checkpoint.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *ino_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = META_MAPPING(sbi);
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. f2fs_wait_on_page_writeback(page, META);
  39. SetPageUptodate(page);
  40. return page;
  41. }
  42. /*
  43. * We guarantee no failure on the returned page.
  44. */
  45. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  46. {
  47. struct address_space *mapping = META_MAPPING(sbi);
  48. struct page *page;
  49. repeat:
  50. page = grab_cache_page(mapping, index);
  51. if (!page) {
  52. cond_resched();
  53. goto repeat;
  54. }
  55. if (PageUptodate(page))
  56. goto out;
  57. if (f2fs_submit_page_bio(sbi, page, index,
  58. READ_SYNC | REQ_META | REQ_PRIO))
  59. goto repeat;
  60. lock_page(page);
  61. if (unlikely(page->mapping != mapping)) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. return page;
  67. }
  68. static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
  69. {
  70. switch (type) {
  71. case META_NAT:
  72. return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
  73. case META_SIT:
  74. return SIT_BLK_CNT(sbi);
  75. case META_SSA:
  76. case META_CP:
  77. return 0;
  78. default:
  79. BUG();
  80. }
  81. }
  82. /*
  83. * Readahead CP/NAT/SIT/SSA pages
  84. */
  85. int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
  86. {
  87. block_t prev_blk_addr = 0;
  88. struct page *page;
  89. int blkno = start;
  90. int max_blks = get_max_meta_blks(sbi, type);
  91. struct f2fs_io_info fio = {
  92. .type = META,
  93. .rw = READ_SYNC | REQ_META | REQ_PRIO
  94. };
  95. for (; nrpages-- > 0; blkno++) {
  96. block_t blk_addr;
  97. switch (type) {
  98. case META_NAT:
  99. /* get nat block addr */
  100. if (unlikely(blkno >= max_blks))
  101. blkno = 0;
  102. blk_addr = current_nat_addr(sbi,
  103. blkno * NAT_ENTRY_PER_BLOCK);
  104. break;
  105. case META_SIT:
  106. /* get sit block addr */
  107. if (unlikely(blkno >= max_blks))
  108. goto out;
  109. blk_addr = current_sit_addr(sbi,
  110. blkno * SIT_ENTRY_PER_BLOCK);
  111. if (blkno != start && prev_blk_addr + 1 != blk_addr)
  112. goto out;
  113. prev_blk_addr = blk_addr;
  114. break;
  115. case META_SSA:
  116. case META_CP:
  117. /* get ssa/cp block addr */
  118. blk_addr = blkno;
  119. break;
  120. default:
  121. BUG();
  122. }
  123. page = grab_cache_page(META_MAPPING(sbi), blk_addr);
  124. if (!page)
  125. continue;
  126. if (PageUptodate(page)) {
  127. f2fs_put_page(page, 1);
  128. continue;
  129. }
  130. f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
  131. f2fs_put_page(page, 0);
  132. }
  133. out:
  134. f2fs_submit_merged_bio(sbi, META, READ);
  135. return blkno - start;
  136. }
  137. static int f2fs_write_meta_page(struct page *page,
  138. struct writeback_control *wbc)
  139. {
  140. struct inode *inode = page->mapping->host;
  141. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  142. trace_f2fs_writepage(page, META);
  143. if (unlikely(sbi->por_doing))
  144. goto redirty_out;
  145. if (wbc->for_reclaim)
  146. goto redirty_out;
  147. /* Should not write any meta pages, if any IO error was occurred */
  148. if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
  149. goto no_write;
  150. f2fs_wait_on_page_writeback(page, META);
  151. write_meta_page(sbi, page);
  152. no_write:
  153. dec_page_count(sbi, F2FS_DIRTY_META);
  154. unlock_page(page);
  155. return 0;
  156. redirty_out:
  157. redirty_page_for_writepage(wbc, page);
  158. return AOP_WRITEPAGE_ACTIVATE;
  159. }
  160. static int f2fs_write_meta_pages(struct address_space *mapping,
  161. struct writeback_control *wbc)
  162. {
  163. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  164. long diff, written;
  165. trace_f2fs_writepages(mapping->host, wbc, META);
  166. /* collect a number of dirty meta pages and write together */
  167. if (wbc->for_kupdate ||
  168. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  169. goto skip_write;
  170. /* if mounting is failed, skip writing node pages */
  171. mutex_lock(&sbi->cp_mutex);
  172. diff = nr_pages_to_write(sbi, META, wbc);
  173. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  174. mutex_unlock(&sbi->cp_mutex);
  175. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  176. return 0;
  177. skip_write:
  178. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  179. return 0;
  180. }
  181. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  182. long nr_to_write)
  183. {
  184. struct address_space *mapping = META_MAPPING(sbi);
  185. pgoff_t index = 0, end = LONG_MAX;
  186. struct pagevec pvec;
  187. long nwritten = 0;
  188. struct writeback_control wbc = {
  189. .for_reclaim = 0,
  190. };
  191. pagevec_init(&pvec, 0);
  192. while (index <= end) {
  193. int i, nr_pages;
  194. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  195. PAGECACHE_TAG_DIRTY,
  196. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  197. if (unlikely(nr_pages == 0))
  198. break;
  199. for (i = 0; i < nr_pages; i++) {
  200. struct page *page = pvec.pages[i];
  201. lock_page(page);
  202. if (unlikely(page->mapping != mapping)) {
  203. continue_unlock:
  204. unlock_page(page);
  205. continue;
  206. }
  207. if (!PageDirty(page)) {
  208. /* someone wrote it for us */
  209. goto continue_unlock;
  210. }
  211. if (!clear_page_dirty_for_io(page))
  212. goto continue_unlock;
  213. if (f2fs_write_meta_page(page, &wbc)) {
  214. unlock_page(page);
  215. break;
  216. }
  217. nwritten++;
  218. if (unlikely(nwritten >= nr_to_write))
  219. break;
  220. }
  221. pagevec_release(&pvec);
  222. cond_resched();
  223. }
  224. if (nwritten)
  225. f2fs_submit_merged_bio(sbi, type, WRITE);
  226. return nwritten;
  227. }
  228. static int f2fs_set_meta_page_dirty(struct page *page)
  229. {
  230. struct address_space *mapping = page->mapping;
  231. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  232. trace_f2fs_set_page_dirty(page, META);
  233. SetPageUptodate(page);
  234. if (!PageDirty(page)) {
  235. __set_page_dirty_nobuffers(page);
  236. inc_page_count(sbi, F2FS_DIRTY_META);
  237. return 1;
  238. }
  239. return 0;
  240. }
  241. const struct address_space_operations f2fs_meta_aops = {
  242. .writepage = f2fs_write_meta_page,
  243. .writepages = f2fs_write_meta_pages,
  244. .set_page_dirty = f2fs_set_meta_page_dirty,
  245. };
  246. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  247. {
  248. struct ino_entry *e;
  249. retry:
  250. spin_lock(&sbi->ino_lock[type]);
  251. e = radix_tree_lookup(&sbi->ino_root[type], ino);
  252. if (!e) {
  253. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  254. if (!e) {
  255. spin_unlock(&sbi->ino_lock[type]);
  256. goto retry;
  257. }
  258. if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
  259. spin_unlock(&sbi->ino_lock[type]);
  260. kmem_cache_free(ino_entry_slab, e);
  261. goto retry;
  262. }
  263. memset(e, 0, sizeof(struct ino_entry));
  264. e->ino = ino;
  265. list_add_tail(&e->list, &sbi->ino_list[type]);
  266. }
  267. spin_unlock(&sbi->ino_lock[type]);
  268. }
  269. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  270. {
  271. struct ino_entry *e;
  272. spin_lock(&sbi->ino_lock[type]);
  273. e = radix_tree_lookup(&sbi->ino_root[type], ino);
  274. if (e) {
  275. list_del(&e->list);
  276. radix_tree_delete(&sbi->ino_root[type], ino);
  277. if (type == ORPHAN_INO)
  278. sbi->n_orphans--;
  279. spin_unlock(&sbi->ino_lock[type]);
  280. kmem_cache_free(ino_entry_slab, e);
  281. return;
  282. }
  283. spin_unlock(&sbi->ino_lock[type]);
  284. }
  285. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  286. {
  287. /* add new dirty ino entry into list */
  288. __add_ino_entry(sbi, ino, type);
  289. }
  290. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  291. {
  292. /* remove dirty ino entry from list */
  293. __remove_ino_entry(sbi, ino, type);
  294. }
  295. /* mode should be APPEND_INO or UPDATE_INO */
  296. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  297. {
  298. struct ino_entry *e;
  299. spin_lock(&sbi->ino_lock[mode]);
  300. e = radix_tree_lookup(&sbi->ino_root[mode], ino);
  301. spin_unlock(&sbi->ino_lock[mode]);
  302. return e ? true : false;
  303. }
  304. static void release_dirty_inode(struct f2fs_sb_info *sbi)
  305. {
  306. struct ino_entry *e, *tmp;
  307. int i;
  308. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  309. spin_lock(&sbi->ino_lock[i]);
  310. list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
  311. list_del(&e->list);
  312. radix_tree_delete(&sbi->ino_root[i], e->ino);
  313. kmem_cache_free(ino_entry_slab, e);
  314. }
  315. spin_unlock(&sbi->ino_lock[i]);
  316. }
  317. }
  318. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  319. {
  320. int err = 0;
  321. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  322. if (unlikely(sbi->n_orphans >= sbi->max_orphans))
  323. err = -ENOSPC;
  324. else
  325. sbi->n_orphans++;
  326. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  327. return err;
  328. }
  329. void release_orphan_inode(struct f2fs_sb_info *sbi)
  330. {
  331. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  332. f2fs_bug_on(sbi->n_orphans == 0);
  333. sbi->n_orphans--;
  334. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  335. }
  336. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  337. {
  338. /* add new orphan ino entry into list */
  339. __add_ino_entry(sbi, ino, ORPHAN_INO);
  340. }
  341. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  342. {
  343. /* remove orphan entry from orphan list */
  344. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  345. }
  346. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  347. {
  348. struct inode *inode = f2fs_iget(sbi->sb, ino);
  349. f2fs_bug_on(IS_ERR(inode));
  350. clear_nlink(inode);
  351. /* truncate all the data during iput */
  352. iput(inode);
  353. }
  354. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  355. {
  356. block_t start_blk, orphan_blkaddr, i, j;
  357. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  358. return;
  359. sbi->por_doing = true;
  360. start_blk = __start_cp_addr(sbi) + 1 +
  361. le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  362. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  363. ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
  364. for (i = 0; i < orphan_blkaddr; i++) {
  365. struct page *page = get_meta_page(sbi, start_blk + i);
  366. struct f2fs_orphan_block *orphan_blk;
  367. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  368. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  369. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  370. recover_orphan_inode(sbi, ino);
  371. }
  372. f2fs_put_page(page, 1);
  373. }
  374. /* clear Orphan Flag */
  375. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  376. sbi->por_doing = false;
  377. return;
  378. }
  379. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  380. {
  381. struct list_head *head;
  382. struct f2fs_orphan_block *orphan_blk = NULL;
  383. unsigned int nentries = 0;
  384. unsigned short index;
  385. unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
  386. (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
  387. struct page *page = NULL;
  388. struct ino_entry *orphan = NULL;
  389. for (index = 0; index < orphan_blocks; index++)
  390. grab_meta_page(sbi, start_blk + index);
  391. index = 1;
  392. spin_lock(&sbi->ino_lock[ORPHAN_INO]);
  393. head = &sbi->ino_list[ORPHAN_INO];
  394. /* loop for each orphan inode entry and write them in Jornal block */
  395. list_for_each_entry(orphan, head, list) {
  396. if (!page) {
  397. page = find_get_page(META_MAPPING(sbi), start_blk++);
  398. f2fs_bug_on(!page);
  399. orphan_blk =
  400. (struct f2fs_orphan_block *)page_address(page);
  401. memset(orphan_blk, 0, sizeof(*orphan_blk));
  402. f2fs_put_page(page, 0);
  403. }
  404. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  405. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  406. /*
  407. * an orphan block is full of 1020 entries,
  408. * then we need to flush current orphan blocks
  409. * and bring another one in memory
  410. */
  411. orphan_blk->blk_addr = cpu_to_le16(index);
  412. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  413. orphan_blk->entry_count = cpu_to_le32(nentries);
  414. set_page_dirty(page);
  415. f2fs_put_page(page, 1);
  416. index++;
  417. nentries = 0;
  418. page = NULL;
  419. }
  420. }
  421. if (page) {
  422. orphan_blk->blk_addr = cpu_to_le16(index);
  423. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  424. orphan_blk->entry_count = cpu_to_le32(nentries);
  425. set_page_dirty(page);
  426. f2fs_put_page(page, 1);
  427. }
  428. spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
  429. }
  430. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  431. block_t cp_addr, unsigned long long *version)
  432. {
  433. struct page *cp_page_1, *cp_page_2 = NULL;
  434. unsigned long blk_size = sbi->blocksize;
  435. struct f2fs_checkpoint *cp_block;
  436. unsigned long long cur_version = 0, pre_version = 0;
  437. size_t crc_offset;
  438. __u32 crc = 0;
  439. /* Read the 1st cp block in this CP pack */
  440. cp_page_1 = get_meta_page(sbi, cp_addr);
  441. /* get the version number */
  442. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  443. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  444. if (crc_offset >= blk_size)
  445. goto invalid_cp1;
  446. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  447. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  448. goto invalid_cp1;
  449. pre_version = cur_cp_version(cp_block);
  450. /* Read the 2nd cp block in this CP pack */
  451. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  452. cp_page_2 = get_meta_page(sbi, cp_addr);
  453. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  454. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  455. if (crc_offset >= blk_size)
  456. goto invalid_cp2;
  457. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  458. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  459. goto invalid_cp2;
  460. cur_version = cur_cp_version(cp_block);
  461. if (cur_version == pre_version) {
  462. *version = cur_version;
  463. f2fs_put_page(cp_page_2, 1);
  464. return cp_page_1;
  465. }
  466. invalid_cp2:
  467. f2fs_put_page(cp_page_2, 1);
  468. invalid_cp1:
  469. f2fs_put_page(cp_page_1, 1);
  470. return NULL;
  471. }
  472. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  473. {
  474. struct f2fs_checkpoint *cp_block;
  475. struct f2fs_super_block *fsb = sbi->raw_super;
  476. struct page *cp1, *cp2, *cur_page;
  477. unsigned long blk_size = sbi->blocksize;
  478. unsigned long long cp1_version = 0, cp2_version = 0;
  479. unsigned long long cp_start_blk_no;
  480. unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  481. block_t cp_blk_no;
  482. int i;
  483. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  484. if (!sbi->ckpt)
  485. return -ENOMEM;
  486. /*
  487. * Finding out valid cp block involves read both
  488. * sets( cp pack1 and cp pack 2)
  489. */
  490. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  491. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  492. /* The second checkpoint pack should start at the next segment */
  493. cp_start_blk_no += ((unsigned long long)1) <<
  494. le32_to_cpu(fsb->log_blocks_per_seg);
  495. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  496. if (cp1 && cp2) {
  497. if (ver_after(cp2_version, cp1_version))
  498. cur_page = cp2;
  499. else
  500. cur_page = cp1;
  501. } else if (cp1) {
  502. cur_page = cp1;
  503. } else if (cp2) {
  504. cur_page = cp2;
  505. } else {
  506. goto fail_no_cp;
  507. }
  508. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  509. memcpy(sbi->ckpt, cp_block, blk_size);
  510. if (cp_blks <= 1)
  511. goto done;
  512. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  513. if (cur_page == cp2)
  514. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  515. for (i = 1; i < cp_blks; i++) {
  516. void *sit_bitmap_ptr;
  517. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  518. cur_page = get_meta_page(sbi, cp_blk_no + i);
  519. sit_bitmap_ptr = page_address(cur_page);
  520. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  521. f2fs_put_page(cur_page, 1);
  522. }
  523. done:
  524. f2fs_put_page(cp1, 1);
  525. f2fs_put_page(cp2, 1);
  526. return 0;
  527. fail_no_cp:
  528. kfree(sbi->ckpt);
  529. return -EINVAL;
  530. }
  531. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  532. {
  533. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  534. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  535. return -EEXIST;
  536. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  537. F2FS_I(inode)->dirty_dir = new;
  538. list_add_tail(&new->list, &sbi->dir_inode_list);
  539. stat_inc_dirty_dir(sbi);
  540. return 0;
  541. }
  542. void set_dirty_dir_page(struct inode *inode, struct page *page)
  543. {
  544. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  545. struct dir_inode_entry *new;
  546. int ret = 0;
  547. if (!S_ISDIR(inode->i_mode))
  548. return;
  549. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  550. new->inode = inode;
  551. INIT_LIST_HEAD(&new->list);
  552. spin_lock(&sbi->dir_inode_lock);
  553. ret = __add_dirty_inode(inode, new);
  554. inode_inc_dirty_dents(inode);
  555. SetPagePrivate(page);
  556. spin_unlock(&sbi->dir_inode_lock);
  557. if (ret)
  558. kmem_cache_free(inode_entry_slab, new);
  559. }
  560. void add_dirty_dir_inode(struct inode *inode)
  561. {
  562. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  563. struct dir_inode_entry *new =
  564. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  565. int ret = 0;
  566. new->inode = inode;
  567. INIT_LIST_HEAD(&new->list);
  568. spin_lock(&sbi->dir_inode_lock);
  569. ret = __add_dirty_inode(inode, new);
  570. spin_unlock(&sbi->dir_inode_lock);
  571. if (ret)
  572. kmem_cache_free(inode_entry_slab, new);
  573. }
  574. void remove_dirty_dir_inode(struct inode *inode)
  575. {
  576. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  577. struct dir_inode_entry *entry;
  578. if (!S_ISDIR(inode->i_mode))
  579. return;
  580. spin_lock(&sbi->dir_inode_lock);
  581. if (get_dirty_dents(inode) ||
  582. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  583. spin_unlock(&sbi->dir_inode_lock);
  584. return;
  585. }
  586. entry = F2FS_I(inode)->dirty_dir;
  587. list_del(&entry->list);
  588. F2FS_I(inode)->dirty_dir = NULL;
  589. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  590. stat_dec_dirty_dir(sbi);
  591. spin_unlock(&sbi->dir_inode_lock);
  592. kmem_cache_free(inode_entry_slab, entry);
  593. /* Only from the recovery routine */
  594. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  595. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  596. iput(inode);
  597. }
  598. }
  599. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  600. {
  601. struct list_head *head;
  602. struct dir_inode_entry *entry;
  603. struct inode *inode;
  604. retry:
  605. spin_lock(&sbi->dir_inode_lock);
  606. head = &sbi->dir_inode_list;
  607. if (list_empty(head)) {
  608. spin_unlock(&sbi->dir_inode_lock);
  609. return;
  610. }
  611. entry = list_entry(head->next, struct dir_inode_entry, list);
  612. inode = igrab(entry->inode);
  613. spin_unlock(&sbi->dir_inode_lock);
  614. if (inode) {
  615. filemap_fdatawrite(inode->i_mapping);
  616. iput(inode);
  617. } else {
  618. /*
  619. * We should submit bio, since it exists several
  620. * wribacking dentry pages in the freeing inode.
  621. */
  622. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  623. }
  624. goto retry;
  625. }
  626. /*
  627. * Freeze all the FS-operations for checkpoint.
  628. */
  629. static void block_operations(struct f2fs_sb_info *sbi)
  630. {
  631. struct writeback_control wbc = {
  632. .sync_mode = WB_SYNC_ALL,
  633. .nr_to_write = LONG_MAX,
  634. .for_reclaim = 0,
  635. };
  636. struct blk_plug plug;
  637. blk_start_plug(&plug);
  638. retry_flush_dents:
  639. f2fs_lock_all(sbi);
  640. /* write all the dirty dentry pages */
  641. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  642. f2fs_unlock_all(sbi);
  643. sync_dirty_dir_inodes(sbi);
  644. goto retry_flush_dents;
  645. }
  646. /*
  647. * POR: we should ensure that there is no dirty node pages
  648. * until finishing nat/sit flush.
  649. */
  650. retry_flush_nodes:
  651. down_write(&sbi->node_write);
  652. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  653. up_write(&sbi->node_write);
  654. sync_node_pages(sbi, 0, &wbc);
  655. goto retry_flush_nodes;
  656. }
  657. blk_finish_plug(&plug);
  658. }
  659. static void unblock_operations(struct f2fs_sb_info *sbi)
  660. {
  661. up_write(&sbi->node_write);
  662. f2fs_unlock_all(sbi);
  663. }
  664. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  665. {
  666. DEFINE_WAIT(wait);
  667. for (;;) {
  668. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  669. if (!get_pages(sbi, F2FS_WRITEBACK))
  670. break;
  671. io_schedule();
  672. }
  673. finish_wait(&sbi->cp_wait, &wait);
  674. }
  675. static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  676. {
  677. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  678. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  679. nid_t last_nid = 0;
  680. block_t start_blk;
  681. struct page *cp_page;
  682. unsigned int data_sum_blocks, orphan_blocks;
  683. __u32 crc32 = 0;
  684. void *kaddr;
  685. int i;
  686. int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  687. /*
  688. * This avoids to conduct wrong roll-forward operations and uses
  689. * metapages, so should be called prior to sync_meta_pages below.
  690. */
  691. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  692. /* Flush all the NAT/SIT pages */
  693. while (get_pages(sbi, F2FS_DIRTY_META))
  694. sync_meta_pages(sbi, META, LONG_MAX);
  695. next_free_nid(sbi, &last_nid);
  696. /*
  697. * modify checkpoint
  698. * version number is already updated
  699. */
  700. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  701. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  702. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  703. for (i = 0; i < 3; i++) {
  704. ckpt->cur_node_segno[i] =
  705. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  706. ckpt->cur_node_blkoff[i] =
  707. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  708. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  709. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  710. }
  711. for (i = 0; i < 3; i++) {
  712. ckpt->cur_data_segno[i] =
  713. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  714. ckpt->cur_data_blkoff[i] =
  715. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  716. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  717. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  718. }
  719. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  720. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  721. ckpt->next_free_nid = cpu_to_le32(last_nid);
  722. /* 2 cp + n data seg summary + orphan inode blocks */
  723. data_sum_blocks = npages_for_summary_flush(sbi);
  724. if (data_sum_blocks < 3)
  725. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  726. else
  727. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  728. orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
  729. / F2FS_ORPHANS_PER_BLOCK;
  730. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  731. orphan_blocks);
  732. if (is_umount) {
  733. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  734. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  735. cp_payload_blks + data_sum_blocks +
  736. orphan_blocks + NR_CURSEG_NODE_TYPE);
  737. } else {
  738. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  739. ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
  740. cp_payload_blks + data_sum_blocks +
  741. orphan_blocks);
  742. }
  743. if (sbi->n_orphans)
  744. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  745. else
  746. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  747. /* update SIT/NAT bitmap */
  748. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  749. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  750. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  751. *((__le32 *)((unsigned char *)ckpt +
  752. le32_to_cpu(ckpt->checksum_offset)))
  753. = cpu_to_le32(crc32);
  754. start_blk = __start_cp_addr(sbi);
  755. /* write out checkpoint buffer at block 0 */
  756. cp_page = grab_meta_page(sbi, start_blk++);
  757. kaddr = page_address(cp_page);
  758. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  759. set_page_dirty(cp_page);
  760. f2fs_put_page(cp_page, 1);
  761. for (i = 1; i < 1 + cp_payload_blks; i++) {
  762. cp_page = grab_meta_page(sbi, start_blk++);
  763. kaddr = page_address(cp_page);
  764. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
  765. (1 << sbi->log_blocksize));
  766. set_page_dirty(cp_page);
  767. f2fs_put_page(cp_page, 1);
  768. }
  769. if (sbi->n_orphans) {
  770. write_orphan_inodes(sbi, start_blk);
  771. start_blk += orphan_blocks;
  772. }
  773. write_data_summaries(sbi, start_blk);
  774. start_blk += data_sum_blocks;
  775. if (is_umount) {
  776. write_node_summaries(sbi, start_blk);
  777. start_blk += NR_CURSEG_NODE_TYPE;
  778. }
  779. /* writeout checkpoint block */
  780. cp_page = grab_meta_page(sbi, start_blk);
  781. kaddr = page_address(cp_page);
  782. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  783. set_page_dirty(cp_page);
  784. f2fs_put_page(cp_page, 1);
  785. /* wait for previous submitted node/meta pages writeback */
  786. wait_on_all_pages_writeback(sbi);
  787. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  788. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  789. /* update user_block_counts */
  790. sbi->last_valid_block_count = sbi->total_valid_block_count;
  791. sbi->alloc_valid_block_count = 0;
  792. /* Here, we only have one bio having CP pack */
  793. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  794. if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
  795. clear_prefree_segments(sbi);
  796. release_dirty_inode(sbi);
  797. F2FS_RESET_SB_DIRT(sbi);
  798. }
  799. }
  800. /*
  801. * We guarantee that this checkpoint procedure should not fail.
  802. */
  803. void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
  804. {
  805. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  806. unsigned long long ckpt_ver;
  807. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
  808. mutex_lock(&sbi->cp_mutex);
  809. block_operations(sbi);
  810. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
  811. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  812. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  813. f2fs_submit_merged_bio(sbi, META, WRITE);
  814. /*
  815. * update checkpoint pack index
  816. * Increase the version number so that
  817. * SIT entries and seg summaries are written at correct place
  818. */
  819. ckpt_ver = cur_cp_version(ckpt);
  820. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  821. /* write cached NAT/SIT entries to NAT/SIT area */
  822. flush_nat_entries(sbi);
  823. flush_sit_entries(sbi);
  824. /* unlock all the fs_lock[] in do_checkpoint() */
  825. do_checkpoint(sbi, is_umount);
  826. unblock_operations(sbi);
  827. mutex_unlock(&sbi->cp_mutex);
  828. stat_inc_cp_count(sbi->stat_info);
  829. trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
  830. }
  831. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  832. {
  833. int i;
  834. for (i = 0; i < MAX_INO_ENTRY; i++) {
  835. INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
  836. spin_lock_init(&sbi->ino_lock[i]);
  837. INIT_LIST_HEAD(&sbi->ino_list[i]);
  838. }
  839. /*
  840. * considering 512 blocks in a segment 8 blocks are needed for cp
  841. * and log segment summaries. Remaining blocks are used to keep
  842. * orphan entries with the limitation one reserved segment
  843. * for cp pack we can have max 1020*504 orphan entries
  844. */
  845. sbi->n_orphans = 0;
  846. sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
  847. * F2FS_ORPHANS_PER_BLOCK;
  848. }
  849. int __init create_checkpoint_caches(void)
  850. {
  851. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  852. sizeof(struct ino_entry));
  853. if (!ino_entry_slab)
  854. return -ENOMEM;
  855. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  856. sizeof(struct dir_inode_entry));
  857. if (!inode_entry_slab) {
  858. kmem_cache_destroy(ino_entry_slab);
  859. return -ENOMEM;
  860. }
  861. return 0;
  862. }
  863. void destroy_checkpoint_caches(void)
  864. {
  865. kmem_cache_destroy(ino_entry_slab);
  866. kmem_cache_destroy(inode_entry_slab);
  867. }