setup.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160
  1. /*
  2. * linux/arch/arm/kernel/setup.c
  3. *
  4. * Copyright (C) 1995-2001 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/export.h>
  11. #include <linux/kernel.h>
  12. #include <linux/stddef.h>
  13. #include <linux/ioport.h>
  14. #include <linux/delay.h>
  15. #include <linux/utsname.h>
  16. #include <linux/initrd.h>
  17. #include <linux/console.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/screen_info.h>
  21. #include <linux/of_iommu.h>
  22. #include <linux/of_platform.h>
  23. #include <linux/init.h>
  24. #include <linux/kexec.h>
  25. #include <linux/of_fdt.h>
  26. #include <linux/cpu.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/smp.h>
  29. #include <linux/proc_fs.h>
  30. #include <linux/memblock.h>
  31. #include <linux/bug.h>
  32. #include <linux/compiler.h>
  33. #include <linux/sort.h>
  34. #include <asm/unified.h>
  35. #include <asm/cp15.h>
  36. #include <asm/cpu.h>
  37. #include <asm/cputype.h>
  38. #include <asm/elf.h>
  39. #include <asm/procinfo.h>
  40. #include <asm/psci.h>
  41. #include <asm/sections.h>
  42. #include <asm/setup.h>
  43. #include <asm/smp_plat.h>
  44. #include <asm/mach-types.h>
  45. #include <asm/cacheflush.h>
  46. #include <asm/cachetype.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/xen/hypervisor.h>
  49. #include <asm/prom.h>
  50. #include <asm/mach/arch.h>
  51. #include <asm/mach/irq.h>
  52. #include <asm/mach/time.h>
  53. #include <asm/system_info.h>
  54. #include <asm/system_misc.h>
  55. #include <asm/traps.h>
  56. #include <asm/unwind.h>
  57. #include <asm/memblock.h>
  58. #include <asm/virt.h>
  59. #include "atags.h"
  60. #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
  61. char fpe_type[8];
  62. static int __init fpe_setup(char *line)
  63. {
  64. memcpy(fpe_type, line, 8);
  65. return 1;
  66. }
  67. __setup("fpe=", fpe_setup);
  68. #endif
  69. extern void init_default_cache_policy(unsigned long);
  70. extern void paging_init(const struct machine_desc *desc);
  71. extern void early_paging_init(const struct machine_desc *);
  72. extern void sanity_check_meminfo(void);
  73. extern enum reboot_mode reboot_mode;
  74. extern void setup_dma_zone(const struct machine_desc *desc);
  75. unsigned int processor_id;
  76. EXPORT_SYMBOL(processor_id);
  77. unsigned int __machine_arch_type __read_mostly;
  78. EXPORT_SYMBOL(__machine_arch_type);
  79. unsigned int cacheid __read_mostly;
  80. EXPORT_SYMBOL(cacheid);
  81. unsigned int __atags_pointer __initdata;
  82. unsigned int system_rev;
  83. EXPORT_SYMBOL(system_rev);
  84. const char *system_serial;
  85. EXPORT_SYMBOL(system_serial);
  86. unsigned int system_serial_low;
  87. EXPORT_SYMBOL(system_serial_low);
  88. unsigned int system_serial_high;
  89. EXPORT_SYMBOL(system_serial_high);
  90. unsigned int elf_hwcap __read_mostly;
  91. EXPORT_SYMBOL(elf_hwcap);
  92. unsigned int elf_hwcap2 __read_mostly;
  93. EXPORT_SYMBOL(elf_hwcap2);
  94. #ifdef MULTI_CPU
  95. struct processor processor __read_mostly;
  96. #endif
  97. #ifdef MULTI_TLB
  98. struct cpu_tlb_fns cpu_tlb __read_mostly;
  99. #endif
  100. #ifdef MULTI_USER
  101. struct cpu_user_fns cpu_user __read_mostly;
  102. #endif
  103. #ifdef MULTI_CACHE
  104. struct cpu_cache_fns cpu_cache __read_mostly;
  105. #endif
  106. #ifdef CONFIG_OUTER_CACHE
  107. struct outer_cache_fns outer_cache __read_mostly;
  108. EXPORT_SYMBOL(outer_cache);
  109. #endif
  110. /*
  111. * Cached cpu_architecture() result for use by assembler code.
  112. * C code should use the cpu_architecture() function instead of accessing this
  113. * variable directly.
  114. */
  115. int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
  116. struct stack {
  117. u32 irq[3];
  118. u32 abt[3];
  119. u32 und[3];
  120. u32 fiq[3];
  121. } ____cacheline_aligned;
  122. #ifndef CONFIG_CPU_V7M
  123. static struct stack stacks[NR_CPUS];
  124. #endif
  125. char elf_platform[ELF_PLATFORM_SIZE];
  126. EXPORT_SYMBOL(elf_platform);
  127. static const char *cpu_name;
  128. static const char *machine_name;
  129. static char __initdata cmd_line[COMMAND_LINE_SIZE];
  130. const struct machine_desc *machine_desc __initdata;
  131. static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
  132. #define ENDIANNESS ((char)endian_test.l)
  133. DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
  134. /*
  135. * Standard memory resources
  136. */
  137. static struct resource mem_res[] = {
  138. {
  139. .name = "Video RAM",
  140. .start = 0,
  141. .end = 0,
  142. .flags = IORESOURCE_MEM
  143. },
  144. {
  145. .name = "Kernel code",
  146. .start = 0,
  147. .end = 0,
  148. .flags = IORESOURCE_MEM
  149. },
  150. {
  151. .name = "Kernel data",
  152. .start = 0,
  153. .end = 0,
  154. .flags = IORESOURCE_MEM
  155. }
  156. };
  157. #define video_ram mem_res[0]
  158. #define kernel_code mem_res[1]
  159. #define kernel_data mem_res[2]
  160. static struct resource io_res[] = {
  161. {
  162. .name = "reserved",
  163. .start = 0x3bc,
  164. .end = 0x3be,
  165. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  166. },
  167. {
  168. .name = "reserved",
  169. .start = 0x378,
  170. .end = 0x37f,
  171. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  172. },
  173. {
  174. .name = "reserved",
  175. .start = 0x278,
  176. .end = 0x27f,
  177. .flags = IORESOURCE_IO | IORESOURCE_BUSY
  178. }
  179. };
  180. #define lp0 io_res[0]
  181. #define lp1 io_res[1]
  182. #define lp2 io_res[2]
  183. static const char *proc_arch[] = {
  184. "undefined/unknown",
  185. "3",
  186. "4",
  187. "4T",
  188. "5",
  189. "5T",
  190. "5TE",
  191. "5TEJ",
  192. "6TEJ",
  193. "7",
  194. "7M",
  195. "?(12)",
  196. "?(13)",
  197. "?(14)",
  198. "?(15)",
  199. "?(16)",
  200. "?(17)",
  201. };
  202. #ifdef CONFIG_CPU_V7M
  203. static int __get_cpu_architecture(void)
  204. {
  205. return CPU_ARCH_ARMv7M;
  206. }
  207. #else
  208. static int __get_cpu_architecture(void)
  209. {
  210. int cpu_arch;
  211. if ((read_cpuid_id() & 0x0008f000) == 0) {
  212. cpu_arch = CPU_ARCH_UNKNOWN;
  213. } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
  214. cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
  215. } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
  216. cpu_arch = (read_cpuid_id() >> 16) & 7;
  217. if (cpu_arch)
  218. cpu_arch += CPU_ARCH_ARMv3;
  219. } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  220. /* Revised CPUID format. Read the Memory Model Feature
  221. * Register 0 and check for VMSAv7 or PMSAv7 */
  222. unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0);
  223. if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
  224. (mmfr0 & 0x000000f0) >= 0x00000030)
  225. cpu_arch = CPU_ARCH_ARMv7;
  226. else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
  227. (mmfr0 & 0x000000f0) == 0x00000020)
  228. cpu_arch = CPU_ARCH_ARMv6;
  229. else
  230. cpu_arch = CPU_ARCH_UNKNOWN;
  231. } else
  232. cpu_arch = CPU_ARCH_UNKNOWN;
  233. return cpu_arch;
  234. }
  235. #endif
  236. int __pure cpu_architecture(void)
  237. {
  238. BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
  239. return __cpu_architecture;
  240. }
  241. static int cpu_has_aliasing_icache(unsigned int arch)
  242. {
  243. int aliasing_icache;
  244. unsigned int id_reg, num_sets, line_size;
  245. /* PIPT caches never alias. */
  246. if (icache_is_pipt())
  247. return 0;
  248. /* arch specifies the register format */
  249. switch (arch) {
  250. case CPU_ARCH_ARMv7:
  251. asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
  252. : /* No output operands */
  253. : "r" (1));
  254. isb();
  255. asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
  256. : "=r" (id_reg));
  257. line_size = 4 << ((id_reg & 0x7) + 2);
  258. num_sets = ((id_reg >> 13) & 0x7fff) + 1;
  259. aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
  260. break;
  261. case CPU_ARCH_ARMv6:
  262. aliasing_icache = read_cpuid_cachetype() & (1 << 11);
  263. break;
  264. default:
  265. /* I-cache aliases will be handled by D-cache aliasing code */
  266. aliasing_icache = 0;
  267. }
  268. return aliasing_icache;
  269. }
  270. static void __init cacheid_init(void)
  271. {
  272. unsigned int arch = cpu_architecture();
  273. if (arch == CPU_ARCH_ARMv7M) {
  274. cacheid = 0;
  275. } else if (arch >= CPU_ARCH_ARMv6) {
  276. unsigned int cachetype = read_cpuid_cachetype();
  277. if ((cachetype & (7 << 29)) == 4 << 29) {
  278. /* ARMv7 register format */
  279. arch = CPU_ARCH_ARMv7;
  280. cacheid = CACHEID_VIPT_NONALIASING;
  281. switch (cachetype & (3 << 14)) {
  282. case (1 << 14):
  283. cacheid |= CACHEID_ASID_TAGGED;
  284. break;
  285. case (3 << 14):
  286. cacheid |= CACHEID_PIPT;
  287. break;
  288. }
  289. } else {
  290. arch = CPU_ARCH_ARMv6;
  291. if (cachetype & (1 << 23))
  292. cacheid = CACHEID_VIPT_ALIASING;
  293. else
  294. cacheid = CACHEID_VIPT_NONALIASING;
  295. }
  296. if (cpu_has_aliasing_icache(arch))
  297. cacheid |= CACHEID_VIPT_I_ALIASING;
  298. } else {
  299. cacheid = CACHEID_VIVT;
  300. }
  301. pr_info("CPU: %s data cache, %s instruction cache\n",
  302. cache_is_vivt() ? "VIVT" :
  303. cache_is_vipt_aliasing() ? "VIPT aliasing" :
  304. cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
  305. cache_is_vivt() ? "VIVT" :
  306. icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
  307. icache_is_vipt_aliasing() ? "VIPT aliasing" :
  308. icache_is_pipt() ? "PIPT" :
  309. cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
  310. }
  311. /*
  312. * These functions re-use the assembly code in head.S, which
  313. * already provide the required functionality.
  314. */
  315. extern struct proc_info_list *lookup_processor_type(unsigned int);
  316. void __init early_print(const char *str, ...)
  317. {
  318. extern void printascii(const char *);
  319. char buf[256];
  320. va_list ap;
  321. va_start(ap, str);
  322. vsnprintf(buf, sizeof(buf), str, ap);
  323. va_end(ap);
  324. #ifdef CONFIG_DEBUG_LL
  325. printascii(buf);
  326. #endif
  327. printk("%s", buf);
  328. }
  329. static void __init cpuid_init_hwcaps(void)
  330. {
  331. int block;
  332. u32 isar5;
  333. if (cpu_architecture() < CPU_ARCH_ARMv7)
  334. return;
  335. block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24);
  336. if (block >= 2)
  337. elf_hwcap |= HWCAP_IDIVA;
  338. if (block >= 1)
  339. elf_hwcap |= HWCAP_IDIVT;
  340. /* LPAE implies atomic ldrd/strd instructions */
  341. block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0);
  342. if (block >= 5)
  343. elf_hwcap |= HWCAP_LPAE;
  344. /* check for supported v8 Crypto instructions */
  345. isar5 = read_cpuid_ext(CPUID_EXT_ISAR5);
  346. block = cpuid_feature_extract_field(isar5, 4);
  347. if (block >= 2)
  348. elf_hwcap2 |= HWCAP2_PMULL;
  349. if (block >= 1)
  350. elf_hwcap2 |= HWCAP2_AES;
  351. block = cpuid_feature_extract_field(isar5, 8);
  352. if (block >= 1)
  353. elf_hwcap2 |= HWCAP2_SHA1;
  354. block = cpuid_feature_extract_field(isar5, 12);
  355. if (block >= 1)
  356. elf_hwcap2 |= HWCAP2_SHA2;
  357. block = cpuid_feature_extract_field(isar5, 16);
  358. if (block >= 1)
  359. elf_hwcap2 |= HWCAP2_CRC32;
  360. }
  361. static void __init elf_hwcap_fixup(void)
  362. {
  363. unsigned id = read_cpuid_id();
  364. /*
  365. * HWCAP_TLS is available only on 1136 r1p0 and later,
  366. * see also kuser_get_tls_init.
  367. */
  368. if (read_cpuid_part() == ARM_CPU_PART_ARM1136 &&
  369. ((id >> 20) & 3) == 0) {
  370. elf_hwcap &= ~HWCAP_TLS;
  371. return;
  372. }
  373. /* Verify if CPUID scheme is implemented */
  374. if ((id & 0x000f0000) != 0x000f0000)
  375. return;
  376. /*
  377. * If the CPU supports LDREX/STREX and LDREXB/STREXB,
  378. * avoid advertising SWP; it may not be atomic with
  379. * multiprocessing cores.
  380. */
  381. if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 ||
  382. (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 &&
  383. cpuid_feature_extract(CPUID_EXT_ISAR3, 20) >= 3))
  384. elf_hwcap &= ~HWCAP_SWP;
  385. }
  386. /*
  387. * cpu_init - initialise one CPU.
  388. *
  389. * cpu_init sets up the per-CPU stacks.
  390. */
  391. void notrace cpu_init(void)
  392. {
  393. #ifndef CONFIG_CPU_V7M
  394. unsigned int cpu = smp_processor_id();
  395. struct stack *stk = &stacks[cpu];
  396. if (cpu >= NR_CPUS) {
  397. pr_crit("CPU%u: bad primary CPU number\n", cpu);
  398. BUG();
  399. }
  400. /*
  401. * This only works on resume and secondary cores. For booting on the
  402. * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
  403. */
  404. set_my_cpu_offset(per_cpu_offset(cpu));
  405. cpu_proc_init();
  406. /*
  407. * Define the placement constraint for the inline asm directive below.
  408. * In Thumb-2, msr with an immediate value is not allowed.
  409. */
  410. #ifdef CONFIG_THUMB2_KERNEL
  411. #define PLC "r"
  412. #else
  413. #define PLC "I"
  414. #endif
  415. /*
  416. * setup stacks for re-entrant exception handlers
  417. */
  418. __asm__ (
  419. "msr cpsr_c, %1\n\t"
  420. "add r14, %0, %2\n\t"
  421. "mov sp, r14\n\t"
  422. "msr cpsr_c, %3\n\t"
  423. "add r14, %0, %4\n\t"
  424. "mov sp, r14\n\t"
  425. "msr cpsr_c, %5\n\t"
  426. "add r14, %0, %6\n\t"
  427. "mov sp, r14\n\t"
  428. "msr cpsr_c, %7\n\t"
  429. "add r14, %0, %8\n\t"
  430. "mov sp, r14\n\t"
  431. "msr cpsr_c, %9"
  432. :
  433. : "r" (stk),
  434. PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
  435. "I" (offsetof(struct stack, irq[0])),
  436. PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
  437. "I" (offsetof(struct stack, abt[0])),
  438. PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
  439. "I" (offsetof(struct stack, und[0])),
  440. PLC (PSR_F_BIT | PSR_I_BIT | FIQ_MODE),
  441. "I" (offsetof(struct stack, fiq[0])),
  442. PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
  443. : "r14");
  444. #endif
  445. }
  446. u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
  447. void __init smp_setup_processor_id(void)
  448. {
  449. int i;
  450. u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
  451. u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
  452. cpu_logical_map(0) = cpu;
  453. for (i = 1; i < nr_cpu_ids; ++i)
  454. cpu_logical_map(i) = i == cpu ? 0 : i;
  455. /*
  456. * clear __my_cpu_offset on boot CPU to avoid hang caused by
  457. * using percpu variable early, for example, lockdep will
  458. * access percpu variable inside lock_release
  459. */
  460. set_my_cpu_offset(0);
  461. pr_info("Booting Linux on physical CPU 0x%x\n", mpidr);
  462. }
  463. struct mpidr_hash mpidr_hash;
  464. #ifdef CONFIG_SMP
  465. /**
  466. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  467. * level in order to build a linear index from an
  468. * MPIDR value. Resulting algorithm is a collision
  469. * free hash carried out through shifting and ORing
  470. */
  471. static void __init smp_build_mpidr_hash(void)
  472. {
  473. u32 i, affinity;
  474. u32 fs[3], bits[3], ls, mask = 0;
  475. /*
  476. * Pre-scan the list of MPIDRS and filter out bits that do
  477. * not contribute to affinity levels, ie they never toggle.
  478. */
  479. for_each_possible_cpu(i)
  480. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  481. pr_debug("mask of set bits 0x%x\n", mask);
  482. /*
  483. * Find and stash the last and first bit set at all affinity levels to
  484. * check how many bits are required to represent them.
  485. */
  486. for (i = 0; i < 3; i++) {
  487. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  488. /*
  489. * Find the MSB bit and LSB bits position
  490. * to determine how many bits are required
  491. * to express the affinity level.
  492. */
  493. ls = fls(affinity);
  494. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  495. bits[i] = ls - fs[i];
  496. }
  497. /*
  498. * An index can be created from the MPIDR by isolating the
  499. * significant bits at each affinity level and by shifting
  500. * them in order to compress the 24 bits values space to a
  501. * compressed set of values. This is equivalent to hashing
  502. * the MPIDR through shifting and ORing. It is a collision free
  503. * hash though not minimal since some levels might contain a number
  504. * of CPUs that is not an exact power of 2 and their bit
  505. * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
  506. */
  507. mpidr_hash.shift_aff[0] = fs[0];
  508. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
  509. mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
  510. (bits[1] + bits[0]);
  511. mpidr_hash.mask = mask;
  512. mpidr_hash.bits = bits[2] + bits[1] + bits[0];
  513. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
  514. mpidr_hash.shift_aff[0],
  515. mpidr_hash.shift_aff[1],
  516. mpidr_hash.shift_aff[2],
  517. mpidr_hash.mask,
  518. mpidr_hash.bits);
  519. /*
  520. * 4x is an arbitrary value used to warn on a hash table much bigger
  521. * than expected on most systems.
  522. */
  523. if (mpidr_hash_size() > 4 * num_possible_cpus())
  524. pr_warn("Large number of MPIDR hash buckets detected\n");
  525. sync_cache_w(&mpidr_hash);
  526. }
  527. #endif
  528. static void __init setup_processor(void)
  529. {
  530. struct proc_info_list *list;
  531. /*
  532. * locate processor in the list of supported processor
  533. * types. The linker builds this table for us from the
  534. * entries in arch/arm/mm/proc-*.S
  535. */
  536. list = lookup_processor_type(read_cpuid_id());
  537. if (!list) {
  538. pr_err("CPU configuration botched (ID %08x), unable to continue.\n",
  539. read_cpuid_id());
  540. while (1);
  541. }
  542. cpu_name = list->cpu_name;
  543. __cpu_architecture = __get_cpu_architecture();
  544. #ifdef MULTI_CPU
  545. processor = *list->proc;
  546. #endif
  547. #ifdef MULTI_TLB
  548. cpu_tlb = *list->tlb;
  549. #endif
  550. #ifdef MULTI_USER
  551. cpu_user = *list->user;
  552. #endif
  553. #ifdef MULTI_CACHE
  554. cpu_cache = *list->cache;
  555. #endif
  556. pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
  557. cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
  558. proc_arch[cpu_architecture()], get_cr());
  559. snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
  560. list->arch_name, ENDIANNESS);
  561. snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
  562. list->elf_name, ENDIANNESS);
  563. elf_hwcap = list->elf_hwcap;
  564. cpuid_init_hwcaps();
  565. #ifndef CONFIG_ARM_THUMB
  566. elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
  567. #endif
  568. #ifdef CONFIG_MMU
  569. init_default_cache_policy(list->__cpu_mm_mmu_flags);
  570. #endif
  571. erratum_a15_798181_init();
  572. elf_hwcap_fixup();
  573. cacheid_init();
  574. cpu_init();
  575. }
  576. void __init dump_machine_table(void)
  577. {
  578. const struct machine_desc *p;
  579. early_print("Available machine support:\n\nID (hex)\tNAME\n");
  580. for_each_machine_desc(p)
  581. early_print("%08x\t%s\n", p->nr, p->name);
  582. early_print("\nPlease check your kernel config and/or bootloader.\n");
  583. while (true)
  584. /* can't use cpu_relax() here as it may require MMU setup */;
  585. }
  586. int __init arm_add_memory(u64 start, u64 size)
  587. {
  588. u64 aligned_start;
  589. /*
  590. * Ensure that start/size are aligned to a page boundary.
  591. * Size is rounded down, start is rounded up.
  592. */
  593. aligned_start = PAGE_ALIGN(start);
  594. if (aligned_start > start + size)
  595. size = 0;
  596. else
  597. size -= aligned_start - start;
  598. #ifndef CONFIG_ARCH_PHYS_ADDR_T_64BIT
  599. if (aligned_start > ULONG_MAX) {
  600. pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
  601. (long long)start);
  602. return -EINVAL;
  603. }
  604. if (aligned_start + size > ULONG_MAX) {
  605. pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
  606. (long long)start);
  607. /*
  608. * To ensure bank->start + bank->size is representable in
  609. * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
  610. * This means we lose a page after masking.
  611. */
  612. size = ULONG_MAX - aligned_start;
  613. }
  614. #endif
  615. if (aligned_start < PHYS_OFFSET) {
  616. if (aligned_start + size <= PHYS_OFFSET) {
  617. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  618. aligned_start, aligned_start + size);
  619. return -EINVAL;
  620. }
  621. pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
  622. aligned_start, (u64)PHYS_OFFSET);
  623. size -= PHYS_OFFSET - aligned_start;
  624. aligned_start = PHYS_OFFSET;
  625. }
  626. start = aligned_start;
  627. size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
  628. /*
  629. * Check whether this memory region has non-zero size or
  630. * invalid node number.
  631. */
  632. if (size == 0)
  633. return -EINVAL;
  634. memblock_add(start, size);
  635. return 0;
  636. }
  637. /*
  638. * Pick out the memory size. We look for mem=size@start,
  639. * where start and size are "size[KkMm]"
  640. */
  641. static int __init early_mem(char *p)
  642. {
  643. static int usermem __initdata = 0;
  644. u64 size;
  645. u64 start;
  646. char *endp;
  647. /*
  648. * If the user specifies memory size, we
  649. * blow away any automatically generated
  650. * size.
  651. */
  652. if (usermem == 0) {
  653. usermem = 1;
  654. memblock_remove(memblock_start_of_DRAM(),
  655. memblock_end_of_DRAM() - memblock_start_of_DRAM());
  656. }
  657. start = PHYS_OFFSET;
  658. size = memparse(p, &endp);
  659. if (*endp == '@')
  660. start = memparse(endp + 1, NULL);
  661. arm_add_memory(start, size);
  662. return 0;
  663. }
  664. early_param("mem", early_mem);
  665. static void __init request_standard_resources(const struct machine_desc *mdesc)
  666. {
  667. struct memblock_region *region;
  668. struct resource *res;
  669. kernel_code.start = virt_to_phys(_text);
  670. kernel_code.end = virt_to_phys(_etext - 1);
  671. kernel_data.start = virt_to_phys(_sdata);
  672. kernel_data.end = virt_to_phys(_end - 1);
  673. for_each_memblock(memory, region) {
  674. res = memblock_virt_alloc(sizeof(*res), 0);
  675. res->name = "System RAM";
  676. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  677. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  678. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  679. request_resource(&iomem_resource, res);
  680. if (kernel_code.start >= res->start &&
  681. kernel_code.end <= res->end)
  682. request_resource(res, &kernel_code);
  683. if (kernel_data.start >= res->start &&
  684. kernel_data.end <= res->end)
  685. request_resource(res, &kernel_data);
  686. }
  687. if (mdesc->video_start) {
  688. video_ram.start = mdesc->video_start;
  689. video_ram.end = mdesc->video_end;
  690. request_resource(&iomem_resource, &video_ram);
  691. }
  692. /*
  693. * Some machines don't have the possibility of ever
  694. * possessing lp0, lp1 or lp2
  695. */
  696. if (mdesc->reserve_lp0)
  697. request_resource(&ioport_resource, &lp0);
  698. if (mdesc->reserve_lp1)
  699. request_resource(&ioport_resource, &lp1);
  700. if (mdesc->reserve_lp2)
  701. request_resource(&ioport_resource, &lp2);
  702. }
  703. #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
  704. struct screen_info screen_info = {
  705. .orig_video_lines = 30,
  706. .orig_video_cols = 80,
  707. .orig_video_mode = 0,
  708. .orig_video_ega_bx = 0,
  709. .orig_video_isVGA = 1,
  710. .orig_video_points = 8
  711. };
  712. #endif
  713. static int __init customize_machine(void)
  714. {
  715. /*
  716. * customizes platform devices, or adds new ones
  717. * On DT based machines, we fall back to populating the
  718. * machine from the device tree, if no callback is provided,
  719. * otherwise we would always need an init_machine callback.
  720. */
  721. of_iommu_init();
  722. if (machine_desc->init_machine)
  723. machine_desc->init_machine();
  724. #ifdef CONFIG_OF
  725. else
  726. of_platform_populate(NULL, of_default_bus_match_table,
  727. NULL, NULL);
  728. #endif
  729. return 0;
  730. }
  731. arch_initcall(customize_machine);
  732. static int __init init_machine_late(void)
  733. {
  734. struct device_node *root;
  735. int ret;
  736. if (machine_desc->init_late)
  737. machine_desc->init_late();
  738. root = of_find_node_by_path("/");
  739. if (root) {
  740. ret = of_property_read_string(root, "serial-number",
  741. &system_serial);
  742. if (ret)
  743. system_serial = NULL;
  744. }
  745. if (!system_serial)
  746. system_serial = kasprintf(GFP_KERNEL, "%08x%08x",
  747. system_serial_high,
  748. system_serial_low);
  749. return 0;
  750. }
  751. late_initcall(init_machine_late);
  752. #ifdef CONFIG_KEXEC
  753. static inline unsigned long long get_total_mem(void)
  754. {
  755. unsigned long total;
  756. total = max_low_pfn - min_low_pfn;
  757. return total << PAGE_SHIFT;
  758. }
  759. /**
  760. * reserve_crashkernel() - reserves memory are for crash kernel
  761. *
  762. * This function reserves memory area given in "crashkernel=" kernel command
  763. * line parameter. The memory reserved is used by a dump capture kernel when
  764. * primary kernel is crashing.
  765. */
  766. static void __init reserve_crashkernel(void)
  767. {
  768. unsigned long long crash_size, crash_base;
  769. unsigned long long total_mem;
  770. int ret;
  771. total_mem = get_total_mem();
  772. ret = parse_crashkernel(boot_command_line, total_mem,
  773. &crash_size, &crash_base);
  774. if (ret)
  775. return;
  776. ret = memblock_reserve(crash_base, crash_size);
  777. if (ret < 0) {
  778. pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
  779. (unsigned long)crash_base);
  780. return;
  781. }
  782. pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
  783. (unsigned long)(crash_size >> 20),
  784. (unsigned long)(crash_base >> 20),
  785. (unsigned long)(total_mem >> 20));
  786. crashk_res.start = crash_base;
  787. crashk_res.end = crash_base + crash_size - 1;
  788. insert_resource(&iomem_resource, &crashk_res);
  789. }
  790. #else
  791. static inline void reserve_crashkernel(void) {}
  792. #endif /* CONFIG_KEXEC */
  793. void __init hyp_mode_check(void)
  794. {
  795. #ifdef CONFIG_ARM_VIRT_EXT
  796. sync_boot_mode();
  797. if (is_hyp_mode_available()) {
  798. pr_info("CPU: All CPU(s) started in HYP mode.\n");
  799. pr_info("CPU: Virtualization extensions available.\n");
  800. } else if (is_hyp_mode_mismatched()) {
  801. pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
  802. __boot_cpu_mode & MODE_MASK);
  803. pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
  804. } else
  805. pr_info("CPU: All CPU(s) started in SVC mode.\n");
  806. #endif
  807. }
  808. void __init setup_arch(char **cmdline_p)
  809. {
  810. const struct machine_desc *mdesc;
  811. setup_processor();
  812. mdesc = setup_machine_fdt(__atags_pointer);
  813. if (!mdesc)
  814. mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
  815. machine_desc = mdesc;
  816. machine_name = mdesc->name;
  817. dump_stack_set_arch_desc("%s", mdesc->name);
  818. if (mdesc->reboot_mode != REBOOT_HARD)
  819. reboot_mode = mdesc->reboot_mode;
  820. init_mm.start_code = (unsigned long) _text;
  821. init_mm.end_code = (unsigned long) _etext;
  822. init_mm.end_data = (unsigned long) _edata;
  823. init_mm.brk = (unsigned long) _end;
  824. /* populate cmd_line too for later use, preserving boot_command_line */
  825. strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
  826. *cmdline_p = cmd_line;
  827. parse_early_param();
  828. #ifdef CONFIG_MMU
  829. early_paging_init(mdesc);
  830. #endif
  831. setup_dma_zone(mdesc);
  832. sanity_check_meminfo();
  833. arm_memblock_init(mdesc);
  834. paging_init(mdesc);
  835. request_standard_resources(mdesc);
  836. if (mdesc->restart)
  837. arm_pm_restart = mdesc->restart;
  838. unflatten_device_tree();
  839. arm_dt_init_cpu_maps();
  840. psci_init();
  841. xen_early_init();
  842. #ifdef CONFIG_SMP
  843. if (is_smp()) {
  844. if (!mdesc->smp_init || !mdesc->smp_init()) {
  845. if (psci_smp_available())
  846. smp_set_ops(&psci_smp_ops);
  847. else if (mdesc->smp)
  848. smp_set_ops(mdesc->smp);
  849. }
  850. smp_init_cpus();
  851. smp_build_mpidr_hash();
  852. }
  853. #endif
  854. if (!is_smp())
  855. hyp_mode_check();
  856. reserve_crashkernel();
  857. #ifdef CONFIG_MULTI_IRQ_HANDLER
  858. handle_arch_irq = mdesc->handle_irq;
  859. #endif
  860. #ifdef CONFIG_VT
  861. #if defined(CONFIG_VGA_CONSOLE)
  862. conswitchp = &vga_con;
  863. #elif defined(CONFIG_DUMMY_CONSOLE)
  864. conswitchp = &dummy_con;
  865. #endif
  866. #endif
  867. if (mdesc->init_early)
  868. mdesc->init_early();
  869. }
  870. static int __init topology_init(void)
  871. {
  872. int cpu;
  873. for_each_possible_cpu(cpu) {
  874. struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
  875. cpuinfo->cpu.hotpluggable = 1;
  876. register_cpu(&cpuinfo->cpu, cpu);
  877. }
  878. return 0;
  879. }
  880. subsys_initcall(topology_init);
  881. #ifdef CONFIG_HAVE_PROC_CPU
  882. static int __init proc_cpu_init(void)
  883. {
  884. struct proc_dir_entry *res;
  885. res = proc_mkdir("cpu", NULL);
  886. if (!res)
  887. return -ENOMEM;
  888. return 0;
  889. }
  890. fs_initcall(proc_cpu_init);
  891. #endif
  892. static const char *hwcap_str[] = {
  893. "swp",
  894. "half",
  895. "thumb",
  896. "26bit",
  897. "fastmult",
  898. "fpa",
  899. "vfp",
  900. "edsp",
  901. "java",
  902. "iwmmxt",
  903. "crunch",
  904. "thumbee",
  905. "neon",
  906. "vfpv3",
  907. "vfpv3d16",
  908. "tls",
  909. "vfpv4",
  910. "idiva",
  911. "idivt",
  912. "vfpd32",
  913. "lpae",
  914. "evtstrm",
  915. NULL
  916. };
  917. static const char *hwcap2_str[] = {
  918. "aes",
  919. "pmull",
  920. "sha1",
  921. "sha2",
  922. "crc32",
  923. NULL
  924. };
  925. static int c_show(struct seq_file *m, void *v)
  926. {
  927. int i, j;
  928. u32 cpuid;
  929. for_each_online_cpu(i) {
  930. /*
  931. * glibc reads /proc/cpuinfo to determine the number of
  932. * online processors, looking for lines beginning with
  933. * "processor". Give glibc what it expects.
  934. */
  935. seq_printf(m, "processor\t: %d\n", i);
  936. cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
  937. seq_printf(m, "model name\t: %s rev %d (%s)\n",
  938. cpu_name, cpuid & 15, elf_platform);
  939. #if defined(CONFIG_SMP)
  940. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  941. per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
  942. (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
  943. #else
  944. seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
  945. loops_per_jiffy / (500000/HZ),
  946. (loops_per_jiffy / (5000/HZ)) % 100);
  947. #endif
  948. /* dump out the processor features */
  949. seq_puts(m, "Features\t: ");
  950. for (j = 0; hwcap_str[j]; j++)
  951. if (elf_hwcap & (1 << j))
  952. seq_printf(m, "%s ", hwcap_str[j]);
  953. for (j = 0; hwcap2_str[j]; j++)
  954. if (elf_hwcap2 & (1 << j))
  955. seq_printf(m, "%s ", hwcap2_str[j]);
  956. seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
  957. seq_printf(m, "CPU architecture: %s\n",
  958. proc_arch[cpu_architecture()]);
  959. if ((cpuid & 0x0008f000) == 0x00000000) {
  960. /* pre-ARM7 */
  961. seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
  962. } else {
  963. if ((cpuid & 0x0008f000) == 0x00007000) {
  964. /* ARM7 */
  965. seq_printf(m, "CPU variant\t: 0x%02x\n",
  966. (cpuid >> 16) & 127);
  967. } else {
  968. /* post-ARM7 */
  969. seq_printf(m, "CPU variant\t: 0x%x\n",
  970. (cpuid >> 20) & 15);
  971. }
  972. seq_printf(m, "CPU part\t: 0x%03x\n",
  973. (cpuid >> 4) & 0xfff);
  974. }
  975. seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
  976. }
  977. seq_printf(m, "Hardware\t: %s\n", machine_name);
  978. seq_printf(m, "Revision\t: %04x\n", system_rev);
  979. seq_printf(m, "Serial\t\t: %s\n", system_serial);
  980. return 0;
  981. }
  982. static void *c_start(struct seq_file *m, loff_t *pos)
  983. {
  984. return *pos < 1 ? (void *)1 : NULL;
  985. }
  986. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  987. {
  988. ++*pos;
  989. return NULL;
  990. }
  991. static void c_stop(struct seq_file *m, void *v)
  992. {
  993. }
  994. const struct seq_operations cpuinfo_op = {
  995. .start = c_start,
  996. .next = c_next,
  997. .stop = c_stop,
  998. .show = c_show
  999. };