bpf_jit_comp.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326
  1. /*
  2. * BPF Jit compiler for s390.
  3. *
  4. * Minimum build requirements:
  5. *
  6. * - HAVE_MARCH_Z196_FEATURES: laal, laalg
  7. * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
  8. * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  9. * - PACK_STACK
  10. * - 64BIT
  11. *
  12. * Copyright IBM Corp. 2012,2015
  13. *
  14. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15. * Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16. */
  17. #define KMSG_COMPONENT "bpf_jit"
  18. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  19. #include <linux/netdevice.h>
  20. #include <linux/filter.h>
  21. #include <linux/init.h>
  22. #include <linux/bpf.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/dis.h>
  25. #include "bpf_jit.h"
  26. int bpf_jit_enable __read_mostly;
  27. struct bpf_jit {
  28. u32 seen; /* Flags to remember seen eBPF instructions */
  29. u32 seen_reg[16]; /* Array to remember which registers are used */
  30. u32 *addrs; /* Array with relative instruction addresses */
  31. u8 *prg_buf; /* Start of program */
  32. int size; /* Size of program and literal pool */
  33. int size_prg; /* Size of program */
  34. int prg; /* Current position in program */
  35. int lit_start; /* Start of literal pool */
  36. int lit; /* Current position in literal pool */
  37. int base_ip; /* Base address for literal pool */
  38. int ret0_ip; /* Address of return 0 */
  39. int exit_ip; /* Address of exit */
  40. int tail_call_start; /* Tail call start offset */
  41. int labels[1]; /* Labels for local jumps */
  42. };
  43. #define BPF_SIZE_MAX 4096 /* Max size for program */
  44. #define SEEN_SKB 1 /* skb access */
  45. #define SEEN_MEM 2 /* use mem[] for temporary storage */
  46. #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
  47. #define SEEN_LITERAL 8 /* code uses literals */
  48. #define SEEN_FUNC 16 /* calls C functions */
  49. #define SEEN_TAIL_CALL 32 /* code uses tail calls */
  50. #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  51. /*
  52. * s390 registers
  53. */
  54. #define REG_W0 (__MAX_BPF_REG+0) /* Work register 1 (even) */
  55. #define REG_W1 (__MAX_BPF_REG+1) /* Work register 2 (odd) */
  56. #define REG_SKB_DATA (__MAX_BPF_REG+2) /* SKB data register */
  57. #define REG_L (__MAX_BPF_REG+3) /* Literal pool register */
  58. #define REG_15 (__MAX_BPF_REG+4) /* Register 15 */
  59. #define REG_0 REG_W0 /* Register 0 */
  60. #define REG_1 REG_W1 /* Register 1 */
  61. #define REG_2 BPF_REG_1 /* Register 2 */
  62. #define REG_14 BPF_REG_0 /* Register 14 */
  63. /*
  64. * Mapping of BPF registers to s390 registers
  65. */
  66. static const int reg2hex[] = {
  67. /* Return code */
  68. [BPF_REG_0] = 14,
  69. /* Function parameters */
  70. [BPF_REG_1] = 2,
  71. [BPF_REG_2] = 3,
  72. [BPF_REG_3] = 4,
  73. [BPF_REG_4] = 5,
  74. [BPF_REG_5] = 6,
  75. /* Call saved registers */
  76. [BPF_REG_6] = 7,
  77. [BPF_REG_7] = 8,
  78. [BPF_REG_8] = 9,
  79. [BPF_REG_9] = 10,
  80. /* BPF stack pointer */
  81. [BPF_REG_FP] = 13,
  82. /* SKB data pointer */
  83. [REG_SKB_DATA] = 12,
  84. /* Work registers for s390x backend */
  85. [REG_W0] = 0,
  86. [REG_W1] = 1,
  87. [REG_L] = 11,
  88. [REG_15] = 15,
  89. };
  90. static inline u32 reg(u32 dst_reg, u32 src_reg)
  91. {
  92. return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
  93. }
  94. static inline u32 reg_high(u32 reg)
  95. {
  96. return reg2hex[reg] << 4;
  97. }
  98. static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
  99. {
  100. u32 r1 = reg2hex[b1];
  101. if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
  102. jit->seen_reg[r1] = 1;
  103. }
  104. #define REG_SET_SEEN(b1) \
  105. ({ \
  106. reg_set_seen(jit, b1); \
  107. })
  108. #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
  109. /*
  110. * EMIT macros for code generation
  111. */
  112. #define _EMIT2(op) \
  113. ({ \
  114. if (jit->prg_buf) \
  115. *(u16 *) (jit->prg_buf + jit->prg) = op; \
  116. jit->prg += 2; \
  117. })
  118. #define EMIT2(op, b1, b2) \
  119. ({ \
  120. _EMIT2(op | reg(b1, b2)); \
  121. REG_SET_SEEN(b1); \
  122. REG_SET_SEEN(b2); \
  123. })
  124. #define _EMIT4(op) \
  125. ({ \
  126. if (jit->prg_buf) \
  127. *(u32 *) (jit->prg_buf + jit->prg) = op; \
  128. jit->prg += 4; \
  129. })
  130. #define EMIT4(op, b1, b2) \
  131. ({ \
  132. _EMIT4(op | reg(b1, b2)); \
  133. REG_SET_SEEN(b1); \
  134. REG_SET_SEEN(b2); \
  135. })
  136. #define EMIT4_RRF(op, b1, b2, b3) \
  137. ({ \
  138. _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
  139. REG_SET_SEEN(b1); \
  140. REG_SET_SEEN(b2); \
  141. REG_SET_SEEN(b3); \
  142. })
  143. #define _EMIT4_DISP(op, disp) \
  144. ({ \
  145. unsigned int __disp = (disp) & 0xfff; \
  146. _EMIT4(op | __disp); \
  147. })
  148. #define EMIT4_DISP(op, b1, b2, disp) \
  149. ({ \
  150. _EMIT4_DISP(op | reg_high(b1) << 16 | \
  151. reg_high(b2) << 8, disp); \
  152. REG_SET_SEEN(b1); \
  153. REG_SET_SEEN(b2); \
  154. })
  155. #define EMIT4_IMM(op, b1, imm) \
  156. ({ \
  157. unsigned int __imm = (imm) & 0xffff; \
  158. _EMIT4(op | reg_high(b1) << 16 | __imm); \
  159. REG_SET_SEEN(b1); \
  160. })
  161. #define EMIT4_PCREL(op, pcrel) \
  162. ({ \
  163. long __pcrel = ((pcrel) >> 1) & 0xffff; \
  164. _EMIT4(op | __pcrel); \
  165. })
  166. #define _EMIT6(op1, op2) \
  167. ({ \
  168. if (jit->prg_buf) { \
  169. *(u32 *) (jit->prg_buf + jit->prg) = op1; \
  170. *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
  171. } \
  172. jit->prg += 6; \
  173. })
  174. #define _EMIT6_DISP(op1, op2, disp) \
  175. ({ \
  176. unsigned int __disp = (disp) & 0xfff; \
  177. _EMIT6(op1 | __disp, op2); \
  178. })
  179. #define EMIT6_DISP(op1, op2, b1, b2, b3, disp) \
  180. ({ \
  181. _EMIT6_DISP(op1 | reg(b1, b2) << 16 | \
  182. reg_high(b3) << 8, op2, disp); \
  183. REG_SET_SEEN(b1); \
  184. REG_SET_SEEN(b2); \
  185. REG_SET_SEEN(b3); \
  186. })
  187. #define _EMIT6_DISP_LH(op1, op2, disp) \
  188. ({ \
  189. unsigned int __disp_h = ((u32)disp) & 0xff000; \
  190. unsigned int __disp_l = ((u32)disp) & 0x00fff; \
  191. _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
  192. })
  193. #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
  194. ({ \
  195. _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
  196. reg_high(b3) << 8, op2, disp); \
  197. REG_SET_SEEN(b1); \
  198. REG_SET_SEEN(b2); \
  199. REG_SET_SEEN(b3); \
  200. })
  201. #define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
  202. ({ \
  203. int rel = (jit->labels[label] - jit->prg) >> 1; \
  204. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
  205. op2 | mask << 12); \
  206. REG_SET_SEEN(b1); \
  207. REG_SET_SEEN(b2); \
  208. })
  209. #define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
  210. ({ \
  211. int rel = (jit->labels[label] - jit->prg) >> 1; \
  212. _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
  213. (rel & 0xffff), op2 | (imm & 0xff) << 8); \
  214. REG_SET_SEEN(b1); \
  215. BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
  216. })
  217. #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
  218. ({ \
  219. /* Branch instruction needs 6 bytes */ \
  220. int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
  221. _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
  222. REG_SET_SEEN(b1); \
  223. REG_SET_SEEN(b2); \
  224. })
  225. #define _EMIT6_IMM(op, imm) \
  226. ({ \
  227. unsigned int __imm = (imm); \
  228. _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
  229. })
  230. #define EMIT6_IMM(op, b1, imm) \
  231. ({ \
  232. _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
  233. REG_SET_SEEN(b1); \
  234. })
  235. #define EMIT_CONST_U32(val) \
  236. ({ \
  237. unsigned int ret; \
  238. ret = jit->lit - jit->base_ip; \
  239. jit->seen |= SEEN_LITERAL; \
  240. if (jit->prg_buf) \
  241. *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
  242. jit->lit += 4; \
  243. ret; \
  244. })
  245. #define EMIT_CONST_U64(val) \
  246. ({ \
  247. unsigned int ret; \
  248. ret = jit->lit - jit->base_ip; \
  249. jit->seen |= SEEN_LITERAL; \
  250. if (jit->prg_buf) \
  251. *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
  252. jit->lit += 8; \
  253. ret; \
  254. })
  255. #define EMIT_ZERO(b1) \
  256. ({ \
  257. /* llgfr %dst,%dst (zero extend to 64 bit) */ \
  258. EMIT4(0xb9160000, b1, b1); \
  259. REG_SET_SEEN(b1); \
  260. })
  261. /*
  262. * Fill whole space with illegal instructions
  263. */
  264. static void jit_fill_hole(void *area, unsigned int size)
  265. {
  266. memset(area, 0, size);
  267. }
  268. /*
  269. * Save registers from "rs" (register start) to "re" (register end) on stack
  270. */
  271. static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
  272. {
  273. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  274. if (rs == re)
  275. /* stg %rs,off(%r15) */
  276. _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
  277. else
  278. /* stmg %rs,%re,off(%r15) */
  279. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
  280. }
  281. /*
  282. * Restore registers from "rs" (register start) to "re" (register end) on stack
  283. */
  284. static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
  285. {
  286. u32 off = STK_OFF_R6 + (rs - 6) * 8;
  287. if (jit->seen & SEEN_STACK)
  288. off += STK_OFF;
  289. if (rs == re)
  290. /* lg %rs,off(%r15) */
  291. _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
  292. else
  293. /* lmg %rs,%re,off(%r15) */
  294. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
  295. }
  296. /*
  297. * Return first seen register (from start)
  298. */
  299. static int get_start(struct bpf_jit *jit, int start)
  300. {
  301. int i;
  302. for (i = start; i <= 15; i++) {
  303. if (jit->seen_reg[i])
  304. return i;
  305. }
  306. return 0;
  307. }
  308. /*
  309. * Return last seen register (from start) (gap >= 2)
  310. */
  311. static int get_end(struct bpf_jit *jit, int start)
  312. {
  313. int i;
  314. for (i = start; i < 15; i++) {
  315. if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
  316. return i - 1;
  317. }
  318. return jit->seen_reg[15] ? 15 : 14;
  319. }
  320. #define REGS_SAVE 1
  321. #define REGS_RESTORE 0
  322. /*
  323. * Save and restore clobbered registers (6-15) on stack.
  324. * We save/restore registers in chunks with gap >= 2 registers.
  325. */
  326. static void save_restore_regs(struct bpf_jit *jit, int op)
  327. {
  328. int re = 6, rs;
  329. do {
  330. rs = get_start(jit, re);
  331. if (!rs)
  332. break;
  333. re = get_end(jit, rs + 1);
  334. if (op == REGS_SAVE)
  335. save_regs(jit, rs, re);
  336. else
  337. restore_regs(jit, rs, re);
  338. re++;
  339. } while (re <= 15);
  340. }
  341. /*
  342. * Emit function prologue
  343. *
  344. * Save registers and create stack frame if necessary.
  345. * See stack frame layout desription in "bpf_jit.h"!
  346. */
  347. static void bpf_jit_prologue(struct bpf_jit *jit)
  348. {
  349. if (jit->seen & SEEN_TAIL_CALL) {
  350. /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
  351. _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
  352. } else {
  353. /* j tail_call_start: NOP if no tail calls are used */
  354. EMIT4_PCREL(0xa7f40000, 6);
  355. _EMIT2(0);
  356. }
  357. /* Tail calls have to skip above initialization */
  358. jit->tail_call_start = jit->prg;
  359. /* Save registers */
  360. save_restore_regs(jit, REGS_SAVE);
  361. /* Setup literal pool */
  362. if (jit->seen & SEEN_LITERAL) {
  363. /* basr %r13,0 */
  364. EMIT2(0x0d00, REG_L, REG_0);
  365. jit->base_ip = jit->prg;
  366. }
  367. /* Setup stack and backchain */
  368. if (jit->seen & SEEN_STACK) {
  369. if (jit->seen & SEEN_FUNC)
  370. /* lgr %w1,%r15 (backchain) */
  371. EMIT4(0xb9040000, REG_W1, REG_15);
  372. /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
  373. EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
  374. /* aghi %r15,-STK_OFF */
  375. EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
  376. if (jit->seen & SEEN_FUNC)
  377. /* stg %w1,152(%r15) (backchain) */
  378. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
  379. REG_15, 152);
  380. }
  381. /*
  382. * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
  383. * we store the SKB header length on the stack and the SKB data
  384. * pointer in REG_SKB_DATA.
  385. */
  386. if (jit->seen & SEEN_SKB) {
  387. /* Header length: llgf %w1,<len>(%b1) */
  388. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
  389. offsetof(struct sk_buff, len));
  390. /* s %w1,<data_len>(%b1) */
  391. EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
  392. offsetof(struct sk_buff, data_len));
  393. /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
  394. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
  395. STK_OFF_HLEN);
  396. /* lg %skb_data,data_off(%b1) */
  397. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  398. BPF_REG_1, offsetof(struct sk_buff, data));
  399. }
  400. /* BPF compatibility: clear A (%b0) and X (%b7) registers */
  401. if (REG_SEEN(BPF_REG_A))
  402. /* lghi %ba,0 */
  403. EMIT4_IMM(0xa7090000, BPF_REG_A, 0);
  404. if (REG_SEEN(BPF_REG_X))
  405. /* lghi %bx,0 */
  406. EMIT4_IMM(0xa7090000, BPF_REG_X, 0);
  407. }
  408. /*
  409. * Function epilogue
  410. */
  411. static void bpf_jit_epilogue(struct bpf_jit *jit)
  412. {
  413. /* Return 0 */
  414. if (jit->seen & SEEN_RET0) {
  415. jit->ret0_ip = jit->prg;
  416. /* lghi %b0,0 */
  417. EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
  418. }
  419. jit->exit_ip = jit->prg;
  420. /* Load exit code: lgr %r2,%b0 */
  421. EMIT4(0xb9040000, REG_2, BPF_REG_0);
  422. /* Restore registers */
  423. save_restore_regs(jit, REGS_RESTORE);
  424. /* br %r14 */
  425. _EMIT2(0x07fe);
  426. }
  427. /*
  428. * Compile one eBPF instruction into s390x code
  429. *
  430. * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
  431. * stack space for the large switch statement.
  432. */
  433. static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
  434. {
  435. struct bpf_insn *insn = &fp->insnsi[i];
  436. int jmp_off, last, insn_count = 1;
  437. unsigned int func_addr, mask;
  438. u32 dst_reg = insn->dst_reg;
  439. u32 src_reg = insn->src_reg;
  440. u32 *addrs = jit->addrs;
  441. s32 imm = insn->imm;
  442. s16 off = insn->off;
  443. switch (insn->code) {
  444. /*
  445. * BPF_MOV
  446. */
  447. case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
  448. /* llgfr %dst,%src */
  449. EMIT4(0xb9160000, dst_reg, src_reg);
  450. break;
  451. case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
  452. /* lgr %dst,%src */
  453. EMIT4(0xb9040000, dst_reg, src_reg);
  454. break;
  455. case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
  456. /* llilf %dst,imm */
  457. EMIT6_IMM(0xc00f0000, dst_reg, imm);
  458. break;
  459. case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
  460. /* lgfi %dst,imm */
  461. EMIT6_IMM(0xc0010000, dst_reg, imm);
  462. break;
  463. /*
  464. * BPF_LD 64
  465. */
  466. case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
  467. {
  468. /* 16 byte instruction that uses two 'struct bpf_insn' */
  469. u64 imm64;
  470. imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
  471. /* lg %dst,<d(imm)>(%l) */
  472. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
  473. EMIT_CONST_U64(imm64));
  474. insn_count = 2;
  475. break;
  476. }
  477. /*
  478. * BPF_ADD
  479. */
  480. case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
  481. /* ar %dst,%src */
  482. EMIT2(0x1a00, dst_reg, src_reg);
  483. EMIT_ZERO(dst_reg);
  484. break;
  485. case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
  486. /* agr %dst,%src */
  487. EMIT4(0xb9080000, dst_reg, src_reg);
  488. break;
  489. case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
  490. if (!imm)
  491. break;
  492. /* alfi %dst,imm */
  493. EMIT6_IMM(0xc20b0000, dst_reg, imm);
  494. EMIT_ZERO(dst_reg);
  495. break;
  496. case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
  497. if (!imm)
  498. break;
  499. /* agfi %dst,imm */
  500. EMIT6_IMM(0xc2080000, dst_reg, imm);
  501. break;
  502. /*
  503. * BPF_SUB
  504. */
  505. case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
  506. /* sr %dst,%src */
  507. EMIT2(0x1b00, dst_reg, src_reg);
  508. EMIT_ZERO(dst_reg);
  509. break;
  510. case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
  511. /* sgr %dst,%src */
  512. EMIT4(0xb9090000, dst_reg, src_reg);
  513. break;
  514. case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
  515. if (!imm)
  516. break;
  517. /* alfi %dst,-imm */
  518. EMIT6_IMM(0xc20b0000, dst_reg, -imm);
  519. EMIT_ZERO(dst_reg);
  520. break;
  521. case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
  522. if (!imm)
  523. break;
  524. /* agfi %dst,-imm */
  525. EMIT6_IMM(0xc2080000, dst_reg, -imm);
  526. break;
  527. /*
  528. * BPF_MUL
  529. */
  530. case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
  531. /* msr %dst,%src */
  532. EMIT4(0xb2520000, dst_reg, src_reg);
  533. EMIT_ZERO(dst_reg);
  534. break;
  535. case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
  536. /* msgr %dst,%src */
  537. EMIT4(0xb90c0000, dst_reg, src_reg);
  538. break;
  539. case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
  540. if (imm == 1)
  541. break;
  542. /* msfi %r5,imm */
  543. EMIT6_IMM(0xc2010000, dst_reg, imm);
  544. EMIT_ZERO(dst_reg);
  545. break;
  546. case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
  547. if (imm == 1)
  548. break;
  549. /* msgfi %dst,imm */
  550. EMIT6_IMM(0xc2000000, dst_reg, imm);
  551. break;
  552. /*
  553. * BPF_DIV / BPF_MOD
  554. */
  555. case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
  556. case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
  557. {
  558. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  559. jit->seen |= SEEN_RET0;
  560. /* ltr %src,%src (if src == 0 goto fail) */
  561. EMIT2(0x1200, src_reg, src_reg);
  562. /* jz <ret0> */
  563. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  564. /* lhi %w0,0 */
  565. EMIT4_IMM(0xa7080000, REG_W0, 0);
  566. /* lr %w1,%dst */
  567. EMIT2(0x1800, REG_W1, dst_reg);
  568. /* dlr %w0,%src */
  569. EMIT4(0xb9970000, REG_W0, src_reg);
  570. /* llgfr %dst,%rc */
  571. EMIT4(0xb9160000, dst_reg, rc_reg);
  572. break;
  573. }
  574. case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
  575. case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
  576. {
  577. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  578. jit->seen |= SEEN_RET0;
  579. /* ltgr %src,%src (if src == 0 goto fail) */
  580. EMIT4(0xb9020000, src_reg, src_reg);
  581. /* jz <ret0> */
  582. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  583. /* lghi %w0,0 */
  584. EMIT4_IMM(0xa7090000, REG_W0, 0);
  585. /* lgr %w1,%dst */
  586. EMIT4(0xb9040000, REG_W1, dst_reg);
  587. /* dlgr %w0,%dst */
  588. EMIT4(0xb9870000, REG_W0, src_reg);
  589. /* lgr %dst,%rc */
  590. EMIT4(0xb9040000, dst_reg, rc_reg);
  591. break;
  592. }
  593. case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
  594. case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
  595. {
  596. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  597. if (imm == 1) {
  598. if (BPF_OP(insn->code) == BPF_MOD)
  599. /* lhgi %dst,0 */
  600. EMIT4_IMM(0xa7090000, dst_reg, 0);
  601. break;
  602. }
  603. /* lhi %w0,0 */
  604. EMIT4_IMM(0xa7080000, REG_W0, 0);
  605. /* lr %w1,%dst */
  606. EMIT2(0x1800, REG_W1, dst_reg);
  607. /* dl %w0,<d(imm)>(%l) */
  608. EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
  609. EMIT_CONST_U32(imm));
  610. /* llgfr %dst,%rc */
  611. EMIT4(0xb9160000, dst_reg, rc_reg);
  612. break;
  613. }
  614. case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
  615. case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
  616. {
  617. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  618. if (imm == 1) {
  619. if (BPF_OP(insn->code) == BPF_MOD)
  620. /* lhgi %dst,0 */
  621. EMIT4_IMM(0xa7090000, dst_reg, 0);
  622. break;
  623. }
  624. /* lghi %w0,0 */
  625. EMIT4_IMM(0xa7090000, REG_W0, 0);
  626. /* lgr %w1,%dst */
  627. EMIT4(0xb9040000, REG_W1, dst_reg);
  628. /* dlg %w0,<d(imm)>(%l) */
  629. EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
  630. EMIT_CONST_U64(imm));
  631. /* lgr %dst,%rc */
  632. EMIT4(0xb9040000, dst_reg, rc_reg);
  633. break;
  634. }
  635. /*
  636. * BPF_AND
  637. */
  638. case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
  639. /* nr %dst,%src */
  640. EMIT2(0x1400, dst_reg, src_reg);
  641. EMIT_ZERO(dst_reg);
  642. break;
  643. case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
  644. /* ngr %dst,%src */
  645. EMIT4(0xb9800000, dst_reg, src_reg);
  646. break;
  647. case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
  648. /* nilf %dst,imm */
  649. EMIT6_IMM(0xc00b0000, dst_reg, imm);
  650. EMIT_ZERO(dst_reg);
  651. break;
  652. case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
  653. /* ng %dst,<d(imm)>(%l) */
  654. EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
  655. EMIT_CONST_U64(imm));
  656. break;
  657. /*
  658. * BPF_OR
  659. */
  660. case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
  661. /* or %dst,%src */
  662. EMIT2(0x1600, dst_reg, src_reg);
  663. EMIT_ZERO(dst_reg);
  664. break;
  665. case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
  666. /* ogr %dst,%src */
  667. EMIT4(0xb9810000, dst_reg, src_reg);
  668. break;
  669. case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
  670. /* oilf %dst,imm */
  671. EMIT6_IMM(0xc00d0000, dst_reg, imm);
  672. EMIT_ZERO(dst_reg);
  673. break;
  674. case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
  675. /* og %dst,<d(imm)>(%l) */
  676. EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
  677. EMIT_CONST_U64(imm));
  678. break;
  679. /*
  680. * BPF_XOR
  681. */
  682. case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
  683. /* xr %dst,%src */
  684. EMIT2(0x1700, dst_reg, src_reg);
  685. EMIT_ZERO(dst_reg);
  686. break;
  687. case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
  688. /* xgr %dst,%src */
  689. EMIT4(0xb9820000, dst_reg, src_reg);
  690. break;
  691. case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
  692. if (!imm)
  693. break;
  694. /* xilf %dst,imm */
  695. EMIT6_IMM(0xc0070000, dst_reg, imm);
  696. EMIT_ZERO(dst_reg);
  697. break;
  698. case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
  699. /* xg %dst,<d(imm)>(%l) */
  700. EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
  701. EMIT_CONST_U64(imm));
  702. break;
  703. /*
  704. * BPF_LSH
  705. */
  706. case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
  707. /* sll %dst,0(%src) */
  708. EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
  709. EMIT_ZERO(dst_reg);
  710. break;
  711. case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
  712. /* sllg %dst,%dst,0(%src) */
  713. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
  714. break;
  715. case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
  716. if (imm == 0)
  717. break;
  718. /* sll %dst,imm(%r0) */
  719. EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
  720. EMIT_ZERO(dst_reg);
  721. break;
  722. case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
  723. if (imm == 0)
  724. break;
  725. /* sllg %dst,%dst,imm(%r0) */
  726. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
  727. break;
  728. /*
  729. * BPF_RSH
  730. */
  731. case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
  732. /* srl %dst,0(%src) */
  733. EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
  734. EMIT_ZERO(dst_reg);
  735. break;
  736. case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
  737. /* srlg %dst,%dst,0(%src) */
  738. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
  739. break;
  740. case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
  741. if (imm == 0)
  742. break;
  743. /* srl %dst,imm(%r0) */
  744. EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
  745. EMIT_ZERO(dst_reg);
  746. break;
  747. case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
  748. if (imm == 0)
  749. break;
  750. /* srlg %dst,%dst,imm(%r0) */
  751. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
  752. break;
  753. /*
  754. * BPF_ARSH
  755. */
  756. case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
  757. /* srag %dst,%dst,0(%src) */
  758. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
  759. break;
  760. case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
  761. if (imm == 0)
  762. break;
  763. /* srag %dst,%dst,imm(%r0) */
  764. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
  765. break;
  766. /*
  767. * BPF_NEG
  768. */
  769. case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
  770. /* lcr %dst,%dst */
  771. EMIT2(0x1300, dst_reg, dst_reg);
  772. EMIT_ZERO(dst_reg);
  773. break;
  774. case BPF_ALU64 | BPF_NEG: /* dst = -dst */
  775. /* lcgr %dst,%dst */
  776. EMIT4(0xb9130000, dst_reg, dst_reg);
  777. break;
  778. /*
  779. * BPF_FROM_BE/LE
  780. */
  781. case BPF_ALU | BPF_END | BPF_FROM_BE:
  782. /* s390 is big endian, therefore only clear high order bytes */
  783. switch (imm) {
  784. case 16: /* dst = (u16) cpu_to_be16(dst) */
  785. /* llghr %dst,%dst */
  786. EMIT4(0xb9850000, dst_reg, dst_reg);
  787. break;
  788. case 32: /* dst = (u32) cpu_to_be32(dst) */
  789. /* llgfr %dst,%dst */
  790. EMIT4(0xb9160000, dst_reg, dst_reg);
  791. break;
  792. case 64: /* dst = (u64) cpu_to_be64(dst) */
  793. break;
  794. }
  795. break;
  796. case BPF_ALU | BPF_END | BPF_FROM_LE:
  797. switch (imm) {
  798. case 16: /* dst = (u16) cpu_to_le16(dst) */
  799. /* lrvr %dst,%dst */
  800. EMIT4(0xb91f0000, dst_reg, dst_reg);
  801. /* srl %dst,16(%r0) */
  802. EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
  803. /* llghr %dst,%dst */
  804. EMIT4(0xb9850000, dst_reg, dst_reg);
  805. break;
  806. case 32: /* dst = (u32) cpu_to_le32(dst) */
  807. /* lrvr %dst,%dst */
  808. EMIT4(0xb91f0000, dst_reg, dst_reg);
  809. /* llgfr %dst,%dst */
  810. EMIT4(0xb9160000, dst_reg, dst_reg);
  811. break;
  812. case 64: /* dst = (u64) cpu_to_le64(dst) */
  813. /* lrvgr %dst,%dst */
  814. EMIT4(0xb90f0000, dst_reg, dst_reg);
  815. break;
  816. }
  817. break;
  818. /*
  819. * BPF_ST(X)
  820. */
  821. case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
  822. /* stcy %src,off(%dst) */
  823. EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
  824. jit->seen |= SEEN_MEM;
  825. break;
  826. case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
  827. /* sthy %src,off(%dst) */
  828. EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
  829. jit->seen |= SEEN_MEM;
  830. break;
  831. case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
  832. /* sty %src,off(%dst) */
  833. EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
  834. jit->seen |= SEEN_MEM;
  835. break;
  836. case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
  837. /* stg %src,off(%dst) */
  838. EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
  839. jit->seen |= SEEN_MEM;
  840. break;
  841. case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
  842. /* lhi %w0,imm */
  843. EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
  844. /* stcy %w0,off(dst) */
  845. EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
  846. jit->seen |= SEEN_MEM;
  847. break;
  848. case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
  849. /* lhi %w0,imm */
  850. EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
  851. /* sthy %w0,off(dst) */
  852. EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
  853. jit->seen |= SEEN_MEM;
  854. break;
  855. case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
  856. /* llilf %w0,imm */
  857. EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
  858. /* sty %w0,off(%dst) */
  859. EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
  860. jit->seen |= SEEN_MEM;
  861. break;
  862. case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
  863. /* lgfi %w0,imm */
  864. EMIT6_IMM(0xc0010000, REG_W0, imm);
  865. /* stg %w0,off(%dst) */
  866. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
  867. jit->seen |= SEEN_MEM;
  868. break;
  869. /*
  870. * BPF_STX XADD (atomic_add)
  871. */
  872. case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
  873. /* laal %w0,%src,off(%dst) */
  874. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
  875. dst_reg, off);
  876. jit->seen |= SEEN_MEM;
  877. break;
  878. case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
  879. /* laalg %w0,%src,off(%dst) */
  880. EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
  881. dst_reg, off);
  882. jit->seen |= SEEN_MEM;
  883. break;
  884. /*
  885. * BPF_LDX
  886. */
  887. case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
  888. /* llgc %dst,0(off,%src) */
  889. EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
  890. jit->seen |= SEEN_MEM;
  891. break;
  892. case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
  893. /* llgh %dst,0(off,%src) */
  894. EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
  895. jit->seen |= SEEN_MEM;
  896. break;
  897. case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
  898. /* llgf %dst,off(%src) */
  899. jit->seen |= SEEN_MEM;
  900. EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
  901. break;
  902. case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
  903. /* lg %dst,0(off,%src) */
  904. jit->seen |= SEEN_MEM;
  905. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
  906. break;
  907. /*
  908. * BPF_JMP / CALL
  909. */
  910. case BPF_JMP | BPF_CALL:
  911. {
  912. /*
  913. * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
  914. */
  915. const u64 func = (u64)__bpf_call_base + imm;
  916. REG_SET_SEEN(BPF_REG_5);
  917. jit->seen |= SEEN_FUNC;
  918. /* lg %w1,<d(imm)>(%l) */
  919. EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
  920. EMIT_CONST_U64(func));
  921. /* basr %r14,%w1 */
  922. EMIT2(0x0d00, REG_14, REG_W1);
  923. /* lgr %b0,%r2: load return value into %b0 */
  924. EMIT4(0xb9040000, BPF_REG_0, REG_2);
  925. break;
  926. }
  927. case BPF_JMP | BPF_CALL | BPF_X:
  928. /*
  929. * Implicit input:
  930. * B1: pointer to ctx
  931. * B2: pointer to bpf_array
  932. * B3: index in bpf_array
  933. */
  934. jit->seen |= SEEN_TAIL_CALL;
  935. /*
  936. * if (index >= array->map.max_entries)
  937. * goto out;
  938. */
  939. /* llgf %w1,map.max_entries(%b2) */
  940. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
  941. offsetof(struct bpf_array, map.max_entries));
  942. /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
  943. EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
  944. REG_W1, 0, 0xa);
  945. /*
  946. * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
  947. * goto out;
  948. */
  949. if (jit->seen & SEEN_STACK)
  950. off = STK_OFF_TCCNT + STK_OFF;
  951. else
  952. off = STK_OFF_TCCNT;
  953. /* lhi %w0,1 */
  954. EMIT4_IMM(0xa7080000, REG_W0, 1);
  955. /* laal %w1,%w0,off(%r15) */
  956. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
  957. /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
  958. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
  959. MAX_TAIL_CALL_CNT, 0, 0x2);
  960. /*
  961. * prog = array->prog[index];
  962. * if (prog == NULL)
  963. * goto out;
  964. */
  965. /* sllg %r1,%b3,3: %r1 = index * 8 */
  966. EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
  967. /* lg %r1,prog(%b2,%r1) */
  968. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
  969. REG_1, offsetof(struct bpf_array, prog));
  970. /* clgij %r1,0,0x8,label0 */
  971. EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
  972. /*
  973. * Restore registers before calling function
  974. */
  975. save_restore_regs(jit, REGS_RESTORE);
  976. /*
  977. * goto *(prog->bpf_func + tail_call_start);
  978. */
  979. /* lg %r1,bpf_func(%r1) */
  980. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
  981. offsetof(struct bpf_prog, bpf_func));
  982. /* bc 0xf,tail_call_start(%r1) */
  983. _EMIT4(0x47f01000 + jit->tail_call_start);
  984. /* out: */
  985. jit->labels[0] = jit->prg;
  986. break;
  987. case BPF_JMP | BPF_EXIT: /* return b0 */
  988. last = (i == fp->len - 1) ? 1 : 0;
  989. if (last && !(jit->seen & SEEN_RET0))
  990. break;
  991. /* j <exit> */
  992. EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
  993. break;
  994. /*
  995. * Branch relative (number of skipped instructions) to offset on
  996. * condition.
  997. *
  998. * Condition code to mask mapping:
  999. *
  1000. * CC | Description | Mask
  1001. * ------------------------------
  1002. * 0 | Operands equal | 8
  1003. * 1 | First operand low | 4
  1004. * 2 | First operand high | 2
  1005. * 3 | Unused | 1
  1006. *
  1007. * For s390x relative branches: ip = ip + off_bytes
  1008. * For BPF relative branches: insn = insn + off_insns + 1
  1009. *
  1010. * For example for s390x with offset 0 we jump to the branch
  1011. * instruction itself (loop) and for BPF with offset 0 we
  1012. * branch to the instruction behind the branch.
  1013. */
  1014. case BPF_JMP | BPF_JA: /* if (true) */
  1015. mask = 0xf000; /* j */
  1016. goto branch_oc;
  1017. case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
  1018. mask = 0x2000; /* jh */
  1019. goto branch_ks;
  1020. case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
  1021. mask = 0xa000; /* jhe */
  1022. goto branch_ks;
  1023. case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
  1024. mask = 0x2000; /* jh */
  1025. goto branch_ku;
  1026. case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
  1027. mask = 0xa000; /* jhe */
  1028. goto branch_ku;
  1029. case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
  1030. mask = 0x7000; /* jne */
  1031. goto branch_ku;
  1032. case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
  1033. mask = 0x8000; /* je */
  1034. goto branch_ku;
  1035. case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
  1036. mask = 0x7000; /* jnz */
  1037. /* lgfi %w1,imm (load sign extend imm) */
  1038. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1039. /* ngr %w1,%dst */
  1040. EMIT4(0xb9800000, REG_W1, dst_reg);
  1041. goto branch_oc;
  1042. case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
  1043. mask = 0x2000; /* jh */
  1044. goto branch_xs;
  1045. case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
  1046. mask = 0xa000; /* jhe */
  1047. goto branch_xs;
  1048. case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
  1049. mask = 0x2000; /* jh */
  1050. goto branch_xu;
  1051. case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
  1052. mask = 0xa000; /* jhe */
  1053. goto branch_xu;
  1054. case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
  1055. mask = 0x7000; /* jne */
  1056. goto branch_xu;
  1057. case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
  1058. mask = 0x8000; /* je */
  1059. goto branch_xu;
  1060. case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
  1061. mask = 0x7000; /* jnz */
  1062. /* ngrk %w1,%dst,%src */
  1063. EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
  1064. goto branch_oc;
  1065. branch_ks:
  1066. /* lgfi %w1,imm (load sign extend imm) */
  1067. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1068. /* cgrj %dst,%w1,mask,off */
  1069. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
  1070. break;
  1071. branch_ku:
  1072. /* lgfi %w1,imm (load sign extend imm) */
  1073. EMIT6_IMM(0xc0010000, REG_W1, imm);
  1074. /* clgrj %dst,%w1,mask,off */
  1075. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
  1076. break;
  1077. branch_xs:
  1078. /* cgrj %dst,%src,mask,off */
  1079. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
  1080. break;
  1081. branch_xu:
  1082. /* clgrj %dst,%src,mask,off */
  1083. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
  1084. break;
  1085. branch_oc:
  1086. /* brc mask,jmp_off (branch instruction needs 4 bytes) */
  1087. jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
  1088. EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
  1089. break;
  1090. /*
  1091. * BPF_LD
  1092. */
  1093. case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
  1094. case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
  1095. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1096. func_addr = __pa(sk_load_byte_pos);
  1097. else
  1098. func_addr = __pa(sk_load_byte);
  1099. goto call_fn;
  1100. case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
  1101. case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
  1102. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1103. func_addr = __pa(sk_load_half_pos);
  1104. else
  1105. func_addr = __pa(sk_load_half);
  1106. goto call_fn;
  1107. case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
  1108. case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
  1109. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1110. func_addr = __pa(sk_load_word_pos);
  1111. else
  1112. func_addr = __pa(sk_load_word);
  1113. goto call_fn;
  1114. call_fn:
  1115. jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
  1116. REG_SET_SEEN(REG_14); /* Return address of possible func call */
  1117. /*
  1118. * Implicit input:
  1119. * BPF_REG_6 (R7) : skb pointer
  1120. * REG_SKB_DATA (R12): skb data pointer
  1121. *
  1122. * Calculated input:
  1123. * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
  1124. * BPF_REG_5 (R6) : return address
  1125. *
  1126. * Output:
  1127. * BPF_REG_0 (R14): data read from skb
  1128. *
  1129. * Scratch registers (BPF_REG_1-5)
  1130. */
  1131. /* Call function: llilf %w1,func_addr */
  1132. EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
  1133. /* Offset: lgfi %b2,imm */
  1134. EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
  1135. if (BPF_MODE(insn->code) == BPF_IND)
  1136. /* agfr %b2,%src (%src is s32 here) */
  1137. EMIT4(0xb9180000, BPF_REG_2, src_reg);
  1138. /* basr %b5,%w1 (%b5 is call saved) */
  1139. EMIT2(0x0d00, BPF_REG_5, REG_W1);
  1140. /*
  1141. * Note: For fast access we jump directly after the
  1142. * jnz instruction from bpf_jit.S
  1143. */
  1144. /* jnz <ret0> */
  1145. EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
  1146. break;
  1147. default: /* too complex, give up */
  1148. pr_err("Unknown opcode %02x\n", insn->code);
  1149. return -1;
  1150. }
  1151. return insn_count;
  1152. }
  1153. /*
  1154. * Compile eBPF program into s390x code
  1155. */
  1156. static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
  1157. {
  1158. int i, insn_count;
  1159. jit->lit = jit->lit_start;
  1160. jit->prg = 0;
  1161. bpf_jit_prologue(jit);
  1162. for (i = 0; i < fp->len; i += insn_count) {
  1163. insn_count = bpf_jit_insn(jit, fp, i);
  1164. if (insn_count < 0)
  1165. return -1;
  1166. jit->addrs[i + 1] = jit->prg; /* Next instruction address */
  1167. }
  1168. bpf_jit_epilogue(jit);
  1169. jit->lit_start = jit->prg;
  1170. jit->size = jit->lit;
  1171. jit->size_prg = jit->prg;
  1172. return 0;
  1173. }
  1174. /*
  1175. * Classic BPF function stub. BPF programs will be converted into
  1176. * eBPF and then bpf_int_jit_compile() will be called.
  1177. */
  1178. void bpf_jit_compile(struct bpf_prog *fp)
  1179. {
  1180. }
  1181. /*
  1182. * Compile eBPF program "fp"
  1183. */
  1184. void bpf_int_jit_compile(struct bpf_prog *fp)
  1185. {
  1186. struct bpf_binary_header *header;
  1187. struct bpf_jit jit;
  1188. int pass;
  1189. if (!bpf_jit_enable)
  1190. return;
  1191. memset(&jit, 0, sizeof(jit));
  1192. jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
  1193. if (jit.addrs == NULL)
  1194. return;
  1195. /*
  1196. * Three initial passes:
  1197. * - 1/2: Determine clobbered registers
  1198. * - 3: Calculate program size and addrs arrray
  1199. */
  1200. for (pass = 1; pass <= 3; pass++) {
  1201. if (bpf_jit_prog(&jit, fp))
  1202. goto free_addrs;
  1203. }
  1204. /*
  1205. * Final pass: Allocate and generate program
  1206. */
  1207. if (jit.size >= BPF_SIZE_MAX)
  1208. goto free_addrs;
  1209. header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
  1210. if (!header)
  1211. goto free_addrs;
  1212. if (bpf_jit_prog(&jit, fp))
  1213. goto free_addrs;
  1214. if (bpf_jit_enable > 1) {
  1215. bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
  1216. if (jit.prg_buf)
  1217. print_fn_code(jit.prg_buf, jit.size_prg);
  1218. }
  1219. if (jit.prg_buf) {
  1220. set_memory_ro((unsigned long)header, header->pages);
  1221. fp->bpf_func = (void *) jit.prg_buf;
  1222. fp->jited = true;
  1223. }
  1224. free_addrs:
  1225. kfree(jit.addrs);
  1226. }
  1227. /*
  1228. * Free eBPF program
  1229. */
  1230. void bpf_jit_free(struct bpf_prog *fp)
  1231. {
  1232. unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
  1233. struct bpf_binary_header *header = (void *)addr;
  1234. if (!fp->jited)
  1235. goto free_filter;
  1236. set_memory_rw(addr, header->pages);
  1237. bpf_jit_binary_free(header);
  1238. free_filter:
  1239. bpf_prog_unlock_free(fp);
  1240. }