interrupt.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define IOINT_SCHID_MASK 0x0000ffff
  29. #define IOINT_SSID_MASK 0x00030000
  30. #define IOINT_CSSID_MASK 0x03fc0000
  31. #define IOINT_AI_MASK 0x04000000
  32. #define PFAULT_INIT 0x0600
  33. #define PFAULT_DONE 0x0680
  34. #define VIRTIO_PARAM 0x0d00
  35. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  36. {
  37. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  38. }
  39. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  40. {
  41. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  42. }
  43. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  44. {
  45. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  46. }
  47. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  48. {
  49. if ((vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) ||
  50. (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO) ||
  51. (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT))
  52. return 0;
  53. return 1;
  54. }
  55. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  56. {
  57. if (psw_extint_disabled(vcpu) ||
  58. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  59. return 0;
  60. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  61. /* No timer interrupts when single stepping */
  62. return 0;
  63. return 1;
  64. }
  65. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  66. {
  67. if (!(vcpu->arch.sie_block->ckc <
  68. get_tod_clock_fast() + vcpu->arch.sie_block->epoch))
  69. return 0;
  70. return ckc_interrupts_enabled(vcpu);
  71. }
  72. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  73. {
  74. return !psw_extint_disabled(vcpu) &&
  75. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  76. }
  77. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  78. {
  79. return (vcpu->arch.sie_block->cputm >> 63) &&
  80. cpu_timer_interrupts_enabled(vcpu);
  81. }
  82. static inline int is_ioirq(unsigned long irq_type)
  83. {
  84. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  85. (irq_type <= IRQ_PEND_IO_ISC_7));
  86. }
  87. static uint64_t isc_to_isc_bits(int isc)
  88. {
  89. return (0x80 >> isc) << 24;
  90. }
  91. static inline u8 int_word_to_isc(u32 int_word)
  92. {
  93. return (int_word & 0x38000000) >> 27;
  94. }
  95. static inline unsigned long pending_floating_irqs(struct kvm_vcpu *vcpu)
  96. {
  97. return vcpu->kvm->arch.float_int.pending_irqs;
  98. }
  99. static inline unsigned long pending_local_irqs(struct kvm_vcpu *vcpu)
  100. {
  101. return vcpu->arch.local_int.pending_irqs;
  102. }
  103. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  104. unsigned long active_mask)
  105. {
  106. int i;
  107. for (i = 0; i <= MAX_ISC; i++)
  108. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  109. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  110. return active_mask;
  111. }
  112. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  113. {
  114. unsigned long active_mask;
  115. active_mask = pending_local_irqs(vcpu);
  116. active_mask |= pending_floating_irqs(vcpu);
  117. if (!active_mask)
  118. return 0;
  119. if (psw_extint_disabled(vcpu))
  120. active_mask &= ~IRQ_PEND_EXT_MASK;
  121. if (psw_ioint_disabled(vcpu))
  122. active_mask &= ~IRQ_PEND_IO_MASK;
  123. else
  124. active_mask = disable_iscs(vcpu, active_mask);
  125. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  126. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  127. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  128. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  129. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  130. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  131. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  132. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  133. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  134. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  135. if (psw_mchk_disabled(vcpu))
  136. active_mask &= ~IRQ_PEND_MCHK_MASK;
  137. if (!(vcpu->arch.sie_block->gcr[14] &
  138. vcpu->kvm->arch.float_int.mchk.cr14))
  139. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  140. /*
  141. * STOP irqs will never be actively delivered. They are triggered via
  142. * intercept requests and cleared when the stop intercept is performed.
  143. */
  144. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  145. return active_mask;
  146. }
  147. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  148. {
  149. atomic_set_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  150. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  151. }
  152. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  153. {
  154. atomic_clear_mask(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  155. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  156. }
  157. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  158. {
  159. atomic_clear_mask(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  160. &vcpu->arch.sie_block->cpuflags);
  161. vcpu->arch.sie_block->lctl = 0x0000;
  162. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  163. if (guestdbg_enabled(vcpu)) {
  164. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  165. LCTL_CR10 | LCTL_CR11);
  166. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  167. }
  168. }
  169. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  170. {
  171. atomic_set_mask(flag, &vcpu->arch.sie_block->cpuflags);
  172. }
  173. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  174. {
  175. if (!(pending_floating_irqs(vcpu) & IRQ_PEND_IO_MASK))
  176. return;
  177. else if (psw_ioint_disabled(vcpu))
  178. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  179. else
  180. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  181. }
  182. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  183. {
  184. if (!(pending_local_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  185. return;
  186. if (psw_extint_disabled(vcpu))
  187. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  188. else
  189. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  190. }
  191. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  192. {
  193. if (!(pending_local_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  194. return;
  195. if (psw_mchk_disabled(vcpu))
  196. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  197. else
  198. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  199. }
  200. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  201. {
  202. if (kvm_s390_is_stop_irq_pending(vcpu))
  203. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  204. }
  205. /* Set interception request for non-deliverable interrupts */
  206. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  207. {
  208. set_intercept_indicators_io(vcpu);
  209. set_intercept_indicators_ext(vcpu);
  210. set_intercept_indicators_mchk(vcpu);
  211. set_intercept_indicators_stop(vcpu);
  212. }
  213. static u16 get_ilc(struct kvm_vcpu *vcpu)
  214. {
  215. switch (vcpu->arch.sie_block->icptcode) {
  216. case ICPT_INST:
  217. case ICPT_INSTPROGI:
  218. case ICPT_OPEREXC:
  219. case ICPT_PARTEXEC:
  220. case ICPT_IOINST:
  221. /* last instruction only stored for these icptcodes */
  222. return insn_length(vcpu->arch.sie_block->ipa >> 8);
  223. case ICPT_PROGI:
  224. return vcpu->arch.sie_block->pgmilc;
  225. default:
  226. return 0;
  227. }
  228. }
  229. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  230. {
  231. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  232. int rc;
  233. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  234. 0, 0);
  235. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  236. (u16 *)__LC_EXT_INT_CODE);
  237. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  238. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  239. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  240. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  241. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  242. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  243. return rc ? -EFAULT : 0;
  244. }
  245. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  246. {
  247. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  248. int rc;
  249. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  250. 0, 0);
  251. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  252. (u16 __user *)__LC_EXT_INT_CODE);
  253. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  254. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  255. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  256. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  257. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  258. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  259. return rc ? -EFAULT : 0;
  260. }
  261. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  262. {
  263. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  264. struct kvm_s390_ext_info ext;
  265. int rc;
  266. spin_lock(&li->lock);
  267. ext = li->irq.ext;
  268. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  269. li->irq.ext.ext_params2 = 0;
  270. spin_unlock(&li->lock);
  271. VCPU_EVENT(vcpu, 4, "interrupt: pfault init parm:%x,parm64:%llx",
  272. 0, ext.ext_params2);
  273. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  274. KVM_S390_INT_PFAULT_INIT,
  275. 0, ext.ext_params2);
  276. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  277. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  278. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  279. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  280. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  281. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  282. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  283. return rc ? -EFAULT : 0;
  284. }
  285. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  286. {
  287. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  288. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  289. struct kvm_s390_mchk_info mchk = {};
  290. unsigned long adtl_status_addr;
  291. int deliver = 0;
  292. int rc = 0;
  293. spin_lock(&fi->lock);
  294. spin_lock(&li->lock);
  295. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  296. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  297. /*
  298. * If there was an exigent machine check pending, then any
  299. * repressible machine checks that might have been pending
  300. * are indicated along with it, so always clear bits for
  301. * repressible and exigent interrupts
  302. */
  303. mchk = li->irq.mchk;
  304. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  305. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  306. memset(&li->irq.mchk, 0, sizeof(mchk));
  307. deliver = 1;
  308. }
  309. /*
  310. * We indicate floating repressible conditions along with
  311. * other pending conditions. Channel Report Pending and Channel
  312. * Subsystem damage are the only two and and are indicated by
  313. * bits in mcic and masked in cr14.
  314. */
  315. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  316. mchk.mcic |= fi->mchk.mcic;
  317. mchk.cr14 |= fi->mchk.cr14;
  318. memset(&fi->mchk, 0, sizeof(mchk));
  319. deliver = 1;
  320. }
  321. spin_unlock(&li->lock);
  322. spin_unlock(&fi->lock);
  323. if (deliver) {
  324. VCPU_EVENT(vcpu, 4, "interrupt: machine check mcic=%llx",
  325. mchk.mcic);
  326. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  327. KVM_S390_MCHK,
  328. mchk.cr14, mchk.mcic);
  329. rc = kvm_s390_vcpu_store_status(vcpu,
  330. KVM_S390_STORE_STATUS_PREFIXED);
  331. rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
  332. &adtl_status_addr,
  333. sizeof(unsigned long));
  334. rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
  335. adtl_status_addr);
  336. rc |= put_guest_lc(vcpu, mchk.mcic,
  337. (u64 __user *) __LC_MCCK_CODE);
  338. rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
  339. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  340. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
  341. &mchk.fixed_logout,
  342. sizeof(mchk.fixed_logout));
  343. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  344. &vcpu->arch.sie_block->gpsw,
  345. sizeof(psw_t));
  346. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  347. &vcpu->arch.sie_block->gpsw,
  348. sizeof(psw_t));
  349. }
  350. return rc ? -EFAULT : 0;
  351. }
  352. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  353. {
  354. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  355. int rc;
  356. VCPU_EVENT(vcpu, 4, "%s", "interrupt: cpu restart");
  357. vcpu->stat.deliver_restart_signal++;
  358. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  359. rc = write_guest_lc(vcpu,
  360. offsetof(struct _lowcore, restart_old_psw),
  361. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  362. rc |= read_guest_lc(vcpu, offsetof(struct _lowcore, restart_psw),
  363. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  364. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  365. return rc ? -EFAULT : 0;
  366. }
  367. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  368. {
  369. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  370. struct kvm_s390_prefix_info prefix;
  371. spin_lock(&li->lock);
  372. prefix = li->irq.prefix;
  373. li->irq.prefix.address = 0;
  374. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  375. spin_unlock(&li->lock);
  376. VCPU_EVENT(vcpu, 4, "interrupt: set prefix to %x", prefix.address);
  377. vcpu->stat.deliver_prefix_signal++;
  378. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  379. KVM_S390_SIGP_SET_PREFIX,
  380. prefix.address, 0);
  381. kvm_s390_set_prefix(vcpu, prefix.address);
  382. return 0;
  383. }
  384. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  385. {
  386. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  387. int rc;
  388. int cpu_addr;
  389. spin_lock(&li->lock);
  390. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  391. clear_bit(cpu_addr, li->sigp_emerg_pending);
  392. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  393. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  394. spin_unlock(&li->lock);
  395. VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp emerg");
  396. vcpu->stat.deliver_emergency_signal++;
  397. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  398. cpu_addr, 0);
  399. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  400. (u16 *)__LC_EXT_INT_CODE);
  401. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  402. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  403. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  404. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  405. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  406. return rc ? -EFAULT : 0;
  407. }
  408. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  409. {
  410. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  411. struct kvm_s390_extcall_info extcall;
  412. int rc;
  413. spin_lock(&li->lock);
  414. extcall = li->irq.extcall;
  415. li->irq.extcall.code = 0;
  416. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  417. spin_unlock(&li->lock);
  418. VCPU_EVENT(vcpu, 4, "%s", "interrupt: sigp ext call");
  419. vcpu->stat.deliver_external_call++;
  420. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  421. KVM_S390_INT_EXTERNAL_CALL,
  422. extcall.code, 0);
  423. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  424. (u16 *)__LC_EXT_INT_CODE);
  425. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  426. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  427. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  428. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  429. sizeof(psw_t));
  430. return rc ? -EFAULT : 0;
  431. }
  432. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  433. {
  434. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  435. struct kvm_s390_pgm_info pgm_info;
  436. int rc = 0, nullifying = false;
  437. u16 ilc = get_ilc(vcpu);
  438. spin_lock(&li->lock);
  439. pgm_info = li->irq.pgm;
  440. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  441. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  442. spin_unlock(&li->lock);
  443. VCPU_EVENT(vcpu, 4, "interrupt: pgm check code:%x, ilc:%x",
  444. pgm_info.code, ilc);
  445. vcpu->stat.deliver_program_int++;
  446. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  447. pgm_info.code, 0);
  448. switch (pgm_info.code & ~PGM_PER) {
  449. case PGM_AFX_TRANSLATION:
  450. case PGM_ASX_TRANSLATION:
  451. case PGM_EX_TRANSLATION:
  452. case PGM_LFX_TRANSLATION:
  453. case PGM_LSTE_SEQUENCE:
  454. case PGM_LSX_TRANSLATION:
  455. case PGM_LX_TRANSLATION:
  456. case PGM_PRIMARY_AUTHORITY:
  457. case PGM_SECONDARY_AUTHORITY:
  458. nullifying = true;
  459. /* fall through */
  460. case PGM_SPACE_SWITCH:
  461. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  462. (u64 *)__LC_TRANS_EXC_CODE);
  463. break;
  464. case PGM_ALEN_TRANSLATION:
  465. case PGM_ALE_SEQUENCE:
  466. case PGM_ASTE_INSTANCE:
  467. case PGM_ASTE_SEQUENCE:
  468. case PGM_ASTE_VALIDITY:
  469. case PGM_EXTENDED_AUTHORITY:
  470. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  471. (u8 *)__LC_EXC_ACCESS_ID);
  472. nullifying = true;
  473. break;
  474. case PGM_ASCE_TYPE:
  475. case PGM_PAGE_TRANSLATION:
  476. case PGM_REGION_FIRST_TRANS:
  477. case PGM_REGION_SECOND_TRANS:
  478. case PGM_REGION_THIRD_TRANS:
  479. case PGM_SEGMENT_TRANSLATION:
  480. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  481. (u64 *)__LC_TRANS_EXC_CODE);
  482. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  483. (u8 *)__LC_EXC_ACCESS_ID);
  484. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  485. (u8 *)__LC_OP_ACCESS_ID);
  486. nullifying = true;
  487. break;
  488. case PGM_MONITOR:
  489. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  490. (u16 *)__LC_MON_CLASS_NR);
  491. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  492. (u64 *)__LC_MON_CODE);
  493. break;
  494. case PGM_VECTOR_PROCESSING:
  495. case PGM_DATA:
  496. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  497. (u32 *)__LC_DATA_EXC_CODE);
  498. break;
  499. case PGM_PROTECTION:
  500. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  501. (u64 *)__LC_TRANS_EXC_CODE);
  502. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  503. (u8 *)__LC_EXC_ACCESS_ID);
  504. break;
  505. case PGM_STACK_FULL:
  506. case PGM_STACK_EMPTY:
  507. case PGM_STACK_SPECIFICATION:
  508. case PGM_STACK_TYPE:
  509. case PGM_STACK_OPERATION:
  510. case PGM_TRACE_TABEL:
  511. case PGM_CRYPTO_OPERATION:
  512. nullifying = true;
  513. break;
  514. }
  515. if (pgm_info.code & PGM_PER) {
  516. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  517. (u8 *) __LC_PER_CODE);
  518. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  519. (u8 *)__LC_PER_ATMID);
  520. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  521. (u64 *) __LC_PER_ADDRESS);
  522. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  523. (u8 *) __LC_PER_ACCESS_ID);
  524. }
  525. if (nullifying && vcpu->arch.sie_block->icptcode == ICPT_INST)
  526. kvm_s390_rewind_psw(vcpu, ilc);
  527. rc |= put_guest_lc(vcpu, ilc, (u16 *) __LC_PGM_ILC);
  528. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  529. (u64 *) __LC_LAST_BREAK);
  530. rc |= put_guest_lc(vcpu, pgm_info.code,
  531. (u16 *)__LC_PGM_INT_CODE);
  532. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  533. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  534. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  535. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  536. return rc ? -EFAULT : 0;
  537. }
  538. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  539. {
  540. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  541. struct kvm_s390_ext_info ext;
  542. int rc = 0;
  543. spin_lock(&fi->lock);
  544. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  545. spin_unlock(&fi->lock);
  546. return 0;
  547. }
  548. ext = fi->srv_signal;
  549. memset(&fi->srv_signal, 0, sizeof(ext));
  550. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  551. spin_unlock(&fi->lock);
  552. VCPU_EVENT(vcpu, 4, "interrupt: sclp parm:%x",
  553. ext.ext_params);
  554. vcpu->stat.deliver_service_signal++;
  555. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  556. ext.ext_params, 0);
  557. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  558. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  559. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  560. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  561. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  562. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  563. rc |= put_guest_lc(vcpu, ext.ext_params,
  564. (u32 *)__LC_EXT_PARAMS);
  565. return rc ? -EFAULT : 0;
  566. }
  567. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  568. {
  569. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  570. struct kvm_s390_interrupt_info *inti;
  571. int rc = 0;
  572. spin_lock(&fi->lock);
  573. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  574. struct kvm_s390_interrupt_info,
  575. list);
  576. if (inti) {
  577. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  578. KVM_S390_INT_PFAULT_DONE, 0,
  579. inti->ext.ext_params2);
  580. list_del(&inti->list);
  581. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  582. }
  583. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  584. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  585. spin_unlock(&fi->lock);
  586. if (inti) {
  587. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  588. (u16 *)__LC_EXT_INT_CODE);
  589. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  590. (u16 *)__LC_EXT_CPU_ADDR);
  591. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  592. &vcpu->arch.sie_block->gpsw,
  593. sizeof(psw_t));
  594. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  595. &vcpu->arch.sie_block->gpsw,
  596. sizeof(psw_t));
  597. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  598. (u64 *)__LC_EXT_PARAMS2);
  599. kfree(inti);
  600. }
  601. return rc ? -EFAULT : 0;
  602. }
  603. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  604. {
  605. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  606. struct kvm_s390_interrupt_info *inti;
  607. int rc = 0;
  608. spin_lock(&fi->lock);
  609. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  610. struct kvm_s390_interrupt_info,
  611. list);
  612. if (inti) {
  613. VCPU_EVENT(vcpu, 4,
  614. "interrupt: virtio parm:%x,parm64:%llx",
  615. inti->ext.ext_params, inti->ext.ext_params2);
  616. vcpu->stat.deliver_virtio_interrupt++;
  617. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  618. inti->type,
  619. inti->ext.ext_params,
  620. inti->ext.ext_params2);
  621. list_del(&inti->list);
  622. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  623. }
  624. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  625. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  626. spin_unlock(&fi->lock);
  627. if (inti) {
  628. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  629. (u16 *)__LC_EXT_INT_CODE);
  630. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  631. (u16 *)__LC_EXT_CPU_ADDR);
  632. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  633. &vcpu->arch.sie_block->gpsw,
  634. sizeof(psw_t));
  635. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  636. &vcpu->arch.sie_block->gpsw,
  637. sizeof(psw_t));
  638. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  639. (u32 *)__LC_EXT_PARAMS);
  640. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  641. (u64 *)__LC_EXT_PARAMS2);
  642. kfree(inti);
  643. }
  644. return rc ? -EFAULT : 0;
  645. }
  646. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  647. unsigned long irq_type)
  648. {
  649. struct list_head *isc_list;
  650. struct kvm_s390_float_interrupt *fi;
  651. struct kvm_s390_interrupt_info *inti = NULL;
  652. int rc = 0;
  653. fi = &vcpu->kvm->arch.float_int;
  654. spin_lock(&fi->lock);
  655. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  656. inti = list_first_entry_or_null(isc_list,
  657. struct kvm_s390_interrupt_info,
  658. list);
  659. if (inti) {
  660. VCPU_EVENT(vcpu, 4, "interrupt: I/O %llx", inti->type);
  661. vcpu->stat.deliver_io_int++;
  662. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  663. inti->type,
  664. ((__u32)inti->io.subchannel_id << 16) |
  665. inti->io.subchannel_nr,
  666. ((__u64)inti->io.io_int_parm << 32) |
  667. inti->io.io_int_word);
  668. list_del(&inti->list);
  669. fi->counters[FIRQ_CNTR_IO] -= 1;
  670. }
  671. if (list_empty(isc_list))
  672. clear_bit(irq_type, &fi->pending_irqs);
  673. spin_unlock(&fi->lock);
  674. if (inti) {
  675. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  676. (u16 *)__LC_SUBCHANNEL_ID);
  677. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  678. (u16 *)__LC_SUBCHANNEL_NR);
  679. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  680. (u32 *)__LC_IO_INT_PARM);
  681. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  682. (u32 *)__LC_IO_INT_WORD);
  683. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  684. &vcpu->arch.sie_block->gpsw,
  685. sizeof(psw_t));
  686. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  687. &vcpu->arch.sie_block->gpsw,
  688. sizeof(psw_t));
  689. kfree(inti);
  690. }
  691. return rc ? -EFAULT : 0;
  692. }
  693. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  694. static const deliver_irq_t deliver_irq_funcs[] = {
  695. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  696. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  697. [IRQ_PEND_PROG] = __deliver_prog,
  698. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  699. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  700. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  701. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  702. [IRQ_PEND_RESTART] = __deliver_restart,
  703. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  704. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  705. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  706. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  707. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  708. };
  709. /* Check whether an external call is pending (deliverable or not) */
  710. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  711. {
  712. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  713. uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  714. if (!sclp.has_sigpif)
  715. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  716. return (sigp_ctrl & SIGP_CTRL_C) &&
  717. (atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND);
  718. }
  719. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  720. {
  721. int rc;
  722. rc = !!deliverable_irqs(vcpu);
  723. if (!rc && kvm_cpu_has_pending_timer(vcpu))
  724. rc = 1;
  725. /* external call pending and deliverable */
  726. if (!rc && kvm_s390_ext_call_pending(vcpu) &&
  727. !psw_extint_disabled(vcpu) &&
  728. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  729. rc = 1;
  730. if (!rc && !exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  731. rc = 1;
  732. return rc;
  733. }
  734. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  735. {
  736. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  737. }
  738. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  739. {
  740. u64 now, sltime;
  741. vcpu->stat.exit_wait_state++;
  742. /* fast path */
  743. if (kvm_cpu_has_pending_timer(vcpu) || kvm_arch_vcpu_runnable(vcpu))
  744. return 0;
  745. if (psw_interrupts_disabled(vcpu)) {
  746. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  747. return -EOPNOTSUPP; /* disabled wait */
  748. }
  749. if (!ckc_interrupts_enabled(vcpu)) {
  750. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  751. __set_cpu_idle(vcpu);
  752. goto no_timer;
  753. }
  754. now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
  755. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  756. /* underflow */
  757. if (vcpu->arch.sie_block->ckc < now)
  758. return 0;
  759. __set_cpu_idle(vcpu);
  760. hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
  761. VCPU_EVENT(vcpu, 5, "enabled wait via clock comparator: %llx ns", sltime);
  762. no_timer:
  763. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  764. kvm_vcpu_block(vcpu);
  765. __unset_cpu_idle(vcpu);
  766. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  767. hrtimer_cancel(&vcpu->arch.ckc_timer);
  768. return 0;
  769. }
  770. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  771. {
  772. if (waitqueue_active(&vcpu->wq)) {
  773. /*
  774. * The vcpu gave up the cpu voluntarily, mark it as a good
  775. * yield-candidate.
  776. */
  777. vcpu->preempted = true;
  778. wake_up_interruptible(&vcpu->wq);
  779. vcpu->stat.halt_wakeup++;
  780. }
  781. }
  782. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  783. {
  784. struct kvm_vcpu *vcpu;
  785. u64 now, sltime;
  786. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  787. now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
  788. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  789. /*
  790. * If the monotonic clock runs faster than the tod clock we might be
  791. * woken up too early and have to go back to sleep to avoid deadlocks.
  792. */
  793. if (vcpu->arch.sie_block->ckc > now &&
  794. hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  795. return HRTIMER_RESTART;
  796. kvm_s390_vcpu_wakeup(vcpu);
  797. return HRTIMER_NORESTART;
  798. }
  799. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  800. {
  801. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  802. spin_lock(&li->lock);
  803. li->pending_irqs = 0;
  804. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  805. memset(&li->irq, 0, sizeof(li->irq));
  806. spin_unlock(&li->lock);
  807. /* clear pending external calls set by sigp interpretation facility */
  808. atomic_clear_mask(CPUSTAT_ECALL_PEND, li->cpuflags);
  809. vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl = 0;
  810. }
  811. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  812. {
  813. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  814. deliver_irq_t func;
  815. int rc = 0;
  816. unsigned long irq_type;
  817. unsigned long irqs;
  818. __reset_intercept_indicators(vcpu);
  819. /* pending ckc conditions might have been invalidated */
  820. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  821. if (ckc_irq_pending(vcpu))
  822. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  823. /* pending cpu timer conditions might have been invalidated */
  824. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  825. if (cpu_timer_irq_pending(vcpu))
  826. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  827. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  828. /* bits are in the order of interrupt priority */
  829. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  830. if (is_ioirq(irq_type)) {
  831. rc = __deliver_io(vcpu, irq_type);
  832. } else {
  833. func = deliver_irq_funcs[irq_type];
  834. if (!func) {
  835. WARN_ON_ONCE(func == NULL);
  836. clear_bit(irq_type, &li->pending_irqs);
  837. continue;
  838. }
  839. rc = func(vcpu);
  840. }
  841. }
  842. set_intercept_indicators(vcpu);
  843. return rc;
  844. }
  845. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  846. {
  847. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  848. li->irq.pgm = irq->u.pgm;
  849. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  850. return 0;
  851. }
  852. int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
  853. {
  854. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  855. struct kvm_s390_irq irq;
  856. VCPU_EVENT(vcpu, 3, "inject: program check %d (from kernel)", code);
  857. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT, code,
  858. 0, 1);
  859. spin_lock(&li->lock);
  860. irq.u.pgm.code = code;
  861. __inject_prog(vcpu, &irq);
  862. BUG_ON(waitqueue_active(li->wq));
  863. spin_unlock(&li->lock);
  864. return 0;
  865. }
  866. int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu,
  867. struct kvm_s390_pgm_info *pgm_info)
  868. {
  869. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  870. struct kvm_s390_irq irq;
  871. int rc;
  872. VCPU_EVENT(vcpu, 3, "inject: prog irq %d (from kernel)",
  873. pgm_info->code);
  874. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  875. pgm_info->code, 0, 1);
  876. spin_lock(&li->lock);
  877. irq.u.pgm = *pgm_info;
  878. rc = __inject_prog(vcpu, &irq);
  879. BUG_ON(waitqueue_active(li->wq));
  880. spin_unlock(&li->lock);
  881. return rc;
  882. }
  883. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  884. {
  885. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  886. VCPU_EVENT(vcpu, 3, "inject: external irq params:%x, params2:%llx",
  887. irq->u.ext.ext_params, irq->u.ext.ext_params2);
  888. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  889. irq->u.ext.ext_params,
  890. irq->u.ext.ext_params2, 2);
  891. li->irq.ext = irq->u.ext;
  892. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  893. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  894. return 0;
  895. }
  896. static int __inject_extcall_sigpif(struct kvm_vcpu *vcpu, uint16_t src_id)
  897. {
  898. unsigned char new_val, old_val;
  899. uint8_t *sigp_ctrl = &vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  900. new_val = SIGP_CTRL_C | (src_id & SIGP_CTRL_SCN_MASK);
  901. old_val = *sigp_ctrl & ~SIGP_CTRL_C;
  902. if (cmpxchg(sigp_ctrl, old_val, new_val) != old_val) {
  903. /* another external call is pending */
  904. return -EBUSY;
  905. }
  906. atomic_set_mask(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  907. return 0;
  908. }
  909. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  910. {
  911. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  912. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  913. uint16_t src_id = irq->u.extcall.code;
  914. VCPU_EVENT(vcpu, 3, "inject: external call source-cpu:%u",
  915. src_id);
  916. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  917. src_id, 0, 2);
  918. /* sending vcpu invalid */
  919. if (src_id >= KVM_MAX_VCPUS ||
  920. kvm_get_vcpu(vcpu->kvm, src_id) == NULL)
  921. return -EINVAL;
  922. if (sclp.has_sigpif)
  923. return __inject_extcall_sigpif(vcpu, src_id);
  924. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  925. return -EBUSY;
  926. *extcall = irq->u.extcall;
  927. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  928. return 0;
  929. }
  930. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  931. {
  932. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  933. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  934. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x (from user)",
  935. irq->u.prefix.address);
  936. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  937. irq->u.prefix.address, 0, 2);
  938. if (!is_vcpu_stopped(vcpu))
  939. return -EBUSY;
  940. *prefix = irq->u.prefix;
  941. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  942. return 0;
  943. }
  944. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  945. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  946. {
  947. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  948. struct kvm_s390_stop_info *stop = &li->irq.stop;
  949. int rc = 0;
  950. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0, 2);
  951. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  952. return -EINVAL;
  953. if (is_vcpu_stopped(vcpu)) {
  954. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  955. rc = kvm_s390_store_status_unloaded(vcpu,
  956. KVM_S390_STORE_STATUS_NOADDR);
  957. return rc;
  958. }
  959. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  960. return -EBUSY;
  961. stop->flags = irq->u.stop.flags;
  962. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  963. return 0;
  964. }
  965. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  966. struct kvm_s390_irq *irq)
  967. {
  968. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  969. VCPU_EVENT(vcpu, 3, "inject: restart type %llx", irq->type);
  970. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0, 2);
  971. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  972. return 0;
  973. }
  974. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  975. struct kvm_s390_irq *irq)
  976. {
  977. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  978. VCPU_EVENT(vcpu, 3, "inject: emergency %u\n",
  979. irq->u.emerg.code);
  980. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  981. irq->u.emerg.code, 0, 2);
  982. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  983. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  984. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  985. return 0;
  986. }
  987. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  988. {
  989. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  990. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  991. VCPU_EVENT(vcpu, 5, "inject: machine check parm64:%llx",
  992. irq->u.mchk.mcic);
  993. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  994. irq->u.mchk.mcic, 2);
  995. /*
  996. * Because repressible machine checks can be indicated along with
  997. * exigent machine checks (PoP, Chapter 11, Interruption action)
  998. * we need to combine cr14, mcic and external damage code.
  999. * Failing storage address and the logout area should not be or'ed
  1000. * together, we just indicate the last occurrence of the corresponding
  1001. * machine check
  1002. */
  1003. mchk->cr14 |= irq->u.mchk.cr14;
  1004. mchk->mcic |= irq->u.mchk.mcic;
  1005. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1006. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1007. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1008. sizeof(mchk->fixed_logout));
  1009. if (mchk->mcic & MCHK_EX_MASK)
  1010. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1011. else if (mchk->mcic & MCHK_REP_MASK)
  1012. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1013. return 0;
  1014. }
  1015. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1016. {
  1017. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1018. VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CLOCK_COMP);
  1019. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1020. 0, 0, 2);
  1021. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1022. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  1023. return 0;
  1024. }
  1025. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1026. {
  1027. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1028. VCPU_EVENT(vcpu, 3, "inject: type %x", KVM_S390_INT_CPU_TIMER);
  1029. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1030. 0, 0, 2);
  1031. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1032. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  1033. return 0;
  1034. }
  1035. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1036. int isc, u32 schid)
  1037. {
  1038. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1039. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1040. struct kvm_s390_interrupt_info *iter;
  1041. u16 id = (schid & 0xffff0000U) >> 16;
  1042. u16 nr = schid & 0x0000ffffU;
  1043. spin_lock(&fi->lock);
  1044. list_for_each_entry(iter, isc_list, list) {
  1045. if (schid && (id != iter->io.subchannel_id ||
  1046. nr != iter->io.subchannel_nr))
  1047. continue;
  1048. /* found an appropriate entry */
  1049. list_del_init(&iter->list);
  1050. fi->counters[FIRQ_CNTR_IO] -= 1;
  1051. if (list_empty(isc_list))
  1052. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1053. spin_unlock(&fi->lock);
  1054. return iter;
  1055. }
  1056. spin_unlock(&fi->lock);
  1057. return NULL;
  1058. }
  1059. /*
  1060. * Dequeue and return an I/O interrupt matching any of the interruption
  1061. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1062. */
  1063. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1064. u64 isc_mask, u32 schid)
  1065. {
  1066. struct kvm_s390_interrupt_info *inti = NULL;
  1067. int isc;
  1068. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1069. if (isc_mask & isc_to_isc_bits(isc))
  1070. inti = get_io_int(kvm, isc, schid);
  1071. }
  1072. return inti;
  1073. }
  1074. #define SCCB_MASK 0xFFFFFFF8
  1075. #define SCCB_EVENT_PENDING 0x3
  1076. static int __inject_service(struct kvm *kvm,
  1077. struct kvm_s390_interrupt_info *inti)
  1078. {
  1079. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1080. spin_lock(&fi->lock);
  1081. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1082. /*
  1083. * Early versions of the QEMU s390 bios will inject several
  1084. * service interrupts after another without handling a
  1085. * condition code indicating busy.
  1086. * We will silently ignore those superfluous sccb values.
  1087. * A future version of QEMU will take care of serialization
  1088. * of servc requests
  1089. */
  1090. if (fi->srv_signal.ext_params & SCCB_MASK)
  1091. goto out;
  1092. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1093. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1094. out:
  1095. spin_unlock(&fi->lock);
  1096. kfree(inti);
  1097. return 0;
  1098. }
  1099. static int __inject_virtio(struct kvm *kvm,
  1100. struct kvm_s390_interrupt_info *inti)
  1101. {
  1102. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1103. spin_lock(&fi->lock);
  1104. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1105. spin_unlock(&fi->lock);
  1106. return -EBUSY;
  1107. }
  1108. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1109. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1110. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1111. spin_unlock(&fi->lock);
  1112. return 0;
  1113. }
  1114. static int __inject_pfault_done(struct kvm *kvm,
  1115. struct kvm_s390_interrupt_info *inti)
  1116. {
  1117. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1118. spin_lock(&fi->lock);
  1119. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1120. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1121. spin_unlock(&fi->lock);
  1122. return -EBUSY;
  1123. }
  1124. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1125. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1126. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1127. spin_unlock(&fi->lock);
  1128. return 0;
  1129. }
  1130. #define CR_PENDING_SUBCLASS 28
  1131. static int __inject_float_mchk(struct kvm *kvm,
  1132. struct kvm_s390_interrupt_info *inti)
  1133. {
  1134. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1135. spin_lock(&fi->lock);
  1136. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1137. fi->mchk.mcic |= inti->mchk.mcic;
  1138. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1139. spin_unlock(&fi->lock);
  1140. kfree(inti);
  1141. return 0;
  1142. }
  1143. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1144. {
  1145. struct kvm_s390_float_interrupt *fi;
  1146. struct list_head *list;
  1147. int isc;
  1148. fi = &kvm->arch.float_int;
  1149. spin_lock(&fi->lock);
  1150. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1151. spin_unlock(&fi->lock);
  1152. return -EBUSY;
  1153. }
  1154. fi->counters[FIRQ_CNTR_IO] += 1;
  1155. isc = int_word_to_isc(inti->io.io_int_word);
  1156. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1157. list_add_tail(&inti->list, list);
  1158. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1159. spin_unlock(&fi->lock);
  1160. return 0;
  1161. }
  1162. /*
  1163. * Find a destination VCPU for a floating irq and kick it.
  1164. */
  1165. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1166. {
  1167. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1168. struct kvm_s390_local_interrupt *li;
  1169. struct kvm_vcpu *dst_vcpu;
  1170. int sigcpu, online_vcpus, nr_tries = 0;
  1171. online_vcpus = atomic_read(&kvm->online_vcpus);
  1172. if (!online_vcpus)
  1173. return;
  1174. /* find idle VCPUs first, then round robin */
  1175. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1176. if (sigcpu == online_vcpus) {
  1177. do {
  1178. sigcpu = fi->next_rr_cpu;
  1179. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1180. /* avoid endless loops if all vcpus are stopped */
  1181. if (nr_tries++ >= online_vcpus)
  1182. return;
  1183. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1184. }
  1185. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1186. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1187. li = &dst_vcpu->arch.local_int;
  1188. spin_lock(&li->lock);
  1189. switch (type) {
  1190. case KVM_S390_MCHK:
  1191. atomic_set_mask(CPUSTAT_STOP_INT, li->cpuflags);
  1192. break;
  1193. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1194. atomic_set_mask(CPUSTAT_IO_INT, li->cpuflags);
  1195. break;
  1196. default:
  1197. atomic_set_mask(CPUSTAT_EXT_INT, li->cpuflags);
  1198. break;
  1199. }
  1200. spin_unlock(&li->lock);
  1201. kvm_s390_vcpu_wakeup(dst_vcpu);
  1202. }
  1203. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1204. {
  1205. struct kvm_s390_float_interrupt *fi;
  1206. u64 type = READ_ONCE(inti->type);
  1207. int rc;
  1208. fi = &kvm->arch.float_int;
  1209. switch (type) {
  1210. case KVM_S390_MCHK:
  1211. rc = __inject_float_mchk(kvm, inti);
  1212. break;
  1213. case KVM_S390_INT_VIRTIO:
  1214. rc = __inject_virtio(kvm, inti);
  1215. break;
  1216. case KVM_S390_INT_SERVICE:
  1217. rc = __inject_service(kvm, inti);
  1218. break;
  1219. case KVM_S390_INT_PFAULT_DONE:
  1220. rc = __inject_pfault_done(kvm, inti);
  1221. break;
  1222. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1223. rc = __inject_io(kvm, inti);
  1224. break;
  1225. default:
  1226. rc = -EINVAL;
  1227. }
  1228. if (rc)
  1229. return rc;
  1230. __floating_irq_kick(kvm, type);
  1231. return 0;
  1232. }
  1233. int kvm_s390_inject_vm(struct kvm *kvm,
  1234. struct kvm_s390_interrupt *s390int)
  1235. {
  1236. struct kvm_s390_interrupt_info *inti;
  1237. int rc;
  1238. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1239. if (!inti)
  1240. return -ENOMEM;
  1241. inti->type = s390int->type;
  1242. switch (inti->type) {
  1243. case KVM_S390_INT_VIRTIO:
  1244. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1245. s390int->parm, s390int->parm64);
  1246. inti->ext.ext_params = s390int->parm;
  1247. inti->ext.ext_params2 = s390int->parm64;
  1248. break;
  1249. case KVM_S390_INT_SERVICE:
  1250. VM_EVENT(kvm, 5, "inject: sclp parm:%x", s390int->parm);
  1251. inti->ext.ext_params = s390int->parm;
  1252. break;
  1253. case KVM_S390_INT_PFAULT_DONE:
  1254. inti->ext.ext_params2 = s390int->parm64;
  1255. break;
  1256. case KVM_S390_MCHK:
  1257. VM_EVENT(kvm, 5, "inject: machine check parm64:%llx",
  1258. s390int->parm64);
  1259. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1260. inti->mchk.mcic = s390int->parm64;
  1261. break;
  1262. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1263. if (inti->type & IOINT_AI_MASK)
  1264. VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)");
  1265. else
  1266. VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x",
  1267. s390int->type & IOINT_CSSID_MASK,
  1268. s390int->type & IOINT_SSID_MASK,
  1269. s390int->type & IOINT_SCHID_MASK);
  1270. inti->io.subchannel_id = s390int->parm >> 16;
  1271. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1272. inti->io.io_int_parm = s390int->parm64 >> 32;
  1273. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1274. break;
  1275. default:
  1276. kfree(inti);
  1277. return -EINVAL;
  1278. }
  1279. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1280. 2);
  1281. rc = __inject_vm(kvm, inti);
  1282. if (rc)
  1283. kfree(inti);
  1284. return rc;
  1285. }
  1286. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1287. struct kvm_s390_interrupt_info *inti)
  1288. {
  1289. return __inject_vm(kvm, inti);
  1290. }
  1291. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1292. struct kvm_s390_irq *irq)
  1293. {
  1294. irq->type = s390int->type;
  1295. switch (irq->type) {
  1296. case KVM_S390_PROGRAM_INT:
  1297. if (s390int->parm & 0xffff0000)
  1298. return -EINVAL;
  1299. irq->u.pgm.code = s390int->parm;
  1300. break;
  1301. case KVM_S390_SIGP_SET_PREFIX:
  1302. irq->u.prefix.address = s390int->parm;
  1303. break;
  1304. case KVM_S390_SIGP_STOP:
  1305. irq->u.stop.flags = s390int->parm;
  1306. break;
  1307. case KVM_S390_INT_EXTERNAL_CALL:
  1308. if (s390int->parm & 0xffff0000)
  1309. return -EINVAL;
  1310. irq->u.extcall.code = s390int->parm;
  1311. break;
  1312. case KVM_S390_INT_EMERGENCY:
  1313. if (s390int->parm & 0xffff0000)
  1314. return -EINVAL;
  1315. irq->u.emerg.code = s390int->parm;
  1316. break;
  1317. case KVM_S390_MCHK:
  1318. irq->u.mchk.mcic = s390int->parm64;
  1319. break;
  1320. }
  1321. return 0;
  1322. }
  1323. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1324. {
  1325. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1326. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1327. }
  1328. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1329. {
  1330. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1331. spin_lock(&li->lock);
  1332. li->irq.stop.flags = 0;
  1333. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1334. spin_unlock(&li->lock);
  1335. }
  1336. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1337. {
  1338. int rc;
  1339. switch (irq->type) {
  1340. case KVM_S390_PROGRAM_INT:
  1341. VCPU_EVENT(vcpu, 3, "inject: program check %d (from user)",
  1342. irq->u.pgm.code);
  1343. rc = __inject_prog(vcpu, irq);
  1344. break;
  1345. case KVM_S390_SIGP_SET_PREFIX:
  1346. rc = __inject_set_prefix(vcpu, irq);
  1347. break;
  1348. case KVM_S390_SIGP_STOP:
  1349. rc = __inject_sigp_stop(vcpu, irq);
  1350. break;
  1351. case KVM_S390_RESTART:
  1352. rc = __inject_sigp_restart(vcpu, irq);
  1353. break;
  1354. case KVM_S390_INT_CLOCK_COMP:
  1355. rc = __inject_ckc(vcpu);
  1356. break;
  1357. case KVM_S390_INT_CPU_TIMER:
  1358. rc = __inject_cpu_timer(vcpu);
  1359. break;
  1360. case KVM_S390_INT_EXTERNAL_CALL:
  1361. rc = __inject_extcall(vcpu, irq);
  1362. break;
  1363. case KVM_S390_INT_EMERGENCY:
  1364. rc = __inject_sigp_emergency(vcpu, irq);
  1365. break;
  1366. case KVM_S390_MCHK:
  1367. rc = __inject_mchk(vcpu, irq);
  1368. break;
  1369. case KVM_S390_INT_PFAULT_INIT:
  1370. rc = __inject_pfault_init(vcpu, irq);
  1371. break;
  1372. case KVM_S390_INT_VIRTIO:
  1373. case KVM_S390_INT_SERVICE:
  1374. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1375. default:
  1376. rc = -EINVAL;
  1377. }
  1378. return rc;
  1379. }
  1380. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1381. {
  1382. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1383. int rc;
  1384. spin_lock(&li->lock);
  1385. rc = do_inject_vcpu(vcpu, irq);
  1386. spin_unlock(&li->lock);
  1387. if (!rc)
  1388. kvm_s390_vcpu_wakeup(vcpu);
  1389. return rc;
  1390. }
  1391. static inline void clear_irq_list(struct list_head *_list)
  1392. {
  1393. struct kvm_s390_interrupt_info *inti, *n;
  1394. list_for_each_entry_safe(inti, n, _list, list) {
  1395. list_del(&inti->list);
  1396. kfree(inti);
  1397. }
  1398. }
  1399. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1400. struct kvm_s390_irq *irq)
  1401. {
  1402. irq->type = inti->type;
  1403. switch (inti->type) {
  1404. case KVM_S390_INT_PFAULT_INIT:
  1405. case KVM_S390_INT_PFAULT_DONE:
  1406. case KVM_S390_INT_VIRTIO:
  1407. irq->u.ext = inti->ext;
  1408. break;
  1409. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1410. irq->u.io = inti->io;
  1411. break;
  1412. }
  1413. }
  1414. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1415. {
  1416. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1417. int i;
  1418. spin_lock(&fi->lock);
  1419. fi->pending_irqs = 0;
  1420. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1421. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1422. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1423. clear_irq_list(&fi->lists[i]);
  1424. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1425. fi->counters[i] = 0;
  1426. spin_unlock(&fi->lock);
  1427. };
  1428. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1429. {
  1430. struct kvm_s390_interrupt_info *inti;
  1431. struct kvm_s390_float_interrupt *fi;
  1432. struct kvm_s390_irq *buf;
  1433. struct kvm_s390_irq *irq;
  1434. int max_irqs;
  1435. int ret = 0;
  1436. int n = 0;
  1437. int i;
  1438. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1439. return -EINVAL;
  1440. /*
  1441. * We are already using -ENOMEM to signal
  1442. * userspace it may retry with a bigger buffer,
  1443. * so we need to use something else for this case
  1444. */
  1445. buf = vzalloc(len);
  1446. if (!buf)
  1447. return -ENOBUFS;
  1448. max_irqs = len / sizeof(struct kvm_s390_irq);
  1449. fi = &kvm->arch.float_int;
  1450. spin_lock(&fi->lock);
  1451. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1452. list_for_each_entry(inti, &fi->lists[i], list) {
  1453. if (n == max_irqs) {
  1454. /* signal userspace to try again */
  1455. ret = -ENOMEM;
  1456. goto out;
  1457. }
  1458. inti_to_irq(inti, &buf[n]);
  1459. n++;
  1460. }
  1461. }
  1462. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1463. if (n == max_irqs) {
  1464. /* signal userspace to try again */
  1465. ret = -ENOMEM;
  1466. goto out;
  1467. }
  1468. irq = (struct kvm_s390_irq *) &buf[n];
  1469. irq->type = KVM_S390_INT_SERVICE;
  1470. irq->u.ext = fi->srv_signal;
  1471. n++;
  1472. }
  1473. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1474. if (n == max_irqs) {
  1475. /* signal userspace to try again */
  1476. ret = -ENOMEM;
  1477. goto out;
  1478. }
  1479. irq = (struct kvm_s390_irq *) &buf[n];
  1480. irq->type = KVM_S390_MCHK;
  1481. irq->u.mchk = fi->mchk;
  1482. n++;
  1483. }
  1484. out:
  1485. spin_unlock(&fi->lock);
  1486. if (!ret && n > 0) {
  1487. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1488. ret = -EFAULT;
  1489. }
  1490. vfree(buf);
  1491. return ret < 0 ? ret : n;
  1492. }
  1493. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1494. {
  1495. int r;
  1496. switch (attr->group) {
  1497. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1498. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1499. attr->attr);
  1500. break;
  1501. default:
  1502. r = -EINVAL;
  1503. }
  1504. return r;
  1505. }
  1506. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1507. u64 addr)
  1508. {
  1509. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1510. void *target = NULL;
  1511. void __user *source;
  1512. u64 size;
  1513. if (get_user(inti->type, (u64 __user *)addr))
  1514. return -EFAULT;
  1515. switch (inti->type) {
  1516. case KVM_S390_INT_PFAULT_INIT:
  1517. case KVM_S390_INT_PFAULT_DONE:
  1518. case KVM_S390_INT_VIRTIO:
  1519. case KVM_S390_INT_SERVICE:
  1520. target = (void *) &inti->ext;
  1521. source = &uptr->u.ext;
  1522. size = sizeof(inti->ext);
  1523. break;
  1524. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1525. target = (void *) &inti->io;
  1526. source = &uptr->u.io;
  1527. size = sizeof(inti->io);
  1528. break;
  1529. case KVM_S390_MCHK:
  1530. target = (void *) &inti->mchk;
  1531. source = &uptr->u.mchk;
  1532. size = sizeof(inti->mchk);
  1533. break;
  1534. default:
  1535. return -EINVAL;
  1536. }
  1537. if (copy_from_user(target, source, size))
  1538. return -EFAULT;
  1539. return 0;
  1540. }
  1541. static int enqueue_floating_irq(struct kvm_device *dev,
  1542. struct kvm_device_attr *attr)
  1543. {
  1544. struct kvm_s390_interrupt_info *inti = NULL;
  1545. int r = 0;
  1546. int len = attr->attr;
  1547. if (len % sizeof(struct kvm_s390_irq) != 0)
  1548. return -EINVAL;
  1549. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1550. return -EINVAL;
  1551. while (len >= sizeof(struct kvm_s390_irq)) {
  1552. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1553. if (!inti)
  1554. return -ENOMEM;
  1555. r = copy_irq_from_user(inti, attr->addr);
  1556. if (r) {
  1557. kfree(inti);
  1558. return r;
  1559. }
  1560. r = __inject_vm(dev->kvm, inti);
  1561. if (r) {
  1562. kfree(inti);
  1563. return r;
  1564. }
  1565. len -= sizeof(struct kvm_s390_irq);
  1566. attr->addr += sizeof(struct kvm_s390_irq);
  1567. }
  1568. return r;
  1569. }
  1570. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1571. {
  1572. if (id >= MAX_S390_IO_ADAPTERS)
  1573. return NULL;
  1574. return kvm->arch.adapters[id];
  1575. }
  1576. static int register_io_adapter(struct kvm_device *dev,
  1577. struct kvm_device_attr *attr)
  1578. {
  1579. struct s390_io_adapter *adapter;
  1580. struct kvm_s390_io_adapter adapter_info;
  1581. if (copy_from_user(&adapter_info,
  1582. (void __user *)attr->addr, sizeof(adapter_info)))
  1583. return -EFAULT;
  1584. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1585. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1586. return -EINVAL;
  1587. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1588. if (!adapter)
  1589. return -ENOMEM;
  1590. INIT_LIST_HEAD(&adapter->maps);
  1591. init_rwsem(&adapter->maps_lock);
  1592. atomic_set(&adapter->nr_maps, 0);
  1593. adapter->id = adapter_info.id;
  1594. adapter->isc = adapter_info.isc;
  1595. adapter->maskable = adapter_info.maskable;
  1596. adapter->masked = false;
  1597. adapter->swap = adapter_info.swap;
  1598. dev->kvm->arch.adapters[adapter->id] = adapter;
  1599. return 0;
  1600. }
  1601. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1602. {
  1603. int ret;
  1604. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1605. if (!adapter || !adapter->maskable)
  1606. return -EINVAL;
  1607. ret = adapter->masked;
  1608. adapter->masked = masked;
  1609. return ret;
  1610. }
  1611. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1612. {
  1613. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1614. struct s390_map_info *map;
  1615. int ret;
  1616. if (!adapter || !addr)
  1617. return -EINVAL;
  1618. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1619. if (!map) {
  1620. ret = -ENOMEM;
  1621. goto out;
  1622. }
  1623. INIT_LIST_HEAD(&map->list);
  1624. map->guest_addr = addr;
  1625. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1626. if (map->addr == -EFAULT) {
  1627. ret = -EFAULT;
  1628. goto out;
  1629. }
  1630. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1631. if (ret < 0)
  1632. goto out;
  1633. BUG_ON(ret != 1);
  1634. down_write(&adapter->maps_lock);
  1635. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1636. list_add_tail(&map->list, &adapter->maps);
  1637. ret = 0;
  1638. } else {
  1639. put_page(map->page);
  1640. ret = -EINVAL;
  1641. }
  1642. up_write(&adapter->maps_lock);
  1643. out:
  1644. if (ret)
  1645. kfree(map);
  1646. return ret;
  1647. }
  1648. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1649. {
  1650. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1651. struct s390_map_info *map, *tmp;
  1652. int found = 0;
  1653. if (!adapter || !addr)
  1654. return -EINVAL;
  1655. down_write(&adapter->maps_lock);
  1656. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1657. if (map->guest_addr == addr) {
  1658. found = 1;
  1659. atomic_dec(&adapter->nr_maps);
  1660. list_del(&map->list);
  1661. put_page(map->page);
  1662. kfree(map);
  1663. break;
  1664. }
  1665. }
  1666. up_write(&adapter->maps_lock);
  1667. return found ? 0 : -EINVAL;
  1668. }
  1669. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1670. {
  1671. int i;
  1672. struct s390_map_info *map, *tmp;
  1673. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1674. if (!kvm->arch.adapters[i])
  1675. continue;
  1676. list_for_each_entry_safe(map, tmp,
  1677. &kvm->arch.adapters[i]->maps, list) {
  1678. list_del(&map->list);
  1679. put_page(map->page);
  1680. kfree(map);
  1681. }
  1682. kfree(kvm->arch.adapters[i]);
  1683. }
  1684. }
  1685. static int modify_io_adapter(struct kvm_device *dev,
  1686. struct kvm_device_attr *attr)
  1687. {
  1688. struct kvm_s390_io_adapter_req req;
  1689. struct s390_io_adapter *adapter;
  1690. int ret;
  1691. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1692. return -EFAULT;
  1693. adapter = get_io_adapter(dev->kvm, req.id);
  1694. if (!adapter)
  1695. return -EINVAL;
  1696. switch (req.type) {
  1697. case KVM_S390_IO_ADAPTER_MASK:
  1698. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1699. if (ret > 0)
  1700. ret = 0;
  1701. break;
  1702. case KVM_S390_IO_ADAPTER_MAP:
  1703. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1704. break;
  1705. case KVM_S390_IO_ADAPTER_UNMAP:
  1706. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1707. break;
  1708. default:
  1709. ret = -EINVAL;
  1710. }
  1711. return ret;
  1712. }
  1713. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1714. {
  1715. int r = 0;
  1716. unsigned int i;
  1717. struct kvm_vcpu *vcpu;
  1718. switch (attr->group) {
  1719. case KVM_DEV_FLIC_ENQUEUE:
  1720. r = enqueue_floating_irq(dev, attr);
  1721. break;
  1722. case KVM_DEV_FLIC_CLEAR_IRQS:
  1723. kvm_s390_clear_float_irqs(dev->kvm);
  1724. break;
  1725. case KVM_DEV_FLIC_APF_ENABLE:
  1726. dev->kvm->arch.gmap->pfault_enabled = 1;
  1727. break;
  1728. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1729. dev->kvm->arch.gmap->pfault_enabled = 0;
  1730. /*
  1731. * Make sure no async faults are in transition when
  1732. * clearing the queues. So we don't need to worry
  1733. * about late coming workers.
  1734. */
  1735. synchronize_srcu(&dev->kvm->srcu);
  1736. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  1737. kvm_clear_async_pf_completion_queue(vcpu);
  1738. break;
  1739. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1740. r = register_io_adapter(dev, attr);
  1741. break;
  1742. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1743. r = modify_io_adapter(dev, attr);
  1744. break;
  1745. default:
  1746. r = -EINVAL;
  1747. }
  1748. return r;
  1749. }
  1750. static int flic_create(struct kvm_device *dev, u32 type)
  1751. {
  1752. if (!dev)
  1753. return -EINVAL;
  1754. if (dev->kvm->arch.flic)
  1755. return -EINVAL;
  1756. dev->kvm->arch.flic = dev;
  1757. return 0;
  1758. }
  1759. static void flic_destroy(struct kvm_device *dev)
  1760. {
  1761. dev->kvm->arch.flic = NULL;
  1762. kfree(dev);
  1763. }
  1764. /* s390 floating irq controller (flic) */
  1765. struct kvm_device_ops kvm_flic_ops = {
  1766. .name = "kvm-flic",
  1767. .get_attr = flic_get_attr,
  1768. .set_attr = flic_set_attr,
  1769. .create = flic_create,
  1770. .destroy = flic_destroy,
  1771. };
  1772. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  1773. {
  1774. unsigned long bit;
  1775. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  1776. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  1777. }
  1778. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  1779. u64 addr)
  1780. {
  1781. struct s390_map_info *map;
  1782. if (!adapter)
  1783. return NULL;
  1784. list_for_each_entry(map, &adapter->maps, list) {
  1785. if (map->guest_addr == addr)
  1786. return map;
  1787. }
  1788. return NULL;
  1789. }
  1790. static int adapter_indicators_set(struct kvm *kvm,
  1791. struct s390_io_adapter *adapter,
  1792. struct kvm_s390_adapter_int *adapter_int)
  1793. {
  1794. unsigned long bit;
  1795. int summary_set, idx;
  1796. struct s390_map_info *info;
  1797. void *map;
  1798. info = get_map_info(adapter, adapter_int->ind_addr);
  1799. if (!info)
  1800. return -1;
  1801. map = page_address(info->page);
  1802. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  1803. set_bit(bit, map);
  1804. idx = srcu_read_lock(&kvm->srcu);
  1805. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1806. set_page_dirty_lock(info->page);
  1807. info = get_map_info(adapter, adapter_int->summary_addr);
  1808. if (!info) {
  1809. srcu_read_unlock(&kvm->srcu, idx);
  1810. return -1;
  1811. }
  1812. map = page_address(info->page);
  1813. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  1814. adapter->swap);
  1815. summary_set = test_and_set_bit(bit, map);
  1816. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1817. set_page_dirty_lock(info->page);
  1818. srcu_read_unlock(&kvm->srcu, idx);
  1819. return summary_set ? 0 : 1;
  1820. }
  1821. /*
  1822. * < 0 - not injected due to error
  1823. * = 0 - coalesced, summary indicator already active
  1824. * > 0 - injected interrupt
  1825. */
  1826. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  1827. struct kvm *kvm, int irq_source_id, int level,
  1828. bool line_status)
  1829. {
  1830. int ret;
  1831. struct s390_io_adapter *adapter;
  1832. /* We're only interested in the 0->1 transition. */
  1833. if (!level)
  1834. return 0;
  1835. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  1836. if (!adapter)
  1837. return -1;
  1838. down_read(&adapter->maps_lock);
  1839. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  1840. up_read(&adapter->maps_lock);
  1841. if ((ret > 0) && !adapter->masked) {
  1842. struct kvm_s390_interrupt s390int = {
  1843. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1844. .parm = 0,
  1845. .parm64 = (adapter->isc << 27) | 0x80000000,
  1846. };
  1847. ret = kvm_s390_inject_vm(kvm, &s390int);
  1848. if (ret == 0)
  1849. ret = 1;
  1850. }
  1851. return ret;
  1852. }
  1853. int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
  1854. const struct kvm_irq_routing_entry *ue)
  1855. {
  1856. int ret;
  1857. switch (ue->type) {
  1858. case KVM_IRQ_ROUTING_S390_ADAPTER:
  1859. e->set = set_adapter_int;
  1860. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  1861. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  1862. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  1863. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  1864. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  1865. ret = 0;
  1866. break;
  1867. default:
  1868. ret = -EINVAL;
  1869. }
  1870. return ret;
  1871. }
  1872. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  1873. int irq_source_id, int level, bool line_status)
  1874. {
  1875. return -EINVAL;
  1876. }
  1877. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  1878. {
  1879. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1880. struct kvm_s390_irq *buf;
  1881. int r = 0;
  1882. int n;
  1883. buf = vmalloc(len);
  1884. if (!buf)
  1885. return -ENOMEM;
  1886. if (copy_from_user((void *) buf, irqstate, len)) {
  1887. r = -EFAULT;
  1888. goto out_free;
  1889. }
  1890. /*
  1891. * Don't allow setting the interrupt state
  1892. * when there are already interrupts pending
  1893. */
  1894. spin_lock(&li->lock);
  1895. if (li->pending_irqs) {
  1896. r = -EBUSY;
  1897. goto out_unlock;
  1898. }
  1899. for (n = 0; n < len / sizeof(*buf); n++) {
  1900. r = do_inject_vcpu(vcpu, &buf[n]);
  1901. if (r)
  1902. break;
  1903. }
  1904. out_unlock:
  1905. spin_unlock(&li->lock);
  1906. out_free:
  1907. vfree(buf);
  1908. return r;
  1909. }
  1910. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  1911. struct kvm_s390_irq *irq,
  1912. unsigned long irq_type)
  1913. {
  1914. switch (irq_type) {
  1915. case IRQ_PEND_MCHK_EX:
  1916. case IRQ_PEND_MCHK_REP:
  1917. irq->type = KVM_S390_MCHK;
  1918. irq->u.mchk = li->irq.mchk;
  1919. break;
  1920. case IRQ_PEND_PROG:
  1921. irq->type = KVM_S390_PROGRAM_INT;
  1922. irq->u.pgm = li->irq.pgm;
  1923. break;
  1924. case IRQ_PEND_PFAULT_INIT:
  1925. irq->type = KVM_S390_INT_PFAULT_INIT;
  1926. irq->u.ext = li->irq.ext;
  1927. break;
  1928. case IRQ_PEND_EXT_EXTERNAL:
  1929. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  1930. irq->u.extcall = li->irq.extcall;
  1931. break;
  1932. case IRQ_PEND_EXT_CLOCK_COMP:
  1933. irq->type = KVM_S390_INT_CLOCK_COMP;
  1934. break;
  1935. case IRQ_PEND_EXT_CPU_TIMER:
  1936. irq->type = KVM_S390_INT_CPU_TIMER;
  1937. break;
  1938. case IRQ_PEND_SIGP_STOP:
  1939. irq->type = KVM_S390_SIGP_STOP;
  1940. irq->u.stop = li->irq.stop;
  1941. break;
  1942. case IRQ_PEND_RESTART:
  1943. irq->type = KVM_S390_RESTART;
  1944. break;
  1945. case IRQ_PEND_SET_PREFIX:
  1946. irq->type = KVM_S390_SIGP_SET_PREFIX;
  1947. irq->u.prefix = li->irq.prefix;
  1948. break;
  1949. }
  1950. }
  1951. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  1952. {
  1953. uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  1954. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  1955. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1956. unsigned long pending_irqs;
  1957. struct kvm_s390_irq irq;
  1958. unsigned long irq_type;
  1959. int cpuaddr;
  1960. int n = 0;
  1961. spin_lock(&li->lock);
  1962. pending_irqs = li->pending_irqs;
  1963. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  1964. sizeof(sigp_emerg_pending));
  1965. spin_unlock(&li->lock);
  1966. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  1967. memset(&irq, 0, sizeof(irq));
  1968. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  1969. continue;
  1970. if (n + sizeof(irq) > len)
  1971. return -ENOBUFS;
  1972. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  1973. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1974. return -EFAULT;
  1975. n += sizeof(irq);
  1976. }
  1977. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  1978. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  1979. memset(&irq, 0, sizeof(irq));
  1980. if (n + sizeof(irq) > len)
  1981. return -ENOBUFS;
  1982. irq.type = KVM_S390_INT_EMERGENCY;
  1983. irq.u.emerg.code = cpuaddr;
  1984. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1985. return -EFAULT;
  1986. n += sizeof(irq);
  1987. }
  1988. }
  1989. if ((sigp_ctrl & SIGP_CTRL_C) &&
  1990. (atomic_read(&vcpu->arch.sie_block->cpuflags) &
  1991. CPUSTAT_ECALL_PEND)) {
  1992. if (n + sizeof(irq) > len)
  1993. return -ENOBUFS;
  1994. memset(&irq, 0, sizeof(irq));
  1995. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  1996. irq.u.extcall.code = sigp_ctrl & SIGP_CTRL_SCN_MASK;
  1997. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1998. return -EFAULT;
  1999. n += sizeof(irq);
  2000. }
  2001. return n;
  2002. }