file.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include <trace/events/f2fs.h>
  29. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  30. struct vm_fault *vmf)
  31. {
  32. struct page *page = vmf->page;
  33. struct inode *inode = file_inode(vma->vm_file);
  34. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  35. struct dnode_of_data dn;
  36. int err;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. f2fs_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = f2fs_reserve_block(&dn, page->index);
  43. f2fs_unlock_op(sbi);
  44. if (err)
  45. goto out;
  46. file_update_time(vma->vm_file);
  47. lock_page(page);
  48. if (unlikely(page->mapping != inode->i_mapping ||
  49. page_offset(page) > i_size_read(inode) ||
  50. !PageUptodate(page))) {
  51. unlock_page(page);
  52. err = -EFAULT;
  53. goto out;
  54. }
  55. /*
  56. * check to see if the page is mapped already (no holes)
  57. */
  58. if (PageMappedToDisk(page))
  59. goto mapped;
  60. /* page is wholly or partially inside EOF */
  61. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  62. unsigned offset;
  63. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  64. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  65. }
  66. set_page_dirty(page);
  67. SetPageUptodate(page);
  68. trace_f2fs_vm_page_mkwrite(page, DATA);
  69. mapped:
  70. /* fill the page */
  71. f2fs_wait_on_page_writeback(page, DATA);
  72. out:
  73. sb_end_pagefault(inode->i_sb);
  74. return block_page_mkwrite_return(err);
  75. }
  76. static const struct vm_operations_struct f2fs_file_vm_ops = {
  77. .fault = filemap_fault,
  78. .map_pages = filemap_map_pages,
  79. .page_mkwrite = f2fs_vm_page_mkwrite,
  80. .remap_pages = generic_file_remap_pages,
  81. };
  82. static int get_parent_ino(struct inode *inode, nid_t *pino)
  83. {
  84. struct dentry *dentry;
  85. inode = igrab(inode);
  86. dentry = d_find_any_alias(inode);
  87. iput(inode);
  88. if (!dentry)
  89. return 0;
  90. if (update_dent_inode(inode, &dentry->d_name)) {
  91. dput(dentry);
  92. return 0;
  93. }
  94. *pino = parent_ino(dentry);
  95. dput(dentry);
  96. return 1;
  97. }
  98. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  99. {
  100. struct inode *inode = file->f_mapping->host;
  101. struct f2fs_inode_info *fi = F2FS_I(inode);
  102. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  103. int ret = 0;
  104. bool need_cp = false;
  105. struct writeback_control wbc = {
  106. .sync_mode = WB_SYNC_ALL,
  107. .nr_to_write = LONG_MAX,
  108. .for_reclaim = 0,
  109. };
  110. if (unlikely(f2fs_readonly(inode->i_sb)))
  111. return 0;
  112. trace_f2fs_sync_file_enter(inode);
  113. /* if fdatasync is triggered, let's do in-place-update */
  114. if (datasync)
  115. set_inode_flag(fi, FI_NEED_IPU);
  116. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  117. if (datasync)
  118. clear_inode_flag(fi, FI_NEED_IPU);
  119. if (ret) {
  120. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  121. return ret;
  122. }
  123. /*
  124. * if there is no written data, don't waste time to write recovery info.
  125. */
  126. if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
  127. !exist_written_data(sbi, inode->i_ino, APPEND_INO)) {
  128. if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
  129. exist_written_data(sbi, inode->i_ino, UPDATE_INO))
  130. goto flush_out;
  131. goto out;
  132. }
  133. /* guarantee free sections for fsync */
  134. f2fs_balance_fs(sbi);
  135. down_read(&fi->i_sem);
  136. /*
  137. * Both of fdatasync() and fsync() are able to be recovered from
  138. * sudden-power-off.
  139. */
  140. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  141. need_cp = true;
  142. else if (file_wrong_pino(inode))
  143. need_cp = true;
  144. else if (!space_for_roll_forward(sbi))
  145. need_cp = true;
  146. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  147. need_cp = true;
  148. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  149. need_cp = true;
  150. up_read(&fi->i_sem);
  151. if (need_cp) {
  152. nid_t pino;
  153. /* all the dirty node pages should be flushed for POR */
  154. ret = f2fs_sync_fs(inode->i_sb, 1);
  155. down_write(&fi->i_sem);
  156. F2FS_I(inode)->xattr_ver = 0;
  157. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  158. get_parent_ino(inode, &pino)) {
  159. F2FS_I(inode)->i_pino = pino;
  160. file_got_pino(inode);
  161. up_write(&fi->i_sem);
  162. mark_inode_dirty_sync(inode);
  163. ret = f2fs_write_inode(inode, NULL);
  164. if (ret)
  165. goto out;
  166. } else {
  167. up_write(&fi->i_sem);
  168. }
  169. } else {
  170. /* if there is no written node page, write its inode page */
  171. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  172. if (fsync_mark_done(sbi, inode->i_ino))
  173. goto out;
  174. mark_inode_dirty_sync(inode);
  175. ret = f2fs_write_inode(inode, NULL);
  176. if (ret)
  177. goto out;
  178. }
  179. ret = wait_on_node_pages_writeback(sbi, inode->i_ino);
  180. if (ret)
  181. goto out;
  182. /* once recovery info is written, don't need to tack this */
  183. remove_dirty_inode(sbi, inode->i_ino, APPEND_INO);
  184. clear_inode_flag(fi, FI_APPEND_WRITE);
  185. flush_out:
  186. remove_dirty_inode(sbi, inode->i_ino, UPDATE_INO);
  187. clear_inode_flag(fi, FI_UPDATE_WRITE);
  188. ret = f2fs_issue_flush(F2FS_SB(inode->i_sb));
  189. }
  190. out:
  191. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  192. return ret;
  193. }
  194. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  195. pgoff_t pgofs, int whence)
  196. {
  197. struct pagevec pvec;
  198. int nr_pages;
  199. if (whence != SEEK_DATA)
  200. return 0;
  201. /* find first dirty page index */
  202. pagevec_init(&pvec, 0);
  203. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
  204. PAGECACHE_TAG_DIRTY, 1);
  205. pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
  206. pagevec_release(&pvec);
  207. return pgofs;
  208. }
  209. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  210. int whence)
  211. {
  212. switch (whence) {
  213. case SEEK_DATA:
  214. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  215. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  216. return true;
  217. break;
  218. case SEEK_HOLE:
  219. if (blkaddr == NULL_ADDR)
  220. return true;
  221. break;
  222. }
  223. return false;
  224. }
  225. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  226. {
  227. struct inode *inode = file->f_mapping->host;
  228. loff_t maxbytes = inode->i_sb->s_maxbytes;
  229. struct dnode_of_data dn;
  230. pgoff_t pgofs, end_offset, dirty;
  231. loff_t data_ofs = offset;
  232. loff_t isize;
  233. int err = 0;
  234. mutex_lock(&inode->i_mutex);
  235. isize = i_size_read(inode);
  236. if (offset >= isize)
  237. goto fail;
  238. /* handle inline data case */
  239. if (f2fs_has_inline_data(inode)) {
  240. if (whence == SEEK_HOLE)
  241. data_ofs = isize;
  242. goto found;
  243. }
  244. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  245. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  246. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  247. set_new_dnode(&dn, inode, NULL, NULL, 0);
  248. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  249. if (err && err != -ENOENT) {
  250. goto fail;
  251. } else if (err == -ENOENT) {
  252. /* direct node is not exist */
  253. if (whence == SEEK_DATA) {
  254. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  255. F2FS_I(inode));
  256. continue;
  257. } else {
  258. goto found;
  259. }
  260. }
  261. end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  262. /* find data/hole in dnode block */
  263. for (; dn.ofs_in_node < end_offset;
  264. dn.ofs_in_node++, pgofs++,
  265. data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  266. block_t blkaddr;
  267. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  268. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  269. f2fs_put_dnode(&dn);
  270. goto found;
  271. }
  272. }
  273. f2fs_put_dnode(&dn);
  274. }
  275. if (whence == SEEK_DATA)
  276. goto fail;
  277. found:
  278. if (whence == SEEK_HOLE && data_ofs > isize)
  279. data_ofs = isize;
  280. mutex_unlock(&inode->i_mutex);
  281. return vfs_setpos(file, data_ofs, maxbytes);
  282. fail:
  283. mutex_unlock(&inode->i_mutex);
  284. return -ENXIO;
  285. }
  286. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  287. {
  288. struct inode *inode = file->f_mapping->host;
  289. loff_t maxbytes = inode->i_sb->s_maxbytes;
  290. switch (whence) {
  291. case SEEK_SET:
  292. case SEEK_CUR:
  293. case SEEK_END:
  294. return generic_file_llseek_size(file, offset, whence,
  295. maxbytes, i_size_read(inode));
  296. case SEEK_DATA:
  297. case SEEK_HOLE:
  298. return f2fs_seek_block(file, offset, whence);
  299. }
  300. return -EINVAL;
  301. }
  302. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  303. {
  304. file_accessed(file);
  305. vma->vm_ops = &f2fs_file_vm_ops;
  306. return 0;
  307. }
  308. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  309. {
  310. int nr_free = 0, ofs = dn->ofs_in_node;
  311. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  312. struct f2fs_node *raw_node;
  313. __le32 *addr;
  314. raw_node = F2FS_NODE(dn->node_page);
  315. addr = blkaddr_in_node(raw_node) + ofs;
  316. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  317. block_t blkaddr = le32_to_cpu(*addr);
  318. if (blkaddr == NULL_ADDR)
  319. continue;
  320. update_extent_cache(NULL_ADDR, dn);
  321. invalidate_blocks(sbi, blkaddr);
  322. nr_free++;
  323. }
  324. if (nr_free) {
  325. dec_valid_block_count(sbi, dn->inode, nr_free);
  326. set_page_dirty(dn->node_page);
  327. sync_inode_page(dn);
  328. }
  329. dn->ofs_in_node = ofs;
  330. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  331. dn->ofs_in_node, nr_free);
  332. return nr_free;
  333. }
  334. void truncate_data_blocks(struct dnode_of_data *dn)
  335. {
  336. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  337. }
  338. static void truncate_partial_data_page(struct inode *inode, u64 from)
  339. {
  340. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  341. struct page *page;
  342. if (f2fs_has_inline_data(inode))
  343. return truncate_inline_data(inode, from);
  344. if (!offset)
  345. return;
  346. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  347. if (IS_ERR(page))
  348. return;
  349. lock_page(page);
  350. if (unlikely(!PageUptodate(page) ||
  351. page->mapping != inode->i_mapping))
  352. goto out;
  353. f2fs_wait_on_page_writeback(page, DATA);
  354. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  355. set_page_dirty(page);
  356. out:
  357. f2fs_put_page(page, 1);
  358. }
  359. int truncate_blocks(struct inode *inode, u64 from)
  360. {
  361. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  362. unsigned int blocksize = inode->i_sb->s_blocksize;
  363. struct dnode_of_data dn;
  364. pgoff_t free_from;
  365. int count = 0, err = 0;
  366. trace_f2fs_truncate_blocks_enter(inode, from);
  367. if (f2fs_has_inline_data(inode))
  368. goto done;
  369. free_from = (pgoff_t)
  370. ((from + blocksize - 1) >> (sbi->log_blocksize));
  371. f2fs_lock_op(sbi);
  372. set_new_dnode(&dn, inode, NULL, NULL, 0);
  373. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  374. if (err) {
  375. if (err == -ENOENT)
  376. goto free_next;
  377. f2fs_unlock_op(sbi);
  378. trace_f2fs_truncate_blocks_exit(inode, err);
  379. return err;
  380. }
  381. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  382. count -= dn.ofs_in_node;
  383. f2fs_bug_on(count < 0);
  384. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  385. truncate_data_blocks_range(&dn, count);
  386. free_from += count;
  387. }
  388. f2fs_put_dnode(&dn);
  389. free_next:
  390. err = truncate_inode_blocks(inode, free_from);
  391. f2fs_unlock_op(sbi);
  392. done:
  393. /* lastly zero out the first data page */
  394. truncate_partial_data_page(inode, from);
  395. trace_f2fs_truncate_blocks_exit(inode, err);
  396. return err;
  397. }
  398. void f2fs_truncate(struct inode *inode)
  399. {
  400. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  401. S_ISLNK(inode->i_mode)))
  402. return;
  403. trace_f2fs_truncate(inode);
  404. if (!truncate_blocks(inode, i_size_read(inode))) {
  405. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  406. mark_inode_dirty(inode);
  407. }
  408. }
  409. int f2fs_getattr(struct vfsmount *mnt,
  410. struct dentry *dentry, struct kstat *stat)
  411. {
  412. struct inode *inode = dentry->d_inode;
  413. generic_fillattr(inode, stat);
  414. stat->blocks <<= 3;
  415. return 0;
  416. }
  417. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  418. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  419. {
  420. struct f2fs_inode_info *fi = F2FS_I(inode);
  421. unsigned int ia_valid = attr->ia_valid;
  422. if (ia_valid & ATTR_UID)
  423. inode->i_uid = attr->ia_uid;
  424. if (ia_valid & ATTR_GID)
  425. inode->i_gid = attr->ia_gid;
  426. if (ia_valid & ATTR_ATIME)
  427. inode->i_atime = timespec_trunc(attr->ia_atime,
  428. inode->i_sb->s_time_gran);
  429. if (ia_valid & ATTR_MTIME)
  430. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  431. inode->i_sb->s_time_gran);
  432. if (ia_valid & ATTR_CTIME)
  433. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  434. inode->i_sb->s_time_gran);
  435. if (ia_valid & ATTR_MODE) {
  436. umode_t mode = attr->ia_mode;
  437. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  438. mode &= ~S_ISGID;
  439. set_acl_inode(fi, mode);
  440. }
  441. }
  442. #else
  443. #define __setattr_copy setattr_copy
  444. #endif
  445. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  446. {
  447. struct inode *inode = dentry->d_inode;
  448. struct f2fs_inode_info *fi = F2FS_I(inode);
  449. int err;
  450. err = inode_change_ok(inode, attr);
  451. if (err)
  452. return err;
  453. if ((attr->ia_valid & ATTR_SIZE) &&
  454. attr->ia_size != i_size_read(inode)) {
  455. err = f2fs_convert_inline_data(inode, attr->ia_size);
  456. if (err)
  457. return err;
  458. truncate_setsize(inode, attr->ia_size);
  459. f2fs_truncate(inode);
  460. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  461. }
  462. __setattr_copy(inode, attr);
  463. if (attr->ia_valid & ATTR_MODE) {
  464. err = posix_acl_chmod(inode, get_inode_mode(inode));
  465. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  466. inode->i_mode = fi->i_acl_mode;
  467. clear_inode_flag(fi, FI_ACL_MODE);
  468. }
  469. }
  470. mark_inode_dirty(inode);
  471. return err;
  472. }
  473. const struct inode_operations f2fs_file_inode_operations = {
  474. .getattr = f2fs_getattr,
  475. .setattr = f2fs_setattr,
  476. .get_acl = f2fs_get_acl,
  477. .set_acl = f2fs_set_acl,
  478. #ifdef CONFIG_F2FS_FS_XATTR
  479. .setxattr = generic_setxattr,
  480. .getxattr = generic_getxattr,
  481. .listxattr = f2fs_listxattr,
  482. .removexattr = generic_removexattr,
  483. #endif
  484. .fiemap = f2fs_fiemap,
  485. };
  486. static void fill_zero(struct inode *inode, pgoff_t index,
  487. loff_t start, loff_t len)
  488. {
  489. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  490. struct page *page;
  491. if (!len)
  492. return;
  493. f2fs_balance_fs(sbi);
  494. f2fs_lock_op(sbi);
  495. page = get_new_data_page(inode, NULL, index, false);
  496. f2fs_unlock_op(sbi);
  497. if (!IS_ERR(page)) {
  498. f2fs_wait_on_page_writeback(page, DATA);
  499. zero_user(page, start, len);
  500. set_page_dirty(page);
  501. f2fs_put_page(page, 1);
  502. }
  503. }
  504. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  505. {
  506. pgoff_t index;
  507. int err;
  508. for (index = pg_start; index < pg_end; index++) {
  509. struct dnode_of_data dn;
  510. set_new_dnode(&dn, inode, NULL, NULL, 0);
  511. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  512. if (err) {
  513. if (err == -ENOENT)
  514. continue;
  515. return err;
  516. }
  517. if (dn.data_blkaddr != NULL_ADDR)
  518. truncate_data_blocks_range(&dn, 1);
  519. f2fs_put_dnode(&dn);
  520. }
  521. return 0;
  522. }
  523. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  524. {
  525. pgoff_t pg_start, pg_end;
  526. loff_t off_start, off_end;
  527. int ret = 0;
  528. ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1);
  529. if (ret)
  530. return ret;
  531. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  532. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  533. off_start = offset & (PAGE_CACHE_SIZE - 1);
  534. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  535. if (pg_start == pg_end) {
  536. fill_zero(inode, pg_start, off_start,
  537. off_end - off_start);
  538. } else {
  539. if (off_start)
  540. fill_zero(inode, pg_start++, off_start,
  541. PAGE_CACHE_SIZE - off_start);
  542. if (off_end)
  543. fill_zero(inode, pg_end, 0, off_end);
  544. if (pg_start < pg_end) {
  545. struct address_space *mapping = inode->i_mapping;
  546. loff_t blk_start, blk_end;
  547. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  548. f2fs_balance_fs(sbi);
  549. blk_start = pg_start << PAGE_CACHE_SHIFT;
  550. blk_end = pg_end << PAGE_CACHE_SHIFT;
  551. truncate_inode_pages_range(mapping, blk_start,
  552. blk_end - 1);
  553. f2fs_lock_op(sbi);
  554. ret = truncate_hole(inode, pg_start, pg_end);
  555. f2fs_unlock_op(sbi);
  556. }
  557. }
  558. return ret;
  559. }
  560. static int expand_inode_data(struct inode *inode, loff_t offset,
  561. loff_t len, int mode)
  562. {
  563. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  564. pgoff_t index, pg_start, pg_end;
  565. loff_t new_size = i_size_read(inode);
  566. loff_t off_start, off_end;
  567. int ret = 0;
  568. f2fs_balance_fs(sbi);
  569. ret = inode_newsize_ok(inode, (len + offset));
  570. if (ret)
  571. return ret;
  572. ret = f2fs_convert_inline_data(inode, offset + len);
  573. if (ret)
  574. return ret;
  575. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  576. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  577. off_start = offset & (PAGE_CACHE_SIZE - 1);
  578. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  579. f2fs_lock_op(sbi);
  580. for (index = pg_start; index <= pg_end; index++) {
  581. struct dnode_of_data dn;
  582. if (index == pg_end && !off_end)
  583. goto noalloc;
  584. set_new_dnode(&dn, inode, NULL, NULL, 0);
  585. ret = f2fs_reserve_block(&dn, index);
  586. if (ret)
  587. break;
  588. noalloc:
  589. if (pg_start == pg_end)
  590. new_size = offset + len;
  591. else if (index == pg_start && off_start)
  592. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  593. else if (index == pg_end)
  594. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  595. else
  596. new_size += PAGE_CACHE_SIZE;
  597. }
  598. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  599. i_size_read(inode) < new_size) {
  600. i_size_write(inode, new_size);
  601. mark_inode_dirty(inode);
  602. update_inode_page(inode);
  603. }
  604. f2fs_unlock_op(sbi);
  605. return ret;
  606. }
  607. static long f2fs_fallocate(struct file *file, int mode,
  608. loff_t offset, loff_t len)
  609. {
  610. struct inode *inode = file_inode(file);
  611. long ret;
  612. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  613. return -EOPNOTSUPP;
  614. mutex_lock(&inode->i_mutex);
  615. if (mode & FALLOC_FL_PUNCH_HOLE)
  616. ret = punch_hole(inode, offset, len);
  617. else
  618. ret = expand_inode_data(inode, offset, len, mode);
  619. if (!ret) {
  620. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  621. mark_inode_dirty(inode);
  622. }
  623. mutex_unlock(&inode->i_mutex);
  624. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  625. return ret;
  626. }
  627. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  628. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  629. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  630. {
  631. if (S_ISDIR(mode))
  632. return flags;
  633. else if (S_ISREG(mode))
  634. return flags & F2FS_REG_FLMASK;
  635. else
  636. return flags & F2FS_OTHER_FLMASK;
  637. }
  638. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  639. {
  640. struct inode *inode = file_inode(filp);
  641. struct f2fs_inode_info *fi = F2FS_I(inode);
  642. unsigned int flags;
  643. int ret;
  644. switch (cmd) {
  645. case F2FS_IOC_GETFLAGS:
  646. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  647. return put_user(flags, (int __user *) arg);
  648. case F2FS_IOC_SETFLAGS:
  649. {
  650. unsigned int oldflags;
  651. ret = mnt_want_write_file(filp);
  652. if (ret)
  653. return ret;
  654. if (!inode_owner_or_capable(inode)) {
  655. ret = -EACCES;
  656. goto out;
  657. }
  658. if (get_user(flags, (int __user *) arg)) {
  659. ret = -EFAULT;
  660. goto out;
  661. }
  662. flags = f2fs_mask_flags(inode->i_mode, flags);
  663. mutex_lock(&inode->i_mutex);
  664. oldflags = fi->i_flags;
  665. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  666. if (!capable(CAP_LINUX_IMMUTABLE)) {
  667. mutex_unlock(&inode->i_mutex);
  668. ret = -EPERM;
  669. goto out;
  670. }
  671. }
  672. flags = flags & FS_FL_USER_MODIFIABLE;
  673. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  674. fi->i_flags = flags;
  675. mutex_unlock(&inode->i_mutex);
  676. f2fs_set_inode_flags(inode);
  677. inode->i_ctime = CURRENT_TIME;
  678. mark_inode_dirty(inode);
  679. out:
  680. mnt_drop_write_file(filp);
  681. return ret;
  682. }
  683. default:
  684. return -ENOTTY;
  685. }
  686. }
  687. #ifdef CONFIG_COMPAT
  688. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  689. {
  690. switch (cmd) {
  691. case F2FS_IOC32_GETFLAGS:
  692. cmd = F2FS_IOC_GETFLAGS;
  693. break;
  694. case F2FS_IOC32_SETFLAGS:
  695. cmd = F2FS_IOC_SETFLAGS;
  696. break;
  697. default:
  698. return -ENOIOCTLCMD;
  699. }
  700. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  701. }
  702. #endif
  703. const struct file_operations f2fs_file_operations = {
  704. .llseek = f2fs_llseek,
  705. .read = new_sync_read,
  706. .write = new_sync_write,
  707. .read_iter = generic_file_read_iter,
  708. .write_iter = generic_file_write_iter,
  709. .open = generic_file_open,
  710. .mmap = f2fs_file_mmap,
  711. .fsync = f2fs_sync_file,
  712. .fallocate = f2fs_fallocate,
  713. .unlocked_ioctl = f2fs_ioctl,
  714. #ifdef CONFIG_COMPAT
  715. .compat_ioctl = f2fs_compat_ioctl,
  716. #endif
  717. .splice_read = generic_file_splice_read,
  718. .splice_write = iter_file_splice_write,
  719. };