namespace.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/init.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include <linux/proc_ns.h>
  23. #include <linux/magic.h>
  24. #include <linux/bootmem.h>
  25. #include "pnode.h"
  26. #include "internal.h"
  27. static unsigned int m_hash_mask __read_mostly;
  28. static unsigned int m_hash_shift __read_mostly;
  29. static unsigned int mp_hash_mask __read_mostly;
  30. static unsigned int mp_hash_shift __read_mostly;
  31. static __initdata unsigned long mhash_entries;
  32. static int __init set_mhash_entries(char *str)
  33. {
  34. if (!str)
  35. return 0;
  36. mhash_entries = simple_strtoul(str, &str, 0);
  37. return 1;
  38. }
  39. __setup("mhash_entries=", set_mhash_entries);
  40. static __initdata unsigned long mphash_entries;
  41. static int __init set_mphash_entries(char *str)
  42. {
  43. if (!str)
  44. return 0;
  45. mphash_entries = simple_strtoul(str, &str, 0);
  46. return 1;
  47. }
  48. __setup("mphash_entries=", set_mphash_entries);
  49. static u64 event;
  50. static DEFINE_IDA(mnt_id_ida);
  51. static DEFINE_IDA(mnt_group_ida);
  52. static DEFINE_SPINLOCK(mnt_id_lock);
  53. static int mnt_id_start = 0;
  54. static int mnt_group_start = 1;
  55. static struct hlist_head *mount_hashtable __read_mostly;
  56. static struct hlist_head *mountpoint_hashtable __read_mostly;
  57. static struct kmem_cache *mnt_cache __read_mostly;
  58. static DECLARE_RWSEM(namespace_sem);
  59. /* /sys/fs */
  60. struct kobject *fs_kobj;
  61. EXPORT_SYMBOL_GPL(fs_kobj);
  62. /*
  63. * vfsmount lock may be taken for read to prevent changes to the
  64. * vfsmount hash, ie. during mountpoint lookups or walking back
  65. * up the tree.
  66. *
  67. * It should be taken for write in all cases where the vfsmount
  68. * tree or hash is modified or when a vfsmount structure is modified.
  69. */
  70. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  71. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  72. {
  73. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  74. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  75. tmp = tmp + (tmp >> m_hash_shift);
  76. return &mount_hashtable[tmp & m_hash_mask];
  77. }
  78. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  79. {
  80. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  81. tmp = tmp + (tmp >> mp_hash_shift);
  82. return &mountpoint_hashtable[tmp & mp_hash_mask];
  83. }
  84. /*
  85. * allocation is serialized by namespace_sem, but we need the spinlock to
  86. * serialize with freeing.
  87. */
  88. static int mnt_alloc_id(struct mount *mnt)
  89. {
  90. int res;
  91. retry:
  92. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  93. spin_lock(&mnt_id_lock);
  94. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  95. if (!res)
  96. mnt_id_start = mnt->mnt_id + 1;
  97. spin_unlock(&mnt_id_lock);
  98. if (res == -EAGAIN)
  99. goto retry;
  100. return res;
  101. }
  102. static void mnt_free_id(struct mount *mnt)
  103. {
  104. int id = mnt->mnt_id;
  105. spin_lock(&mnt_id_lock);
  106. ida_remove(&mnt_id_ida, id);
  107. if (mnt_id_start > id)
  108. mnt_id_start = id;
  109. spin_unlock(&mnt_id_lock);
  110. }
  111. /*
  112. * Allocate a new peer group ID
  113. *
  114. * mnt_group_ida is protected by namespace_sem
  115. */
  116. static int mnt_alloc_group_id(struct mount *mnt)
  117. {
  118. int res;
  119. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  120. return -ENOMEM;
  121. res = ida_get_new_above(&mnt_group_ida,
  122. mnt_group_start,
  123. &mnt->mnt_group_id);
  124. if (!res)
  125. mnt_group_start = mnt->mnt_group_id + 1;
  126. return res;
  127. }
  128. /*
  129. * Release a peer group ID
  130. */
  131. void mnt_release_group_id(struct mount *mnt)
  132. {
  133. int id = mnt->mnt_group_id;
  134. ida_remove(&mnt_group_ida, id);
  135. if (mnt_group_start > id)
  136. mnt_group_start = id;
  137. mnt->mnt_group_id = 0;
  138. }
  139. /*
  140. * vfsmount lock must be held for read
  141. */
  142. static inline void mnt_add_count(struct mount *mnt, int n)
  143. {
  144. #ifdef CONFIG_SMP
  145. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  146. #else
  147. preempt_disable();
  148. mnt->mnt_count += n;
  149. preempt_enable();
  150. #endif
  151. }
  152. /*
  153. * vfsmount lock must be held for write
  154. */
  155. unsigned int mnt_get_count(struct mount *mnt)
  156. {
  157. #ifdef CONFIG_SMP
  158. unsigned int count = 0;
  159. int cpu;
  160. for_each_possible_cpu(cpu) {
  161. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  162. }
  163. return count;
  164. #else
  165. return mnt->mnt_count;
  166. #endif
  167. }
  168. static struct mount *alloc_vfsmnt(const char *name)
  169. {
  170. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  171. if (mnt) {
  172. int err;
  173. err = mnt_alloc_id(mnt);
  174. if (err)
  175. goto out_free_cache;
  176. if (name) {
  177. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  178. if (!mnt->mnt_devname)
  179. goto out_free_id;
  180. }
  181. #ifdef CONFIG_SMP
  182. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  183. if (!mnt->mnt_pcp)
  184. goto out_free_devname;
  185. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  186. #else
  187. mnt->mnt_count = 1;
  188. mnt->mnt_writers = 0;
  189. #endif
  190. INIT_HLIST_NODE(&mnt->mnt_hash);
  191. INIT_LIST_HEAD(&mnt->mnt_child);
  192. INIT_LIST_HEAD(&mnt->mnt_mounts);
  193. INIT_LIST_HEAD(&mnt->mnt_list);
  194. INIT_LIST_HEAD(&mnt->mnt_expire);
  195. INIT_LIST_HEAD(&mnt->mnt_share);
  196. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  197. INIT_LIST_HEAD(&mnt->mnt_slave);
  198. #ifdef CONFIG_FSNOTIFY
  199. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  200. #endif
  201. }
  202. return mnt;
  203. #ifdef CONFIG_SMP
  204. out_free_devname:
  205. kfree(mnt->mnt_devname);
  206. #endif
  207. out_free_id:
  208. mnt_free_id(mnt);
  209. out_free_cache:
  210. kmem_cache_free(mnt_cache, mnt);
  211. return NULL;
  212. }
  213. /*
  214. * Most r/o checks on a fs are for operations that take
  215. * discrete amounts of time, like a write() or unlink().
  216. * We must keep track of when those operations start
  217. * (for permission checks) and when they end, so that
  218. * we can determine when writes are able to occur to
  219. * a filesystem.
  220. */
  221. /*
  222. * __mnt_is_readonly: check whether a mount is read-only
  223. * @mnt: the mount to check for its write status
  224. *
  225. * This shouldn't be used directly ouside of the VFS.
  226. * It does not guarantee that the filesystem will stay
  227. * r/w, just that it is right *now*. This can not and
  228. * should not be used in place of IS_RDONLY(inode).
  229. * mnt_want/drop_write() will _keep_ the filesystem
  230. * r/w.
  231. */
  232. int __mnt_is_readonly(struct vfsmount *mnt)
  233. {
  234. if (mnt->mnt_flags & MNT_READONLY)
  235. return 1;
  236. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  237. return 1;
  238. return 0;
  239. }
  240. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  241. static inline void mnt_inc_writers(struct mount *mnt)
  242. {
  243. #ifdef CONFIG_SMP
  244. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  245. #else
  246. mnt->mnt_writers++;
  247. #endif
  248. }
  249. static inline void mnt_dec_writers(struct mount *mnt)
  250. {
  251. #ifdef CONFIG_SMP
  252. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  253. #else
  254. mnt->mnt_writers--;
  255. #endif
  256. }
  257. static unsigned int mnt_get_writers(struct mount *mnt)
  258. {
  259. #ifdef CONFIG_SMP
  260. unsigned int count = 0;
  261. int cpu;
  262. for_each_possible_cpu(cpu) {
  263. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  264. }
  265. return count;
  266. #else
  267. return mnt->mnt_writers;
  268. #endif
  269. }
  270. static int mnt_is_readonly(struct vfsmount *mnt)
  271. {
  272. if (mnt->mnt_sb->s_readonly_remount)
  273. return 1;
  274. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  275. smp_rmb();
  276. return __mnt_is_readonly(mnt);
  277. }
  278. /*
  279. * Most r/o & frozen checks on a fs are for operations that take discrete
  280. * amounts of time, like a write() or unlink(). We must keep track of when
  281. * those operations start (for permission checks) and when they end, so that we
  282. * can determine when writes are able to occur to a filesystem.
  283. */
  284. /**
  285. * __mnt_want_write - get write access to a mount without freeze protection
  286. * @m: the mount on which to take a write
  287. *
  288. * This tells the low-level filesystem that a write is about to be performed to
  289. * it, and makes sure that writes are allowed (mnt it read-write) before
  290. * returning success. This operation does not protect against filesystem being
  291. * frozen. When the write operation is finished, __mnt_drop_write() must be
  292. * called. This is effectively a refcount.
  293. */
  294. int __mnt_want_write(struct vfsmount *m)
  295. {
  296. struct mount *mnt = real_mount(m);
  297. int ret = 0;
  298. preempt_disable();
  299. mnt_inc_writers(mnt);
  300. /*
  301. * The store to mnt_inc_writers must be visible before we pass
  302. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  303. * incremented count after it has set MNT_WRITE_HOLD.
  304. */
  305. smp_mb();
  306. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  307. cpu_relax();
  308. /*
  309. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  310. * be set to match its requirements. So we must not load that until
  311. * MNT_WRITE_HOLD is cleared.
  312. */
  313. smp_rmb();
  314. if (mnt_is_readonly(m)) {
  315. mnt_dec_writers(mnt);
  316. ret = -EROFS;
  317. }
  318. preempt_enable();
  319. return ret;
  320. }
  321. /**
  322. * mnt_want_write - get write access to a mount
  323. * @m: the mount on which to take a write
  324. *
  325. * This tells the low-level filesystem that a write is about to be performed to
  326. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  327. * is not frozen) before returning success. When the write operation is
  328. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  329. */
  330. int mnt_want_write(struct vfsmount *m)
  331. {
  332. int ret;
  333. sb_start_write(m->mnt_sb);
  334. ret = __mnt_want_write(m);
  335. if (ret)
  336. sb_end_write(m->mnt_sb);
  337. return ret;
  338. }
  339. EXPORT_SYMBOL_GPL(mnt_want_write);
  340. /**
  341. * mnt_clone_write - get write access to a mount
  342. * @mnt: the mount on which to take a write
  343. *
  344. * This is effectively like mnt_want_write, except
  345. * it must only be used to take an extra write reference
  346. * on a mountpoint that we already know has a write reference
  347. * on it. This allows some optimisation.
  348. *
  349. * After finished, mnt_drop_write must be called as usual to
  350. * drop the reference.
  351. */
  352. int mnt_clone_write(struct vfsmount *mnt)
  353. {
  354. /* superblock may be r/o */
  355. if (__mnt_is_readonly(mnt))
  356. return -EROFS;
  357. preempt_disable();
  358. mnt_inc_writers(real_mount(mnt));
  359. preempt_enable();
  360. return 0;
  361. }
  362. EXPORT_SYMBOL_GPL(mnt_clone_write);
  363. /**
  364. * __mnt_want_write_file - get write access to a file's mount
  365. * @file: the file who's mount on which to take a write
  366. *
  367. * This is like __mnt_want_write, but it takes a file and can
  368. * do some optimisations if the file is open for write already
  369. */
  370. int __mnt_want_write_file(struct file *file)
  371. {
  372. if (!(file->f_mode & FMODE_WRITER))
  373. return __mnt_want_write(file->f_path.mnt);
  374. else
  375. return mnt_clone_write(file->f_path.mnt);
  376. }
  377. /**
  378. * mnt_want_write_file - get write access to a file's mount
  379. * @file: the file who's mount on which to take a write
  380. *
  381. * This is like mnt_want_write, but it takes a file and can
  382. * do some optimisations if the file is open for write already
  383. */
  384. int mnt_want_write_file(struct file *file)
  385. {
  386. int ret;
  387. sb_start_write(file->f_path.mnt->mnt_sb);
  388. ret = __mnt_want_write_file(file);
  389. if (ret)
  390. sb_end_write(file->f_path.mnt->mnt_sb);
  391. return ret;
  392. }
  393. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  394. /**
  395. * __mnt_drop_write - give up write access to a mount
  396. * @mnt: the mount on which to give up write access
  397. *
  398. * Tells the low-level filesystem that we are done
  399. * performing writes to it. Must be matched with
  400. * __mnt_want_write() call above.
  401. */
  402. void __mnt_drop_write(struct vfsmount *mnt)
  403. {
  404. preempt_disable();
  405. mnt_dec_writers(real_mount(mnt));
  406. preempt_enable();
  407. }
  408. /**
  409. * mnt_drop_write - give up write access to a mount
  410. * @mnt: the mount on which to give up write access
  411. *
  412. * Tells the low-level filesystem that we are done performing writes to it and
  413. * also allows filesystem to be frozen again. Must be matched with
  414. * mnt_want_write() call above.
  415. */
  416. void mnt_drop_write(struct vfsmount *mnt)
  417. {
  418. __mnt_drop_write(mnt);
  419. sb_end_write(mnt->mnt_sb);
  420. }
  421. EXPORT_SYMBOL_GPL(mnt_drop_write);
  422. void __mnt_drop_write_file(struct file *file)
  423. {
  424. __mnt_drop_write(file->f_path.mnt);
  425. }
  426. void mnt_drop_write_file(struct file *file)
  427. {
  428. mnt_drop_write(file->f_path.mnt);
  429. }
  430. EXPORT_SYMBOL(mnt_drop_write_file);
  431. static int mnt_make_readonly(struct mount *mnt)
  432. {
  433. int ret = 0;
  434. lock_mount_hash();
  435. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  436. /*
  437. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  438. * should be visible before we do.
  439. */
  440. smp_mb();
  441. /*
  442. * With writers on hold, if this value is zero, then there are
  443. * definitely no active writers (although held writers may subsequently
  444. * increment the count, they'll have to wait, and decrement it after
  445. * seeing MNT_READONLY).
  446. *
  447. * It is OK to have counter incremented on one CPU and decremented on
  448. * another: the sum will add up correctly. The danger would be when we
  449. * sum up each counter, if we read a counter before it is incremented,
  450. * but then read another CPU's count which it has been subsequently
  451. * decremented from -- we would see more decrements than we should.
  452. * MNT_WRITE_HOLD protects against this scenario, because
  453. * mnt_want_write first increments count, then smp_mb, then spins on
  454. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  455. * we're counting up here.
  456. */
  457. if (mnt_get_writers(mnt) > 0)
  458. ret = -EBUSY;
  459. else
  460. mnt->mnt.mnt_flags |= MNT_READONLY;
  461. /*
  462. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  463. * that become unheld will see MNT_READONLY.
  464. */
  465. smp_wmb();
  466. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  467. unlock_mount_hash();
  468. return ret;
  469. }
  470. static void __mnt_unmake_readonly(struct mount *mnt)
  471. {
  472. lock_mount_hash();
  473. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  474. unlock_mount_hash();
  475. }
  476. int sb_prepare_remount_readonly(struct super_block *sb)
  477. {
  478. struct mount *mnt;
  479. int err = 0;
  480. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  481. if (atomic_long_read(&sb->s_remove_count))
  482. return -EBUSY;
  483. lock_mount_hash();
  484. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  485. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  486. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  487. smp_mb();
  488. if (mnt_get_writers(mnt) > 0) {
  489. err = -EBUSY;
  490. break;
  491. }
  492. }
  493. }
  494. if (!err && atomic_long_read(&sb->s_remove_count))
  495. err = -EBUSY;
  496. if (!err) {
  497. sb->s_readonly_remount = 1;
  498. smp_wmb();
  499. }
  500. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  501. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  502. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  503. }
  504. unlock_mount_hash();
  505. return err;
  506. }
  507. static void free_vfsmnt(struct mount *mnt)
  508. {
  509. kfree(mnt->mnt_devname);
  510. #ifdef CONFIG_SMP
  511. free_percpu(mnt->mnt_pcp);
  512. #endif
  513. kmem_cache_free(mnt_cache, mnt);
  514. }
  515. static void delayed_free_vfsmnt(struct rcu_head *head)
  516. {
  517. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  518. }
  519. /* call under rcu_read_lock */
  520. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  521. {
  522. struct mount *mnt;
  523. if (read_seqretry(&mount_lock, seq))
  524. return false;
  525. if (bastard == NULL)
  526. return true;
  527. mnt = real_mount(bastard);
  528. mnt_add_count(mnt, 1);
  529. if (likely(!read_seqretry(&mount_lock, seq)))
  530. return true;
  531. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  532. mnt_add_count(mnt, -1);
  533. return false;
  534. }
  535. rcu_read_unlock();
  536. mntput(bastard);
  537. rcu_read_lock();
  538. return false;
  539. }
  540. /*
  541. * find the first mount at @dentry on vfsmount @mnt.
  542. * call under rcu_read_lock()
  543. */
  544. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  545. {
  546. struct hlist_head *head = m_hash(mnt, dentry);
  547. struct mount *p;
  548. hlist_for_each_entry_rcu(p, head, mnt_hash)
  549. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  550. return p;
  551. return NULL;
  552. }
  553. /*
  554. * find the last mount at @dentry on vfsmount @mnt.
  555. * mount_lock must be held.
  556. */
  557. struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
  558. {
  559. struct mount *p, *res;
  560. res = p = __lookup_mnt(mnt, dentry);
  561. if (!p)
  562. goto out;
  563. hlist_for_each_entry_continue(p, mnt_hash) {
  564. if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
  565. break;
  566. res = p;
  567. }
  568. out:
  569. return res;
  570. }
  571. /*
  572. * lookup_mnt - Return the first child mount mounted at path
  573. *
  574. * "First" means first mounted chronologically. If you create the
  575. * following mounts:
  576. *
  577. * mount /dev/sda1 /mnt
  578. * mount /dev/sda2 /mnt
  579. * mount /dev/sda3 /mnt
  580. *
  581. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  582. * return successively the root dentry and vfsmount of /dev/sda1, then
  583. * /dev/sda2, then /dev/sda3, then NULL.
  584. *
  585. * lookup_mnt takes a reference to the found vfsmount.
  586. */
  587. struct vfsmount *lookup_mnt(struct path *path)
  588. {
  589. struct mount *child_mnt;
  590. struct vfsmount *m;
  591. unsigned seq;
  592. rcu_read_lock();
  593. do {
  594. seq = read_seqbegin(&mount_lock);
  595. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  596. m = child_mnt ? &child_mnt->mnt : NULL;
  597. } while (!legitimize_mnt(m, seq));
  598. rcu_read_unlock();
  599. return m;
  600. }
  601. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  602. {
  603. struct hlist_head *chain = mp_hash(dentry);
  604. struct mountpoint *mp;
  605. int ret;
  606. hlist_for_each_entry(mp, chain, m_hash) {
  607. if (mp->m_dentry == dentry) {
  608. /* might be worth a WARN_ON() */
  609. if (d_unlinked(dentry))
  610. return ERR_PTR(-ENOENT);
  611. mp->m_count++;
  612. return mp;
  613. }
  614. }
  615. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  616. if (!mp)
  617. return ERR_PTR(-ENOMEM);
  618. ret = d_set_mounted(dentry);
  619. if (ret) {
  620. kfree(mp);
  621. return ERR_PTR(ret);
  622. }
  623. mp->m_dentry = dentry;
  624. mp->m_count = 1;
  625. hlist_add_head(&mp->m_hash, chain);
  626. return mp;
  627. }
  628. static void put_mountpoint(struct mountpoint *mp)
  629. {
  630. if (!--mp->m_count) {
  631. struct dentry *dentry = mp->m_dentry;
  632. spin_lock(&dentry->d_lock);
  633. dentry->d_flags &= ~DCACHE_MOUNTED;
  634. spin_unlock(&dentry->d_lock);
  635. hlist_del(&mp->m_hash);
  636. kfree(mp);
  637. }
  638. }
  639. static inline int check_mnt(struct mount *mnt)
  640. {
  641. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  642. }
  643. /*
  644. * vfsmount lock must be held for write
  645. */
  646. static void touch_mnt_namespace(struct mnt_namespace *ns)
  647. {
  648. if (ns) {
  649. ns->event = ++event;
  650. wake_up_interruptible(&ns->poll);
  651. }
  652. }
  653. /*
  654. * vfsmount lock must be held for write
  655. */
  656. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  657. {
  658. if (ns && ns->event != event) {
  659. ns->event = event;
  660. wake_up_interruptible(&ns->poll);
  661. }
  662. }
  663. /*
  664. * vfsmount lock must be held for write
  665. */
  666. static void detach_mnt(struct mount *mnt, struct path *old_path)
  667. {
  668. old_path->dentry = mnt->mnt_mountpoint;
  669. old_path->mnt = &mnt->mnt_parent->mnt;
  670. mnt->mnt_parent = mnt;
  671. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  672. list_del_init(&mnt->mnt_child);
  673. hlist_del_init_rcu(&mnt->mnt_hash);
  674. put_mountpoint(mnt->mnt_mp);
  675. mnt->mnt_mp = NULL;
  676. }
  677. /*
  678. * vfsmount lock must be held for write
  679. */
  680. void mnt_set_mountpoint(struct mount *mnt,
  681. struct mountpoint *mp,
  682. struct mount *child_mnt)
  683. {
  684. mp->m_count++;
  685. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  686. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  687. child_mnt->mnt_parent = mnt;
  688. child_mnt->mnt_mp = mp;
  689. }
  690. /*
  691. * vfsmount lock must be held for write
  692. */
  693. static void attach_mnt(struct mount *mnt,
  694. struct mount *parent,
  695. struct mountpoint *mp)
  696. {
  697. mnt_set_mountpoint(parent, mp, mnt);
  698. hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
  699. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  700. }
  701. static void attach_shadowed(struct mount *mnt,
  702. struct mount *parent,
  703. struct mount *shadows)
  704. {
  705. if (shadows) {
  706. hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
  707. list_add(&mnt->mnt_child, &shadows->mnt_child);
  708. } else {
  709. hlist_add_head_rcu(&mnt->mnt_hash,
  710. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  711. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  712. }
  713. }
  714. /*
  715. * vfsmount lock must be held for write
  716. */
  717. static void commit_tree(struct mount *mnt, struct mount *shadows)
  718. {
  719. struct mount *parent = mnt->mnt_parent;
  720. struct mount *m;
  721. LIST_HEAD(head);
  722. struct mnt_namespace *n = parent->mnt_ns;
  723. BUG_ON(parent == mnt);
  724. list_add_tail(&head, &mnt->mnt_list);
  725. list_for_each_entry(m, &head, mnt_list)
  726. m->mnt_ns = n;
  727. list_splice(&head, n->list.prev);
  728. attach_shadowed(mnt, parent, shadows);
  729. touch_mnt_namespace(n);
  730. }
  731. static struct mount *next_mnt(struct mount *p, struct mount *root)
  732. {
  733. struct list_head *next = p->mnt_mounts.next;
  734. if (next == &p->mnt_mounts) {
  735. while (1) {
  736. if (p == root)
  737. return NULL;
  738. next = p->mnt_child.next;
  739. if (next != &p->mnt_parent->mnt_mounts)
  740. break;
  741. p = p->mnt_parent;
  742. }
  743. }
  744. return list_entry(next, struct mount, mnt_child);
  745. }
  746. static struct mount *skip_mnt_tree(struct mount *p)
  747. {
  748. struct list_head *prev = p->mnt_mounts.prev;
  749. while (prev != &p->mnt_mounts) {
  750. p = list_entry(prev, struct mount, mnt_child);
  751. prev = p->mnt_mounts.prev;
  752. }
  753. return p;
  754. }
  755. struct vfsmount *
  756. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  757. {
  758. struct mount *mnt;
  759. struct dentry *root;
  760. if (!type)
  761. return ERR_PTR(-ENODEV);
  762. mnt = alloc_vfsmnt(name);
  763. if (!mnt)
  764. return ERR_PTR(-ENOMEM);
  765. if (flags & MS_KERNMOUNT)
  766. mnt->mnt.mnt_flags = MNT_INTERNAL;
  767. root = mount_fs(type, flags, name, data);
  768. if (IS_ERR(root)) {
  769. mnt_free_id(mnt);
  770. free_vfsmnt(mnt);
  771. return ERR_CAST(root);
  772. }
  773. mnt->mnt.mnt_root = root;
  774. mnt->mnt.mnt_sb = root->d_sb;
  775. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  776. mnt->mnt_parent = mnt;
  777. lock_mount_hash();
  778. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  779. unlock_mount_hash();
  780. return &mnt->mnt;
  781. }
  782. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  783. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  784. int flag)
  785. {
  786. struct super_block *sb = old->mnt.mnt_sb;
  787. struct mount *mnt;
  788. int err;
  789. mnt = alloc_vfsmnt(old->mnt_devname);
  790. if (!mnt)
  791. return ERR_PTR(-ENOMEM);
  792. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  793. mnt->mnt_group_id = 0; /* not a peer of original */
  794. else
  795. mnt->mnt_group_id = old->mnt_group_id;
  796. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  797. err = mnt_alloc_group_id(mnt);
  798. if (err)
  799. goto out_free;
  800. }
  801. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  802. /* Don't allow unprivileged users to change mount flags */
  803. if (flag & CL_UNPRIVILEGED) {
  804. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  805. if (mnt->mnt.mnt_flags & MNT_READONLY)
  806. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  807. if (mnt->mnt.mnt_flags & MNT_NODEV)
  808. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  809. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  810. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  811. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  812. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  813. }
  814. /* Don't allow unprivileged users to reveal what is under a mount */
  815. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  816. mnt->mnt.mnt_flags |= MNT_LOCKED;
  817. atomic_inc(&sb->s_active);
  818. mnt->mnt.mnt_sb = sb;
  819. mnt->mnt.mnt_root = dget(root);
  820. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  821. mnt->mnt_parent = mnt;
  822. lock_mount_hash();
  823. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  824. unlock_mount_hash();
  825. if ((flag & CL_SLAVE) ||
  826. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  827. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  828. mnt->mnt_master = old;
  829. CLEAR_MNT_SHARED(mnt);
  830. } else if (!(flag & CL_PRIVATE)) {
  831. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  832. list_add(&mnt->mnt_share, &old->mnt_share);
  833. if (IS_MNT_SLAVE(old))
  834. list_add(&mnt->mnt_slave, &old->mnt_slave);
  835. mnt->mnt_master = old->mnt_master;
  836. }
  837. if (flag & CL_MAKE_SHARED)
  838. set_mnt_shared(mnt);
  839. /* stick the duplicate mount on the same expiry list
  840. * as the original if that was on one */
  841. if (flag & CL_EXPIRE) {
  842. if (!list_empty(&old->mnt_expire))
  843. list_add(&mnt->mnt_expire, &old->mnt_expire);
  844. }
  845. return mnt;
  846. out_free:
  847. mnt_free_id(mnt);
  848. free_vfsmnt(mnt);
  849. return ERR_PTR(err);
  850. }
  851. static void mntput_no_expire(struct mount *mnt)
  852. {
  853. rcu_read_lock();
  854. mnt_add_count(mnt, -1);
  855. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  856. rcu_read_unlock();
  857. return;
  858. }
  859. lock_mount_hash();
  860. if (mnt_get_count(mnt)) {
  861. rcu_read_unlock();
  862. unlock_mount_hash();
  863. return;
  864. }
  865. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  866. rcu_read_unlock();
  867. unlock_mount_hash();
  868. return;
  869. }
  870. mnt->mnt.mnt_flags |= MNT_DOOMED;
  871. rcu_read_unlock();
  872. list_del(&mnt->mnt_instance);
  873. unlock_mount_hash();
  874. /*
  875. * This probably indicates that somebody messed
  876. * up a mnt_want/drop_write() pair. If this
  877. * happens, the filesystem was probably unable
  878. * to make r/w->r/o transitions.
  879. */
  880. /*
  881. * The locking used to deal with mnt_count decrement provides barriers,
  882. * so mnt_get_writers() below is safe.
  883. */
  884. WARN_ON(mnt_get_writers(mnt));
  885. if (unlikely(mnt->mnt_pins.first))
  886. mnt_pin_kill(mnt);
  887. fsnotify_vfsmount_delete(&mnt->mnt);
  888. dput(mnt->mnt.mnt_root);
  889. deactivate_super(mnt->mnt.mnt_sb);
  890. mnt_free_id(mnt);
  891. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  892. }
  893. void mntput(struct vfsmount *mnt)
  894. {
  895. if (mnt) {
  896. struct mount *m = real_mount(mnt);
  897. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  898. if (unlikely(m->mnt_expiry_mark))
  899. m->mnt_expiry_mark = 0;
  900. mntput_no_expire(m);
  901. }
  902. }
  903. EXPORT_SYMBOL(mntput);
  904. struct vfsmount *mntget(struct vfsmount *mnt)
  905. {
  906. if (mnt)
  907. mnt_add_count(real_mount(mnt), 1);
  908. return mnt;
  909. }
  910. EXPORT_SYMBOL(mntget);
  911. struct vfsmount *mnt_clone_internal(struct path *path)
  912. {
  913. struct mount *p;
  914. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  915. if (IS_ERR(p))
  916. return ERR_CAST(p);
  917. p->mnt.mnt_flags |= MNT_INTERNAL;
  918. return &p->mnt;
  919. }
  920. static inline void mangle(struct seq_file *m, const char *s)
  921. {
  922. seq_escape(m, s, " \t\n\\");
  923. }
  924. /*
  925. * Simple .show_options callback for filesystems which don't want to
  926. * implement more complex mount option showing.
  927. *
  928. * See also save_mount_options().
  929. */
  930. int generic_show_options(struct seq_file *m, struct dentry *root)
  931. {
  932. const char *options;
  933. rcu_read_lock();
  934. options = rcu_dereference(root->d_sb->s_options);
  935. if (options != NULL && options[0]) {
  936. seq_putc(m, ',');
  937. mangle(m, options);
  938. }
  939. rcu_read_unlock();
  940. return 0;
  941. }
  942. EXPORT_SYMBOL(generic_show_options);
  943. /*
  944. * If filesystem uses generic_show_options(), this function should be
  945. * called from the fill_super() callback.
  946. *
  947. * The .remount_fs callback usually needs to be handled in a special
  948. * way, to make sure, that previous options are not overwritten if the
  949. * remount fails.
  950. *
  951. * Also note, that if the filesystem's .remount_fs function doesn't
  952. * reset all options to their default value, but changes only newly
  953. * given options, then the displayed options will not reflect reality
  954. * any more.
  955. */
  956. void save_mount_options(struct super_block *sb, char *options)
  957. {
  958. BUG_ON(sb->s_options);
  959. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  960. }
  961. EXPORT_SYMBOL(save_mount_options);
  962. void replace_mount_options(struct super_block *sb, char *options)
  963. {
  964. char *old = sb->s_options;
  965. rcu_assign_pointer(sb->s_options, options);
  966. if (old) {
  967. synchronize_rcu();
  968. kfree(old);
  969. }
  970. }
  971. EXPORT_SYMBOL(replace_mount_options);
  972. #ifdef CONFIG_PROC_FS
  973. /* iterator; we want it to have access to namespace_sem, thus here... */
  974. static void *m_start(struct seq_file *m, loff_t *pos)
  975. {
  976. struct proc_mounts *p = proc_mounts(m);
  977. down_read(&namespace_sem);
  978. if (p->cached_event == p->ns->event) {
  979. void *v = p->cached_mount;
  980. if (*pos == p->cached_index)
  981. return v;
  982. if (*pos == p->cached_index + 1) {
  983. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  984. return p->cached_mount = v;
  985. }
  986. }
  987. p->cached_event = p->ns->event;
  988. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  989. p->cached_index = *pos;
  990. return p->cached_mount;
  991. }
  992. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  993. {
  994. struct proc_mounts *p = proc_mounts(m);
  995. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  996. p->cached_index = *pos;
  997. return p->cached_mount;
  998. }
  999. static void m_stop(struct seq_file *m, void *v)
  1000. {
  1001. up_read(&namespace_sem);
  1002. }
  1003. static int m_show(struct seq_file *m, void *v)
  1004. {
  1005. struct proc_mounts *p = proc_mounts(m);
  1006. struct mount *r = list_entry(v, struct mount, mnt_list);
  1007. return p->show(m, &r->mnt);
  1008. }
  1009. const struct seq_operations mounts_op = {
  1010. .start = m_start,
  1011. .next = m_next,
  1012. .stop = m_stop,
  1013. .show = m_show,
  1014. };
  1015. #endif /* CONFIG_PROC_FS */
  1016. /**
  1017. * may_umount_tree - check if a mount tree is busy
  1018. * @mnt: root of mount tree
  1019. *
  1020. * This is called to check if a tree of mounts has any
  1021. * open files, pwds, chroots or sub mounts that are
  1022. * busy.
  1023. */
  1024. int may_umount_tree(struct vfsmount *m)
  1025. {
  1026. struct mount *mnt = real_mount(m);
  1027. int actual_refs = 0;
  1028. int minimum_refs = 0;
  1029. struct mount *p;
  1030. BUG_ON(!m);
  1031. /* write lock needed for mnt_get_count */
  1032. lock_mount_hash();
  1033. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1034. actual_refs += mnt_get_count(p);
  1035. minimum_refs += 2;
  1036. }
  1037. unlock_mount_hash();
  1038. if (actual_refs > minimum_refs)
  1039. return 0;
  1040. return 1;
  1041. }
  1042. EXPORT_SYMBOL(may_umount_tree);
  1043. /**
  1044. * may_umount - check if a mount point is busy
  1045. * @mnt: root of mount
  1046. *
  1047. * This is called to check if a mount point has any
  1048. * open files, pwds, chroots or sub mounts. If the
  1049. * mount has sub mounts this will return busy
  1050. * regardless of whether the sub mounts are busy.
  1051. *
  1052. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1053. * give false negatives. The main reason why it's here is that we need
  1054. * a non-destructive way to look for easily umountable filesystems.
  1055. */
  1056. int may_umount(struct vfsmount *mnt)
  1057. {
  1058. int ret = 1;
  1059. down_read(&namespace_sem);
  1060. lock_mount_hash();
  1061. if (propagate_mount_busy(real_mount(mnt), 2))
  1062. ret = 0;
  1063. unlock_mount_hash();
  1064. up_read(&namespace_sem);
  1065. return ret;
  1066. }
  1067. EXPORT_SYMBOL(may_umount);
  1068. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1069. static void namespace_unlock(void)
  1070. {
  1071. struct mount *mnt;
  1072. struct hlist_head head = unmounted;
  1073. if (likely(hlist_empty(&head))) {
  1074. up_write(&namespace_sem);
  1075. return;
  1076. }
  1077. head.first->pprev = &head.first;
  1078. INIT_HLIST_HEAD(&unmounted);
  1079. up_write(&namespace_sem);
  1080. synchronize_rcu();
  1081. while (!hlist_empty(&head)) {
  1082. mnt = hlist_entry(head.first, struct mount, mnt_hash);
  1083. hlist_del_init(&mnt->mnt_hash);
  1084. if (mnt->mnt_ex_mountpoint.mnt)
  1085. path_put(&mnt->mnt_ex_mountpoint);
  1086. mntput(&mnt->mnt);
  1087. }
  1088. }
  1089. static inline void namespace_lock(void)
  1090. {
  1091. down_write(&namespace_sem);
  1092. }
  1093. /*
  1094. * mount_lock must be held
  1095. * namespace_sem must be held for write
  1096. * how = 0 => just this tree, don't propagate
  1097. * how = 1 => propagate; we know that nobody else has reference to any victims
  1098. * how = 2 => lazy umount
  1099. */
  1100. void umount_tree(struct mount *mnt, int how)
  1101. {
  1102. HLIST_HEAD(tmp_list);
  1103. struct mount *p;
  1104. struct mount *last = NULL;
  1105. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1106. hlist_del_init_rcu(&p->mnt_hash);
  1107. hlist_add_head(&p->mnt_hash, &tmp_list);
  1108. }
  1109. if (how)
  1110. propagate_umount(&tmp_list);
  1111. hlist_for_each_entry(p, &tmp_list, mnt_hash) {
  1112. list_del_init(&p->mnt_expire);
  1113. list_del_init(&p->mnt_list);
  1114. __touch_mnt_namespace(p->mnt_ns);
  1115. p->mnt_ns = NULL;
  1116. if (how < 2)
  1117. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1118. list_del_init(&p->mnt_child);
  1119. if (mnt_has_parent(p)) {
  1120. put_mountpoint(p->mnt_mp);
  1121. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1122. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1123. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1124. p->mnt_mountpoint = p->mnt.mnt_root;
  1125. p->mnt_parent = p;
  1126. p->mnt_mp = NULL;
  1127. }
  1128. change_mnt_propagation(p, MS_PRIVATE);
  1129. last = p;
  1130. }
  1131. if (last) {
  1132. last->mnt_hash.next = unmounted.first;
  1133. unmounted.first = tmp_list.first;
  1134. unmounted.first->pprev = &unmounted.first;
  1135. }
  1136. }
  1137. static void shrink_submounts(struct mount *mnt);
  1138. static int do_umount(struct mount *mnt, int flags)
  1139. {
  1140. struct super_block *sb = mnt->mnt.mnt_sb;
  1141. int retval;
  1142. retval = security_sb_umount(&mnt->mnt, flags);
  1143. if (retval)
  1144. return retval;
  1145. /*
  1146. * Allow userspace to request a mountpoint be expired rather than
  1147. * unmounting unconditionally. Unmount only happens if:
  1148. * (1) the mark is already set (the mark is cleared by mntput())
  1149. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1150. */
  1151. if (flags & MNT_EXPIRE) {
  1152. if (&mnt->mnt == current->fs->root.mnt ||
  1153. flags & (MNT_FORCE | MNT_DETACH))
  1154. return -EINVAL;
  1155. /*
  1156. * probably don't strictly need the lock here if we examined
  1157. * all race cases, but it's a slowpath.
  1158. */
  1159. lock_mount_hash();
  1160. if (mnt_get_count(mnt) != 2) {
  1161. unlock_mount_hash();
  1162. return -EBUSY;
  1163. }
  1164. unlock_mount_hash();
  1165. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1166. return -EAGAIN;
  1167. }
  1168. /*
  1169. * If we may have to abort operations to get out of this
  1170. * mount, and they will themselves hold resources we must
  1171. * allow the fs to do things. In the Unix tradition of
  1172. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1173. * might fail to complete on the first run through as other tasks
  1174. * must return, and the like. Thats for the mount program to worry
  1175. * about for the moment.
  1176. */
  1177. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1178. sb->s_op->umount_begin(sb);
  1179. }
  1180. /*
  1181. * No sense to grab the lock for this test, but test itself looks
  1182. * somewhat bogus. Suggestions for better replacement?
  1183. * Ho-hum... In principle, we might treat that as umount + switch
  1184. * to rootfs. GC would eventually take care of the old vfsmount.
  1185. * Actually it makes sense, especially if rootfs would contain a
  1186. * /reboot - static binary that would close all descriptors and
  1187. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1188. */
  1189. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1190. /*
  1191. * Special case for "unmounting" root ...
  1192. * we just try to remount it readonly.
  1193. */
  1194. down_write(&sb->s_umount);
  1195. if (!(sb->s_flags & MS_RDONLY))
  1196. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1197. up_write(&sb->s_umount);
  1198. return retval;
  1199. }
  1200. namespace_lock();
  1201. lock_mount_hash();
  1202. event++;
  1203. if (flags & MNT_DETACH) {
  1204. if (!list_empty(&mnt->mnt_list))
  1205. umount_tree(mnt, 2);
  1206. retval = 0;
  1207. } else {
  1208. shrink_submounts(mnt);
  1209. retval = -EBUSY;
  1210. if (!propagate_mount_busy(mnt, 2)) {
  1211. if (!list_empty(&mnt->mnt_list))
  1212. umount_tree(mnt, 1);
  1213. retval = 0;
  1214. }
  1215. }
  1216. unlock_mount_hash();
  1217. namespace_unlock();
  1218. return retval;
  1219. }
  1220. /*
  1221. * Is the caller allowed to modify his namespace?
  1222. */
  1223. static inline bool may_mount(void)
  1224. {
  1225. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1226. }
  1227. /*
  1228. * Now umount can handle mount points as well as block devices.
  1229. * This is important for filesystems which use unnamed block devices.
  1230. *
  1231. * We now support a flag for forced unmount like the other 'big iron'
  1232. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1233. */
  1234. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1235. {
  1236. struct path path;
  1237. struct mount *mnt;
  1238. int retval;
  1239. int lookup_flags = 0;
  1240. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1241. return -EINVAL;
  1242. if (!may_mount())
  1243. return -EPERM;
  1244. if (!(flags & UMOUNT_NOFOLLOW))
  1245. lookup_flags |= LOOKUP_FOLLOW;
  1246. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1247. if (retval)
  1248. goto out;
  1249. mnt = real_mount(path.mnt);
  1250. retval = -EINVAL;
  1251. if (path.dentry != path.mnt->mnt_root)
  1252. goto dput_and_out;
  1253. if (!check_mnt(mnt))
  1254. goto dput_and_out;
  1255. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1256. goto dput_and_out;
  1257. retval = do_umount(mnt, flags);
  1258. dput_and_out:
  1259. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1260. dput(path.dentry);
  1261. mntput_no_expire(mnt);
  1262. out:
  1263. return retval;
  1264. }
  1265. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1266. /*
  1267. * The 2.0 compatible umount. No flags.
  1268. */
  1269. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1270. {
  1271. return sys_umount(name, 0);
  1272. }
  1273. #endif
  1274. static bool is_mnt_ns_file(struct dentry *dentry)
  1275. {
  1276. /* Is this a proxy for a mount namespace? */
  1277. struct inode *inode = dentry->d_inode;
  1278. struct proc_ns *ei;
  1279. if (!proc_ns_inode(inode))
  1280. return false;
  1281. ei = get_proc_ns(inode);
  1282. if (ei->ns_ops != &mntns_operations)
  1283. return false;
  1284. return true;
  1285. }
  1286. static bool mnt_ns_loop(struct dentry *dentry)
  1287. {
  1288. /* Could bind mounting the mount namespace inode cause a
  1289. * mount namespace loop?
  1290. */
  1291. struct mnt_namespace *mnt_ns;
  1292. if (!is_mnt_ns_file(dentry))
  1293. return false;
  1294. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1295. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1296. }
  1297. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1298. int flag)
  1299. {
  1300. struct mount *res, *p, *q, *r, *parent;
  1301. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1302. return ERR_PTR(-EINVAL);
  1303. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1304. return ERR_PTR(-EINVAL);
  1305. res = q = clone_mnt(mnt, dentry, flag);
  1306. if (IS_ERR(q))
  1307. return q;
  1308. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1309. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1310. p = mnt;
  1311. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1312. struct mount *s;
  1313. if (!is_subdir(r->mnt_mountpoint, dentry))
  1314. continue;
  1315. for (s = r; s; s = next_mnt(s, r)) {
  1316. struct mount *t = NULL;
  1317. if (!(flag & CL_COPY_UNBINDABLE) &&
  1318. IS_MNT_UNBINDABLE(s)) {
  1319. s = skip_mnt_tree(s);
  1320. continue;
  1321. }
  1322. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1323. is_mnt_ns_file(s->mnt.mnt_root)) {
  1324. s = skip_mnt_tree(s);
  1325. continue;
  1326. }
  1327. while (p != s->mnt_parent) {
  1328. p = p->mnt_parent;
  1329. q = q->mnt_parent;
  1330. }
  1331. p = s;
  1332. parent = q;
  1333. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1334. if (IS_ERR(q))
  1335. goto out;
  1336. lock_mount_hash();
  1337. list_add_tail(&q->mnt_list, &res->mnt_list);
  1338. mnt_set_mountpoint(parent, p->mnt_mp, q);
  1339. if (!list_empty(&parent->mnt_mounts)) {
  1340. t = list_last_entry(&parent->mnt_mounts,
  1341. struct mount, mnt_child);
  1342. if (t->mnt_mp != p->mnt_mp)
  1343. t = NULL;
  1344. }
  1345. attach_shadowed(q, parent, t);
  1346. unlock_mount_hash();
  1347. }
  1348. }
  1349. return res;
  1350. out:
  1351. if (res) {
  1352. lock_mount_hash();
  1353. umount_tree(res, 0);
  1354. unlock_mount_hash();
  1355. }
  1356. return q;
  1357. }
  1358. /* Caller should check returned pointer for errors */
  1359. struct vfsmount *collect_mounts(struct path *path)
  1360. {
  1361. struct mount *tree;
  1362. namespace_lock();
  1363. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1364. CL_COPY_ALL | CL_PRIVATE);
  1365. namespace_unlock();
  1366. if (IS_ERR(tree))
  1367. return ERR_CAST(tree);
  1368. return &tree->mnt;
  1369. }
  1370. void drop_collected_mounts(struct vfsmount *mnt)
  1371. {
  1372. namespace_lock();
  1373. lock_mount_hash();
  1374. umount_tree(real_mount(mnt), 0);
  1375. unlock_mount_hash();
  1376. namespace_unlock();
  1377. }
  1378. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1379. struct vfsmount *root)
  1380. {
  1381. struct mount *mnt;
  1382. int res = f(root, arg);
  1383. if (res)
  1384. return res;
  1385. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1386. res = f(&mnt->mnt, arg);
  1387. if (res)
  1388. return res;
  1389. }
  1390. return 0;
  1391. }
  1392. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1393. {
  1394. struct mount *p;
  1395. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1396. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1397. mnt_release_group_id(p);
  1398. }
  1399. }
  1400. static int invent_group_ids(struct mount *mnt, bool recurse)
  1401. {
  1402. struct mount *p;
  1403. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1404. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1405. int err = mnt_alloc_group_id(p);
  1406. if (err) {
  1407. cleanup_group_ids(mnt, p);
  1408. return err;
  1409. }
  1410. }
  1411. }
  1412. return 0;
  1413. }
  1414. /*
  1415. * @source_mnt : mount tree to be attached
  1416. * @nd : place the mount tree @source_mnt is attached
  1417. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1418. * store the parent mount and mountpoint dentry.
  1419. * (done when source_mnt is moved)
  1420. *
  1421. * NOTE: in the table below explains the semantics when a source mount
  1422. * of a given type is attached to a destination mount of a given type.
  1423. * ---------------------------------------------------------------------------
  1424. * | BIND MOUNT OPERATION |
  1425. * |**************************************************************************
  1426. * | source-->| shared | private | slave | unbindable |
  1427. * | dest | | | | |
  1428. * | | | | | | |
  1429. * | v | | | | |
  1430. * |**************************************************************************
  1431. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1432. * | | | | | |
  1433. * |non-shared| shared (+) | private | slave (*) | invalid |
  1434. * ***************************************************************************
  1435. * A bind operation clones the source mount and mounts the clone on the
  1436. * destination mount.
  1437. *
  1438. * (++) the cloned mount is propagated to all the mounts in the propagation
  1439. * tree of the destination mount and the cloned mount is added to
  1440. * the peer group of the source mount.
  1441. * (+) the cloned mount is created under the destination mount and is marked
  1442. * as shared. The cloned mount is added to the peer group of the source
  1443. * mount.
  1444. * (+++) the mount is propagated to all the mounts in the propagation tree
  1445. * of the destination mount and the cloned mount is made slave
  1446. * of the same master as that of the source mount. The cloned mount
  1447. * is marked as 'shared and slave'.
  1448. * (*) the cloned mount is made a slave of the same master as that of the
  1449. * source mount.
  1450. *
  1451. * ---------------------------------------------------------------------------
  1452. * | MOVE MOUNT OPERATION |
  1453. * |**************************************************************************
  1454. * | source-->| shared | private | slave | unbindable |
  1455. * | dest | | | | |
  1456. * | | | | | | |
  1457. * | v | | | | |
  1458. * |**************************************************************************
  1459. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1460. * | | | | | |
  1461. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1462. * ***************************************************************************
  1463. *
  1464. * (+) the mount is moved to the destination. And is then propagated to
  1465. * all the mounts in the propagation tree of the destination mount.
  1466. * (+*) the mount is moved to the destination.
  1467. * (+++) the mount is moved to the destination and is then propagated to
  1468. * all the mounts belonging to the destination mount's propagation tree.
  1469. * the mount is marked as 'shared and slave'.
  1470. * (*) the mount continues to be a slave at the new location.
  1471. *
  1472. * if the source mount is a tree, the operations explained above is
  1473. * applied to each mount in the tree.
  1474. * Must be called without spinlocks held, since this function can sleep
  1475. * in allocations.
  1476. */
  1477. static int attach_recursive_mnt(struct mount *source_mnt,
  1478. struct mount *dest_mnt,
  1479. struct mountpoint *dest_mp,
  1480. struct path *parent_path)
  1481. {
  1482. HLIST_HEAD(tree_list);
  1483. struct mount *child, *p;
  1484. struct hlist_node *n;
  1485. int err;
  1486. if (IS_MNT_SHARED(dest_mnt)) {
  1487. err = invent_group_ids(source_mnt, true);
  1488. if (err)
  1489. goto out;
  1490. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1491. lock_mount_hash();
  1492. if (err)
  1493. goto out_cleanup_ids;
  1494. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1495. set_mnt_shared(p);
  1496. } else {
  1497. lock_mount_hash();
  1498. }
  1499. if (parent_path) {
  1500. detach_mnt(source_mnt, parent_path);
  1501. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1502. touch_mnt_namespace(source_mnt->mnt_ns);
  1503. } else {
  1504. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1505. commit_tree(source_mnt, NULL);
  1506. }
  1507. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1508. struct mount *q;
  1509. hlist_del_init(&child->mnt_hash);
  1510. q = __lookup_mnt_last(&child->mnt_parent->mnt,
  1511. child->mnt_mountpoint);
  1512. commit_tree(child, q);
  1513. }
  1514. unlock_mount_hash();
  1515. return 0;
  1516. out_cleanup_ids:
  1517. while (!hlist_empty(&tree_list)) {
  1518. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1519. umount_tree(child, 0);
  1520. }
  1521. unlock_mount_hash();
  1522. cleanup_group_ids(source_mnt, NULL);
  1523. out:
  1524. return err;
  1525. }
  1526. static struct mountpoint *lock_mount(struct path *path)
  1527. {
  1528. struct vfsmount *mnt;
  1529. struct dentry *dentry = path->dentry;
  1530. retry:
  1531. mutex_lock(&dentry->d_inode->i_mutex);
  1532. if (unlikely(cant_mount(dentry))) {
  1533. mutex_unlock(&dentry->d_inode->i_mutex);
  1534. return ERR_PTR(-ENOENT);
  1535. }
  1536. namespace_lock();
  1537. mnt = lookup_mnt(path);
  1538. if (likely(!mnt)) {
  1539. struct mountpoint *mp = new_mountpoint(dentry);
  1540. if (IS_ERR(mp)) {
  1541. namespace_unlock();
  1542. mutex_unlock(&dentry->d_inode->i_mutex);
  1543. return mp;
  1544. }
  1545. return mp;
  1546. }
  1547. namespace_unlock();
  1548. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1549. path_put(path);
  1550. path->mnt = mnt;
  1551. dentry = path->dentry = dget(mnt->mnt_root);
  1552. goto retry;
  1553. }
  1554. static void unlock_mount(struct mountpoint *where)
  1555. {
  1556. struct dentry *dentry = where->m_dentry;
  1557. put_mountpoint(where);
  1558. namespace_unlock();
  1559. mutex_unlock(&dentry->d_inode->i_mutex);
  1560. }
  1561. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1562. {
  1563. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1564. return -EINVAL;
  1565. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1566. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1567. return -ENOTDIR;
  1568. return attach_recursive_mnt(mnt, p, mp, NULL);
  1569. }
  1570. /*
  1571. * Sanity check the flags to change_mnt_propagation.
  1572. */
  1573. static int flags_to_propagation_type(int flags)
  1574. {
  1575. int type = flags & ~(MS_REC | MS_SILENT);
  1576. /* Fail if any non-propagation flags are set */
  1577. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1578. return 0;
  1579. /* Only one propagation flag should be set */
  1580. if (!is_power_of_2(type))
  1581. return 0;
  1582. return type;
  1583. }
  1584. /*
  1585. * recursively change the type of the mountpoint.
  1586. */
  1587. static int do_change_type(struct path *path, int flag)
  1588. {
  1589. struct mount *m;
  1590. struct mount *mnt = real_mount(path->mnt);
  1591. int recurse = flag & MS_REC;
  1592. int type;
  1593. int err = 0;
  1594. if (path->dentry != path->mnt->mnt_root)
  1595. return -EINVAL;
  1596. type = flags_to_propagation_type(flag);
  1597. if (!type)
  1598. return -EINVAL;
  1599. namespace_lock();
  1600. if (type == MS_SHARED) {
  1601. err = invent_group_ids(mnt, recurse);
  1602. if (err)
  1603. goto out_unlock;
  1604. }
  1605. lock_mount_hash();
  1606. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1607. change_mnt_propagation(m, type);
  1608. unlock_mount_hash();
  1609. out_unlock:
  1610. namespace_unlock();
  1611. return err;
  1612. }
  1613. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1614. {
  1615. struct mount *child;
  1616. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1617. if (!is_subdir(child->mnt_mountpoint, dentry))
  1618. continue;
  1619. if (child->mnt.mnt_flags & MNT_LOCKED)
  1620. return true;
  1621. }
  1622. return false;
  1623. }
  1624. /*
  1625. * do loopback mount.
  1626. */
  1627. static int do_loopback(struct path *path, const char *old_name,
  1628. int recurse)
  1629. {
  1630. struct path old_path;
  1631. struct mount *mnt = NULL, *old, *parent;
  1632. struct mountpoint *mp;
  1633. int err;
  1634. if (!old_name || !*old_name)
  1635. return -EINVAL;
  1636. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1637. if (err)
  1638. return err;
  1639. err = -EINVAL;
  1640. if (mnt_ns_loop(old_path.dentry))
  1641. goto out;
  1642. mp = lock_mount(path);
  1643. err = PTR_ERR(mp);
  1644. if (IS_ERR(mp))
  1645. goto out;
  1646. old = real_mount(old_path.mnt);
  1647. parent = real_mount(path->mnt);
  1648. err = -EINVAL;
  1649. if (IS_MNT_UNBINDABLE(old))
  1650. goto out2;
  1651. if (!check_mnt(parent) || !check_mnt(old))
  1652. goto out2;
  1653. if (!recurse && has_locked_children(old, old_path.dentry))
  1654. goto out2;
  1655. if (recurse)
  1656. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1657. else
  1658. mnt = clone_mnt(old, old_path.dentry, 0);
  1659. if (IS_ERR(mnt)) {
  1660. err = PTR_ERR(mnt);
  1661. goto out2;
  1662. }
  1663. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1664. err = graft_tree(mnt, parent, mp);
  1665. if (err) {
  1666. lock_mount_hash();
  1667. umount_tree(mnt, 0);
  1668. unlock_mount_hash();
  1669. }
  1670. out2:
  1671. unlock_mount(mp);
  1672. out:
  1673. path_put(&old_path);
  1674. return err;
  1675. }
  1676. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1677. {
  1678. int error = 0;
  1679. int readonly_request = 0;
  1680. if (ms_flags & MS_RDONLY)
  1681. readonly_request = 1;
  1682. if (readonly_request == __mnt_is_readonly(mnt))
  1683. return 0;
  1684. if (readonly_request)
  1685. error = mnt_make_readonly(real_mount(mnt));
  1686. else
  1687. __mnt_unmake_readonly(real_mount(mnt));
  1688. return error;
  1689. }
  1690. /*
  1691. * change filesystem flags. dir should be a physical root of filesystem.
  1692. * If you've mounted a non-root directory somewhere and want to do remount
  1693. * on it - tough luck.
  1694. */
  1695. static int do_remount(struct path *path, int flags, int mnt_flags,
  1696. void *data)
  1697. {
  1698. int err;
  1699. struct super_block *sb = path->mnt->mnt_sb;
  1700. struct mount *mnt = real_mount(path->mnt);
  1701. if (!check_mnt(mnt))
  1702. return -EINVAL;
  1703. if (path->dentry != path->mnt->mnt_root)
  1704. return -EINVAL;
  1705. /* Don't allow changing of locked mnt flags.
  1706. *
  1707. * No locks need to be held here while testing the various
  1708. * MNT_LOCK flags because those flags can never be cleared
  1709. * once they are set.
  1710. */
  1711. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  1712. !(mnt_flags & MNT_READONLY)) {
  1713. return -EPERM;
  1714. }
  1715. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  1716. !(mnt_flags & MNT_NODEV)) {
  1717. return -EPERM;
  1718. }
  1719. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  1720. !(mnt_flags & MNT_NOSUID)) {
  1721. return -EPERM;
  1722. }
  1723. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  1724. !(mnt_flags & MNT_NOEXEC)) {
  1725. return -EPERM;
  1726. }
  1727. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  1728. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  1729. return -EPERM;
  1730. }
  1731. err = security_sb_remount(sb, data);
  1732. if (err)
  1733. return err;
  1734. down_write(&sb->s_umount);
  1735. if (flags & MS_BIND)
  1736. err = change_mount_flags(path->mnt, flags);
  1737. else if (!capable(CAP_SYS_ADMIN))
  1738. err = -EPERM;
  1739. else
  1740. err = do_remount_sb(sb, flags, data, 0);
  1741. if (!err) {
  1742. lock_mount_hash();
  1743. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  1744. mnt->mnt.mnt_flags = mnt_flags;
  1745. touch_mnt_namespace(mnt->mnt_ns);
  1746. unlock_mount_hash();
  1747. }
  1748. up_write(&sb->s_umount);
  1749. return err;
  1750. }
  1751. static inline int tree_contains_unbindable(struct mount *mnt)
  1752. {
  1753. struct mount *p;
  1754. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1755. if (IS_MNT_UNBINDABLE(p))
  1756. return 1;
  1757. }
  1758. return 0;
  1759. }
  1760. static int do_move_mount(struct path *path, const char *old_name)
  1761. {
  1762. struct path old_path, parent_path;
  1763. struct mount *p;
  1764. struct mount *old;
  1765. struct mountpoint *mp;
  1766. int err;
  1767. if (!old_name || !*old_name)
  1768. return -EINVAL;
  1769. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1770. if (err)
  1771. return err;
  1772. mp = lock_mount(path);
  1773. err = PTR_ERR(mp);
  1774. if (IS_ERR(mp))
  1775. goto out;
  1776. old = real_mount(old_path.mnt);
  1777. p = real_mount(path->mnt);
  1778. err = -EINVAL;
  1779. if (!check_mnt(p) || !check_mnt(old))
  1780. goto out1;
  1781. if (old->mnt.mnt_flags & MNT_LOCKED)
  1782. goto out1;
  1783. err = -EINVAL;
  1784. if (old_path.dentry != old_path.mnt->mnt_root)
  1785. goto out1;
  1786. if (!mnt_has_parent(old))
  1787. goto out1;
  1788. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1789. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1790. goto out1;
  1791. /*
  1792. * Don't move a mount residing in a shared parent.
  1793. */
  1794. if (IS_MNT_SHARED(old->mnt_parent))
  1795. goto out1;
  1796. /*
  1797. * Don't move a mount tree containing unbindable mounts to a destination
  1798. * mount which is shared.
  1799. */
  1800. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1801. goto out1;
  1802. err = -ELOOP;
  1803. for (; mnt_has_parent(p); p = p->mnt_parent)
  1804. if (p == old)
  1805. goto out1;
  1806. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1807. if (err)
  1808. goto out1;
  1809. /* if the mount is moved, it should no longer be expire
  1810. * automatically */
  1811. list_del_init(&old->mnt_expire);
  1812. out1:
  1813. unlock_mount(mp);
  1814. out:
  1815. if (!err)
  1816. path_put(&parent_path);
  1817. path_put(&old_path);
  1818. return err;
  1819. }
  1820. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1821. {
  1822. int err;
  1823. const char *subtype = strchr(fstype, '.');
  1824. if (subtype) {
  1825. subtype++;
  1826. err = -EINVAL;
  1827. if (!subtype[0])
  1828. goto err;
  1829. } else
  1830. subtype = "";
  1831. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1832. err = -ENOMEM;
  1833. if (!mnt->mnt_sb->s_subtype)
  1834. goto err;
  1835. return mnt;
  1836. err:
  1837. mntput(mnt);
  1838. return ERR_PTR(err);
  1839. }
  1840. /*
  1841. * add a mount into a namespace's mount tree
  1842. */
  1843. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1844. {
  1845. struct mountpoint *mp;
  1846. struct mount *parent;
  1847. int err;
  1848. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  1849. mp = lock_mount(path);
  1850. if (IS_ERR(mp))
  1851. return PTR_ERR(mp);
  1852. parent = real_mount(path->mnt);
  1853. err = -EINVAL;
  1854. if (unlikely(!check_mnt(parent))) {
  1855. /* that's acceptable only for automounts done in private ns */
  1856. if (!(mnt_flags & MNT_SHRINKABLE))
  1857. goto unlock;
  1858. /* ... and for those we'd better have mountpoint still alive */
  1859. if (!parent->mnt_ns)
  1860. goto unlock;
  1861. }
  1862. /* Refuse the same filesystem on the same mount point */
  1863. err = -EBUSY;
  1864. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1865. path->mnt->mnt_root == path->dentry)
  1866. goto unlock;
  1867. err = -EINVAL;
  1868. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1869. goto unlock;
  1870. newmnt->mnt.mnt_flags = mnt_flags;
  1871. err = graft_tree(newmnt, parent, mp);
  1872. unlock:
  1873. unlock_mount(mp);
  1874. return err;
  1875. }
  1876. /*
  1877. * create a new mount for userspace and request it to be added into the
  1878. * namespace's tree
  1879. */
  1880. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1881. int mnt_flags, const char *name, void *data)
  1882. {
  1883. struct file_system_type *type;
  1884. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1885. struct vfsmount *mnt;
  1886. int err;
  1887. if (!fstype)
  1888. return -EINVAL;
  1889. type = get_fs_type(fstype);
  1890. if (!type)
  1891. return -ENODEV;
  1892. if (user_ns != &init_user_ns) {
  1893. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1894. put_filesystem(type);
  1895. return -EPERM;
  1896. }
  1897. /* Only in special cases allow devices from mounts
  1898. * created outside the initial user namespace.
  1899. */
  1900. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1901. flags |= MS_NODEV;
  1902. mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
  1903. }
  1904. }
  1905. mnt = vfs_kern_mount(type, flags, name, data);
  1906. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1907. !mnt->mnt_sb->s_subtype)
  1908. mnt = fs_set_subtype(mnt, fstype);
  1909. put_filesystem(type);
  1910. if (IS_ERR(mnt))
  1911. return PTR_ERR(mnt);
  1912. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1913. if (err)
  1914. mntput(mnt);
  1915. return err;
  1916. }
  1917. int finish_automount(struct vfsmount *m, struct path *path)
  1918. {
  1919. struct mount *mnt = real_mount(m);
  1920. int err;
  1921. /* The new mount record should have at least 2 refs to prevent it being
  1922. * expired before we get a chance to add it
  1923. */
  1924. BUG_ON(mnt_get_count(mnt) < 2);
  1925. if (m->mnt_sb == path->mnt->mnt_sb &&
  1926. m->mnt_root == path->dentry) {
  1927. err = -ELOOP;
  1928. goto fail;
  1929. }
  1930. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1931. if (!err)
  1932. return 0;
  1933. fail:
  1934. /* remove m from any expiration list it may be on */
  1935. if (!list_empty(&mnt->mnt_expire)) {
  1936. namespace_lock();
  1937. list_del_init(&mnt->mnt_expire);
  1938. namespace_unlock();
  1939. }
  1940. mntput(m);
  1941. mntput(m);
  1942. return err;
  1943. }
  1944. /**
  1945. * mnt_set_expiry - Put a mount on an expiration list
  1946. * @mnt: The mount to list.
  1947. * @expiry_list: The list to add the mount to.
  1948. */
  1949. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1950. {
  1951. namespace_lock();
  1952. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1953. namespace_unlock();
  1954. }
  1955. EXPORT_SYMBOL(mnt_set_expiry);
  1956. /*
  1957. * process a list of expirable mountpoints with the intent of discarding any
  1958. * mountpoints that aren't in use and haven't been touched since last we came
  1959. * here
  1960. */
  1961. void mark_mounts_for_expiry(struct list_head *mounts)
  1962. {
  1963. struct mount *mnt, *next;
  1964. LIST_HEAD(graveyard);
  1965. if (list_empty(mounts))
  1966. return;
  1967. namespace_lock();
  1968. lock_mount_hash();
  1969. /* extract from the expiration list every vfsmount that matches the
  1970. * following criteria:
  1971. * - only referenced by its parent vfsmount
  1972. * - still marked for expiry (marked on the last call here; marks are
  1973. * cleared by mntput())
  1974. */
  1975. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1976. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1977. propagate_mount_busy(mnt, 1))
  1978. continue;
  1979. list_move(&mnt->mnt_expire, &graveyard);
  1980. }
  1981. while (!list_empty(&graveyard)) {
  1982. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1983. touch_mnt_namespace(mnt->mnt_ns);
  1984. umount_tree(mnt, 1);
  1985. }
  1986. unlock_mount_hash();
  1987. namespace_unlock();
  1988. }
  1989. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1990. /*
  1991. * Ripoff of 'select_parent()'
  1992. *
  1993. * search the list of submounts for a given mountpoint, and move any
  1994. * shrinkable submounts to the 'graveyard' list.
  1995. */
  1996. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1997. {
  1998. struct mount *this_parent = parent;
  1999. struct list_head *next;
  2000. int found = 0;
  2001. repeat:
  2002. next = this_parent->mnt_mounts.next;
  2003. resume:
  2004. while (next != &this_parent->mnt_mounts) {
  2005. struct list_head *tmp = next;
  2006. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2007. next = tmp->next;
  2008. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2009. continue;
  2010. /*
  2011. * Descend a level if the d_mounts list is non-empty.
  2012. */
  2013. if (!list_empty(&mnt->mnt_mounts)) {
  2014. this_parent = mnt;
  2015. goto repeat;
  2016. }
  2017. if (!propagate_mount_busy(mnt, 1)) {
  2018. list_move_tail(&mnt->mnt_expire, graveyard);
  2019. found++;
  2020. }
  2021. }
  2022. /*
  2023. * All done at this level ... ascend and resume the search
  2024. */
  2025. if (this_parent != parent) {
  2026. next = this_parent->mnt_child.next;
  2027. this_parent = this_parent->mnt_parent;
  2028. goto resume;
  2029. }
  2030. return found;
  2031. }
  2032. /*
  2033. * process a list of expirable mountpoints with the intent of discarding any
  2034. * submounts of a specific parent mountpoint
  2035. *
  2036. * mount_lock must be held for write
  2037. */
  2038. static void shrink_submounts(struct mount *mnt)
  2039. {
  2040. LIST_HEAD(graveyard);
  2041. struct mount *m;
  2042. /* extract submounts of 'mountpoint' from the expiration list */
  2043. while (select_submounts(mnt, &graveyard)) {
  2044. while (!list_empty(&graveyard)) {
  2045. m = list_first_entry(&graveyard, struct mount,
  2046. mnt_expire);
  2047. touch_mnt_namespace(m->mnt_ns);
  2048. umount_tree(m, 1);
  2049. }
  2050. }
  2051. }
  2052. /*
  2053. * Some copy_from_user() implementations do not return the exact number of
  2054. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2055. * Note that this function differs from copy_from_user() in that it will oops
  2056. * on bad values of `to', rather than returning a short copy.
  2057. */
  2058. static long exact_copy_from_user(void *to, const void __user * from,
  2059. unsigned long n)
  2060. {
  2061. char *t = to;
  2062. const char __user *f = from;
  2063. char c;
  2064. if (!access_ok(VERIFY_READ, from, n))
  2065. return n;
  2066. while (n) {
  2067. if (__get_user(c, f)) {
  2068. memset(t, 0, n);
  2069. break;
  2070. }
  2071. *t++ = c;
  2072. f++;
  2073. n--;
  2074. }
  2075. return n;
  2076. }
  2077. int copy_mount_options(const void __user * data, unsigned long *where)
  2078. {
  2079. int i;
  2080. unsigned long page;
  2081. unsigned long size;
  2082. *where = 0;
  2083. if (!data)
  2084. return 0;
  2085. if (!(page = __get_free_page(GFP_KERNEL)))
  2086. return -ENOMEM;
  2087. /* We only care that *some* data at the address the user
  2088. * gave us is valid. Just in case, we'll zero
  2089. * the remainder of the page.
  2090. */
  2091. /* copy_from_user cannot cross TASK_SIZE ! */
  2092. size = TASK_SIZE - (unsigned long)data;
  2093. if (size > PAGE_SIZE)
  2094. size = PAGE_SIZE;
  2095. i = size - exact_copy_from_user((void *)page, data, size);
  2096. if (!i) {
  2097. free_page(page);
  2098. return -EFAULT;
  2099. }
  2100. if (i != PAGE_SIZE)
  2101. memset((char *)page + i, 0, PAGE_SIZE - i);
  2102. *where = page;
  2103. return 0;
  2104. }
  2105. int copy_mount_string(const void __user *data, char **where)
  2106. {
  2107. char *tmp;
  2108. if (!data) {
  2109. *where = NULL;
  2110. return 0;
  2111. }
  2112. tmp = strndup_user(data, PAGE_SIZE);
  2113. if (IS_ERR(tmp))
  2114. return PTR_ERR(tmp);
  2115. *where = tmp;
  2116. return 0;
  2117. }
  2118. /*
  2119. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2120. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2121. *
  2122. * data is a (void *) that can point to any structure up to
  2123. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2124. * information (or be NULL).
  2125. *
  2126. * Pre-0.97 versions of mount() didn't have a flags word.
  2127. * When the flags word was introduced its top half was required
  2128. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2129. * Therefore, if this magic number is present, it carries no information
  2130. * and must be discarded.
  2131. */
  2132. long do_mount(const char *dev_name, const char *dir_name,
  2133. const char *type_page, unsigned long flags, void *data_page)
  2134. {
  2135. struct path path;
  2136. int retval = 0;
  2137. int mnt_flags = 0;
  2138. /* Discard magic */
  2139. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2140. flags &= ~MS_MGC_MSK;
  2141. /* Basic sanity checks */
  2142. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2143. return -EINVAL;
  2144. if (data_page)
  2145. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2146. /* ... and get the mountpoint */
  2147. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2148. if (retval)
  2149. return retval;
  2150. retval = security_sb_mount(dev_name, &path,
  2151. type_page, flags, data_page);
  2152. if (!retval && !may_mount())
  2153. retval = -EPERM;
  2154. if (retval)
  2155. goto dput_out;
  2156. /* Default to relatime unless overriden */
  2157. if (!(flags & MS_NOATIME))
  2158. mnt_flags |= MNT_RELATIME;
  2159. /* Separate the per-mountpoint flags */
  2160. if (flags & MS_NOSUID)
  2161. mnt_flags |= MNT_NOSUID;
  2162. if (flags & MS_NODEV)
  2163. mnt_flags |= MNT_NODEV;
  2164. if (flags & MS_NOEXEC)
  2165. mnt_flags |= MNT_NOEXEC;
  2166. if (flags & MS_NOATIME)
  2167. mnt_flags |= MNT_NOATIME;
  2168. if (flags & MS_NODIRATIME)
  2169. mnt_flags |= MNT_NODIRATIME;
  2170. if (flags & MS_STRICTATIME)
  2171. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2172. if (flags & MS_RDONLY)
  2173. mnt_flags |= MNT_READONLY;
  2174. /* The default atime for remount is preservation */
  2175. if ((flags & MS_REMOUNT) &&
  2176. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2177. MS_STRICTATIME)) == 0)) {
  2178. mnt_flags &= ~MNT_ATIME_MASK;
  2179. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2180. }
  2181. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2182. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2183. MS_STRICTATIME);
  2184. if (flags & MS_REMOUNT)
  2185. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2186. data_page);
  2187. else if (flags & MS_BIND)
  2188. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2189. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2190. retval = do_change_type(&path, flags);
  2191. else if (flags & MS_MOVE)
  2192. retval = do_move_mount(&path, dev_name);
  2193. else
  2194. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2195. dev_name, data_page);
  2196. dput_out:
  2197. path_put(&path);
  2198. return retval;
  2199. }
  2200. static void free_mnt_ns(struct mnt_namespace *ns)
  2201. {
  2202. proc_free_inum(ns->proc_inum);
  2203. put_user_ns(ns->user_ns);
  2204. kfree(ns);
  2205. }
  2206. /*
  2207. * Assign a sequence number so we can detect when we attempt to bind
  2208. * mount a reference to an older mount namespace into the current
  2209. * mount namespace, preventing reference counting loops. A 64bit
  2210. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2211. * is effectively never, so we can ignore the possibility.
  2212. */
  2213. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2214. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2215. {
  2216. struct mnt_namespace *new_ns;
  2217. int ret;
  2218. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2219. if (!new_ns)
  2220. return ERR_PTR(-ENOMEM);
  2221. ret = proc_alloc_inum(&new_ns->proc_inum);
  2222. if (ret) {
  2223. kfree(new_ns);
  2224. return ERR_PTR(ret);
  2225. }
  2226. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2227. atomic_set(&new_ns->count, 1);
  2228. new_ns->root = NULL;
  2229. INIT_LIST_HEAD(&new_ns->list);
  2230. init_waitqueue_head(&new_ns->poll);
  2231. new_ns->event = 0;
  2232. new_ns->user_ns = get_user_ns(user_ns);
  2233. return new_ns;
  2234. }
  2235. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2236. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2237. {
  2238. struct mnt_namespace *new_ns;
  2239. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2240. struct mount *p, *q;
  2241. struct mount *old;
  2242. struct mount *new;
  2243. int copy_flags;
  2244. BUG_ON(!ns);
  2245. if (likely(!(flags & CLONE_NEWNS))) {
  2246. get_mnt_ns(ns);
  2247. return ns;
  2248. }
  2249. old = ns->root;
  2250. new_ns = alloc_mnt_ns(user_ns);
  2251. if (IS_ERR(new_ns))
  2252. return new_ns;
  2253. namespace_lock();
  2254. /* First pass: copy the tree topology */
  2255. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2256. if (user_ns != ns->user_ns)
  2257. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2258. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2259. if (IS_ERR(new)) {
  2260. namespace_unlock();
  2261. free_mnt_ns(new_ns);
  2262. return ERR_CAST(new);
  2263. }
  2264. new_ns->root = new;
  2265. list_add_tail(&new_ns->list, &new->mnt_list);
  2266. /*
  2267. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2268. * as belonging to new namespace. We have already acquired a private
  2269. * fs_struct, so tsk->fs->lock is not needed.
  2270. */
  2271. p = old;
  2272. q = new;
  2273. while (p) {
  2274. q->mnt_ns = new_ns;
  2275. if (new_fs) {
  2276. if (&p->mnt == new_fs->root.mnt) {
  2277. new_fs->root.mnt = mntget(&q->mnt);
  2278. rootmnt = &p->mnt;
  2279. }
  2280. if (&p->mnt == new_fs->pwd.mnt) {
  2281. new_fs->pwd.mnt = mntget(&q->mnt);
  2282. pwdmnt = &p->mnt;
  2283. }
  2284. }
  2285. p = next_mnt(p, old);
  2286. q = next_mnt(q, new);
  2287. if (!q)
  2288. break;
  2289. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2290. p = next_mnt(p, old);
  2291. }
  2292. namespace_unlock();
  2293. if (rootmnt)
  2294. mntput(rootmnt);
  2295. if (pwdmnt)
  2296. mntput(pwdmnt);
  2297. return new_ns;
  2298. }
  2299. /**
  2300. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2301. * @mnt: pointer to the new root filesystem mountpoint
  2302. */
  2303. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2304. {
  2305. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2306. if (!IS_ERR(new_ns)) {
  2307. struct mount *mnt = real_mount(m);
  2308. mnt->mnt_ns = new_ns;
  2309. new_ns->root = mnt;
  2310. list_add(&mnt->mnt_list, &new_ns->list);
  2311. } else {
  2312. mntput(m);
  2313. }
  2314. return new_ns;
  2315. }
  2316. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2317. {
  2318. struct mnt_namespace *ns;
  2319. struct super_block *s;
  2320. struct path path;
  2321. int err;
  2322. ns = create_mnt_ns(mnt);
  2323. if (IS_ERR(ns))
  2324. return ERR_CAST(ns);
  2325. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2326. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2327. put_mnt_ns(ns);
  2328. if (err)
  2329. return ERR_PTR(err);
  2330. /* trade a vfsmount reference for active sb one */
  2331. s = path.mnt->mnt_sb;
  2332. atomic_inc(&s->s_active);
  2333. mntput(path.mnt);
  2334. /* lock the sucker */
  2335. down_write(&s->s_umount);
  2336. /* ... and return the root of (sub)tree on it */
  2337. return path.dentry;
  2338. }
  2339. EXPORT_SYMBOL(mount_subtree);
  2340. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2341. char __user *, type, unsigned long, flags, void __user *, data)
  2342. {
  2343. int ret;
  2344. char *kernel_type;
  2345. struct filename *kernel_dir;
  2346. char *kernel_dev;
  2347. unsigned long data_page;
  2348. ret = copy_mount_string(type, &kernel_type);
  2349. if (ret < 0)
  2350. goto out_type;
  2351. kernel_dir = getname(dir_name);
  2352. if (IS_ERR(kernel_dir)) {
  2353. ret = PTR_ERR(kernel_dir);
  2354. goto out_dir;
  2355. }
  2356. ret = copy_mount_string(dev_name, &kernel_dev);
  2357. if (ret < 0)
  2358. goto out_dev;
  2359. ret = copy_mount_options(data, &data_page);
  2360. if (ret < 0)
  2361. goto out_data;
  2362. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2363. (void *) data_page);
  2364. free_page(data_page);
  2365. out_data:
  2366. kfree(kernel_dev);
  2367. out_dev:
  2368. putname(kernel_dir);
  2369. out_dir:
  2370. kfree(kernel_type);
  2371. out_type:
  2372. return ret;
  2373. }
  2374. /*
  2375. * Return true if path is reachable from root
  2376. *
  2377. * namespace_sem or mount_lock is held
  2378. */
  2379. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2380. const struct path *root)
  2381. {
  2382. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2383. dentry = mnt->mnt_mountpoint;
  2384. mnt = mnt->mnt_parent;
  2385. }
  2386. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2387. }
  2388. int path_is_under(struct path *path1, struct path *path2)
  2389. {
  2390. int res;
  2391. read_seqlock_excl(&mount_lock);
  2392. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2393. read_sequnlock_excl(&mount_lock);
  2394. return res;
  2395. }
  2396. EXPORT_SYMBOL(path_is_under);
  2397. /*
  2398. * pivot_root Semantics:
  2399. * Moves the root file system of the current process to the directory put_old,
  2400. * makes new_root as the new root file system of the current process, and sets
  2401. * root/cwd of all processes which had them on the current root to new_root.
  2402. *
  2403. * Restrictions:
  2404. * The new_root and put_old must be directories, and must not be on the
  2405. * same file system as the current process root. The put_old must be
  2406. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2407. * pointed to by put_old must yield the same directory as new_root. No other
  2408. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2409. *
  2410. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2411. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2412. * in this situation.
  2413. *
  2414. * Notes:
  2415. * - we don't move root/cwd if they are not at the root (reason: if something
  2416. * cared enough to change them, it's probably wrong to force them elsewhere)
  2417. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2418. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2419. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2420. * first.
  2421. */
  2422. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2423. const char __user *, put_old)
  2424. {
  2425. struct path new, old, parent_path, root_parent, root;
  2426. struct mount *new_mnt, *root_mnt, *old_mnt;
  2427. struct mountpoint *old_mp, *root_mp;
  2428. int error;
  2429. if (!may_mount())
  2430. return -EPERM;
  2431. error = user_path_dir(new_root, &new);
  2432. if (error)
  2433. goto out0;
  2434. error = user_path_dir(put_old, &old);
  2435. if (error)
  2436. goto out1;
  2437. error = security_sb_pivotroot(&old, &new);
  2438. if (error)
  2439. goto out2;
  2440. get_fs_root(current->fs, &root);
  2441. old_mp = lock_mount(&old);
  2442. error = PTR_ERR(old_mp);
  2443. if (IS_ERR(old_mp))
  2444. goto out3;
  2445. error = -EINVAL;
  2446. new_mnt = real_mount(new.mnt);
  2447. root_mnt = real_mount(root.mnt);
  2448. old_mnt = real_mount(old.mnt);
  2449. if (IS_MNT_SHARED(old_mnt) ||
  2450. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2451. IS_MNT_SHARED(root_mnt->mnt_parent))
  2452. goto out4;
  2453. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2454. goto out4;
  2455. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2456. goto out4;
  2457. error = -ENOENT;
  2458. if (d_unlinked(new.dentry))
  2459. goto out4;
  2460. error = -EBUSY;
  2461. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2462. goto out4; /* loop, on the same file system */
  2463. error = -EINVAL;
  2464. if (root.mnt->mnt_root != root.dentry)
  2465. goto out4; /* not a mountpoint */
  2466. if (!mnt_has_parent(root_mnt))
  2467. goto out4; /* not attached */
  2468. root_mp = root_mnt->mnt_mp;
  2469. if (new.mnt->mnt_root != new.dentry)
  2470. goto out4; /* not a mountpoint */
  2471. if (!mnt_has_parent(new_mnt))
  2472. goto out4; /* not attached */
  2473. /* make sure we can reach put_old from new_root */
  2474. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2475. goto out4;
  2476. root_mp->m_count++; /* pin it so it won't go away */
  2477. lock_mount_hash();
  2478. detach_mnt(new_mnt, &parent_path);
  2479. detach_mnt(root_mnt, &root_parent);
  2480. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2481. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2482. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2483. }
  2484. /* mount old root on put_old */
  2485. attach_mnt(root_mnt, old_mnt, old_mp);
  2486. /* mount new_root on / */
  2487. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2488. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2489. unlock_mount_hash();
  2490. chroot_fs_refs(&root, &new);
  2491. put_mountpoint(root_mp);
  2492. error = 0;
  2493. out4:
  2494. unlock_mount(old_mp);
  2495. if (!error) {
  2496. path_put(&root_parent);
  2497. path_put(&parent_path);
  2498. }
  2499. out3:
  2500. path_put(&root);
  2501. out2:
  2502. path_put(&old);
  2503. out1:
  2504. path_put(&new);
  2505. out0:
  2506. return error;
  2507. }
  2508. static void __init init_mount_tree(void)
  2509. {
  2510. struct vfsmount *mnt;
  2511. struct mnt_namespace *ns;
  2512. struct path root;
  2513. struct file_system_type *type;
  2514. type = get_fs_type("rootfs");
  2515. if (!type)
  2516. panic("Can't find rootfs type");
  2517. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2518. put_filesystem(type);
  2519. if (IS_ERR(mnt))
  2520. panic("Can't create rootfs");
  2521. ns = create_mnt_ns(mnt);
  2522. if (IS_ERR(ns))
  2523. panic("Can't allocate initial namespace");
  2524. init_task.nsproxy->mnt_ns = ns;
  2525. get_mnt_ns(ns);
  2526. root.mnt = mnt;
  2527. root.dentry = mnt->mnt_root;
  2528. set_fs_pwd(current->fs, &root);
  2529. set_fs_root(current->fs, &root);
  2530. }
  2531. void __init mnt_init(void)
  2532. {
  2533. unsigned u;
  2534. int err;
  2535. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2536. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2537. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2538. sizeof(struct hlist_head),
  2539. mhash_entries, 19,
  2540. 0,
  2541. &m_hash_shift, &m_hash_mask, 0, 0);
  2542. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2543. sizeof(struct hlist_head),
  2544. mphash_entries, 19,
  2545. 0,
  2546. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2547. if (!mount_hashtable || !mountpoint_hashtable)
  2548. panic("Failed to allocate mount hash table\n");
  2549. for (u = 0; u <= m_hash_mask; u++)
  2550. INIT_HLIST_HEAD(&mount_hashtable[u]);
  2551. for (u = 0; u <= mp_hash_mask; u++)
  2552. INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
  2553. kernfs_init();
  2554. err = sysfs_init();
  2555. if (err)
  2556. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2557. __func__, err);
  2558. fs_kobj = kobject_create_and_add("fs", NULL);
  2559. if (!fs_kobj)
  2560. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2561. init_rootfs();
  2562. init_mount_tree();
  2563. }
  2564. void put_mnt_ns(struct mnt_namespace *ns)
  2565. {
  2566. if (!atomic_dec_and_test(&ns->count))
  2567. return;
  2568. drop_collected_mounts(&ns->root->mnt);
  2569. free_mnt_ns(ns);
  2570. }
  2571. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2572. {
  2573. struct vfsmount *mnt;
  2574. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2575. if (!IS_ERR(mnt)) {
  2576. /*
  2577. * it is a longterm mount, don't release mnt until
  2578. * we unmount before file sys is unregistered
  2579. */
  2580. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2581. }
  2582. return mnt;
  2583. }
  2584. EXPORT_SYMBOL_GPL(kern_mount_data);
  2585. void kern_unmount(struct vfsmount *mnt)
  2586. {
  2587. /* release long term mount so mount point can be released */
  2588. if (!IS_ERR_OR_NULL(mnt)) {
  2589. real_mount(mnt)->mnt_ns = NULL;
  2590. synchronize_rcu(); /* yecchhh... */
  2591. mntput(mnt);
  2592. }
  2593. }
  2594. EXPORT_SYMBOL(kern_unmount);
  2595. bool our_mnt(struct vfsmount *mnt)
  2596. {
  2597. return check_mnt(real_mount(mnt));
  2598. }
  2599. bool current_chrooted(void)
  2600. {
  2601. /* Does the current process have a non-standard root */
  2602. struct path ns_root;
  2603. struct path fs_root;
  2604. bool chrooted;
  2605. /* Find the namespace root */
  2606. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2607. ns_root.dentry = ns_root.mnt->mnt_root;
  2608. path_get(&ns_root);
  2609. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2610. ;
  2611. get_fs_root(current->fs, &fs_root);
  2612. chrooted = !path_equal(&fs_root, &ns_root);
  2613. path_put(&fs_root);
  2614. path_put(&ns_root);
  2615. return chrooted;
  2616. }
  2617. bool fs_fully_visible(struct file_system_type *type)
  2618. {
  2619. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2620. struct mount *mnt;
  2621. bool visible = false;
  2622. if (unlikely(!ns))
  2623. return false;
  2624. down_read(&namespace_sem);
  2625. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2626. struct mount *child;
  2627. if (mnt->mnt.mnt_sb->s_type != type)
  2628. continue;
  2629. /* This mount is not fully visible if there are any child mounts
  2630. * that cover anything except for empty directories.
  2631. */
  2632. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2633. struct inode *inode = child->mnt_mountpoint->d_inode;
  2634. if (!S_ISDIR(inode->i_mode))
  2635. goto next;
  2636. if (inode->i_nlink > 2)
  2637. goto next;
  2638. }
  2639. visible = true;
  2640. goto found;
  2641. next: ;
  2642. }
  2643. found:
  2644. up_read(&namespace_sem);
  2645. return visible;
  2646. }
  2647. static void *mntns_get(struct task_struct *task)
  2648. {
  2649. struct mnt_namespace *ns = NULL;
  2650. struct nsproxy *nsproxy;
  2651. task_lock(task);
  2652. nsproxy = task->nsproxy;
  2653. if (nsproxy) {
  2654. ns = nsproxy->mnt_ns;
  2655. get_mnt_ns(ns);
  2656. }
  2657. task_unlock(task);
  2658. return ns;
  2659. }
  2660. static void mntns_put(void *ns)
  2661. {
  2662. put_mnt_ns(ns);
  2663. }
  2664. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2665. {
  2666. struct fs_struct *fs = current->fs;
  2667. struct mnt_namespace *mnt_ns = ns;
  2668. struct path root;
  2669. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2670. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2671. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2672. return -EPERM;
  2673. if (fs->users != 1)
  2674. return -EINVAL;
  2675. get_mnt_ns(mnt_ns);
  2676. put_mnt_ns(nsproxy->mnt_ns);
  2677. nsproxy->mnt_ns = mnt_ns;
  2678. /* Find the root */
  2679. root.mnt = &mnt_ns->root->mnt;
  2680. root.dentry = mnt_ns->root->mnt.mnt_root;
  2681. path_get(&root);
  2682. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2683. ;
  2684. /* Update the pwd and root */
  2685. set_fs_pwd(fs, &root);
  2686. set_fs_root(fs, &root);
  2687. path_put(&root);
  2688. return 0;
  2689. }
  2690. static unsigned int mntns_inum(void *ns)
  2691. {
  2692. struct mnt_namespace *mnt_ns = ns;
  2693. return mnt_ns->proc_inum;
  2694. }
  2695. const struct proc_ns_operations mntns_operations = {
  2696. .name = "mnt",
  2697. .type = CLONE_NEWNS,
  2698. .get = mntns_get,
  2699. .put = mntns_put,
  2700. .install = mntns_install,
  2701. .inum = mntns_inum,
  2702. };