crash_dump.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. /*
  2. * S390 kdump implementation
  3. *
  4. * Copyright IBM Corp. 2011
  5. * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  6. */
  7. #include <linux/crash_dump.h>
  8. #include <asm/lowcore.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/gfp.h>
  12. #include <linux/slab.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/elf.h>
  15. #include <linux/memblock.h>
  16. #include <asm/os_info.h>
  17. #include <asm/elf.h>
  18. #include <asm/ipl.h>
  19. #include <asm/sclp.h>
  20. #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
  21. #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
  22. #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
  23. static struct memblock_region oldmem_region;
  24. static struct memblock_type oldmem_type = {
  25. .cnt = 1,
  26. .max = 1,
  27. .total_size = 0,
  28. .regions = &oldmem_region,
  29. };
  30. #define for_each_dump_mem_range(i, nid, p_start, p_end, p_nid) \
  31. for (i = 0, __next_mem_range(&i, nid, MEMBLOCK_NONE, \
  32. &memblock.physmem, \
  33. &oldmem_type, p_start, \
  34. p_end, p_nid); \
  35. i != (u64)ULLONG_MAX; \
  36. __next_mem_range(&i, nid, MEMBLOCK_NONE, &memblock.physmem,\
  37. &oldmem_type, \
  38. p_start, p_end, p_nid))
  39. struct dump_save_areas dump_save_areas;
  40. /*
  41. * Return physical address for virtual address
  42. */
  43. static inline void *load_real_addr(void *addr)
  44. {
  45. unsigned long real_addr;
  46. asm volatile(
  47. " lra %0,0(%1)\n"
  48. " jz 0f\n"
  49. " la %0,0\n"
  50. "0:"
  51. : "=a" (real_addr) : "a" (addr) : "cc");
  52. return (void *)real_addr;
  53. }
  54. /*
  55. * Copy real to virtual or real memory
  56. */
  57. static int copy_from_realmem(void *dest, void *src, size_t count)
  58. {
  59. unsigned long size;
  60. if (!count)
  61. return 0;
  62. if (!is_vmalloc_or_module_addr(dest))
  63. return memcpy_real(dest, src, count);
  64. do {
  65. size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
  66. if (memcpy_real(load_real_addr(dest), src, size))
  67. return -EFAULT;
  68. count -= size;
  69. dest += size;
  70. src += size;
  71. } while (count);
  72. return 0;
  73. }
  74. /*
  75. * Pointer to ELF header in new kernel
  76. */
  77. static void *elfcorehdr_newmem;
  78. /*
  79. * Copy one page from zfcpdump "oldmem"
  80. *
  81. * For pages below HSA size memory from the HSA is copied. Otherwise
  82. * real memory copy is used.
  83. */
  84. static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
  85. unsigned long src, int userbuf)
  86. {
  87. int rc;
  88. if (src < sclp.hsa_size) {
  89. rc = memcpy_hsa(buf, src, csize, userbuf);
  90. } else {
  91. if (userbuf)
  92. rc = copy_to_user_real((void __force __user *) buf,
  93. (void *) src, csize);
  94. else
  95. rc = memcpy_real(buf, (void *) src, csize);
  96. }
  97. return rc ? rc : csize;
  98. }
  99. /*
  100. * Copy one page from kdump "oldmem"
  101. *
  102. * For the kdump reserved memory this functions performs a swap operation:
  103. * - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
  104. * - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
  105. */
  106. static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
  107. unsigned long src, int userbuf)
  108. {
  109. int rc;
  110. if (src < OLDMEM_SIZE)
  111. src += OLDMEM_BASE;
  112. else if (src > OLDMEM_BASE &&
  113. src < OLDMEM_BASE + OLDMEM_SIZE)
  114. src -= OLDMEM_BASE;
  115. if (userbuf)
  116. rc = copy_to_user_real((void __force __user *) buf,
  117. (void *) src, csize);
  118. else
  119. rc = copy_from_realmem(buf, (void *) src, csize);
  120. return (rc == 0) ? rc : csize;
  121. }
  122. /*
  123. * Copy one page from "oldmem"
  124. */
  125. ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
  126. unsigned long offset, int userbuf)
  127. {
  128. unsigned long src;
  129. if (!csize)
  130. return 0;
  131. src = (pfn << PAGE_SHIFT) + offset;
  132. if (OLDMEM_BASE)
  133. return copy_oldmem_page_kdump(buf, csize, src, userbuf);
  134. else
  135. return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
  136. }
  137. /*
  138. * Remap "oldmem" for kdump
  139. *
  140. * For the kdump reserved memory this functions performs a swap operation:
  141. * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
  142. */
  143. static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
  144. unsigned long from, unsigned long pfn,
  145. unsigned long size, pgprot_t prot)
  146. {
  147. unsigned long size_old;
  148. int rc;
  149. if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
  150. size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
  151. rc = remap_pfn_range(vma, from,
  152. pfn + (OLDMEM_BASE >> PAGE_SHIFT),
  153. size_old, prot);
  154. if (rc || size == size_old)
  155. return rc;
  156. size -= size_old;
  157. from += size_old;
  158. pfn += size_old >> PAGE_SHIFT;
  159. }
  160. return remap_pfn_range(vma, from, pfn, size, prot);
  161. }
  162. /*
  163. * Remap "oldmem" for zfcpdump
  164. *
  165. * We only map available memory above HSA size. Memory below HSA size
  166. * is read on demand using the copy_oldmem_page() function.
  167. */
  168. static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
  169. unsigned long from,
  170. unsigned long pfn,
  171. unsigned long size, pgprot_t prot)
  172. {
  173. unsigned long hsa_end = sclp.hsa_size;
  174. unsigned long size_hsa;
  175. if (pfn < hsa_end >> PAGE_SHIFT) {
  176. size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
  177. if (size == size_hsa)
  178. return 0;
  179. size -= size_hsa;
  180. from += size_hsa;
  181. pfn += size_hsa >> PAGE_SHIFT;
  182. }
  183. return remap_pfn_range(vma, from, pfn, size, prot);
  184. }
  185. /*
  186. * Remap "oldmem" for kdump or zfcpdump
  187. */
  188. int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
  189. unsigned long pfn, unsigned long size, pgprot_t prot)
  190. {
  191. if (OLDMEM_BASE)
  192. return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
  193. else
  194. return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
  195. prot);
  196. }
  197. /*
  198. * Copy memory from old kernel
  199. */
  200. int copy_from_oldmem(void *dest, void *src, size_t count)
  201. {
  202. unsigned long copied = 0;
  203. int rc;
  204. if (OLDMEM_BASE) {
  205. if ((unsigned long) src < OLDMEM_SIZE) {
  206. copied = min(count, OLDMEM_SIZE - (unsigned long) src);
  207. rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
  208. if (rc)
  209. return rc;
  210. }
  211. } else {
  212. unsigned long hsa_end = sclp.hsa_size;
  213. if ((unsigned long) src < hsa_end) {
  214. copied = min(count, hsa_end - (unsigned long) src);
  215. rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
  216. if (rc)
  217. return rc;
  218. }
  219. }
  220. return copy_from_realmem(dest + copied, src + copied, count - copied);
  221. }
  222. /*
  223. * Alloc memory and panic in case of ENOMEM
  224. */
  225. static void *kzalloc_panic(int len)
  226. {
  227. void *rc;
  228. rc = kzalloc(len, GFP_KERNEL);
  229. if (!rc)
  230. panic("s390 kdump kzalloc (%d) failed", len);
  231. return rc;
  232. }
  233. /*
  234. * Initialize ELF note
  235. */
  236. static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
  237. const char *name)
  238. {
  239. Elf64_Nhdr *note;
  240. u64 len;
  241. note = (Elf64_Nhdr *)buf;
  242. note->n_namesz = strlen(name) + 1;
  243. note->n_descsz = d_len;
  244. note->n_type = type;
  245. len = sizeof(Elf64_Nhdr);
  246. memcpy(buf + len, name, note->n_namesz);
  247. len = roundup(len + note->n_namesz, 4);
  248. memcpy(buf + len, desc, note->n_descsz);
  249. len = roundup(len + note->n_descsz, 4);
  250. return PTR_ADD(buf, len);
  251. }
  252. /*
  253. * Initialize prstatus note
  254. */
  255. static void *nt_prstatus(void *ptr, struct save_area *sa)
  256. {
  257. struct elf_prstatus nt_prstatus;
  258. static int cpu_nr = 1;
  259. memset(&nt_prstatus, 0, sizeof(nt_prstatus));
  260. memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
  261. memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
  262. memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
  263. nt_prstatus.pr_pid = cpu_nr;
  264. cpu_nr++;
  265. return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
  266. "CORE");
  267. }
  268. /*
  269. * Initialize fpregset (floating point) note
  270. */
  271. static void *nt_fpregset(void *ptr, struct save_area *sa)
  272. {
  273. elf_fpregset_t nt_fpregset;
  274. memset(&nt_fpregset, 0, sizeof(nt_fpregset));
  275. memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
  276. memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
  277. return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
  278. "CORE");
  279. }
  280. /*
  281. * Initialize timer note
  282. */
  283. static void *nt_s390_timer(void *ptr, struct save_area *sa)
  284. {
  285. return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
  286. KEXEC_CORE_NOTE_NAME);
  287. }
  288. /*
  289. * Initialize TOD clock comparator note
  290. */
  291. static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
  292. {
  293. return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
  294. sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
  295. }
  296. /*
  297. * Initialize TOD programmable register note
  298. */
  299. static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
  300. {
  301. return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
  302. sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
  303. }
  304. /*
  305. * Initialize control register note
  306. */
  307. static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
  308. {
  309. return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
  310. sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
  311. }
  312. /*
  313. * Initialize prefix register note
  314. */
  315. static void *nt_s390_prefix(void *ptr, struct save_area *sa)
  316. {
  317. return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
  318. sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
  319. }
  320. /*
  321. * Initialize vxrs high note (full 128 bit VX registers 16-31)
  322. */
  323. static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
  324. {
  325. return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
  326. 16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
  327. }
  328. /*
  329. * Initialize vxrs low note (lower halves of VX registers 0-15)
  330. */
  331. static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
  332. {
  333. Elf64_Nhdr *note;
  334. u64 len;
  335. int i;
  336. note = (Elf64_Nhdr *)ptr;
  337. note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
  338. note->n_descsz = 16 * 8;
  339. note->n_type = NT_S390_VXRS_LOW;
  340. len = sizeof(Elf64_Nhdr);
  341. memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
  342. len = roundup(len + note->n_namesz, 4);
  343. ptr += len;
  344. /* Copy lower halves of SIMD registers 0-15 */
  345. for (i = 0; i < 16; i++) {
  346. memcpy(ptr, &vx_regs[i].u[2], 8);
  347. ptr += 8;
  348. }
  349. return ptr;
  350. }
  351. /*
  352. * Fill ELF notes for one CPU with save area registers
  353. */
  354. void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
  355. {
  356. ptr = nt_prstatus(ptr, sa);
  357. ptr = nt_fpregset(ptr, sa);
  358. ptr = nt_s390_timer(ptr, sa);
  359. ptr = nt_s390_tod_cmp(ptr, sa);
  360. ptr = nt_s390_tod_preg(ptr, sa);
  361. ptr = nt_s390_ctrs(ptr, sa);
  362. ptr = nt_s390_prefix(ptr, sa);
  363. if (MACHINE_HAS_VX && vx_regs) {
  364. ptr = nt_s390_vx_low(ptr, vx_regs);
  365. ptr = nt_s390_vx_high(ptr, vx_regs);
  366. }
  367. return ptr;
  368. }
  369. /*
  370. * Initialize prpsinfo note (new kernel)
  371. */
  372. static void *nt_prpsinfo(void *ptr)
  373. {
  374. struct elf_prpsinfo prpsinfo;
  375. memset(&prpsinfo, 0, sizeof(prpsinfo));
  376. prpsinfo.pr_sname = 'R';
  377. strcpy(prpsinfo.pr_fname, "vmlinux");
  378. return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
  379. KEXEC_CORE_NOTE_NAME);
  380. }
  381. /*
  382. * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
  383. */
  384. static void *get_vmcoreinfo_old(unsigned long *size)
  385. {
  386. char nt_name[11], *vmcoreinfo;
  387. Elf64_Nhdr note;
  388. void *addr;
  389. if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
  390. return NULL;
  391. memset(nt_name, 0, sizeof(nt_name));
  392. if (copy_from_oldmem(&note, addr, sizeof(note)))
  393. return NULL;
  394. if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
  395. return NULL;
  396. if (strcmp(nt_name, "VMCOREINFO") != 0)
  397. return NULL;
  398. vmcoreinfo = kzalloc_panic(note.n_descsz);
  399. if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
  400. return NULL;
  401. *size = note.n_descsz;
  402. return vmcoreinfo;
  403. }
  404. /*
  405. * Initialize vmcoreinfo note (new kernel)
  406. */
  407. static void *nt_vmcoreinfo(void *ptr)
  408. {
  409. unsigned long size;
  410. void *vmcoreinfo;
  411. vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
  412. if (!vmcoreinfo)
  413. vmcoreinfo = get_vmcoreinfo_old(&size);
  414. if (!vmcoreinfo)
  415. return ptr;
  416. return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
  417. }
  418. /*
  419. * Initialize ELF header (new kernel)
  420. */
  421. static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
  422. {
  423. memset(ehdr, 0, sizeof(*ehdr));
  424. memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
  425. ehdr->e_ident[EI_CLASS] = ELFCLASS64;
  426. ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
  427. ehdr->e_ident[EI_VERSION] = EV_CURRENT;
  428. memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
  429. ehdr->e_type = ET_CORE;
  430. ehdr->e_machine = EM_S390;
  431. ehdr->e_version = EV_CURRENT;
  432. ehdr->e_phoff = sizeof(Elf64_Ehdr);
  433. ehdr->e_ehsize = sizeof(Elf64_Ehdr);
  434. ehdr->e_phentsize = sizeof(Elf64_Phdr);
  435. ehdr->e_phnum = mem_chunk_cnt + 1;
  436. return ehdr + 1;
  437. }
  438. /*
  439. * Return CPU count for ELF header (new kernel)
  440. */
  441. static int get_cpu_cnt(void)
  442. {
  443. int i, cpus = 0;
  444. for (i = 0; i < dump_save_areas.count; i++) {
  445. if (dump_save_areas.areas[i]->sa.pref_reg == 0)
  446. continue;
  447. cpus++;
  448. }
  449. return cpus;
  450. }
  451. /*
  452. * Return memory chunk count for ELF header (new kernel)
  453. */
  454. static int get_mem_chunk_cnt(void)
  455. {
  456. int cnt = 0;
  457. u64 idx;
  458. for_each_dump_mem_range(idx, NUMA_NO_NODE, NULL, NULL, NULL)
  459. cnt++;
  460. return cnt;
  461. }
  462. /*
  463. * Initialize ELF loads (new kernel)
  464. */
  465. static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
  466. {
  467. phys_addr_t start, end;
  468. u64 idx;
  469. for_each_dump_mem_range(idx, NUMA_NO_NODE, &start, &end, NULL) {
  470. phdr->p_filesz = end - start;
  471. phdr->p_type = PT_LOAD;
  472. phdr->p_offset = start;
  473. phdr->p_vaddr = start;
  474. phdr->p_paddr = start;
  475. phdr->p_memsz = end - start;
  476. phdr->p_flags = PF_R | PF_W | PF_X;
  477. phdr->p_align = PAGE_SIZE;
  478. phdr++;
  479. }
  480. }
  481. /*
  482. * Initialize notes (new kernel)
  483. */
  484. static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
  485. {
  486. struct save_area_ext *sa_ext;
  487. void *ptr_start = ptr;
  488. int i;
  489. ptr = nt_prpsinfo(ptr);
  490. for (i = 0; i < dump_save_areas.count; i++) {
  491. sa_ext = dump_save_areas.areas[i];
  492. if (sa_ext->sa.pref_reg == 0)
  493. continue;
  494. ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
  495. }
  496. ptr = nt_vmcoreinfo(ptr);
  497. memset(phdr, 0, sizeof(*phdr));
  498. phdr->p_type = PT_NOTE;
  499. phdr->p_offset = notes_offset;
  500. phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
  501. phdr->p_memsz = phdr->p_filesz;
  502. return ptr;
  503. }
  504. /*
  505. * Create ELF core header (new kernel)
  506. */
  507. int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
  508. {
  509. Elf64_Phdr *phdr_notes, *phdr_loads;
  510. int mem_chunk_cnt;
  511. void *ptr, *hdr;
  512. u32 alloc_size;
  513. u64 hdr_off;
  514. /* If we are not in kdump or zfcpdump mode return */
  515. if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
  516. return 0;
  517. /* If elfcorehdr= has been passed via cmdline, we use that one */
  518. if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
  519. return 0;
  520. /* If we cannot get HSA size for zfcpdump return error */
  521. if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
  522. return -ENODEV;
  523. /* For kdump, exclude previous crashkernel memory */
  524. if (OLDMEM_BASE) {
  525. oldmem_region.base = OLDMEM_BASE;
  526. oldmem_region.size = OLDMEM_SIZE;
  527. oldmem_type.total_size = OLDMEM_SIZE;
  528. }
  529. mem_chunk_cnt = get_mem_chunk_cnt();
  530. alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
  531. mem_chunk_cnt * sizeof(Elf64_Phdr);
  532. hdr = kzalloc_panic(alloc_size);
  533. /* Init elf header */
  534. ptr = ehdr_init(hdr, mem_chunk_cnt);
  535. /* Init program headers */
  536. phdr_notes = ptr;
  537. ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
  538. phdr_loads = ptr;
  539. ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
  540. /* Init notes */
  541. hdr_off = PTR_DIFF(ptr, hdr);
  542. ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
  543. /* Init loads */
  544. hdr_off = PTR_DIFF(ptr, hdr);
  545. loads_init(phdr_loads, hdr_off);
  546. *addr = (unsigned long long) hdr;
  547. elfcorehdr_newmem = hdr;
  548. *size = (unsigned long long) hdr_off;
  549. BUG_ON(elfcorehdr_size > alloc_size);
  550. return 0;
  551. }
  552. /*
  553. * Free ELF core header (new kernel)
  554. */
  555. void elfcorehdr_free(unsigned long long addr)
  556. {
  557. if (!elfcorehdr_newmem)
  558. return;
  559. kfree((void *)(unsigned long)addr);
  560. }
  561. /*
  562. * Read from ELF header
  563. */
  564. ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
  565. {
  566. void *src = (void *)(unsigned long)*ppos;
  567. src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
  568. memcpy(buf, src, count);
  569. *ppos += count;
  570. return count;
  571. }
  572. /*
  573. * Read from ELF notes data
  574. */
  575. ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
  576. {
  577. void *src = (void *)(unsigned long)*ppos;
  578. int rc;
  579. if (elfcorehdr_newmem) {
  580. memcpy(buf, src, count);
  581. } else {
  582. rc = copy_from_oldmem(buf, src, count);
  583. if (rc)
  584. return rc;
  585. }
  586. *ppos += count;
  587. return count;
  588. }