direct)
  1440. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1441. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1442. /*
  1443. * The active_mmu_pages list is the FIFO list, do not move the
  1444. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1445. * this feature. See the comments in kvm_zap_obsolete_pages().
  1446. */
  1447. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1448. sp->parent_ptes = 0;
  1449. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1450. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1451. return sp;
  1452. }
  1453. static void mark_unsync(u64 *spte);
  1454. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1455. {
  1456. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1457. }
  1458. static void mark_unsync(u64 *spte)
  1459. {
  1460. struct kvm_mmu_page *sp;
  1461. unsigned int index;
  1462. sp = page_header(__pa(spte));
  1463. index = spte - sp->spt;
  1464. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1465. return;
  1466. if (sp->unsync_children++)
  1467. return;
  1468. kvm_mmu_mark_parents_unsync(sp);
  1469. }
  1470. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1471. struct kvm_mmu_page *sp)
  1472. {
  1473. return 1;
  1474. }
  1475. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1476. {
  1477. }
  1478. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1479. struct kvm_mmu_page *sp, u64 *spte,
  1480. const void *pte)
  1481. {
  1482. WARN_ON(1);
  1483. }
  1484. #define KVM_PAGE_ARRAY_NR 16
  1485. struct kvm_mmu_pages {
  1486. struct mmu_page_and_offset {
  1487. struct kvm_mmu_page *sp;
  1488. unsigned int idx;
  1489. } page[KVM_PAGE_ARRAY_NR];
  1490. unsigned int nr;
  1491. };
  1492. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1493. int idx)
  1494. {
  1495. int i;
  1496. if (sp->unsync)
  1497. for (i=0; i < pvec->nr; i++)
  1498. if (pvec->page[i].sp == sp)
  1499. return 0;
  1500. pvec->page[pvec->nr].sp = sp;
  1501. pvec->page[pvec->nr].idx = idx;
  1502. pvec->nr++;
  1503. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1504. }
  1505. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1506. struct kvm_mmu_pages *pvec)
  1507. {
  1508. int i, ret, nr_unsync_leaf = 0;
  1509. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1510. struct kvm_mmu_page *child;
  1511. u64 ent = sp->spt[i];
  1512. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1513. goto clear_child_bitmap;
  1514. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1515. if (child->unsync_children) {
  1516. if (mmu_pages_add(pvec, child, i))
  1517. return -ENOSPC;
  1518. ret = __mmu_unsync_walk(child, pvec);
  1519. if (!ret)
  1520. goto clear_child_bitmap;
  1521. else if (ret > 0)
  1522. nr_unsync_leaf += ret;
  1523. else
  1524. return ret;
  1525. } else if (child->unsync) {
  1526. nr_unsync_leaf++;
  1527. if (mmu_pages_add(pvec, child, i))
  1528. return -ENOSPC;
  1529. } else
  1530. goto clear_child_bitmap;
  1531. continue;
  1532. clear_child_bitmap:
  1533. __clear_bit(i, sp->unsync_child_bitmap);
  1534. sp->unsync_children--;
  1535. WARN_ON((int)sp->unsync_children < 0);
  1536. }
  1537. return nr_unsync_leaf;
  1538. }
  1539. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1540. struct kvm_mmu_pages *pvec)
  1541. {
  1542. if (!sp->unsync_children)
  1543. return 0;
  1544. mmu_pages_add(pvec, sp, 0);
  1545. return __mmu_unsync_walk(sp, pvec);
  1546. }
  1547. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1548. {
  1549. WARN_ON(!sp->unsync);
  1550. trace_kvm_mmu_sync_page(sp);
  1551. sp->unsync = 0;
  1552. --kvm->stat.mmu_unsync;
  1553. }
  1554. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1555. struct list_head *invalid_list);
  1556. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1557. struct list_head *invalid_list);
  1558. /*
  1559. * NOTE: we should pay more attention on the zapped-obsolete page
  1560. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1561. * since it has been deleted from active_mmu_pages but still can be found
  1562. * at hast list.
  1563. *
  1564. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1565. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1566. * all the obsolete pages.
  1567. */
  1568. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1569. hlist_for_each_entry(_sp, \
  1570. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1571. if ((_sp)->gfn != (_gfn)) {} else
  1572. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1573. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1574. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1575. /* @sp->gfn should be write-protected at the call site */
  1576. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1577. struct list_head *invalid_list, bool clear_unsync)
  1578. {
  1579. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1580. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1581. return 1;
  1582. }
  1583. if (clear_unsync)
  1584. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1585. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1586. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1587. return 1;
  1588. }
  1589. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1590. return 0;
  1591. }
  1592. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1593. struct kvm_mmu_page *sp)
  1594. {
  1595. LIST_HEAD(invalid_list);
  1596. int ret;
  1597. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1598. if (ret)
  1599. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1600. return ret;
  1601. }
  1602. #ifdef CONFIG_KVM_MMU_AUDIT
  1603. #include "mmu_audit.c"
  1604. #else
  1605. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1606. static void mmu_audit_disable(void) { }
  1607. #endif
  1608. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1609. struct list_head *invalid_list)
  1610. {
  1611. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1612. }
  1613. /* @gfn should be write-protected at the call site */
  1614. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1615. {
  1616. struct kvm_mmu_page *s;
  1617. LIST_HEAD(invalid_list);
  1618. bool flush = false;
  1619. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1620. if (!s->unsync)
  1621. continue;
  1622. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1623. kvm_unlink_unsync_page(vcpu->kvm, s);
  1624. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1625. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1626. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1627. continue;
  1628. }
  1629. flush = true;
  1630. }
  1631. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1632. if (flush)
  1633. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1634. }
  1635. struct mmu_page_path {
  1636. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1637. unsigned int idx[PT64_ROOT_LEVEL-1];
  1638. };
  1639. #define for_each_sp(pvec, sp, parents, i) \
  1640. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1641. sp = pvec.page[i].sp; \
  1642. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1643. i = mmu_pages_next(&pvec, &parents, i))
  1644. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1645. struct mmu_page_path *parents,
  1646. int i)
  1647. {
  1648. int n;
  1649. for (n = i+1; n < pvec->nr; n++) {
  1650. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1651. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1652. parents->idx[0] = pvec->page[n].idx;
  1653. return n;
  1654. }
  1655. parents->parent[sp->role.level-2] = sp;
  1656. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1657. }
  1658. return n;
  1659. }
  1660. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1661. {
  1662. struct kvm_mmu_page *sp;
  1663. unsigned int level = 0;
  1664. do {
  1665. unsigned int idx = parents->idx[level];
  1666. sp = parents->parent[level];
  1667. if (!sp)
  1668. return;
  1669. --sp->unsync_children;
  1670. WARN_ON((int)sp->unsync_children < 0);
  1671. __clear_bit(idx, sp->unsync_child_bitmap);
  1672. level++;
  1673. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1674. }
  1675. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1676. struct mmu_page_path *parents,
  1677. struct kvm_mmu_pages *pvec)
  1678. {
  1679. parents->parent[parent->role.level-1] = NULL;
  1680. pvec->nr = 0;
  1681. }
  1682. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1683. struct kvm_mmu_page *parent)
  1684. {
  1685. int i;
  1686. struct kvm_mmu_page *sp;
  1687. struct mmu_page_path parents;
  1688. struct kvm_mmu_pages pages;
  1689. LIST_HEAD(invalid_list);
  1690. kvm_mmu_pages_init(parent, &parents, &pages);
  1691. while (mmu_unsync_walk(parent, &pages)) {
  1692. bool protected = false;
  1693. for_each_sp(pages, sp, parents, i)
  1694. protected |= rmap_write_protect(vcpu, sp->gfn);
  1695. if (protected)
  1696. kvm_flush_remote_tlbs(vcpu->kvm);
  1697. for_each_sp(pages, sp, parents, i) {
  1698. kvm_sync_page(vcpu, sp, &invalid_list);
  1699. mmu_pages_clear_parents(&parents);
  1700. }
  1701. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1702. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1703. kvm_mmu_pages_init(parent, &parents, &pages);
  1704. }
  1705. }
  1706. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1707. {
  1708. int i;
  1709. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1710. sp->spt[i] = 0ull;
  1711. }
  1712. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1713. {
  1714. sp->write_flooding_count = 0;
  1715. }
  1716. static void clear_sp_write_flooding_count(u64 *spte)
  1717. {
  1718. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1719. __clear_sp_write_flooding_count(sp);
  1720. }
  1721. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1722. {
  1723. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1724. }
  1725. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1726. gfn_t gfn,
  1727. gva_t gaddr,
  1728. unsigned level,
  1729. int direct,
  1730. unsigned access,
  1731. u64 *parent_pte)
  1732. {
  1733. union kvm_mmu_page_role role;
  1734. unsigned quadrant;
  1735. struct kvm_mmu_page *sp;
  1736. bool need_sync = false;
  1737. role = vcpu->arch.mmu.base_role;
  1738. role.level = level;
  1739. role.direct = direct;
  1740. if (role.direct)
  1741. role.cr4_pae = 0;
  1742. role.access = access;
  1743. if (!vcpu->arch.mmu.direct_map
  1744. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1745. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1746. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1747. role.quadrant = quadrant;
  1748. }
  1749. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1750. if (is_obsolete_sp(vcpu->kvm, sp))
  1751. continue;
  1752. if (!need_sync && sp->unsync)
  1753. need_sync = true;
  1754. if (sp->role.word != role.word)
  1755. continue;
  1756. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1757. break;
  1758. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1759. if (sp->unsync_children) {
  1760. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1761. kvm_mmu_mark_parents_unsync(sp);
  1762. } else if (sp->unsync)
  1763. kvm_mmu_mark_parents_unsync(sp);
  1764. __clear_sp_write_flooding_count(sp);
  1765. trace_kvm_mmu_get_page(sp, false);
  1766. return sp;
  1767. }
  1768. ++vcpu->kvm->stat.mmu_cache_miss;
  1769. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1770. if (!sp)
  1771. return sp;
  1772. sp->gfn = gfn;
  1773. sp->role = role;
  1774. hlist_add_head(&sp->hash_link,
  1775. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1776. if (!direct) {
  1777. if (rmap_write_protect(vcpu, gfn))
  1778. kvm_flush_remote_tlbs(vcpu->kvm);
  1779. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1780. kvm_sync_pages(vcpu, gfn);
  1781. account_shadowed(vcpu->kvm, sp);
  1782. }
  1783. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1784. init_shadow_page_table(sp);
  1785. trace_kvm_mmu_get_page(sp, true);
  1786. return sp;
  1787. }
  1788. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1789. struct kvm_vcpu *vcpu, u64 addr)
  1790. {
  1791. iterator->addr = addr;
  1792. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1793. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1794. if (iterator->level == PT64_ROOT_LEVEL &&
  1795. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1796. !vcpu->arch.mmu.direct_map)
  1797. --iterator->level;
  1798. if (iterator->level == PT32E_ROOT_LEVEL) {
  1799. iterator->shadow_addr
  1800. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1801. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1802. --iterator->level;
  1803. if (!iterator->shadow_addr)
  1804. iterator->level = 0;
  1805. }
  1806. }
  1807. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1808. {
  1809. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1810. return false;
  1811. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1812. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1813. return true;
  1814. }
  1815. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1816. u64 spte)
  1817. {
  1818. if (is_last_spte(spte, iterator->level)) {
  1819. iterator->level = 0;
  1820. return;
  1821. }
  1822. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1823. --iterator->level;
  1824. }
  1825. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1826. {
  1827. return __shadow_walk_next(iterator, *iterator->sptep);
  1828. }
  1829. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
  1830. {
  1831. u64 spte;
  1832. BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
  1833. VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
  1834. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1835. shadow_user_mask | shadow_x_mask;
  1836. if (accessed)
  1837. spte |= shadow_accessed_mask;
  1838. mmu_spte_set(sptep, spte);
  1839. }
  1840. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1841. unsigned direct_access)
  1842. {
  1843. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1844. struct kvm_mmu_page *child;
  1845. /*
  1846. * For the direct sp, if the guest pte's dirty bit
  1847. * changed form clean to dirty, it will corrupt the
  1848. * sp's access: allow writable in the read-only sp,
  1849. * so we should update the spte at this point to get
  1850. * a new sp with the correct access.
  1851. */
  1852. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1853. if (child->role.access == direct_access)
  1854. return;
  1855. drop_parent_pte(child, sptep);
  1856. kvm_flush_remote_tlbs(vcpu->kvm);
  1857. }
  1858. }
  1859. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1860. u64 *spte)
  1861. {
  1862. u64 pte;
  1863. struct kvm_mmu_page *child;
  1864. pte = *spte;
  1865. if (is_shadow_present_pte(pte)) {
  1866. if (is_last_spte(pte, sp->role.level)) {
  1867. drop_spte(kvm, spte);
  1868. if (is_large_pte(pte))
  1869. --kvm->stat.lpages;
  1870. } else {
  1871. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1872. drop_parent_pte(child, spte);
  1873. }
  1874. return true;
  1875. }
  1876. if (is_mmio_spte(pte))
  1877. mmu_spte_clear_no_track(spte);
  1878. return false;
  1879. }
  1880. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1881. struct kvm_mmu_page *sp)
  1882. {
  1883. unsigned i;
  1884. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1885. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1886. }
  1887. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1888. {
  1889. mmu_page_remove_parent_pte(sp, parent_pte);
  1890. }
  1891. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1892. {
  1893. u64 *sptep;
  1894. struct rmap_iterator iter;
  1895. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1896. drop_parent_pte(sp, sptep);
  1897. }
  1898. static int mmu_zap_unsync_children(struct kvm *kvm,
  1899. struct kvm_mmu_page *parent,
  1900. struct list_head *invalid_list)
  1901. {
  1902. int i, zapped = 0;
  1903. struct mmu_page_path parents;
  1904. struct kvm_mmu_pages pages;
  1905. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1906. return 0;
  1907. kvm_mmu_pages_init(parent, &parents, &pages);
  1908. while (mmu_unsync_walk(parent, &pages)) {
  1909. struct kvm_mmu_page *sp;
  1910. for_each_sp(pages, sp, parents, i) {
  1911. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1912. mmu_pages_clear_parents(&parents);
  1913. zapped++;
  1914. }
  1915. kvm_mmu_pages_init(parent, &parents, &pages);
  1916. }
  1917. return zapped;
  1918. }
  1919. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1920. struct list_head *invalid_list)
  1921. {
  1922. int ret;
  1923. trace_kvm_mmu_prepare_zap_page(sp);
  1924. ++kvm->stat.mmu_shadow_zapped;
  1925. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1926. kvm_mmu_page_unlink_children(kvm, sp);
  1927. kvm_mmu_unlink_parents(kvm, sp);
  1928. if (!sp->role.invalid && !sp->role.direct)
  1929. unaccount_shadowed(kvm, sp);
  1930. if (sp->unsync)
  1931. kvm_unlink_unsync_page(kvm, sp);
  1932. if (!sp->root_count) {
  1933. /* Count self */
  1934. ret++;
  1935. list_move(&sp->link, invalid_list);
  1936. kvm_mod_used_mmu_pages(kvm, -1);
  1937. } else {
  1938. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1939. /*
  1940. * The obsolete pages can not be used on any vcpus.
  1941. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1942. */
  1943. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1944. kvm_reload_remote_mmus(kvm);
  1945. }
  1946. sp->role.invalid = 1;
  1947. return ret;
  1948. }
  1949. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1950. struct list_head *invalid_list)
  1951. {
  1952. struct kvm_mmu_page *sp, *nsp;
  1953. if (list_empty(invalid_list))
  1954. return;
  1955. /*
  1956. * wmb: make sure everyone sees our modifications to the page tables
  1957. * rmb: make sure we see changes to vcpu->mode
  1958. */
  1959. smp_mb();
  1960. /*
  1961. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1962. * page table walks.
  1963. */
  1964. kvm_flush_remote_tlbs(kvm);
  1965. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1966. WARN_ON(!sp->role.invalid || sp->root_count);
  1967. kvm_mmu_free_page(sp);
  1968. }
  1969. }
  1970. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1971. struct list_head *invalid_list)
  1972. {
  1973. struct kvm_mmu_page *sp;
  1974. if (list_empty(&kvm->arch.active_mmu_pages))
  1975. return false;
  1976. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1977. struct kvm_mmu_page, link);
  1978. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1979. return true;
  1980. }
  1981. /*
  1982. * Changing the number of mmu pages allocated to the vm
  1983. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1984. */
  1985. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1986. {
  1987. LIST_HEAD(invalid_list);
  1988. spin_lock(&kvm->mmu_lock);
  1989. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1990. /* Need to free some mmu pages to achieve the goal. */
  1991. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1992. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1993. break;
  1994. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1995. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1996. }
  1997. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1998. spin_unlock(&kvm->mmu_lock);
  1999. }
  2000. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  2001. {
  2002. struct kvm_mmu_page *sp;
  2003. LIST_HEAD(invalid_list);
  2004. int r;
  2005. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  2006. r = 0;
  2007. spin_lock(&kvm->mmu_lock);
  2008. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  2009. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  2010. sp->role.word);
  2011. r = 1;
  2012. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  2013. }
  2014. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2015. spin_unlock(&kvm->mmu_lock);
  2016. return r;
  2017. }
  2018. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  2019. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  2020. {
  2021. trace_kvm_mmu_unsync_page(sp);
  2022. ++vcpu->kvm->stat.mmu_unsync;
  2023. sp->unsync = 1;
  2024. kvm_mmu_mark_parents_unsync(sp);
  2025. }
  2026. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  2027. {
  2028. struct kvm_mmu_page *s;
  2029. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2030. if (s->unsync)
  2031. continue;
  2032. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  2033. __kvm_unsync_page(vcpu, s);
  2034. }
  2035. }
  2036. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  2037. bool can_unsync)
  2038. {
  2039. struct kvm_mmu_page *s;
  2040. bool need_unsync = false;
  2041. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  2042. if (!can_unsync)
  2043. return 1;
  2044. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  2045. return 1;
  2046. if (!s->unsync)
  2047. need_unsync = true;
  2048. }
  2049. if (need_unsync)
  2050. kvm_unsync_pages(vcpu, gfn);
  2051. return 0;
  2052. }
  2053. static bool kvm_is_mmio_pfn(pfn_t pfn)
  2054. {
  2055. if (pfn_valid(pfn))
  2056. return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
  2057. return true;
  2058. }
  2059. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2060. unsigned pte_access, int level,
  2061. gfn_t gfn, pfn_t pfn, bool speculative,
  2062. bool can_unsync, bool host_writable)
  2063. {
  2064. u64 spte;
  2065. int ret = 0;
  2066. if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
  2067. return 0;
  2068. spte = PT_PRESENT_MASK;
  2069. if (!speculative)
  2070. spte |= shadow_accessed_mask;
  2071. if (pte_access & ACC_EXEC_MASK)
  2072. spte |= shadow_x_mask;
  2073. else
  2074. spte |= shadow_nx_mask;
  2075. if (pte_access & ACC_USER_MASK)
  2076. spte |= shadow_user_mask;
  2077. if (level > PT_PAGE_TABLE_LEVEL)
  2078. spte |= PT_PAGE_SIZE_MASK;
  2079. if (tdp_enabled)
  2080. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2081. kvm_is_mmio_pfn(pfn));
  2082. if (host_writable)
  2083. spte |= SPTE_HOST_WRITEABLE;
  2084. else
  2085. pte_access &= ~ACC_WRITE_MASK;
  2086. spte |= (u64)pfn << PAGE_SHIFT;
  2087. if (pte_access & ACC_WRITE_MASK) {
  2088. /*
  2089. * Other vcpu creates new sp in the window between
  2090. * mapping_level() and acquiring mmu-lock. We can
  2091. * allow guest to retry the access, the mapping can
  2092. * be fixed if guest refault.
  2093. */
  2094. if (level > PT_PAGE_TABLE_LEVEL &&
  2095. has_wrprotected_page(vcpu, gfn, level))
  2096. goto done;
  2097. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2098. /*
  2099. * Optimization: for pte sync, if spte was writable the hash
  2100. * lookup is unnecessary (and expensive). Write protection
  2101. * is responsibility of mmu_get_page / kvm_sync_page.
  2102. * Same reasoning can be applied to dirty page accounting.
  2103. */
  2104. if (!can_unsync && is_writable_pte(*sptep))
  2105. goto set_pte;
  2106. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2107. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2108. __func__, gfn);
  2109. ret = 1;
  2110. pte_access &= ~ACC_WRITE_MASK;
  2111. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2112. }
  2113. }
  2114. if (pte_access & ACC_WRITE_MASK) {
  2115. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2116. spte |= shadow_dirty_mask;
  2117. }
  2118. set_pte:
  2119. if (mmu_spte_update(sptep, spte))
  2120. kvm_flush_remote_tlbs(vcpu->kvm);
  2121. done:
  2122. return ret;
  2123. }
  2124. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2125. unsigned pte_access, int write_fault, int *emulate,
  2126. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2127. bool host_writable)
  2128. {
  2129. int was_rmapped = 0;
  2130. int rmap_count;
  2131. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2132. *sptep, write_fault, gfn);
  2133. if (is_rmap_spte(*sptep)) {
  2134. /*
  2135. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2136. * the parent of the now unreachable PTE.
  2137. */
  2138. if (level > PT_PAGE_TABLE_LEVEL &&
  2139. !is_large_pte(*sptep)) {
  2140. struct kvm_mmu_page *child;
  2141. u64 pte = *sptep;
  2142. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2143. drop_parent_pte(child, sptep);
  2144. kvm_flush_remote_tlbs(vcpu->kvm);
  2145. } else if (pfn != spte_to_pfn(*sptep)) {
  2146. pgprintk("hfn old %llx new %llx\n",
  2147. spte_to_pfn(*sptep), pfn);
  2148. drop_spte(vcpu->kvm, sptep);
  2149. kvm_flush_remote_tlbs(vcpu->kvm);
  2150. } else
  2151. was_rmapped = 1;
  2152. }
  2153. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2154. true, host_writable)) {
  2155. if (write_fault)
  2156. *emulate = 1;
  2157. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2158. }
  2159. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2160. *emulate = 1;
  2161. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2162. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2163. is_large_pte(*sptep)? "2MB" : "4kB",
  2164. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2165. *sptep, sptep);
  2166. if (!was_rmapped && is_large_pte(*sptep))
  2167. ++vcpu->kvm->stat.lpages;
  2168. if (is_shadow_present_pte(*sptep)) {
  2169. if (!was_rmapped) {
  2170. rmap_count = rmap_add(vcpu, sptep, gfn);
  2171. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2172. rmap_recycle(vcpu, sptep, gfn);
  2173. }
  2174. }
  2175. kvm_release_pfn_clean(pfn);
  2176. }
  2177. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2178. bool no_dirty_log)
  2179. {
  2180. struct kvm_memory_slot *slot;
  2181. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2182. if (!slot)
  2183. return KVM_PFN_ERR_FAULT;
  2184. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2185. }
  2186. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2187. struct kvm_mmu_page *sp,
  2188. u64 *start, u64 *end)
  2189. {
  2190. struct page *pages[PTE_PREFETCH_NUM];
  2191. struct kvm_memory_slot *slot;
  2192. unsigned access = sp->role.access;
  2193. int i, ret;
  2194. gfn_t gfn;
  2195. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2196. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
  2197. if (!slot)
  2198. return -1;
  2199. ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
  2200. if (ret <= 0)
  2201. return -1;
  2202. for (i = 0; i < ret; i++, gfn++, start++)
  2203. mmu_set_spte(vcpu, start, access, 0, NULL,
  2204. sp->role.level, gfn, page_to_pfn(pages[i]),
  2205. true, true);
  2206. return 0;
  2207. }
  2208. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2209. struct kvm_mmu_page *sp, u64 *sptep)
  2210. {
  2211. u64 *spte, *start = NULL;
  2212. int i;
  2213. WARN_ON(!sp->role.direct);
  2214. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2215. spte = sp->spt + i;
  2216. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2217. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2218. if (!start)
  2219. continue;
  2220. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2221. break;
  2222. start = NULL;
  2223. } else if (!start)
  2224. start = spte;
  2225. }
  2226. }
  2227. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2228. {
  2229. struct kvm_mmu_page *sp;
  2230. /*
  2231. * Since it's no accessed bit on EPT, it's no way to
  2232. * distinguish between actually accessed translations
  2233. * and prefetched, so disable pte prefetch if EPT is
  2234. * enabled.
  2235. */
  2236. if (!shadow_accessed_mask)
  2237. return;
  2238. sp = page_header(__pa(sptep));
  2239. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2240. return;
  2241. __direct_pte_prefetch(vcpu, sp, sptep);
  2242. }
  2243. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2244. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2245. bool prefault)
  2246. {
  2247. struct kvm_shadow_walk_iterator iterator;
  2248. struct kvm_mmu_page *sp;
  2249. int emulate = 0;
  2250. gfn_t pseudo_gfn;
  2251. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2252. return 0;
  2253. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2254. if (iterator.level == level) {
  2255. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2256. write, &emulate, level, gfn, pfn,
  2257. prefault, map_writable);
  2258. direct_pte_prefetch(vcpu, iterator.sptep);
  2259. ++vcpu->stat.pf_fixed;
  2260. break;
  2261. }
  2262. drop_large_spte(vcpu, iterator.sptep);
  2263. if (!is_shadow_present_pte(*iterator.sptep)) {
  2264. u64 base_addr = iterator.addr;
  2265. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2266. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2267. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2268. iterator.level - 1,
  2269. 1, ACC_ALL, iterator.sptep);
  2270. link_shadow_page(iterator.sptep, sp, true);
  2271. }
  2272. }
  2273. return emulate;
  2274. }
  2275. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2276. {
  2277. siginfo_t info;
  2278. info.si_signo = SIGBUS;
  2279. info.si_errno = 0;
  2280. info.si_code = BUS_MCEERR_AR;
  2281. info.si_addr = (void __user *)address;
  2282. info.si_addr_lsb = PAGE_SHIFT;
  2283. send_sig_info(SIGBUS, &info, tsk);
  2284. }
  2285. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2286. {
  2287. /*
  2288. * Do not cache the mmio info caused by writing the readonly gfn
  2289. * into the spte otherwise read access on readonly gfn also can
  2290. * caused mmio page fault and treat it as mmio access.
  2291. * Return 1 to tell kvm to emulate it.
  2292. */
  2293. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2294. return 1;
  2295. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2296. kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
  2297. return 0;
  2298. }
  2299. return -EFAULT;
  2300. }
  2301. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2302. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2303. {
  2304. pfn_t pfn = *pfnp;
  2305. gfn_t gfn = *gfnp;
  2306. int level = *levelp;
  2307. /*
  2308. * Check if it's a transparent hugepage. If this would be an
  2309. * hugetlbfs page, level wouldn't be set to
  2310. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2311. * here.
  2312. */
  2313. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
  2314. level == PT_PAGE_TABLE_LEVEL &&
  2315. PageTransCompound(pfn_to_page(pfn)) &&
  2316. !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
  2317. unsigned long mask;
  2318. /*
  2319. * mmu_notifier_retry was successful and we hold the
  2320. * mmu_lock here, so the pmd can't become splitting
  2321. * from under us, and in turn
  2322. * __split_huge_page_refcount() can't run from under
  2323. * us and we can safely transfer the refcount from
  2324. * PG_tail to PG_head as we switch the pfn to tail to
  2325. * head.
  2326. */
  2327. *levelp = level = PT_DIRECTORY_LEVEL;
  2328. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2329. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2330. if (pfn & mask) {
  2331. gfn &= ~mask;
  2332. *gfnp = gfn;
  2333. kvm_release_pfn_clean(pfn);
  2334. pfn &= ~mask;
  2335. kvm_get_pfn(pfn);
  2336. *pfnp = pfn;
  2337. }
  2338. }
  2339. }
  2340. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2341. pfn_t pfn, unsigned access, int *ret_val)
  2342. {
  2343. bool ret = true;
  2344. /* The pfn is invalid, report the error! */
  2345. if (unlikely(is_error_pfn(pfn))) {
  2346. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2347. goto exit;
  2348. }
  2349. if (unlikely(is_noslot_pfn(pfn)))
  2350. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2351. ret = false;
  2352. exit:
  2353. return ret;
  2354. }
  2355. static bool page_fault_can_be_fast(u32 error_code)
  2356. {
  2357. /*
  2358. * Do not fix the mmio spte with invalid generation number which
  2359. * need to be updated by slow page fault path.
  2360. */
  2361. if (unlikely(error_code & PFERR_RSVD_MASK))
  2362. return false;
  2363. /*
  2364. * #PF can be fast only if the shadow page table is present and it
  2365. * is caused by write-protect, that means we just need change the
  2366. * W bit of the spte which can be done out of mmu-lock.
  2367. */
  2368. if (!(error_code & PFERR_PRESENT_MASK) ||
  2369. !(error_code & PFERR_WRITE_MASK))
  2370. return false;
  2371. return true;
  2372. }
  2373. static bool
  2374. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  2375. u64 *sptep, u64 spte)
  2376. {
  2377. gfn_t gfn;
  2378. WARN_ON(!sp->role.direct);
  2379. /*
  2380. * The gfn of direct spte is stable since it is calculated
  2381. * by sp->gfn.
  2382. */
  2383. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2384. /*
  2385. * Theoretically we could also set dirty bit (and flush TLB) here in
  2386. * order to eliminate unnecessary PML logging. See comments in
  2387. * set_spte. But fast_page_fault is very unlikely to happen with PML
  2388. * enabled, so we do not do this. This might result in the same GPA
  2389. * to be logged in PML buffer again when the write really happens, and
  2390. * eventually to be called by mark_page_dirty twice. But it's also no
  2391. * harm. This also avoids the TLB flush needed after setting dirty bit
  2392. * so non-PML cases won't be impacted.
  2393. *
  2394. * Compare with set_spte where instead shadow_dirty_mask is set.
  2395. */
  2396. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2397. kvm_vcpu_mark_page_dirty(vcpu, gfn);
  2398. return true;
  2399. }
  2400. /*
  2401. * Return value:
  2402. * - true: let the vcpu to access on the same address again.
  2403. * - false: let the real page fault path to fix it.
  2404. */
  2405. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2406. u32 error_code)
  2407. {
  2408. struct kvm_shadow_walk_iterator iterator;
  2409. struct kvm_mmu_page *sp;
  2410. bool ret = false;
  2411. u64 spte = 0ull;
  2412. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2413. return false;
  2414. if (!page_fault_can_be_fast(error_code))
  2415. return false;
  2416. walk_shadow_page_lockless_begin(vcpu);
  2417. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2418. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2419. break;
  2420. /*
  2421. * If the mapping has been changed, let the vcpu fault on the
  2422. * same address again.
  2423. */
  2424. if (!is_rmap_spte(spte)) {
  2425. ret = true;
  2426. goto exit;
  2427. }
  2428. sp = page_header(__pa(iterator.sptep));
  2429. if (!is_last_spte(spte, sp->role.level))
  2430. goto exit;
  2431. /*
  2432. * Check if it is a spurious fault caused by TLB lazily flushed.
  2433. *
  2434. * Need not check the access of upper level table entries since
  2435. * they are always ACC_ALL.
  2436. */
  2437. if (is_writable_pte(spte)) {
  2438. ret = true;
  2439. goto exit;
  2440. }
  2441. /*
  2442. * Currently, to simplify the code, only the spte write-protected
  2443. * by dirty-log can be fast fixed.
  2444. */
  2445. if (!spte_is_locklessly_modifiable(spte))
  2446. goto exit;
  2447. /*
  2448. * Do not fix write-permission on the large spte since we only dirty
  2449. * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
  2450. * that means other pages are missed if its slot is dirty-logged.
  2451. *
  2452. * Instead, we let the slow page fault path create a normal spte to
  2453. * fix the access.
  2454. *
  2455. * See the comments in kvm_arch_commit_memory_region().
  2456. */
  2457. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2458. goto exit;
  2459. /*
  2460. * Currently, fast page fault only works for direct mapping since
  2461. * the gfn is not stable for indirect shadow page.
  2462. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2463. */
  2464. ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
  2465. exit:
  2466. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2467. spte, ret);
  2468. walk_shadow_page_lockless_end(vcpu);
  2469. return ret;
  2470. }
  2471. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2472. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2473. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2474. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2475. gfn_t gfn, bool prefault)
  2476. {
  2477. int r;
  2478. int level;
  2479. int force_pt_level;
  2480. pfn_t pfn;
  2481. unsigned long mmu_seq;
  2482. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2483. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2484. if (likely(!force_pt_level)) {
  2485. level = mapping_level(vcpu, gfn);
  2486. /*
  2487. * This path builds a PAE pagetable - so we can map
  2488. * 2mb pages at maximum. Therefore check if the level
  2489. * is larger than that.
  2490. */
  2491. if (level > PT_DIRECTORY_LEVEL)
  2492. level = PT_DIRECTORY_LEVEL;
  2493. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2494. } else
  2495. level = PT_PAGE_TABLE_LEVEL;
  2496. if (fast_page_fault(vcpu, v, level, error_code))
  2497. return 0;
  2498. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2499. smp_rmb();
  2500. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2501. return 0;
  2502. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2503. return r;
  2504. spin_lock(&vcpu->kvm->mmu_lock);
  2505. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2506. goto out_unlock;
  2507. make_mmu_pages_available(vcpu);
  2508. if (likely(!force_pt_level))
  2509. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2510. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2511. prefault);
  2512. spin_unlock(&vcpu->kvm->mmu_lock);
  2513. return r;
  2514. out_unlock:
  2515. spin_unlock(&vcpu->kvm->mmu_lock);
  2516. kvm_release_pfn_clean(pfn);
  2517. return 0;
  2518. }
  2519. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2520. {
  2521. int i;
  2522. struct kvm_mmu_page *sp;
  2523. LIST_HEAD(invalid_list);
  2524. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2525. return;
  2526. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2527. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2528. vcpu->arch.mmu.direct_map)) {
  2529. hpa_t root = vcpu->arch.mmu.root_hpa;
  2530. spin_lock(&vcpu->kvm->mmu_lock);
  2531. sp = page_header(root);
  2532. --sp->root_count;
  2533. if (!sp->root_count && sp->role.invalid) {
  2534. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2535. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2536. }
  2537. spin_unlock(&vcpu->kvm->mmu_lock);
  2538. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2539. return;
  2540. }
  2541. spin_lock(&vcpu->kvm->mmu_lock);
  2542. for (i = 0; i < 4; ++i) {
  2543. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2544. if (root) {
  2545. root &= PT64_BASE_ADDR_MASK;
  2546. sp = page_header(root);
  2547. --sp->root_count;
  2548. if (!sp->root_count && sp->role.invalid)
  2549. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2550. &invalid_list);
  2551. }
  2552. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2553. }
  2554. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2555. spin_unlock(&vcpu->kvm->mmu_lock);
  2556. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2557. }
  2558. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2559. {
  2560. int ret = 0;
  2561. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2562. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2563. ret = 1;
  2564. }
  2565. return ret;
  2566. }
  2567. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2568. {
  2569. struct kvm_mmu_page *sp;
  2570. unsigned i;
  2571. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2572. spin_lock(&vcpu->kvm->mmu_lock);
  2573. make_mmu_pages_available(vcpu);
  2574. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2575. 1, ACC_ALL, NULL);
  2576. ++sp->root_count;
  2577. spin_unlock(&vcpu->kvm->mmu_lock);
  2578. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2579. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2580. for (i = 0; i < 4; ++i) {
  2581. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2582. MMU_WARN_ON(VALID_PAGE(root));
  2583. spin_lock(&vcpu->kvm->mmu_lock);
  2584. make_mmu_pages_available(vcpu);
  2585. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2586. i << 30,
  2587. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2588. NULL);
  2589. root = __pa(sp->spt);
  2590. ++sp->root_count;
  2591. spin_unlock(&vcpu->kvm->mmu_lock);
  2592. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2593. }
  2594. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2595. } else
  2596. BUG();
  2597. return 0;
  2598. }
  2599. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2600. {
  2601. struct kvm_mmu_page *sp;
  2602. u64 pdptr, pm_mask;
  2603. gfn_t root_gfn;
  2604. int i;
  2605. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2606. if (mmu_check_root(vcpu, root_gfn))
  2607. return 1;
  2608. /*
  2609. * Do we shadow a long mode page table? If so we need to
  2610. * write-protect the guests page table root.
  2611. */
  2612. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2613. hpa_t root = vcpu->arch.mmu.root_hpa;
  2614. MMU_WARN_ON(VALID_PAGE(root));
  2615. spin_lock(&vcpu->kvm->mmu_lock);
  2616. make_mmu_pages_available(vcpu);
  2617. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2618. 0, ACC_ALL, NULL);
  2619. root = __pa(sp->spt);
  2620. ++sp->root_count;
  2621. spin_unlock(&vcpu->kvm->mmu_lock);
  2622. vcpu->arch.mmu.root_hpa = root;
  2623. return 0;
  2624. }
  2625. /*
  2626. * We shadow a 32 bit page table. This may be a legacy 2-level
  2627. * or a PAE 3-level page table. In either case we need to be aware that
  2628. * the shadow page table may be a PAE or a long mode page table.
  2629. */
  2630. pm_mask = PT_PRESENT_MASK;
  2631. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2632. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2633. for (i = 0; i < 4; ++i) {
  2634. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2635. MMU_WARN_ON(VALID_PAGE(root));
  2636. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2637. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2638. if (!is_present_gpte(pdptr)) {
  2639. vcpu->arch.mmu.pae_root[i] = 0;
  2640. continue;
  2641. }
  2642. root_gfn = pdptr >> PAGE_SHIFT;
  2643. if (mmu_check_root(vcpu, root_gfn))
  2644. return 1;
  2645. }
  2646. spin_lock(&vcpu->kvm->mmu_lock);
  2647. make_mmu_pages_available(vcpu);
  2648. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2649. PT32_ROOT_LEVEL, 0,
  2650. ACC_ALL, NULL);
  2651. root = __pa(sp->spt);
  2652. ++sp->root_count;
  2653. spin_unlock(&vcpu->kvm->mmu_lock);
  2654. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2655. }
  2656. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2657. /*
  2658. * If we shadow a 32 bit page table with a long mode page
  2659. * table we enter this path.
  2660. */
  2661. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2662. if (vcpu->arch.mmu.lm_root == NULL) {
  2663. /*
  2664. * The additional page necessary for this is only
  2665. * allocated on demand.
  2666. */
  2667. u64 *lm_root;
  2668. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2669. if (lm_root == NULL)
  2670. return 1;
  2671. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2672. vcpu->arch.mmu.lm_root = lm_root;
  2673. }
  2674. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2675. }
  2676. return 0;
  2677. }
  2678. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2679. {
  2680. if (vcpu->arch.mmu.direct_map)
  2681. return mmu_alloc_direct_roots(vcpu);
  2682. else
  2683. return mmu_alloc_shadow_roots(vcpu);
  2684. }
  2685. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2686. {
  2687. int i;
  2688. struct kvm_mmu_page *sp;
  2689. if (vcpu->arch.mmu.direct_map)
  2690. return;
  2691. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2692. return;
  2693. vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
  2694. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2695. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2696. hpa_t root = vcpu->arch.mmu.root_hpa;
  2697. sp = page_header(root);
  2698. mmu_sync_children(vcpu, sp);
  2699. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2700. return;
  2701. }
  2702. for (i = 0; i < 4; ++i) {
  2703. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2704. if (root && VALID_PAGE(root)) {
  2705. root &= PT64_BASE_ADDR_MASK;
  2706. sp = page_header(root);
  2707. mmu_sync_children(vcpu, sp);
  2708. }
  2709. }
  2710. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2711. }
  2712. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2713. {
  2714. spin_lock(&vcpu->kvm->mmu_lock);
  2715. mmu_sync_roots(vcpu);
  2716. spin_unlock(&vcpu->kvm->mmu_lock);
  2717. }
  2718. EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
  2719. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2720. u32 access, struct x86_exception *exception)
  2721. {
  2722. if (exception)
  2723. exception->error_code = 0;
  2724. return vaddr;
  2725. }
  2726. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2727. u32 access,
  2728. struct x86_exception *exception)
  2729. {
  2730. if (exception)
  2731. exception->error_code = 0;
  2732. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
  2733. }
  2734. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2735. {
  2736. if (direct)
  2737. return vcpu_match_mmio_gpa(vcpu, addr);
  2738. return vcpu_match_mmio_gva(vcpu, addr);
  2739. }
  2740. /*
  2741. * On direct hosts, the last spte is only allows two states
  2742. * for mmio page fault:
  2743. * - It is the mmio spte
  2744. * - It is zapped or it is being zapped.
  2745. *
  2746. * This function completely checks the spte when the last spte
  2747. * is not the mmio spte.
  2748. */
  2749. static bool check_direct_spte_mmio_pf(u64 spte)
  2750. {
  2751. return __check_direct_spte_mmio_pf(spte);
  2752. }
  2753. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2754. {
  2755. struct kvm_shadow_walk_iterator iterator;
  2756. u64 spte = 0ull;
  2757. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2758. return spte;
  2759. walk_shadow_page_lockless_begin(vcpu);
  2760. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2761. if (!is_shadow_present_pte(spte))
  2762. break;
  2763. walk_shadow_page_lockless_end(vcpu);
  2764. return spte;
  2765. }
  2766. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2767. {
  2768. u64 spte;
  2769. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2770. return RET_MMIO_PF_EMULATE;
  2771. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2772. if (is_mmio_spte(spte)) {
  2773. gfn_t gfn = get_mmio_spte_gfn(spte);
  2774. unsigned access = get_mmio_spte_access(spte);
  2775. if (!check_mmio_spte(vcpu, spte))
  2776. return RET_MMIO_PF_INVALID;
  2777. if (direct)
  2778. addr = 0;
  2779. trace_handle_mmio_page_fault(addr, gfn, access);
  2780. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2781. return RET_MMIO_PF_EMULATE;
  2782. }
  2783. /*
  2784. * It's ok if the gva is remapped by other cpus on shadow guest,
  2785. * it's a BUG if the gfn is not a mmio page.
  2786. */
  2787. if (direct && !check_direct_spte_mmio_pf(spte))
  2788. return RET_MMIO_PF_BUG;
  2789. /*
  2790. * If the page table is zapped by other cpus, let CPU fault again on
  2791. * the address.
  2792. */
  2793. return RET_MMIO_PF_RETRY;
  2794. }
  2795. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2796. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2797. u32 error_code, bool direct)
  2798. {
  2799. int ret;
  2800. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2801. WARN_ON(ret == RET_MMIO_PF_BUG);
  2802. return ret;
  2803. }
  2804. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2805. u32 error_code, bool prefault)
  2806. {
  2807. gfn_t gfn;
  2808. int r;
  2809. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2810. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2811. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2812. if (likely(r != RET_MMIO_PF_INVALID))
  2813. return r;
  2814. }
  2815. r = mmu_topup_memory_caches(vcpu);
  2816. if (r)
  2817. return r;
  2818. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2819. gfn = gva >> PAGE_SHIFT;
  2820. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2821. error_code, gfn, prefault);
  2822. }
  2823. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2824. {
  2825. struct kvm_arch_async_pf arch;
  2826. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2827. arch.gfn = gfn;
  2828. arch.direct_map = vcpu->arch.mmu.direct_map;
  2829. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2830. return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
  2831. }
  2832. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2833. {
  2834. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2835. kvm_event_needs_reinjection(vcpu)))
  2836. return false;
  2837. return kvm_x86_ops->interrupt_allowed(vcpu);
  2838. }
  2839. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2840. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2841. {
  2842. struct kvm_memory_slot *slot;
  2843. bool async;
  2844. slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  2845. async = false;
  2846. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
  2847. if (!async)
  2848. return false; /* *pfn has correct page already */
  2849. if (!prefault && can_do_async_pf(vcpu)) {
  2850. trace_kvm_try_async_get_page(gva, gfn);
  2851. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2852. trace_kvm_async_pf_doublefault(gva, gfn);
  2853. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2854. return true;
  2855. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2856. return true;
  2857. }
  2858. *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
  2859. return false;
  2860. }
  2861. static bool
  2862. check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
  2863. {
  2864. int page_num = KVM_PAGES_PER_HPAGE(level);
  2865. gfn &= ~(page_num - 1);
  2866. return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
  2867. }
  2868. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2869. bool prefault)
  2870. {
  2871. pfn_t pfn;
  2872. int r;
  2873. int level;
  2874. int force_pt_level;
  2875. gfn_t gfn = gpa >> PAGE_SHIFT;
  2876. unsigned long mmu_seq;
  2877. int write = error_code & PFERR_WRITE_MASK;
  2878. bool map_writable;
  2879. MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2880. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2881. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2882. if (likely(r != RET_MMIO_PF_INVALID))
  2883. return r;
  2884. }
  2885. r = mmu_topup_memory_caches(vcpu);
  2886. if (r)
  2887. return r;
  2888. if (mapping_level_dirty_bitmap(vcpu, gfn) ||
  2889. !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
  2890. force_pt_level = 1;
  2891. else
  2892. force_pt_level = 0;
  2893. if (likely(!force_pt_level)) {
  2894. level = mapping_level(vcpu, gfn);
  2895. if (level > PT_DIRECTORY_LEVEL &&
  2896. !check_hugepage_cache_consistency(vcpu, gfn, level))
  2897. level = PT_DIRECTORY_LEVEL;
  2898. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2899. } else
  2900. level = PT_PAGE_TABLE_LEVEL;
  2901. if (fast_page_fault(vcpu, gpa, level, error_code))
  2902. return 0;
  2903. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2904. smp_rmb();
  2905. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2906. return 0;
  2907. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2908. return r;
  2909. spin_lock(&vcpu->kvm->mmu_lock);
  2910. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2911. goto out_unlock;
  2912. make_mmu_pages_available(vcpu);
  2913. if (likely(!force_pt_level))
  2914. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2915. r = __direct_map(vcpu, gpa, write, map_writable,
  2916. level, gfn, pfn, prefault);
  2917. spin_unlock(&vcpu->kvm->mmu_lock);
  2918. return r;
  2919. out_unlock:
  2920. spin_unlock(&vcpu->kvm->mmu_lock);
  2921. kvm_release_pfn_clean(pfn);
  2922. return 0;
  2923. }
  2924. static void nonpaging_init_context(struct kvm_vcpu *vcpu,
  2925. struct kvm_mmu *context)
  2926. {
  2927. context->page_fault = nonpaging_page_fault;
  2928. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2929. context->sync_page = nonpaging_sync_page;
  2930. context->invlpg = nonpaging_invlpg;
  2931. context->update_pte = nonpaging_update_pte;
  2932. context->root_level = 0;
  2933. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2934. context->root_hpa = INVALID_PAGE;
  2935. context->direct_map = true;
  2936. context->nx = false;
  2937. }
  2938. void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
  2939. {
  2940. mmu_free_roots(vcpu);
  2941. }
  2942. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2943. {
  2944. return kvm_read_cr3(vcpu);
  2945. }
  2946. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2947. struct x86_exception *fault)
  2948. {
  2949. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2950. }
  2951. static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
  2952. unsigned access, int *nr_present)
  2953. {
  2954. if (unlikely(is_mmio_spte(*sptep))) {
  2955. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2956. mmu_spte_clear_no_track(sptep);
  2957. return true;
  2958. }
  2959. (*nr_present)++;
  2960. mark_mmio_spte(vcpu, sptep, gfn, access);
  2961. return true;
  2962. }
  2963. return false;
  2964. }
  2965. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2966. {
  2967. unsigned index;
  2968. index = level - 1;
  2969. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2970. return mmu->last_pte_bitmap & (1 << index);
  2971. }
  2972. #define PTTYPE_EPT 18 /* arbitrary */
  2973. #define PTTYPE PTTYPE_EPT
  2974. #include "paging_tmpl.h"
  2975. #undef PTTYPE
  2976. #define PTTYPE 64
  2977. #include "paging_tmpl.h"
  2978. #undef PTTYPE
  2979. #define PTTYPE 32
  2980. #include "paging_tmpl.h"
  2981. #undef PTTYPE
  2982. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2983. struct kvm_mmu *context)
  2984. {
  2985. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2986. u64 exb_bit_rsvd = 0;
  2987. u64 gbpages_bit_rsvd = 0;
  2988. u64 nonleaf_bit8_rsvd = 0;
  2989. context->bad_mt_xwr = 0;
  2990. if (!context->nx)
  2991. exb_bit_rsvd = rsvd_bits(63, 63);
  2992. if (!guest_cpuid_has_gbpages(vcpu))
  2993. gbpages_bit_rsvd = rsvd_bits(7, 7);
  2994. /*
  2995. * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
  2996. * leaf entries) on AMD CPUs only.
  2997. */
  2998. if (guest_cpuid_is_amd(vcpu))
  2999. nonleaf_bit8_rsvd = rsvd_bits(8, 8);
  3000. switch (context->root_level) {
  3001. case PT32_ROOT_LEVEL:
  3002. /* no rsvd bits for 2 level 4K page table entries */
  3003. context->rsvd_bits_mask[0][1] = 0;
  3004. context->rsvd_bits_mask[0][0] = 0;
  3005. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3006. if (!is_pse(vcpu)) {
  3007. context->rsvd_bits_mask[1][1] = 0;
  3008. break;
  3009. }
  3010. if (is_cpuid_PSE36())
  3011. /* 36bits PSE 4MB page */
  3012. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  3013. else
  3014. /* 32 bits PSE 4MB page */
  3015. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  3016. break;
  3017. case PT32E_ROOT_LEVEL:
  3018. context->rsvd_bits_mask[0][2] =
  3019. rsvd_bits(maxphyaddr, 63) |
  3020. rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
  3021. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3022. rsvd_bits(maxphyaddr, 62); /* PDE */
  3023. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3024. rsvd_bits(maxphyaddr, 62); /* PTE */
  3025. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3026. rsvd_bits(maxphyaddr, 62) |
  3027. rsvd_bits(13, 20); /* large page */
  3028. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3029. break;
  3030. case PT64_ROOT_LEVEL:
  3031. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  3032. nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
  3033. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  3034. nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
  3035. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  3036. rsvd_bits(maxphyaddr, 51);
  3037. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  3038. rsvd_bits(maxphyaddr, 51);
  3039. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  3040. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  3041. gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
  3042. rsvd_bits(13, 29);
  3043. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  3044. rsvd_bits(maxphyaddr, 51) |
  3045. rsvd_bits(13, 20); /* large page */
  3046. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3047. break;
  3048. }
  3049. }
  3050. static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
  3051. struct kvm_mmu *context, bool execonly)
  3052. {
  3053. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  3054. int pte;
  3055. context->rsvd_bits_mask[0][3] =
  3056. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
  3057. context->rsvd_bits_mask[0][2] =
  3058. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3059. context->rsvd_bits_mask[0][1] =
  3060. rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
  3061. context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
  3062. /* large page */
  3063. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  3064. context->rsvd_bits_mask[1][2] =
  3065. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
  3066. context->rsvd_bits_mask[1][1] =
  3067. rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
  3068. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  3069. for (pte = 0; pte < 64; pte++) {
  3070. int rwx_bits = pte & 7;
  3071. int mt = pte >> 3;
  3072. if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
  3073. rwx_bits == 0x2 || rwx_bits == 0x6 ||
  3074. (rwx_bits == 0x4 && !execonly))
  3075. context->bad_mt_xwr |= (1ull << pte);
  3076. }
  3077. }
  3078. static void update_permission_bitmask(struct kvm_vcpu *vcpu,
  3079. struct kvm_mmu *mmu, bool ept)
  3080. {
  3081. unsigned bit, byte, pfec;
  3082. u8 map;
  3083. bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
  3084. cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3085. cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3086. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  3087. pfec = byte << 1;
  3088. map = 0;
  3089. wf = pfec & PFERR_WRITE_MASK;
  3090. uf = pfec & PFERR_USER_MASK;
  3091. ff = pfec & PFERR_FETCH_MASK;
  3092. /*
  3093. * PFERR_RSVD_MASK bit is set in PFEC if the access is not
  3094. * subject to SMAP restrictions, and cleared otherwise. The
  3095. * bit is only meaningful if the SMAP bit is set in CR4.
  3096. */
  3097. smapf = !(pfec & PFERR_RSVD_MASK);
  3098. for (bit = 0; bit < 8; ++bit) {
  3099. x = bit & ACC_EXEC_MASK;
  3100. w = bit & ACC_WRITE_MASK;
  3101. u = bit & ACC_USER_MASK;
  3102. if (!ept) {
  3103. /* Not really needed: !nx will cause pte.nx to fault */
  3104. x |= !mmu->nx;
  3105. /* Allow supervisor writes if !cr0.wp */
  3106. w |= !is_write_protection(vcpu) && !uf;
  3107. /* Disallow supervisor fetches of user code if cr4.smep */
  3108. x &= !(cr4_smep && u && !uf);
  3109. /*
  3110. * SMAP:kernel-mode data accesses from user-mode
  3111. * mappings should fault. A fault is considered
  3112. * as a SMAP violation if all of the following
  3113. * conditions are ture:
  3114. * - X86_CR4_SMAP is set in CR4
  3115. * - An user page is accessed
  3116. * - Page fault in kernel mode
  3117. * - if CPL = 3 or X86_EFLAGS_AC is clear
  3118. *
  3119. * Here, we cover the first three conditions.
  3120. * The fourth is computed dynamically in
  3121. * permission_fault() and is in smapf.
  3122. *
  3123. * Also, SMAP does not affect instruction
  3124. * fetches, add the !ff check here to make it
  3125. * clearer.
  3126. */
  3127. smap = cr4_smap && u && !uf && !ff;
  3128. } else
  3129. /* Not really needed: no U/S accesses on ept */
  3130. u = 1;
  3131. fault = (ff && !x) || (uf && !u) || (wf && !w) ||
  3132. (smapf && smap);
  3133. map |= fault << bit;
  3134. }
  3135. mmu->permissions[byte] = map;
  3136. }
  3137. }
  3138. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  3139. {
  3140. u8 map;
  3141. unsigned level, root_level = mmu->root_level;
  3142. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  3143. if (root_level == PT32E_ROOT_LEVEL)
  3144. --root_level;
  3145. /* PT_PAGE_TABLE_LEVEL always terminates */
  3146. map = 1 | (1 << ps_set_index);
  3147. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  3148. if (level <= PT_PDPE_LEVEL
  3149. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  3150. map |= 1 << (ps_set_index | (level - 1));
  3151. }
  3152. mmu->last_pte_bitmap = map;
  3153. }
  3154. static void paging64_init_context_common(struct kvm_vcpu *vcpu,
  3155. struct kvm_mmu *context,
  3156. int level)
  3157. {
  3158. context->nx = is_nx(vcpu);
  3159. context->root_level = level;
  3160. reset_rsvds_bits_mask(vcpu, context);
  3161. update_permission_bitmask(vcpu, context, false);
  3162. update_last_pte_bitmap(vcpu, context);
  3163. MMU_WARN_ON(!is_pae(vcpu));
  3164. context->page_fault = paging64_page_fault;
  3165. context->gva_to_gpa = paging64_gva_to_gpa;
  3166. context->sync_page = paging64_sync_page;
  3167. context->invlpg = paging64_invlpg;
  3168. context->update_pte = paging64_update_pte;
  3169. context->shadow_root_level = level;
  3170. context->root_hpa = INVALID_PAGE;
  3171. context->direct_map = false;
  3172. }
  3173. static void paging64_init_context(struct kvm_vcpu *vcpu,
  3174. struct kvm_mmu *context)
  3175. {
  3176. paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3177. }
  3178. static void paging32_init_context(struct kvm_vcpu *vcpu,
  3179. struct kvm_mmu *context)
  3180. {
  3181. context->nx = false;
  3182. context->root_level = PT32_ROOT_LEVEL;
  3183. reset_rsvds_bits_mask(vcpu, context);
  3184. update_permission_bitmask(vcpu, context, false);
  3185. update_last_pte_bitmap(vcpu, context);
  3186. context->page_fault = paging32_page_fault;
  3187. context->gva_to_gpa = paging32_gva_to_gpa;
  3188. context->sync_page = paging32_sync_page;
  3189. context->invlpg = paging32_invlpg;
  3190. context->update_pte = paging32_update_pte;
  3191. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3192. context->root_hpa = INVALID_PAGE;
  3193. context->direct_map = false;
  3194. }
  3195. static void paging32E_init_context(struct kvm_vcpu *vcpu,
  3196. struct kvm_mmu *context)
  3197. {
  3198. paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3199. }
  3200. static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3201. {
  3202. struct kvm_mmu *context = &vcpu->arch.mmu;
  3203. context->base_role.word = 0;
  3204. context->base_role.smm = is_smm(vcpu);
  3205. context->page_fault = tdp_page_fault;
  3206. context->sync_page = nonpaging_sync_page;
  3207. context->invlpg = nonpaging_invlpg;
  3208. context->update_pte = nonpaging_update_pte;
  3209. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3210. context->root_hpa = INVALID_PAGE;
  3211. context->direct_map = true;
  3212. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3213. context->get_cr3 = get_cr3;
  3214. context->get_pdptr = kvm_pdptr_read;
  3215. context->inject_page_fault = kvm_inject_page_fault;
  3216. if (!is_paging(vcpu)) {
  3217. context->nx = false;
  3218. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3219. context->root_level = 0;
  3220. } else if (is_long_mode(vcpu)) {
  3221. context->nx = is_nx(vcpu);
  3222. context->root_level = PT64_ROOT_LEVEL;
  3223. reset_rsvds_bits_mask(vcpu, context);
  3224. context->gva_to_gpa = paging64_gva_to_gpa;
  3225. } else if (is_pae(vcpu)) {
  3226. context->nx = is_nx(vcpu);
  3227. context->root_level = PT32E_ROOT_LEVEL;
  3228. reset_rsvds_bits_mask(vcpu, context);
  3229. context->gva_to_gpa = paging64_gva_to_gpa;
  3230. } else {
  3231. context->nx = false;
  3232. context->root_level = PT32_ROOT_LEVEL;
  3233. reset_rsvds_bits_mask(vcpu, context);
  3234. context->gva_to_gpa = paging32_gva_to_gpa;
  3235. }
  3236. update_permission_bitmask(vcpu, context, false);
  3237. update_last_pte_bitmap(vcpu, context);
  3238. }
  3239. void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
  3240. {
  3241. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3242. bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
  3243. struct kvm_mmu *context = &vcpu->arch.mmu;
  3244. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3245. if (!is_paging(vcpu))
  3246. nonpaging_init_context(vcpu, context);
  3247. else if (is_long_mode(vcpu))
  3248. paging64_init_context(vcpu, context);
  3249. else if (is_pae(vcpu))
  3250. paging32E_init_context(vcpu, context);
  3251. else
  3252. paging32_init_context(vcpu, context);
  3253. context->base_role.nxe = is_nx(vcpu);
  3254. context->base_role.cr4_pae = !!is_pae(vcpu);
  3255. context->base_role.cr0_wp = is_write_protection(vcpu);
  3256. context->base_role.smep_andnot_wp
  3257. = smep && !is_write_protection(vcpu);
  3258. context->base_role.smap_andnot_wp
  3259. = smap && !is_write_protection(vcpu);
  3260. context->base_role.smm = is_smm(vcpu);
  3261. }
  3262. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3263. void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
  3264. {
  3265. struct kvm_mmu *context = &vcpu->arch.mmu;
  3266. MMU_WARN_ON(VALID_PAGE(context->root_hpa));
  3267. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3268. context->nx = true;
  3269. context->page_fault = ept_page_fault;
  3270. context->gva_to_gpa = ept_gva_to_gpa;
  3271. context->sync_page = ept_sync_page;
  3272. context->invlpg = ept_invlpg;
  3273. context->update_pte = ept_update_pte;
  3274. context->root_level = context->shadow_root_level;
  3275. context->root_hpa = INVALID_PAGE;
  3276. context->direct_map = false;
  3277. update_permission_bitmask(vcpu, context, true);
  3278. reset_rsvds_bits_mask_ept(vcpu, context, execonly);
  3279. }
  3280. EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
  3281. static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3282. {
  3283. struct kvm_mmu *context = &vcpu->arch.mmu;
  3284. kvm_init_shadow_mmu(vcpu);
  3285. context->set_cr3 = kvm_x86_ops->set_cr3;
  3286. context->get_cr3 = get_cr3;
  3287. context->get_pdptr = kvm_pdptr_read;
  3288. context->inject_page_fault = kvm_inject_page_fault;
  3289. }
  3290. static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3291. {
  3292. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3293. g_context->get_cr3 = get_cr3;
  3294. g_context->get_pdptr = kvm_pdptr_read;
  3295. g_context->inject_page_fault = kvm_inject_page_fault;
  3296. /*
  3297. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3298. * translation of l2_gpa to l1_gpa addresses is done using the
  3299. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3300. * functions between mmu and nested_mmu are swapped.
  3301. */
  3302. if (!is_paging(vcpu)) {
  3303. g_context->nx = false;
  3304. g_context->root_level = 0;
  3305. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3306. } else if (is_long_mode(vcpu)) {
  3307. g_context->nx = is_nx(vcpu);
  3308. g_context->root_level = PT64_ROOT_LEVEL;
  3309. reset_rsvds_bits_mask(vcpu, g_context);
  3310. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3311. } else if (is_pae(vcpu)) {
  3312. g_context->nx = is_nx(vcpu);
  3313. g_context->root_level = PT32E_ROOT_LEVEL;
  3314. reset_rsvds_bits_mask(vcpu, g_context);
  3315. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3316. } else {
  3317. g_context->nx = false;
  3318. g_context->root_level = PT32_ROOT_LEVEL;
  3319. reset_rsvds_bits_mask(vcpu, g_context);
  3320. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3321. }
  3322. update_permission_bitmask(vcpu, g_context, false);
  3323. update_last_pte_bitmap(vcpu, g_context);
  3324. }
  3325. static void init_kvm_mmu(struct kvm_vcpu *vcpu)
  3326. {
  3327. if (mmu_is_nested(vcpu))
  3328. init_kvm_nested_mmu(vcpu);
  3329. else if (tdp_enabled)
  3330. init_kvm_tdp_mmu(vcpu);
  3331. else
  3332. init_kvm_softmmu(vcpu);
  3333. }
  3334. void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3335. {
  3336. kvm_mmu_unload(vcpu);
  3337. init_kvm_mmu(vcpu);
  3338. }
  3339. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3340. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3341. {
  3342. int r;
  3343. r = mmu_topup_memory_caches(vcpu);
  3344. if (r)
  3345. goto out;
  3346. r = mmu_alloc_roots(vcpu);
  3347. kvm_mmu_sync_roots(vcpu);
  3348. if (r)
  3349. goto out;
  3350. /* set_cr3() should ensure TLB has been flushed */
  3351. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3352. out:
  3353. return r;
  3354. }
  3355. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3356. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3357. {
  3358. mmu_free_roots(vcpu);
  3359. WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3360. }
  3361. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3362. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3363. struct kvm_mmu_page *sp, u64 *spte,
  3364. const void *new)
  3365. {
  3366. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3367. ++vcpu->kvm->stat.mmu_pde_zapped;
  3368. return;
  3369. }
  3370. ++vcpu->kvm->stat.mmu_pte_updated;
  3371. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3372. }
  3373. static bool need_remote_flush(u64 old, u64 new)
  3374. {
  3375. if (!is_shadow_present_pte(old))
  3376. return false;
  3377. if (!is_shadow_present_pte(new))
  3378. return true;
  3379. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3380. return true;
  3381. old ^= shadow_nx_mask;
  3382. new ^= shadow_nx_mask;
  3383. return (old & ~new & PT64_PERM_MASK) != 0;
  3384. }
  3385. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3386. bool remote_flush, bool local_flush)
  3387. {
  3388. if (zap_page)
  3389. return;
  3390. if (remote_flush)
  3391. kvm_flush_remote_tlbs(vcpu->kvm);
  3392. else if (local_flush)
  3393. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3394. }
  3395. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3396. const u8 *new, int *bytes)
  3397. {
  3398. u64 gentry;
  3399. int r;
  3400. /*
  3401. * Assume that the pte write on a page table of the same type
  3402. * as the current vcpu paging mode since we update the sptes only
  3403. * when they have the same mode.
  3404. */
  3405. if (is_pae(vcpu) && *bytes == 4) {
  3406. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3407. *gpa &= ~(gpa_t)7;
  3408. *bytes = 8;
  3409. r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
  3410. if (r)
  3411. gentry = 0;
  3412. new = (const u8 *)&gentry;
  3413. }
  3414. switch (*bytes) {
  3415. case 4:
  3416. gentry = *(const u32 *)new;
  3417. break;
  3418. case 8:
  3419. gentry = *(const u64 *)new;
  3420. break;
  3421. default:
  3422. gentry = 0;
  3423. break;
  3424. }
  3425. return gentry;
  3426. }
  3427. /*
  3428. * If we're seeing too many writes to a page, it may no longer be a page table,
  3429. * or we may be forking, in which case it is better to unmap the page.
  3430. */
  3431. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3432. {
  3433. /*
  3434. * Skip write-flooding detected for the sp whose level is 1, because
  3435. * it can become unsync, then the guest page is not write-protected.
  3436. */
  3437. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3438. return false;
  3439. return ++sp->write_flooding_count >= 3;
  3440. }
  3441. /*
  3442. * Misaligned accesses are too much trouble to fix up; also, they usually
  3443. * indicate a page is not used as a page table.
  3444. */
  3445. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3446. int bytes)
  3447. {
  3448. unsigned offset, pte_size, misaligned;
  3449. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3450. gpa, bytes, sp->role.word);
  3451. offset = offset_in_page(gpa);
  3452. pte_size = sp->role.cr4_pae ? 8 : 4;
  3453. /*
  3454. * Sometimes, the OS only writes the last one bytes to update status
  3455. * bits, for example, in linux, andb instruction is used in clear_bit().
  3456. */
  3457. if (!(offset & (pte_size - 1)) && bytes == 1)
  3458. return false;
  3459. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3460. misaligned |= bytes < 4;
  3461. return misaligned;
  3462. }
  3463. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3464. {
  3465. unsigned page_offset, quadrant;
  3466. u64 *spte;
  3467. int level;
  3468. page_offset = offset_in_page(gpa);
  3469. level = sp->role.level;
  3470. *nspte = 1;
  3471. if (!sp->role.cr4_pae) {
  3472. page_offset <<= 1; /* 32->64 */
  3473. /*
  3474. * A 32-bit pde maps 4MB while the shadow pdes map
  3475. * only 2MB. So we need to double the offset again
  3476. * and zap two pdes instead of one.
  3477. */
  3478. if (level == PT32_ROOT_LEVEL) {
  3479. page_offset &= ~7; /* kill rounding error */
  3480. page_offset <<= 1;
  3481. *nspte = 2;
  3482. }
  3483. quadrant = page_offset >> PAGE_SHIFT;
  3484. page_offset &= ~PAGE_MASK;
  3485. if (quadrant != sp->role.quadrant)
  3486. return NULL;
  3487. }
  3488. spte = &sp->spt[page_offset / sizeof(*spte)];
  3489. return spte;
  3490. }
  3491. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3492. const u8 *new, int bytes)
  3493. {
  3494. gfn_t gfn = gpa >> PAGE_SHIFT;
  3495. struct kvm_mmu_page *sp;
  3496. LIST_HEAD(invalid_list);
  3497. u64 entry, gentry, *spte;
  3498. int npte;
  3499. bool remote_flush, local_flush, zap_page;
  3500. union kvm_mmu_page_role mask = { };
  3501. mask.cr0_wp = 1;
  3502. mask.cr4_pae = 1;
  3503. mask.nxe = 1;
  3504. mask.smep_andnot_wp = 1;
  3505. mask.smap_andnot_wp = 1;
  3506. mask.smm = 1;
  3507. /*
  3508. * If we don't have indirect shadow pages, it means no page is
  3509. * write-protected, so we can exit simply.
  3510. */
  3511. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3512. return;
  3513. zap_page = remote_flush = local_flush = false;
  3514. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3515. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3516. /*
  3517. * No need to care whether allocation memory is successful
  3518. * or not since pte prefetch is skiped if it does not have
  3519. * enough objects in the cache.
  3520. */
  3521. mmu_topup_memory_caches(vcpu);
  3522. spin_lock(&vcpu->kvm->mmu_lock);
  3523. ++vcpu->kvm->stat.mmu_pte_write;
  3524. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3525. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3526. if (detect_write_misaligned(sp, gpa, bytes) ||
  3527. detect_write_flooding(sp)) {
  3528. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3529. &invalid_list);
  3530. ++vcpu->kvm->stat.mmu_flooded;
  3531. continue;
  3532. }
  3533. spte = get_written_sptes(sp, gpa, &npte);
  3534. if (!spte)
  3535. continue;
  3536. local_flush = true;
  3537. while (npte--) {
  3538. entry = *spte;
  3539. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3540. if (gentry &&
  3541. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3542. & mask.word) && rmap_can_add(vcpu))
  3543. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3544. if (need_remote_flush(entry, *spte))
  3545. remote_flush = true;
  3546. ++spte;
  3547. }
  3548. }
  3549. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3550. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3551. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3552. spin_unlock(&vcpu->kvm->mmu_lock);
  3553. }
  3554. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3555. {
  3556. gpa_t gpa;
  3557. int r;
  3558. if (vcpu->arch.mmu.direct_map)
  3559. return 0;
  3560. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3561. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3562. return r;
  3563. }
  3564. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3565. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3566. {
  3567. LIST_HEAD(invalid_list);
  3568. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3569. return;
  3570. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3571. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3572. break;
  3573. ++vcpu->kvm->stat.mmu_recycled;
  3574. }
  3575. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3576. }
  3577. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3578. {
  3579. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3580. return vcpu_match_mmio_gpa(vcpu, addr);
  3581. return vcpu_match_mmio_gva(vcpu, addr);
  3582. }
  3583. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3584. void *insn, int insn_len)
  3585. {
  3586. int r, emulation_type = EMULTYPE_RETRY;
  3587. enum emulation_result er;
  3588. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3589. if (r < 0)
  3590. goto out;
  3591. if (!r) {
  3592. r = 1;
  3593. goto out;
  3594. }
  3595. if (is_mmio_page_fault(vcpu, cr2))
  3596. emulation_type = 0;
  3597. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3598. switch (er) {
  3599. case EMULATE_DONE:
  3600. return 1;
  3601. case EMULATE_USER_EXIT:
  3602. ++vcpu->stat.mmio_exits;
  3603. /* fall through */
  3604. case EMULATE_FAIL:
  3605. return 0;
  3606. default:
  3607. BUG();
  3608. }
  3609. out:
  3610. return r;
  3611. }
  3612. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3613. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3614. {
  3615. vcpu->arch.mmu.invlpg(vcpu, gva);
  3616. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  3617. ++vcpu->stat.invlpg;
  3618. }
  3619. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3620. void kvm_enable_tdp(void)
  3621. {
  3622. tdp_enabled = true;
  3623. }
  3624. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3625. void kvm_disable_tdp(void)
  3626. {
  3627. tdp_enabled = false;
  3628. }
  3629. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3630. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3631. {
  3632. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3633. if (vcpu->arch.mmu.lm_root != NULL)
  3634. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3635. }
  3636. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3637. {
  3638. struct page *page;
  3639. int i;
  3640. /*
  3641. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3642. * Therefore we need to allocate shadow page tables in the first
  3643. * 4GB of memory, which happens to fit the DMA32 zone.
  3644. */
  3645. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3646. if (!page)
  3647. return -ENOMEM;
  3648. vcpu->arch.mmu.pae_root = page_address(page);
  3649. for (i = 0; i < 4; ++i)
  3650. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3651. return 0;
  3652. }
  3653. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3654. {
  3655. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3656. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3657. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3658. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3659. return alloc_mmu_pages(vcpu);
  3660. }
  3661. void kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3662. {
  3663. MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3664. init_kvm_mmu(vcpu);
  3665. }
  3666. /* The return value indicates if tlb flush on all vcpus is needed. */
  3667. typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
  3668. /* The caller should hold mmu-lock before calling this function. */
  3669. static bool
  3670. slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3671. slot_level_handler fn, int start_level, int end_level,
  3672. gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
  3673. {
  3674. struct slot_rmap_walk_iterator iterator;
  3675. bool flush = false;
  3676. for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
  3677. end_gfn, &iterator) {
  3678. if (iterator.rmap)
  3679. flush |= fn(kvm, iterator.rmap);
  3680. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3681. if (flush && lock_flush_tlb) {
  3682. kvm_flush_remote_tlbs(kvm);
  3683. flush = false;
  3684. }
  3685. cond_resched_lock(&kvm->mmu_lock);
  3686. }
  3687. }
  3688. if (flush && lock_flush_tlb) {
  3689. kvm_flush_remote_tlbs(kvm);
  3690. flush = false;
  3691. }
  3692. return flush;
  3693. }
  3694. static bool
  3695. slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3696. slot_level_handler fn, int start_level, int end_level,
  3697. bool lock_flush_tlb)
  3698. {
  3699. return slot_handle_level_range(kvm, memslot, fn, start_level,
  3700. end_level, memslot->base_gfn,
  3701. memslot->base_gfn + memslot->npages - 1,
  3702. lock_flush_tlb);
  3703. }
  3704. static bool
  3705. slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3706. slot_level_handler fn, bool lock_flush_tlb)
  3707. {
  3708. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3709. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3710. }
  3711. static bool
  3712. slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3713. slot_level_handler fn, bool lock_flush_tlb)
  3714. {
  3715. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
  3716. PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
  3717. }
  3718. static bool
  3719. slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
  3720. slot_level_handler fn, bool lock_flush_tlb)
  3721. {
  3722. return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
  3723. PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
  3724. }
  3725. void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
  3726. {
  3727. struct kvm_memslots *slots;
  3728. struct kvm_memory_slot *memslot;
  3729. int i;
  3730. spin_lock(&kvm->mmu_lock);
  3731. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  3732. slots = __kvm_memslots(kvm, i);
  3733. kvm_for_each_memslot(memslot, slots) {
  3734. gfn_t start, end;
  3735. start = max(gfn_start, memslot->base_gfn);
  3736. end = min(gfn_end, memslot->base_gfn + memslot->npages);
  3737. if (start >= end)
  3738. continue;
  3739. slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
  3740. PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
  3741. start, end - 1, true);
  3742. }
  3743. }
  3744. spin_unlock(&kvm->mmu_lock);
  3745. }
  3746. static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
  3747. {
  3748. return __rmap_write_protect(kvm, rmapp, false);
  3749. }
  3750. void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
  3751. struct kvm_memory_slot *memslot)
  3752. {
  3753. bool flush;
  3754. spin_lock(&kvm->mmu_lock);
  3755. flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
  3756. false);
  3757. spin_unlock(&kvm->mmu_lock);
  3758. /*
  3759. * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
  3760. * which do tlb flush out of mmu-lock should be serialized by
  3761. * kvm->slots_lock otherwise tlb flush would be missed.
  3762. */
  3763. lockdep_assert_held(&kvm->slots_lock);
  3764. /*
  3765. * We can flush all the TLBs out of the mmu lock without TLB
  3766. * corruption since we just change the spte from writable to
  3767. * readonly so that we only need to care the case of changing
  3768. * spte from present to present (changing the spte from present
  3769. * to nonpresent will flush all the TLBs immediately), in other
  3770. * words, the only case we care is mmu_spte_update() where we
  3771. * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
  3772. * instead of PT_WRITABLE_MASK, that means it does not depend
  3773. * on PT_WRITABLE_MASK anymore.
  3774. */
  3775. if (flush)
  3776. kvm_flush_remote_tlbs(kvm);
  3777. }
  3778. static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
  3779. unsigned long *rmapp)
  3780. {
  3781. u64 *sptep;
  3782. struct rmap_iterator iter;
  3783. int need_tlb_flush = 0;
  3784. pfn_t pfn;
  3785. struct kvm_mmu_page *sp;
  3786. restart:
  3787. for_each_rmap_spte(rmapp, &iter, sptep) {
  3788. sp = page_header(__pa(sptep));
  3789. pfn = spte_to_pfn(*sptep);
  3790. /*
  3791. * We cannot do huge page mapping for indirect shadow pages,
  3792. * which are found on the last rmap (level = 1) when not using
  3793. * tdp; such shadow pages are synced with the page table in
  3794. * the guest, and the guest page table is using 4K page size
  3795. * mapping if the indirect sp has level = 1.
  3796. */
  3797. if (sp->role.direct &&
  3798. !kvm_is_reserved_pfn(pfn) &&
  3799. PageTransCompound(pfn_to_page(pfn))) {
  3800. drop_spte(kvm, sptep);
  3801. need_tlb_flush = 1;
  3802. goto restart;
  3803. }
  3804. }
  3805. return need_tlb_flush;
  3806. }
  3807. void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
  3808. const struct kvm_memory_slot *memslot)
  3809. {
  3810. /* FIXME: const-ify all uses of struct kvm_memory_slot. */
  3811. spin_lock(&kvm->mmu_lock);
  3812. slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
  3813. kvm_mmu_zap_collapsible_spte, true);
  3814. spin_unlock(&kvm->mmu_lock);
  3815. }
  3816. void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
  3817. struct kvm_memory_slot *memslot)
  3818. {
  3819. bool flush;
  3820. spin_lock(&kvm->mmu_lock);
  3821. flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
  3822. spin_unlock(&kvm->mmu_lock);
  3823. lockdep_assert_held(&kvm->slots_lock);
  3824. /*
  3825. * It's also safe to flush TLBs out of mmu lock here as currently this
  3826. * function is only used for dirty logging, in which case flushing TLB
  3827. * out of mmu lock also guarantees no dirty pages will be lost in
  3828. * dirty_bitmap.
  3829. */
  3830. if (flush)
  3831. kvm_flush_remote_tlbs(kvm);
  3832. }
  3833. EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
  3834. void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
  3835. struct kvm_memory_slot *memslot)
  3836. {
  3837. bool flush;
  3838. spin_lock(&kvm->mmu_lock);
  3839. flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
  3840. false);
  3841. spin_unlock(&kvm->mmu_lock);
  3842. /* see kvm_mmu_slot_remove_write_access */
  3843. lockdep_assert_held(&kvm->slots_lock);
  3844. if (flush)
  3845. kvm_flush_remote_tlbs(kvm);
  3846. }
  3847. EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
  3848. void kvm_mmu_slot_set_dirty(struct kvm *kvm,
  3849. struct kvm_memory_slot *memslot)
  3850. {
  3851. bool flush;
  3852. spin_lock(&kvm->mmu_lock);
  3853. flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
  3854. spin_unlock(&kvm->mmu_lock);
  3855. lockdep_assert_held(&kvm->slots_lock);
  3856. /* see kvm_mmu_slot_leaf_clear_dirty */
  3857. if (flush)
  3858. kvm_flush_remote_tlbs(kvm);
  3859. }
  3860. EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
  3861. #define BATCH_ZAP_PAGES 10
  3862. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3863. {
  3864. struct kvm_mmu_page *sp, *node;
  3865. int batch = 0;
  3866. restart:
  3867. list_for_each_entry_safe_reverse(sp, node,
  3868. &kvm->arch.active_mmu_pages, link) {
  3869. int ret;
  3870. /*
  3871. * No obsolete page exists before new created page since
  3872. * active_mmu_pages is the FIFO list.
  3873. */
  3874. if (!is_obsolete_sp(kvm, sp))
  3875. break;
  3876. /*
  3877. * Since we are reversely walking the list and the invalid
  3878. * list will be moved to the head, skip the invalid page
  3879. * can help us to avoid the infinity list walking.
  3880. */
  3881. if (sp->role.invalid)
  3882. continue;
  3883. /*
  3884. * Need not flush tlb since we only zap the sp with invalid
  3885. * generation number.
  3886. */
  3887. if (batch >= BATCH_ZAP_PAGES &&
  3888. cond_resched_lock(&kvm->mmu_lock)) {
  3889. batch = 0;
  3890. goto restart;
  3891. }
  3892. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3893. &kvm->arch.zapped_obsolete_pages);
  3894. batch += ret;
  3895. if (ret)
  3896. goto restart;
  3897. }
  3898. /*
  3899. * Should flush tlb before free page tables since lockless-walking
  3900. * may use the pages.
  3901. */
  3902. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3903. }
  3904. /*
  3905. * Fast invalidate all shadow pages and use lock-break technique
  3906. * to zap obsolete pages.
  3907. *
  3908. * It's required when memslot is being deleted or VM is being
  3909. * destroyed, in these cases, we should ensure that KVM MMU does
  3910. * not use any resource of the being-deleted slot or all slots
  3911. * after calling the function.
  3912. */
  3913. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3914. {
  3915. spin_lock(&kvm->mmu_lock);
  3916. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3917. kvm->arch.mmu_valid_gen++;
  3918. /*
  3919. * Notify all vcpus to reload its shadow page table
  3920. * and flush TLB. Then all vcpus will switch to new
  3921. * shadow page table with the new mmu_valid_gen.
  3922. *
  3923. * Note: we should do this under the protection of
  3924. * mmu-lock, otherwise, vcpu would purge shadow page
  3925. * but miss tlb flush.
  3926. */
  3927. kvm_reload_remote_mmus(kvm);
  3928. kvm_zap_obsolete_pages(kvm);
  3929. spin_unlock(&kvm->mmu_lock);
  3930. }
  3931. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3932. {
  3933. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3934. }
  3935. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
  3936. {
  3937. /*
  3938. * The very rare case: if the generation-number is round,
  3939. * zap all shadow pages.
  3940. */
  3941. if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
  3942. printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
  3943. kvm_mmu_invalidate_zap_all_pages(kvm);
  3944. }
  3945. }
  3946. static unsigned long
  3947. mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
  3948. {
  3949. struct kvm *kvm;
  3950. int nr_to_scan = sc->nr_to_scan;
  3951. unsigned long freed = 0;
  3952. spin_lock(&kvm_lock);
  3953. list_for_each_entry(kvm, &vm_list, vm_list) {
  3954. int idx;
  3955. LIST_HEAD(invalid_list);
  3956. /*
  3957. * Never scan more than sc->nr_to_scan VM instances.
  3958. * Will not hit this condition practically since we do not try
  3959. * to shrink more than one VM and it is very unlikely to see
  3960. * !n_used_mmu_pages so many times.
  3961. */
  3962. if (!nr_to_scan--)
  3963. break;
  3964. /*
  3965. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3966. * here. We may skip a VM instance errorneosly, but we do not
  3967. * want to shrink a VM that only started to populate its MMU
  3968. * anyway.
  3969. */
  3970. if (!kvm->arch.n_used_mmu_pages &&
  3971. !kvm_has_zapped_obsolete_pages(kvm))
  3972. continue;
  3973. idx = srcu_read_lock(&kvm->srcu);
  3974. spin_lock(&kvm->mmu_lock);
  3975. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3976. kvm_mmu_commit_zap_page(kvm,
  3977. &kvm->arch.zapped_obsolete_pages);
  3978. goto unlock;
  3979. }
  3980. if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  3981. freed++;
  3982. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3983. unlock:
  3984. spin_unlock(&kvm->mmu_lock);
  3985. srcu_read_unlock(&kvm->srcu, idx);
  3986. /*
  3987. * unfair on small ones
  3988. * per-vm shrinkers cry out
  3989. * sadness comes quickly
  3990. */
  3991. list_move_tail(&kvm->vm_list, &vm_list);
  3992. break;
  3993. }
  3994. spin_unlock(&kvm_lock);
  3995. return freed;
  3996. }
  3997. static unsigned long
  3998. mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
  3999. {
  4000. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  4001. }
  4002. static struct shrinker mmu_shrinker = {
  4003. .count_objects = mmu_shrink_count,
  4004. .scan_objects = mmu_shrink_scan,
  4005. .seeks = DEFAULT_SEEKS * 10,
  4006. };
  4007. static void mmu_destroy_caches(void)
  4008. {
  4009. if (pte_list_desc_cache)
  4010. kmem_cache_destroy(pte_list_desc_cache);
  4011. if (mmu_page_header_cache)
  4012. kmem_cache_destroy(mmu_page_header_cache);
  4013. }
  4014. int kvm_mmu_module_init(void)
  4015. {
  4016. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  4017. sizeof(struct pte_list_desc),
  4018. 0, 0, NULL);
  4019. if (!pte_list_desc_cache)
  4020. goto nomem;
  4021. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  4022. sizeof(struct kvm_mmu_page),
  4023. 0, 0, NULL);
  4024. if (!mmu_page_header_cache)
  4025. goto nomem;
  4026. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
  4027. goto nomem;
  4028. register_shrinker(&mmu_shrinker);
  4029. return 0;
  4030. nomem:
  4031. mmu_destroy_caches();
  4032. return -ENOMEM;
  4033. }
  4034. /*
  4035. * Caculate mmu pages needed for kvm.
  4036. */
  4037. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  4038. {
  4039. unsigned int nr_mmu_pages;
  4040. unsigned int nr_pages = 0;
  4041. struct kvm_memslots *slots;
  4042. struct kvm_memory_slot *memslot;
  4043. int i;
  4044. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  4045. slots = __kvm_memslots(kvm, i);
  4046. kvm_for_each_memslot(memslot, slots)
  4047. nr_pages += memslot->npages;
  4048. }
  4049. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  4050. nr_mmu_pages = max(nr_mmu_pages,
  4051. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  4052. return nr_mmu_pages;
  4053. }
  4054. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  4055. {
  4056. struct kvm_shadow_walk_iterator iterator;
  4057. u64 spte;
  4058. int nr_sptes = 0;
  4059. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  4060. return nr_sptes;
  4061. walk_shadow_page_lockless_begin(vcpu);
  4062. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  4063. sptes[iterator.level-1] = spte;
  4064. nr_sptes++;
  4065. if (!is_shadow_present_pte(spte))
  4066. break;
  4067. }
  4068. walk_shadow_page_lockless_end(vcpu);
  4069. return nr_sptes;
  4070. }
  4071. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  4072. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  4073. {
  4074. kvm_mmu_unload(vcpu);
  4075. free_mmu_pages(vcpu);
  4076. mmu_free_memory_caches(vcpu);
  4077. }
  4078. void kvm_mmu_module_exit(void)
  4079. {
  4080. mmu_destroy_caches();
  4081. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  4082. unregister_shrinker(&mmu_shrinker);
  4083. mmu_audit_disable();
  4084. }