time.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/timekeeper_internal.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include "timeconst.h"
  42. #include "timekeeping.h"
  43. /*
  44. * The timezone where the local system is located. Used as a default by some
  45. * programs who obtain this value by using gettimeofday.
  46. */
  47. struct timezone sys_tz;
  48. EXPORT_SYMBOL(sys_tz);
  49. #ifdef __ARCH_WANT_SYS_TIME
  50. /*
  51. * sys_time() can be implemented in user-level using
  52. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  53. * why not move it into the appropriate arch directory (for those
  54. * architectures that need it).
  55. */
  56. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  57. {
  58. time_t i = get_seconds();
  59. if (tloc) {
  60. if (put_user(i,tloc))
  61. return -EFAULT;
  62. }
  63. force_successful_syscall_return();
  64. return i;
  65. }
  66. /*
  67. * sys_stime() can be implemented in user-level using
  68. * sys_settimeofday(). Is this for backwards compatibility? If so,
  69. * why not move it into the appropriate arch directory (for those
  70. * architectures that need it).
  71. */
  72. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  73. {
  74. struct timespec tv;
  75. int err;
  76. if (get_user(tv.tv_sec, tptr))
  77. return -EFAULT;
  78. tv.tv_nsec = 0;
  79. err = security_settime(&tv, NULL);
  80. if (err)
  81. return err;
  82. do_settimeofday(&tv);
  83. return 0;
  84. }
  85. #endif /* __ARCH_WANT_SYS_TIME */
  86. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  87. struct timezone __user *, tz)
  88. {
  89. if (likely(tv != NULL)) {
  90. struct timeval ktv;
  91. do_gettimeofday(&ktv);
  92. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  93. return -EFAULT;
  94. }
  95. if (unlikely(tz != NULL)) {
  96. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  97. return -EFAULT;
  98. }
  99. return 0;
  100. }
  101. /*
  102. * Indicates if there is an offset between the system clock and the hardware
  103. * clock/persistent clock/rtc.
  104. */
  105. int persistent_clock_is_local;
  106. /*
  107. * Adjust the time obtained from the CMOS to be UTC time instead of
  108. * local time.
  109. *
  110. * This is ugly, but preferable to the alternatives. Otherwise we
  111. * would either need to write a program to do it in /etc/rc (and risk
  112. * confusion if the program gets run more than once; it would also be
  113. * hard to make the program warp the clock precisely n hours) or
  114. * compile in the timezone information into the kernel. Bad, bad....
  115. *
  116. * - TYT, 1992-01-01
  117. *
  118. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  119. * as real UNIX machines always do it. This avoids all headaches about
  120. * daylight saving times and warping kernel clocks.
  121. */
  122. static inline void warp_clock(void)
  123. {
  124. if (sys_tz.tz_minuteswest != 0) {
  125. struct timespec adjust;
  126. persistent_clock_is_local = 1;
  127. adjust.tv_sec = sys_tz.tz_minuteswest * 60;
  128. adjust.tv_nsec = 0;
  129. timekeeping_inject_offset(&adjust);
  130. }
  131. }
  132. /*
  133. * In case for some reason the CMOS clock has not already been running
  134. * in UTC, but in some local time: The first time we set the timezone,
  135. * we will warp the clock so that it is ticking UTC time instead of
  136. * local time. Presumably, if someone is setting the timezone then we
  137. * are running in an environment where the programs understand about
  138. * timezones. This should be done at boot time in the /etc/rc script,
  139. * as soon as possible, so that the clock can be set right. Otherwise,
  140. * various programs will get confused when the clock gets warped.
  141. */
  142. int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
  143. {
  144. static int firsttime = 1;
  145. int error = 0;
  146. if (tv && !timespec_valid(tv))
  147. return -EINVAL;
  148. error = security_settime(tv, tz);
  149. if (error)
  150. return error;
  151. if (tz) {
  152. sys_tz = *tz;
  153. update_vsyscall_tz();
  154. if (firsttime) {
  155. firsttime = 0;
  156. if (!tv)
  157. warp_clock();
  158. }
  159. }
  160. if (tv)
  161. return do_settimeofday(tv);
  162. return 0;
  163. }
  164. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  165. struct timezone __user *, tz)
  166. {
  167. struct timeval user_tv;
  168. struct timespec new_ts;
  169. struct timezone new_tz;
  170. if (tv) {
  171. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  172. return -EFAULT;
  173. new_ts.tv_sec = user_tv.tv_sec;
  174. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  175. }
  176. if (tz) {
  177. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  178. return -EFAULT;
  179. }
  180. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  181. }
  182. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  183. {
  184. struct timex txc; /* Local copy of parameter */
  185. int ret;
  186. /* Copy the user data space into the kernel copy
  187. * structure. But bear in mind that the structures
  188. * may change
  189. */
  190. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  191. return -EFAULT;
  192. ret = do_adjtimex(&txc);
  193. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  194. }
  195. /**
  196. * current_fs_time - Return FS time
  197. * @sb: Superblock.
  198. *
  199. * Return the current time truncated to the time granularity supported by
  200. * the fs.
  201. */
  202. struct timespec current_fs_time(struct super_block *sb)
  203. {
  204. struct timespec now = current_kernel_time();
  205. return timespec_trunc(now, sb->s_time_gran);
  206. }
  207. EXPORT_SYMBOL(current_fs_time);
  208. /*
  209. * Convert jiffies to milliseconds and back.
  210. *
  211. * Avoid unnecessary multiplications/divisions in the
  212. * two most common HZ cases:
  213. */
  214. unsigned int jiffies_to_msecs(const unsigned long j)
  215. {
  216. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  217. return (MSEC_PER_SEC / HZ) * j;
  218. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  219. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  220. #else
  221. # if BITS_PER_LONG == 32
  222. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  223. # else
  224. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  225. # endif
  226. #endif
  227. }
  228. EXPORT_SYMBOL(jiffies_to_msecs);
  229. unsigned int jiffies_to_usecs(const unsigned long j)
  230. {
  231. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  232. return (USEC_PER_SEC / HZ) * j;
  233. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  234. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  235. #else
  236. # if BITS_PER_LONG == 32
  237. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  238. # else
  239. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  240. # endif
  241. #endif
  242. }
  243. EXPORT_SYMBOL(jiffies_to_usecs);
  244. /**
  245. * timespec_trunc - Truncate timespec to a granularity
  246. * @t: Timespec
  247. * @gran: Granularity in ns.
  248. *
  249. * Truncate a timespec to a granularity. gran must be smaller than a second.
  250. * Always rounds down.
  251. *
  252. * This function should be only used for timestamps returned by
  253. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  254. * it doesn't handle the better resolution of the latter.
  255. */
  256. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  257. {
  258. /*
  259. * Division is pretty slow so avoid it for common cases.
  260. * Currently current_kernel_time() never returns better than
  261. * jiffies resolution. Exploit that.
  262. */
  263. if (gran <= jiffies_to_usecs(1) * 1000) {
  264. /* nothing */
  265. } else if (gran == 1000000000) {
  266. t.tv_nsec = 0;
  267. } else {
  268. t.tv_nsec -= t.tv_nsec % gran;
  269. }
  270. return t;
  271. }
  272. EXPORT_SYMBOL(timespec_trunc);
  273. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  274. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  275. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  276. *
  277. * [For the Julian calendar (which was used in Russia before 1917,
  278. * Britain & colonies before 1752, anywhere else before 1582,
  279. * and is still in use by some communities) leave out the
  280. * -year/100+year/400 terms, and add 10.]
  281. *
  282. * This algorithm was first published by Gauss (I think).
  283. *
  284. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  285. * machines where long is 32-bit! (However, as time_t is signed, we
  286. * will already get problems at other places on 2038-01-19 03:14:08)
  287. */
  288. unsigned long
  289. mktime(const unsigned int year0, const unsigned int mon0,
  290. const unsigned int day, const unsigned int hour,
  291. const unsigned int min, const unsigned int sec)
  292. {
  293. unsigned int mon = mon0, year = year0;
  294. /* 1..12 -> 11,12,1..10 */
  295. if (0 >= (int) (mon -= 2)) {
  296. mon += 12; /* Puts Feb last since it has leap day */
  297. year -= 1;
  298. }
  299. return ((((unsigned long)
  300. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  301. year*365 - 719499
  302. )*24 + hour /* now have hours */
  303. )*60 + min /* now have minutes */
  304. )*60 + sec; /* finally seconds */
  305. }
  306. EXPORT_SYMBOL(mktime);
  307. /**
  308. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  309. *
  310. * @ts: pointer to timespec variable to be set
  311. * @sec: seconds to set
  312. * @nsec: nanoseconds to set
  313. *
  314. * Set seconds and nanoseconds field of a timespec variable and
  315. * normalize to the timespec storage format
  316. *
  317. * Note: The tv_nsec part is always in the range of
  318. * 0 <= tv_nsec < NSEC_PER_SEC
  319. * For negative values only the tv_sec field is negative !
  320. */
  321. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  322. {
  323. while (nsec >= NSEC_PER_SEC) {
  324. /*
  325. * The following asm() prevents the compiler from
  326. * optimising this loop into a modulo operation. See
  327. * also __iter_div_u64_rem() in include/linux/time.h
  328. */
  329. asm("" : "+rm"(nsec));
  330. nsec -= NSEC_PER_SEC;
  331. ++sec;
  332. }
  333. while (nsec < 0) {
  334. asm("" : "+rm"(nsec));
  335. nsec += NSEC_PER_SEC;
  336. --sec;
  337. }
  338. ts->tv_sec = sec;
  339. ts->tv_nsec = nsec;
  340. }
  341. EXPORT_SYMBOL(set_normalized_timespec);
  342. /**
  343. * ns_to_timespec - Convert nanoseconds to timespec
  344. * @nsec: the nanoseconds value to be converted
  345. *
  346. * Returns the timespec representation of the nsec parameter.
  347. */
  348. struct timespec ns_to_timespec(const s64 nsec)
  349. {
  350. struct timespec ts;
  351. s32 rem;
  352. if (!nsec)
  353. return (struct timespec) {0, 0};
  354. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  355. if (unlikely(rem < 0)) {
  356. ts.tv_sec--;
  357. rem += NSEC_PER_SEC;
  358. }
  359. ts.tv_nsec = rem;
  360. return ts;
  361. }
  362. EXPORT_SYMBOL(ns_to_timespec);
  363. /**
  364. * ns_to_timeval - Convert nanoseconds to timeval
  365. * @nsec: the nanoseconds value to be converted
  366. *
  367. * Returns the timeval representation of the nsec parameter.
  368. */
  369. struct timeval ns_to_timeval(const s64 nsec)
  370. {
  371. struct timespec ts = ns_to_timespec(nsec);
  372. struct timeval tv;
  373. tv.tv_sec = ts.tv_sec;
  374. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  375. return tv;
  376. }
  377. EXPORT_SYMBOL(ns_to_timeval);
  378. #if BITS_PER_LONG == 32
  379. /**
  380. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  381. *
  382. * @ts: pointer to timespec variable to be set
  383. * @sec: seconds to set
  384. * @nsec: nanoseconds to set
  385. *
  386. * Set seconds and nanoseconds field of a timespec variable and
  387. * normalize to the timespec storage format
  388. *
  389. * Note: The tv_nsec part is always in the range of
  390. * 0 <= tv_nsec < NSEC_PER_SEC
  391. * For negative values only the tv_sec field is negative !
  392. */
  393. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  394. {
  395. while (nsec >= NSEC_PER_SEC) {
  396. /*
  397. * The following asm() prevents the compiler from
  398. * optimising this loop into a modulo operation. See
  399. * also __iter_div_u64_rem() in include/linux/time.h
  400. */
  401. asm("" : "+rm"(nsec));
  402. nsec -= NSEC_PER_SEC;
  403. ++sec;
  404. }
  405. while (nsec < 0) {
  406. asm("" : "+rm"(nsec));
  407. nsec += NSEC_PER_SEC;
  408. --sec;
  409. }
  410. ts->tv_sec = sec;
  411. ts->tv_nsec = nsec;
  412. }
  413. EXPORT_SYMBOL(set_normalized_timespec64);
  414. /**
  415. * ns_to_timespec64 - Convert nanoseconds to timespec64
  416. * @nsec: the nanoseconds value to be converted
  417. *
  418. * Returns the timespec64 representation of the nsec parameter.
  419. */
  420. struct timespec64 ns_to_timespec64(const s64 nsec)
  421. {
  422. struct timespec64 ts;
  423. s32 rem;
  424. if (!nsec)
  425. return (struct timespec64) {0, 0};
  426. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  427. if (unlikely(rem < 0)) {
  428. ts.tv_sec--;
  429. rem += NSEC_PER_SEC;
  430. }
  431. ts.tv_nsec = rem;
  432. return ts;
  433. }
  434. EXPORT_SYMBOL(ns_to_timespec64);
  435. #endif
  436. /*
  437. * When we convert to jiffies then we interpret incoming values
  438. * the following way:
  439. *
  440. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  441. *
  442. * - 'too large' values [that would result in larger than
  443. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  444. *
  445. * - all other values are converted to jiffies by either multiplying
  446. * the input value by a factor or dividing it with a factor
  447. *
  448. * We must also be careful about 32-bit overflows.
  449. */
  450. unsigned long msecs_to_jiffies(const unsigned int m)
  451. {
  452. /*
  453. * Negative value, means infinite timeout:
  454. */
  455. if ((int)m < 0)
  456. return MAX_JIFFY_OFFSET;
  457. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  458. /*
  459. * HZ is equal to or smaller than 1000, and 1000 is a nice
  460. * round multiple of HZ, divide with the factor between them,
  461. * but round upwards:
  462. */
  463. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  464. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  465. /*
  466. * HZ is larger than 1000, and HZ is a nice round multiple of
  467. * 1000 - simply multiply with the factor between them.
  468. *
  469. * But first make sure the multiplication result cannot
  470. * overflow:
  471. */
  472. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  473. return MAX_JIFFY_OFFSET;
  474. return m * (HZ / MSEC_PER_SEC);
  475. #else
  476. /*
  477. * Generic case - multiply, round and divide. But first
  478. * check that if we are doing a net multiplication, that
  479. * we wouldn't overflow:
  480. */
  481. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  482. return MAX_JIFFY_OFFSET;
  483. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  484. >> MSEC_TO_HZ_SHR32;
  485. #endif
  486. }
  487. EXPORT_SYMBOL(msecs_to_jiffies);
  488. unsigned long usecs_to_jiffies(const unsigned int u)
  489. {
  490. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  491. return MAX_JIFFY_OFFSET;
  492. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  493. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  494. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  495. return u * (HZ / USEC_PER_SEC);
  496. #else
  497. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  498. >> USEC_TO_HZ_SHR32;
  499. #endif
  500. }
  501. EXPORT_SYMBOL(usecs_to_jiffies);
  502. /*
  503. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  504. * that a remainder subtract here would not do the right thing as the
  505. * resolution values don't fall on second boundries. I.e. the line:
  506. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  507. *
  508. * Rather, we just shift the bits off the right.
  509. *
  510. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  511. * value to a scaled second value.
  512. */
  513. unsigned long
  514. timespec_to_jiffies(const struct timespec *value)
  515. {
  516. unsigned long sec = value->tv_sec;
  517. long nsec = value->tv_nsec + TICK_NSEC - 1;
  518. if (sec >= MAX_SEC_IN_JIFFIES){
  519. sec = MAX_SEC_IN_JIFFIES;
  520. nsec = 0;
  521. }
  522. return (((u64)sec * SEC_CONVERSION) +
  523. (((u64)nsec * NSEC_CONVERSION) >>
  524. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  525. }
  526. EXPORT_SYMBOL(timespec_to_jiffies);
  527. void
  528. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  529. {
  530. /*
  531. * Convert jiffies to nanoseconds and separate with
  532. * one divide.
  533. */
  534. u32 rem;
  535. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  536. NSEC_PER_SEC, &rem);
  537. value->tv_nsec = rem;
  538. }
  539. EXPORT_SYMBOL(jiffies_to_timespec);
  540. /* Same for "timeval"
  541. *
  542. * Well, almost. The problem here is that the real system resolution is
  543. * in nanoseconds and the value being converted is in micro seconds.
  544. * Also for some machines (those that use HZ = 1024, in-particular),
  545. * there is a LARGE error in the tick size in microseconds.
  546. * The solution we use is to do the rounding AFTER we convert the
  547. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  548. * Instruction wise, this should cost only an additional add with carry
  549. * instruction above the way it was done above.
  550. */
  551. unsigned long
  552. timeval_to_jiffies(const struct timeval *value)
  553. {
  554. unsigned long sec = value->tv_sec;
  555. long usec = value->tv_usec;
  556. if (sec >= MAX_SEC_IN_JIFFIES){
  557. sec = MAX_SEC_IN_JIFFIES;
  558. usec = 0;
  559. }
  560. return (((u64)sec * SEC_CONVERSION) +
  561. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  562. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  563. }
  564. EXPORT_SYMBOL(timeval_to_jiffies);
  565. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  566. {
  567. /*
  568. * Convert jiffies to nanoseconds and separate with
  569. * one divide.
  570. */
  571. u32 rem;
  572. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  573. NSEC_PER_SEC, &rem);
  574. value->tv_usec = rem / NSEC_PER_USEC;
  575. }
  576. EXPORT_SYMBOL(jiffies_to_timeval);
  577. /*
  578. * Convert jiffies/jiffies_64 to clock_t and back.
  579. */
  580. clock_t jiffies_to_clock_t(unsigned long x)
  581. {
  582. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  583. # if HZ < USER_HZ
  584. return x * (USER_HZ / HZ);
  585. # else
  586. return x / (HZ / USER_HZ);
  587. # endif
  588. #else
  589. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  590. #endif
  591. }
  592. EXPORT_SYMBOL(jiffies_to_clock_t);
  593. unsigned long clock_t_to_jiffies(unsigned long x)
  594. {
  595. #if (HZ % USER_HZ)==0
  596. if (x >= ~0UL / (HZ / USER_HZ))
  597. return ~0UL;
  598. return x * (HZ / USER_HZ);
  599. #else
  600. /* Don't worry about loss of precision here .. */
  601. if (x >= ~0UL / HZ * USER_HZ)
  602. return ~0UL;
  603. /* .. but do try to contain it here */
  604. return div_u64((u64)x * HZ, USER_HZ);
  605. #endif
  606. }
  607. EXPORT_SYMBOL(clock_t_to_jiffies);
  608. u64 jiffies_64_to_clock_t(u64 x)
  609. {
  610. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  611. # if HZ < USER_HZ
  612. x = div_u64(x * USER_HZ, HZ);
  613. # elif HZ > USER_HZ
  614. x = div_u64(x, HZ / USER_HZ);
  615. # else
  616. /* Nothing to do */
  617. # endif
  618. #else
  619. /*
  620. * There are better ways that don't overflow early,
  621. * but even this doesn't overflow in hundreds of years
  622. * in 64 bits, so..
  623. */
  624. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  625. #endif
  626. return x;
  627. }
  628. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  629. u64 nsec_to_clock_t(u64 x)
  630. {
  631. #if (NSEC_PER_SEC % USER_HZ) == 0
  632. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  633. #elif (USER_HZ % 512) == 0
  634. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  635. #else
  636. /*
  637. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  638. * overflow after 64.99 years.
  639. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  640. */
  641. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  642. #endif
  643. }
  644. /**
  645. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  646. *
  647. * @n: nsecs in u64
  648. *
  649. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  650. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  651. * for scheduler, not for use in device drivers to calculate timeout value.
  652. *
  653. * note:
  654. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  655. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  656. */
  657. u64 nsecs_to_jiffies64(u64 n)
  658. {
  659. #if (NSEC_PER_SEC % HZ) == 0
  660. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  661. return div_u64(n, NSEC_PER_SEC / HZ);
  662. #elif (HZ % 512) == 0
  663. /* overflow after 292 years if HZ = 1024 */
  664. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  665. #else
  666. /*
  667. * Generic case - optimized for cases where HZ is a multiple of 3.
  668. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  669. */
  670. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  671. #endif
  672. }
  673. /**
  674. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  675. *
  676. * @n: nsecs in u64
  677. *
  678. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  679. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  680. * for scheduler, not for use in device drivers to calculate timeout value.
  681. *
  682. * note:
  683. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  684. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  685. */
  686. unsigned long nsecs_to_jiffies(u64 n)
  687. {
  688. return (unsigned long)nsecs_to_jiffies64(n);
  689. }
  690. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  691. /*
  692. * Add two timespec values and do a safety check for overflow.
  693. * It's assumed that both values are valid (>= 0)
  694. */
  695. struct timespec timespec_add_safe(const struct timespec lhs,
  696. const struct timespec rhs)
  697. {
  698. struct timespec res;
  699. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  700. lhs.tv_nsec + rhs.tv_nsec);
  701. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  702. res.tv_sec = TIME_T_MAX;
  703. return res;
  704. }